电子称设计方案
电子秤设计的课程设计
电子秤设计的课程设计一、课程目标知识目标:1. 让学生理解电子秤的工作原理,掌握其基本组成部分及功能。
2. 使学生掌握电子秤设计中涉及的物理知识,如力的作用、杠杆原理等。
3. 帮助学生了解电子秤在生活中的应用,认识到科技进步对生活的影响。
技能目标:1. 培养学生运用物理知识解决实际问题的能力,学会分析电子秤的设计原理。
2. 提高学生的动手操作能力,学会组装和调试简单的电子秤模型。
3. 培养学生的团队协作能力,学会在小组合作中共同解决问题。
情感态度价值观目标:1. 培养学生对科学技术的兴趣和求知欲,激发他们探索电子秤设计的热情。
2. 引导学生关注生活中的科技产品,认识到科技发展对提高生活品质的重要性。
3. 培养学生的创新意识,鼓励他们勇于尝试,不断优化电子秤设计方案。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程属于科学实践类课程,注重理论知识与实践操作相结合。
2. 学生特点:六年级学生具备一定的物理知识和动手能力,对新事物充满好奇心,喜欢探索和尝试。
3. 教学要求:教师需结合学生特点,设计富有挑战性的实践活动,引导学生主动参与,培养他们的创新精神和实践能力。
1. 知识层面:掌握电子秤的基本原理和组成部分,了解其在生活中的应用。
2. 技能层面:能够独立组装和调试简单的电子秤模型,解决实际问题。
3. 情感态度价值观层面:培养对科技的兴趣,关注生活科技发展,具备创新意识。
二、教学内容1. 电子秤概述- 了解电子秤的发展历程、分类及特点。
- 熟悉电子秤在生活中的应用场景。
2. 电子秤工作原理- 学习力的作用、杠杆原理等基础物理知识。
- 掌握电子秤传感器的工作原理和转换过程。
3. 电子秤的组成与结构- 认识电子秤的主要组成部分,如传感器、显示屏、按键等。
- 了解各组成部分的功能和相互关系。
4. 电子秤设计实践- 学习如何设计简单的电子秤模型,包括电路图绘制、元件选择等。
- 掌握组装和调试电子秤模型的技巧。
电子秤设计与方案
START 控制 逻辑 EOC N位寄存器
锁 存 缓 存 器
二、DA
I VREF
I7 I7 R I6 2R 1 0 I6 R I5 2R 1 0 I5 R I4 2R 1 0 I4 R I3 2R 1 0 I3 R I2 2R 1 0 I2 R I1 2R 1 0 I1 R I0 2R 1 0 I0
利用:电阻应变传感器、INA163集成运放、ICL7106三位半LED 显示A/D转换器。 设计一个简单的电子秤
总设计框图
基本原理框图:
电阻应 变式 传感器
放大器 (INA163)
A/D转换器 (ICL7107)
LED显示
图(1)基本原理框图
下一节
3.1电阻应变传感器
电阻应变式传感器是将被 测量的力,通过它产生的 金属弹性形变转换成电阻 的 变化的元件。由电阻应变 片和测量线路两部分组成。 常用的电阻应变片有两种: 电阻丝应变片和半导体应 变片。
外部时钟输入电路图
RC低频振荡
总结
3.4、数码管显示部分
总结
电子秤设计方案二
整体结构
电阻应 变式 传感器 放大器 (INA163) 微处理器 (ATMega16) LCD显示 (次逼近式ADC的转换原理
VIN VN D/A转换器 VREF D7 D6 D5 D4 D3 D2 D1 D0 OE
全桥电压灵敏度:Ku=E 输出电压:Uo=E*(∆R/R)
3.2 INA163集成运 放 低噪声,低失真,仪表放大器
主要引脚说明:
1、第1、14管脚一级运放输出端。 2、第2、7、13引脚,不用将任何线路连接到NC引脚,NC引脚是为将来的需用而保留 的,一般悬空。 3、第3、12引脚外接增益电阻引脚。 4、第4、5引脚差动输入引脚。 5、第10引脚,参考电压输入端。 6、第9管脚电压输出端。
电子秤设计方案
电子秤设计方案目录第一章绪论 (1)2 设计任务书 (1)第二章系统方案论证与选型 (2)2.1 控制器部分 (3)2.2 数据采集部分 (4)2.2.1 传感器的选择 (4)2.2.2放大电路选择 (5)2.2.3 A/D转换器的选择 (6)2.2.4 键盘处理部分方案论证 (7)2.3显示电路部分的选择 (8)2.4超量程报警部分选择 (8)第三章硬件电路设计 (9)3.1 AT89S52的最小系统电路 (9)3.1.1单片机芯片AT89S52介绍 (9)3.1.2.单片机管脚说明 (9)3.1.3 AT89S52的最小系统电路构成 (11)3.2 电源电路设计 (12)3.3 数据采集部分电路设计 (14)3.3.1 传感器以及放大电路设计 (14)3.3.2 A/D转换器设计 (14)3.3.3 测量算法 (17)3.4显示电路与AT89S52单片机接口电路设计 (18)3.5键盘电路与AT89S52单片机接口电路设计 (19)3.6报警电路的设计 (20)第四章系统软件设计 (21)4.1主程序设计 (22)4.2 子程序设计 (23)4.2.1 A/D转换启动及数据读取程序设计 (23)4.2.2数制转换子程序设计 (24)4.2.3显示子程序设计 (25)4.2.4 键盘扫描子程序的设计 (26)4.2.5报警子程序的设计 (27)4.2.6 价格计算 (28)4.2.7 置零 (29)第五章电子秤测量结果不确定度评定 (30)参考文献 (32)附录1 系统总图 (33)附录2 程序清单 (34)第一章绪论1 电子秤的工作原理当被称物体放置在秤体的秤台上时,其重量便通过秤体传递到称重传感器,传感器随之产生力-电效应,将物体的重量转换成与被称物体重量成一定函数关系(一般成正比关系)的电信号(电压或电流等)。此信号由放大电路进行放大、经滤波后再由模/数(A/D)器进行转换,数字信号再送到微处器的CPU处理,CPU不断扫描键盘和各种功能开关,根据键盘输入内容和各种功能开关的状态进行必要的判断、分析、由仪表的软件来控制各种运算。运算结果送到内存贮器,需要显示时,CPU发出指令,从内存贮器中读出送到显示器显示,或送打印机打印。一般地信号的放大、滤波、A/D转换以及信号各种运算处理都在仪表中完成。2 设计任务书1、使用单片机为控制核心。2、使用键盘输入数据,操作简单,方便。3、液晶显示所称量的物品重量,同时还可显示物品的数量,单价,金额。4、具有去皮功能和金额累加计算功能。5、当物品重量超过电子秤量程,即过载情况或者是物品重量小于A/D转换器所能转换的最小精度,即欠量程的时候,具有超重报警功能。6、主要技术指标为:称量范围0~2kg; 放大电路设计(灵敏度1mV/V,输出信号为0~10mV,A/D转换输入为0-4.999V)。由4节7号电池供电。第二章系统方案论证与选型按照本设计功能的要求,系统由6个部分组成:控制器部分、测量部分、报警部分、数据显示部分、键盘部分、和电路电源部分,系统设计总体方案框图如图2.1所示。图2-1设计思路框图测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经处理电路(如滤波电路,差动放大电路,)处理后,送A/D转换器,将模拟量转化为数字量输出。控制器部分接受来自A/D转换器输出的数字信号,经过复杂的运算,将数字信号转换为物体的实际重量信号,并将其存储到存储单元中。控制器还可以通过对扩展I/O的控制,对键盘进行扫描,而后通过键盘散转程序,对整个系统进行控制。数据显示部分根据需要实现显示功能。本设计由于要求必须使用单片机作为系统的主控制器,而且以单片机为主控制器的设计,可以容易地将计算机技术和测量控制技术结合在一起,组成新型的只需要改变软件程序就可以更新换代的“智能化测量控制系统”。这种新型的智能仪表在测量过程自动化、测量结果的数据处理以及功能的多样化方面,都取得了巨大的进展。再则由于系统没有其它高标准的要求,又考虑到本设计中程序部分比较大,根据总体方案设计的分析,设计这样一个简单的的系统,可以选用带EPROM的单片机,由于应用程序不大,应用程序直接存储在片内,不用在外部扩展存储器,这样电路也可简化。INTEL公司的8051和8751都可使用,在这里选用ATMENL生产的AT89SXX系列单片机。AT89SXX系列与MCS-51相比有两大优势:第一,片内存储器采用闪速存储器,使程序写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路体积更小。此外价格低廉、性能比较稳定的MCPU,具有8K×8ROM、256×8RAM、2个16位定时计数器、4个8位I/O接口。这些配置能够很好地实现本仪器的测量和控制要求最后我们最终选择了AT89S52这个比较常用的单片机来实现系统的功能要求。AT89S52内部带有8KB的程序存储器,基本上已经能够满足我们的需要。电子秤的数据采集部分主要包括称重传感器、处理电路、A/D转换电路和键盘处理,因此对于这部分的论证主要分四方面。2.2.1 传感器的选择在设计中,传感器是一个十分重要的元件,因此对传感器的选择也显的特别的重要,不仅要注意其量程和参数,还有考虑到与其相配置的各种电路的设计的难以程度和设计性价比等等.平行梁微型秤称重传感器尺寸:长80mm 宽1.27mm 高1.27mm规格:1kg 2kg 5kg额定负荷 0.6,1,2,3,5,6(kg)额定输出 1.0 ±0.15mV/V输入阻抗1115±10% Ω输出阻抗1000±10% Ω推荐工作电压 5~12 VDC最大工作电压 15 VDC材质铝合金满量程电压=激励电压x灵敏度1.0mv/v根据设计要求满量程电压为0-10mv,由上式得激励电压为10V安装方式:悬臂梁安装方式带线段固定其它的悬空另一边上面称量设计要求平行梁微型秤称重传感器称量范围0~2kg 2KG 符合灵敏度1mV/V 1.0 ±0.15mV/V符合输出信号0~10mV 满量程电压=激励电压10Vx灵敏度1.0mv/v=10mV 符合电源带负载能力输入阻抗1115±10% Ω符合根据设计要求,灵敏度符合要求,规格选用2KG,激励电压10V2.2.2放大电路选择采用专用仪表放大器,如:INA128,INA121等。此类芯片内部采用差动输入,共模抑制比高,差模输入阻抗大,增益高,精度也非常好,且外部接口简单。INA128P,接口如下图3-2-1所示:图3-2-1放大器增益501K G RgΩ=+,通过改变Rg 的大小来改变放大器的增益。 基于以上分析,我们决定采用制作方便而且精度很好的专用仪表放大器INA128。INA128是低功耗、高精度的通用仪表放大器。它们通用的 3 运放(3-op amp)设计和体积小巧使其应用范围广泛。反馈电流(Current-feedback)输入电路即使在高增益条件下(G = 100时,200kHz)也可提供较宽的带宽。单个外部电阻可实现从1至10000的任一增益选择。INA128提供工业标准的增益等式(gain equation)INA129 的增益等式与 AD620 兼容。INA128用激光进行修正微调,具有非常低的偏置电压(50mV)、温度漂移(0.5/V c μ)和高共模抑制(在 G=100 时,120dB)。其电源电压低至±2.25 且静态电流只有 700uA,是电池供电系统的理想选择。内部输入保护能经受±40V 电压而无损坏。设计要求INA128运算放大器 输出电压0-4.999v5v 符合2.2.3 A/D 转换器的选择A/D 转换器的选择对传感器量程和精度的分析可知: A/D 转换器误差应在 0.03%以下8位A/D 精度:2Kg/256=7.81克12 位 A/D 精度: 2Kg/4096=0.49g14 位 A/D 精度: 2Kg/16384=0.12g考虑到其他部分所带来的干扰 ,8位 A/D 无法满足系统精度要求。作为一般小商品称重需求,我们只需要选择12位的A/D 转换器就可以了。考虑到本系统中对物体重量的测量和使用的场合,精度要求不是很苛刻,转换速率要求也不高,而双积分型A/D 转换器精度高,具有精确的差分输入,重要的是输入阻抗高(大于 M 310),可自动调零,有超量程信号输出,全部输出于TTL 电平兼容。且双积分型A/D 转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50Hz 的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。根据系统的精度要求以及综合的分析其优点和缺点,本设计采用了12位A/D 转换器AD574。分辨率:12 位非线性误差:小于±1/2LBS 或±1LBS转换速率:25us模拟电压输入范围:0—10V 和0—20V,0—±5V 和0—±10V 两档四种电源电压:±15V 和5V: 5V2.2.4 键盘处理部分方案论证由于电子秤需要设置单价(十个数字键),还具有确认、删除等功能,总共需设置17个键(包括一个复位键)。键盘的扩展有使用以下方案:采用矩阵式键盘:矩阵式键盘的特点是把检测线分成两组,一组为行线,一组列线,按键放在行线和列线的交叉点上。图2.6给出了一个4×4的矩阵键盘结构的键盘接口电路,图中的每一个按键都通过不同的行线和列线与主机相连这。4×4矩阵式键盘共可以安装16个键,但只需要8条测试线。当键盘的数量大于8时,一般采用矩阵式键盘。图2.4 矩阵式键盘结合本设计的实际要求,12个按键使用3×4矩阵式键盘,另外一个复位键使用独立式按键实现。3*4矩阵键盘2.3显示电路部分的选择数据显示是电子秤的一项重要功能,是人机交换的主要组成部分,它可以将测量电路测得的数据经过微处理器处理后直观的显示出来。数据显示部分可以有以下两种方案供选择。LCD液晶显示器是一种极低功耗显示器,从电子表到计算器,从袖珍时仪表到便携式微型计算机以及一些文字处理机都广泛利用了液晶显示器。1602采用标准的16脚接口,其中:第1脚:VSS为电源地第2脚:VDD接5V电源正极第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度)。第4脚:RS为寄存器选择,高电平1选择数据寄存器、低电平0时选择指令寄存器。第5脚:RW为读写信号线,高电平(1)时进行读操作,低电平(0)时进行写操作。第6脚:E(或EN)端为使能(enable)端。第7~14脚:D0~D7为8位双向数据端。第15~16脚:背光灯电源。15脚背光正极,16脚背光负极。2.4超量程报警部分选择智能仪器一般都具有报警和通讯功能,报警主要用于系统运行出错、当测量的数据超过仪表量程或者是超过用户设置的上下限时为提醒用户而设置。在本系统中,设置报警的目的就是在超出电子秤测量范围时,发出声光报警信号,提示用户,防止损坏仪器。超限报警电路是由单片机的I/O口来控制的,当称重物体重量超过系统设计所允许的重量时,通过程序使单片机的I/O值为高电平,从而三极管导通,使蜂鸣器SPEAKER发出报警声,同时使报警灯D1发光。第三章硬件电路设计3.1 AT89S52的最小系统电路3.1.1单片机芯片AT89S52介绍AT89S52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,片上Flash允许程序存储器在系统可编程,亦适于常规编程器。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。其芯片引脚图如上图所示。图3.2 AT89S52引脚图3.1.2.单片机管脚说明VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89S52的一些特殊功能口,如下表所示:表3.1 P3.0口引脚功能表RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。3.1.3 AT89S52的最小系统电路构成AT89S52单片机的最小系统由时钟电路、复位电路、电源电路及单片机构成。单片机的时钟信号用来提供单片机片内各种操作的时间基准,复位操作则使单片机的片内电路初始化,使单片机从一种确定的初态开始运行。单片机的时钟信号通常用两种电路形式得到:内部振荡方式和外部振荡方式。在引脚XTAL1和XTAL2外接晶体振荡器(简称晶振)或陶瓷谐振器,就构成了内部振荡方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。当MCS-5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。上电复位要求接通电源后,自动实现复位操作。上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器PC=0000H,这表明程序从0000H地址单元开始执行。系统复位是任何微机系统执行的第一步,使整个控制芯片回到默认的硬件状态下。51单片机的复位是由RESET引脚来控制的,此引脚与高电平相接超过24个振荡周期后,51单片机即进入芯片内部复位状态,而且一直在此状态下等待,直到RESET引脚转为低电平后,才检查EA引脚是高电平或低电平,若为高电平则执行芯片内部的程序代码,若为低电平便会执行外部程序。3.2 电源电路设计根据设计需要,本系统中需要设计两种不同级别的电源,即传感器需要+10V的电源,而系统其他芯片使用的是+5V电源。考虑本次设计的实际要求,使系统稳定工作,提高产品的性价比,电源电路的设计决定采用如下方案:6V转5V器件输出电压固定的低压差三端稳压器;输出电压5V;输出电流1A;输出电流1A 时,最小输入输出电压差小于0.8V;最大输入电压26V;工作温度-40~+125℃;内含静态电流降低电路、电流限制、过热保护、电池反接和反插入保护电路。LM2940引脚图 LM2940典型应用由图可见,2940的电路接发极其简单。上图为输入电压低于正常值时,输入电压与输出电压间的关系(输出电流均保持在1A时)5V转10V 器件名称: (0-5V/0-10V) 直流电压信号隔离 (V/V) 放大器:ISO-U-P-O●低成本,精度等级:0.1级 0.2级 0.5级●输入:0-5V/0-10V等(阻抗≥1 MΩ)标准电压信号●输出:0-10mA/0-20mA/4-20mA隔离变换的电流信号0-5V/0-10V/1-5V等隔离变换的的电压信号●信号输入/输出/辅助电源:隔离电压3000VDC三隔离●全量程内很高的线性度(非线性度<0.2%)●小体积 12 Pin SIP, 符合UL94-0标准阻燃封装●工业级宽温度范围:-40~+85C说明: ISO U-P-O 系列直流电压信号隔离放大器是一种将电压信号转换成按比例输出的隔离电流或电压信号的混合集成电路。该IC内部含有一组高隔离的DC/DC电源和电压信号高效率耦合隔离变换电路等,可以将直流电压小信号进行隔离放大(U/U)输出或直接转换为直流电流(U /I)信号输出。较大的输入阻抗(≥1 MΩ),较强的带负载能力(电流输出>650Ω,电压输出≥2KΩ)能实现小信号远程无失真的传输。 Ic内部可采用陶瓷基板、印刷电阻全SMT的可靠工艺制作及使用新技术隔离措施,使器件能满足信号输入/输出/辅助电源之间3KV三隔离和工业级宽温度、潮湿震动等现场环境要求。外接满度校正和零点校正的多圈电位器可实现0-5V/0-10V/1-5V4-20mA/0-20mA等信号之间的隔离和转换。选择产品型号输入信号辅助电源输出信号ISO-U2-P2-O5 0-10V 12VDC 0-10V3.3 数据采集部分电路设计数据采集部分电路包括传感器输出信号放大电路、A/D转换器与单片机接口电路。3.3.1 传感器以及放大电路设计INA128P构成的放大器及滤波电路如图3-2-2所示:通过调节Rg的阻值来改变放大倍数,使得输出电压在A/D转换的基准电压要求范围之内。微弱信号Vi1和Vi2被分别放大后从INA128的第6脚输出。根据要求,A/D转换器的输入电压变化范围是0V~4.999V,传感器的输出电压信号在0~10mv,4.999499.95000.01G==≈因此取放大器的放大倍数500。因此代入公式501KGRgΩ=+,50k100.2499RgΩ==Ω。3.3.2 A/D转换器设计AD574是美国Analog Device公司生产的12位单片A/D转换器。它采用逐次逼近型的A/D转换器,最大转换时间为25us,转换精度为0.05%,所以适合于高精度的快速转换采样系统。芯片内部包含微处理器借口逻辑(有三态输出缓冲器),故可直接与各种类型的8位或者16位的微处理器连接,而无需附加逻辑接口电路,切能与CMOS及TTL电路兼容。AD574采用28脚双列直插标准封装,其引脚图如下:图3.5 AD574管脚图A/D574有5根控制线,逻辑控制输入信号有:A0:字节选择控制信号。CE:片启动信号。/CS:片选信号。当/CS=0,CE=1同时满足时,AD574才处于工作状态,否则工作被禁止。R/-C:读数据/转换控制信号。12/-8:数据输出格式选择控制信号。当其为高电平时,对应12位并行输出;为低电平时,对应8位输出。当R/-C=0,启动A/D转换:当A0=0,启动12位A/D转换方式;当A0=1,启动8位转换方式。当R/-C=1,数据输出,A0=0时,高8位数据有效;A0=1时,低4位数据有效,中间4位为0,高4位为三态。输出信号有:STS:工作状态信号线。当启动A/D进行转换时,STS为高电平;当A/D转换结束时为低电平。则可以利用此线驱动一信号二极管的亮灭,从而表示是否处于A/D转换。其它管脚功能如下:10Vin,20Vin:模拟量输入端,分别为10V和20V量程的输入端,信号的另一端接至AGND。DB11~DB0:12位数字量输出端,送单片机进行数据处理。REF OUT :10V内部参考电压输出端。REF IN :内部解码网络所需参考电压输入端。BIP OFF :补偿校正端,接至正负可调的分压网络,0输入时调整数字输出为0;AGND:接模拟地。DGND:接数字地。由于对AD574 8、10、12引脚的外接电路有不同连接方式,所以AD574与单片机的接口方案有两种,一种是单极性接法,可实现输入信号0~10V或者0~20V的转换;另一种为双极性接法,可实现输入信号-5~+5V或者-10~+10V之间转换。我们采用单极性接法,电路接线图如下图3-4所示:图3.6 AD574与AT89S52的接线图根据芯片管脚的原理,无论启动、转换还是结果输出,都要保证CE端为高电平,所以可以将单片机的/RD引脚和/WR端通过与非门与AD574的CE端连接起来。转换结果分高8位、低4位与P0口相连,分两次读入,所以12/-8端接地。同时,为了使CS、A0、R/-C在读取转换结果时保持相应的电平,可以将来自单片机的控制信号经74LS373锁存后再接入。CPU可采用中断、查询或者程序延时等方式读取AD574的转换结果,本设计采用中断方式,则将转换结束状态STS端接到P3.2(外部中断/INT0)。其工作过程如下:A.当单片机执行对外部数据存储器的写指令,并使CE=1,/CS=0,R/-C=0,A0时, 进行12位A/D转换启动。B.CPU等待STS状态信号送P3.2口,当STS由高电平变为低电平时,就表示转换结束。转换结束后,单片机通过分两次读外部数据存储器操作,读取12位的转换结果数据。C.当CE=1,/CS=0,R/-C=1,A0=0时,读取高8位;当CE=1,/CS=0,R/-C=1,A0=1时,读取低4位。3.3.3 测量算法A/D 转换结果D 与被测量x 存在以下关系:FSm D U XSK D =(3-9)式中:S ——传感器及其测量电路的灵敏度(即被测量X 转换成电压U 的转换系数) K ——放大器的放大倍数m U ——A/D 转换器满量程输入电压FS D ——A/D 转换器满量程输出数字而被测量X 总是以其测量数字N 和测量单位x 1表示 N x X 1= (3-10)将式(3-10)代入(3-9)得N D U SK x D FS m1= (3-11)由上式可见只要满足以下条件11=FS mD U SK x (3-12)就可以使A/D 转换结果D 与被测量x 的数值N 相等,即D=N,在这种情况下将A/D 转换结果作为被测量的数值传送到显示器显示出来。将S=5mV/Kg, K=500, U=5V , D FS =4096 , X=1/2048代入得 11=FS mD U SK x3.4显示电路与AT89S52单片机接口电路设计1602液晶模块内部的字符发生存储器(CGROM)已经存储了160个不同的点阵字符图形,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字母“A”的代码是01000001B(41H),显示时模块把地址41H中的点阵字符图形显示出来,我们就能看到字母“A”。因为1602识别的是ASCII码,试验可以用ASCII码直接赋值,在单片机编程中还可以用字符型常量或变量赋值,如'A’。以下是1602的16进制ASCII码表地址:读的时候,先读左边那列,再读上面那行,如:感叹号!的ASCII为0x21,字母B的ASCII为0x42(前面加0x表示十六进制)。指令集1602通过D0~D7的8位数据端传输数据和指令。显示模式设置: (初始化)0011 0000 [0x38] 设置16×2显示,5×7点阵,8位数据接口;显示开关及光标设置: (初始化)0000 1DCB D显示(1有效)、C光标显示(1有效)、B光标闪烁(1有效)0000 01NS N=1(读或写一个字符后地址指针加1 &光标加1),N=0(读或写一个字符后地址指针减1 &光标减1),S=1 且 N=1 (当写一个字符后,整屏显示左移)S=0 当写一个字符后,整屏显示不移动数据指针设置:数据首地址为80H,所以数据地址为80H+地址码(0-27H,40-67H)其他设置:01H(显示清屏,数据指针=0,所有显示=0);02H(显示回车,数据指针=0)。3.5键盘电路与AT89S52单片机接口电路设计矩阵式键盘的结构与工作原理: 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式。在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。这样,一个端口(如P1口)就可以构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出一键(9键)。由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。矩阵式键盘的按键识别方法 :确定矩阵式键盘上何键被按下介绍一种“行扫描法”。行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,如上图所示键盘,介绍过程如下。判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。只要有一。
电子秤的方案
电子秤的方案引言电子秤是一种常见的测量物品质量的设备,它通过使用负载传感器来测量物体对电流变化的影响,然后将其转换为数字显示。
本文将探讨电子秤的设计和工作原理,并提供一个基本的电子秤方案。
设计目标本项目的主要设计目标如下: 1. 准确度:电子秤应该能够提供高精度的测量结果,尽可能减少误差。
2. 稳定性:电子秤应该具有良好的稳定性,能够在测量过程中保持稳定的读数。
3. 可靠性:电子秤应该能够长时间稳定工作,同时能够抵御外界干扰。
4. 成本效益:电子秤的方案应该是成本效益的,能够在合理的预算范围内实现。
方案设计电子秤的方案包括传感器、模拟电路、数字处理和显示部分。
传感器选取传感器是电子秤的核心部件,负责将物体质量转换为电信号。
常用的负载传感器有应变片式传感器和压力传感器。
应变片式传感器基于压阻效应工作,当物体施加力时,导致应变片产生形变,从而改变电阻值。
压力传感器则是通过测量物体施加的压力来间接估算其质量。
在选择传感器时,需要考虑灵敏度、线性度和可靠性等因素。
模拟电路设计模拟电路主要负责将传感器输出的电信号进行放大和滤波处理,以提高测量准确度和稳定性。
传感器的输出信号通常较小,因此需要放大电路进行信号放大。
滤波电路则可以滤除噪声和干扰信号,以提供更准确的测量结果。
数字处理与显示数字处理部分主要负责将模拟信号转换为数字信号,并进行处理和计算。
常用的方式是使用专用的模数转换器(ADC)将模拟信号转换为数字信号。
然后,计算处理单元可以使用微控制器或数字信号处理器(DSP)进行质量计算和数据显示。
最后,将计算结果显示在数字显示屏上。
工作原理电子秤的工作原理如下: 1. 当物体被放置在秤盘上时,传感器感知到物体施加的力,并生成相应的电信号。
2. 传感器的输出信号经过模拟电路的放大和滤波处理,以提供准确的模拟信号。
3. 模拟信号经过模数转换器(ADC)转换为数字信号。
4. 数字信号经过计算处理单元进行质量计算和数据处理。
多功能电子秤硬件设计
多功能电子秤硬件设计1.检测传感器:这是多功能电子秤的核心部件,用于检测并转化重量信息为电信号。
常用的传感器有应变片传感器和电容传感器。
应变片传感器是基于物体受力引起应变的原理工作,电容传感器则是通过电容变化来检测重量变化。
2.处理器:多功能电子秤需要一个处理器来进行数据处理和控制。
常用的处理器有单片机和微处理器。
单片机小巧且功耗低,适用于简单的电子秤设计,而微处理器功能更强大,适用于更复杂的多功能电子秤设计。
3.显示屏:显示屏用于显示重量和其他相关信息。
常用的显示屏有液晶显示屏(LCD)和LED显示屏。
LCD显示屏可以显示更多的信息,并且功耗低,适用于家庭和商业用途。
LED显示屏则可以显示更鲜明的数字,并且适用于工业环境。
4.键盘:多功能电子秤可能需要用户进行一些设置或选择,因此需要一个键盘来与用户进行交互。
键盘可以是物理按键或触摸式键盘,根据具体设计需求选择。
5.电源系统:多功能电子秤需要一个电源系统来提供电能供电。
根据使用环境和要求,可以选择直流电源或交流电源,并提供适当的电压。
6.通信模块:多功能电子秤可能需要与外部设备进行数据交换或与一些网络进行连接。
因此,需要一个通信模块,如蓝牙模块、Wi-Fi模块或以太网接口等。
7.外壳材料:多功能电子秤的外壳根据具体设计需求选择合适的材料,如塑料、金属等。
外壳应该具备足够的强度和稳定性,以确保电子秤的使用寿命和精度。
8.软件程序:电子秤的硬件设计需要一个相应的软件程序来控制和管理各个模块的工作。
软件程序可以使用编程语言来编写,如C语言、C++或嵌入式系统开发工具。
总结起来,多功能电子秤的硬件设计需要包括传感器、处理器、显示屏、键盘、电源系统、通信模块、外壳材料和软件程序等多个部件。
设计时需要根据具体需求选择适当的组件,并充分考虑使用环境和用户需求,以保证电子秤的稳定性、精确度和可靠性。
课程设计数字电子秤设计
课程设计数字电子秤设计一、课程目标知识目标:1. 理解数字电子秤的基本原理,掌握其组成部分及功能。
2. 学会运用所学知识分析数字电子秤的电路图,并理解其中的电子元件作用。
3. 掌握数字电子秤的测量原理,能够进行简单的单位转换。
技能目标:1. 能够运用所学知识,设计简单的数字电子秤电路图。
2. 培养学生动手实践能力,能够对数字电子秤进行组装和调试。
3. 提高学生的问题解决能力,能够针对数字电子秤使用过程中出现的问题进行分析和解决。
情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们探索未知、创新实践的欲望。
2. 培养学生的团队协作精神,使他们学会在团队中共同解决问题,相互学习,共同进步。
3. 增强学生的环保意识,让他们在使用电子设备时注重节能环保,养成良好的使用习惯。
本课程针对高年级学生,结合学科特点和教学要求,将课程目标分解为具体的学习成果。
在教学过程中,注重理论与实践相结合,提高学生的实际操作能力,培养他们运用所学知识解决实际问题的能力。
同时,关注学生的情感态度价值观培养,使他们在掌握知识技能的同时,形成积极向上的心态和价值观。
二、教学内容1. 数字电子秤基本原理:介绍电子秤的测量原理,包括传感器的工作原理、信号处理、显示技术等,对应教材第3章第1节。
2. 电子元件功能及电路图分析:学习电子元件如电阻、电容、二极管、三极管等在数字电子秤中的应用,分析电路图,理解各部分功能,对应教材第3章第2节。
3. 数字电子秤电路设计:根据基本原理,运用所学知识设计简单的数字电子秤电路图,包括传感器、信号放大、A/D转换、显示等部分,对应教材第3章第3节。
4. 数字电子秤的组装与调试:学习如何将设计好的电路图转化为实际电路,进行组装、调试和优化,培养动手实践能力,对应教材第4章第1节。
5. 故障分析与问题解决:针对数字电子秤使用过程中可能出现的故障,教授分析方法,引导学生运用所学知识解决问题,对应教材第4章第2节。
电子秤毕业设计
电子秤毕业设计一、引言在当今社会,电子秤作为一种重要的测量工具,广泛应用于商业、工业、农业以及日常生活等各个领域。
其高精度、快速响应和便捷操作的特点,使得它成为了不可或缺的设备。
本次毕业设计旨在设计一款功能完善、性能可靠的电子秤。
二、设计目标与要求(一)精度要求能够准确测量物体的重量,精度达到 01g 以内,满足一般商业和工业应用的需求。
(二)量程范围设计量程为 0 10kg,以适应常见物体的称重需求。
(三)显示与操作配备清晰直观的液晶显示屏,操作按键简单易懂,方便用户进行称重、去皮、单位转换等操作。
(四)稳定性与可靠性在不同环境条件下(如温度、湿度变化)能够保持稳定的测量性能,具备良好的抗干扰能力,长时间使用不易出现故障。
三、系统总体设计(一)硬件设计1、传感器选择选用高精度的电阻应变式传感器,其具有精度高、稳定性好、线性度优良等特点。
2、信号调理电路将传感器输出的微弱信号进行放大、滤波和模数转换,以获得准确的数字信号。
3、微控制器采用主流的单片机作为控制核心,负责处理传感器数据、控制显示和执行操作逻辑。
4、电源模块提供稳定的电源供应,确保系统正常工作。
(二)软件设计1、编程语言选择 C 语言进行编程,具有高效、灵活和可移植性强的优点。
2、算法实现采用均值滤波算法对采集的重量数据进行处理,提高测量精度;通过线性拟合算法对传感器的输出特性进行校准,保证测量的准确性。
四、硬件电路设计(一)传感器接口电路设计合适的接口电路,实现传感器与信号调理电路的连接,确保信号传输的稳定性和准确性。
(二)信号放大与滤波电路采用运算放大器和无源滤波器构建放大与滤波电路,将传感器输出的微弱信号放大到合适的幅度,并去除噪声干扰。
(三)模数转换电路选用高精度的 ADC 芯片,将模拟信号转换为数字信号,供单片机处理。
(四)单片机最小系统包括单片机芯片、晶振电路、复位电路等,为单片机的正常运行提供必要的条件。
(五)显示与按键电路使用液晶显示屏显示重量、单位等信息,通过按键实现操作功能。
电子秤毕业设计
电子秤毕业设计随着科技的不断发展,电子秤作为一种现代化的测量工具,广泛应用于各个领域。
本文将介绍一个基于微控制器的电子秤毕业设计方案,该设计利用先进的技术和创新的思路,为电子秤的制作带来了新的可能性。
设计方案:1. 系统框架:本设计采用基于单片机的电子秤系统。
系统由传感器模块、信号处理模块和显示模块组成。
传感器模块用于检测物体的重量,信号处理模块负责采集和处理传感器输出的数据,显示模块则将结果以数字形式显示在屏幕上。
2. 传感器选择:为了提高测量的准确性和稳定性,本设计选用了高精度的称重传感器。
传感器的灵敏度和响应速度都经过精心调试,确保能够满足不同重量范围的测量需求。
3. 信号处理:在信号处理模块中,我们使用了一款性能优秀的微控制器作为核心处理器。
微控制器能够实现数据的快速采集和处理,并通过内部的算法计算出准确的重量数值。
同时,为了增强系统的稳定性,我们还加入了温度补偿和线性校正等功能。
4. 显示模块:为了提升用户体验,显示模块采用了高清液晶显示屏。
屏幕显示清晰,数字大小合适,用户可以直观地看到测量结果。
此外,显示模块还设计了简洁易懂的界面,方便用户进行操作和设置。
5. 功能扩展:除了基本的称重功能,本设计还增加了一些实用的功能。
比如,用户可以选择不同的单位显示,还可以设置零点、校准等操作。
同时,系统还提供了记录、存储和传输数据的功能,方便用户对测量结果进行管理和分析。
总结:通过以上设计方案,我们成功实现了一款功能完善、性能优越的电子秤系统。
该系统不仅具有高精度、稳定性好等优点,而且外观简约,使用方便。
未来,我们将进一步完善该设计,结合互联网和智能技术,为用户提供更加便捷、智能的电子秤产品。
愿本设计能够为电子秤行业的发展带来新的活力和机遇。
电子秤智慧检定系统设计方案
电子秤智慧检定系统设计方案设计方案:电子秤智能检定系统1. 引言电子秤是现代生活中常用的计量工具之一,用于测量物体的重量。
然而,由于使用频繁,电子秤会出现误差,需要进行定期的检定和校准。
传统的检定方法费时费力,且可能存在人为误差。
为了解决这一问题,我们设计了一种电子秤智能检定系统,以提高检定效率和准确性。
2. 系统概述本系统通过使用传感器和微控制器,将电子秤的重量数据传输至上位机,通过上位机对数据进行分析和处理,计算出电子秤的误差,并进行相应的校准。
系统具备智能化的检定功能,能够自动识别电子秤的型号和规格,并根据不同的电子秤进行相应的检定和校准流程。
3. 硬件设计系统的硬件部分包括传感器、微控制器和通信模块。
传感器用于测量电子秤的重量数据,并将数据传输至微控制器。
微控制器负责对传感器数据进行处理和分析,并通过通信模块将数据传输至上位机。
4. 软件设计系统的软件部分包括上位机软件和微控制器嵌入式程序。
上位机软件用于接收和处理来自微控制器的数据,进行重量误差计算和校准命令下发。
微控制器嵌入式程序负责采集传感器数据、进行数据处理和通信模块控制。
5. 系统流程系统的工作流程如下:(1) 电子秤放置在检定台上,并连接到检定系统。
(2) 检定系统上位机软件自动识别电子秤型号和规格。
(3) 上位机软件发送校准命令给微控制器。
(4) 微控制器接收校准命令,并控制传感器进行测量。
(5) 传感器测量完毕后,将数据传输至微控制器。
(6) 微控制器对数据进行处理,计算出电子秤的误差。
(7) 微控制器将误差数据传输至上位机软件。
(8) 上位机软件根据误差数据进行校准计算,并发送校准命令给微控制器。
(9) 微控制器接收校准命令,并控制传感器进行校准。
(10) 校准完毕后,系统自动记录校准结果,并显示在上位机软件界面上。
6. 系统特点本系统具有以下特点:(1) 智能化:系统能够自动识别电子秤型号和规格,并根据不同电子秤进行相应的检定和校准流程。
家用电子秤的策划方案
家用电子秤的策划方案一、项目背景在现代社会中,大部分人对于身体健康与体重管理都非常重视。
准确测量体重是人们了解自己健康状况的重要途径之一。
传统的机械秤使用不便、读数不准确等问题逐渐暴露出来,因此,开发一款功能齐全、易操作的家用电子秤势在必行。
本文档旨在设计一种家用电子秤,通过引入高精度传感器和智能算法,提供精准的体重测量并衍生出更多有助于用户管理健康的功能。
二、目标用户•健康意识强烈的家庭用户•体重管理的人群•健身爱好者三、产品特征1.精准测量:采用高精度的传感器,能够准确测量体重,并确保数据误差在合理范围内。
2.多项功能:除了体重测量外,还提供身体脂肪、肌肉质量、骨量等指标的测量,以提供更全面的健康数据。
3.智能连接:通过蓝牙或Wi-Fi无线连接,与用户手机或其他智能设备实现数据同步,方便用户进行数据记录和分析。
4.图表分析:为用户提供直观的图表和报告,可根据测量数据进行趋势分析和健康评估。
5.个性化设置:用户可以根据个人需求设置目标体重、健康提醒等功能,以便更好地管理自己的健康状况。
6.数据保护:严格遵守个人隐私保护法规,确保用户数据安全。
四、市场分析目前市场上存在大量类型和品牌的家用电子秤,但很多产品存在精准度不高、功能少、操作复杂等问题。
通过市场调研,我们发现以下机会:1.精准性和功能性需求:由于健康意识的提高,用户对于测量数据的精准性和多功能性要求越来越高。
2.智能化趋势:智能家居设备在市场上越来越受欢迎,用户对于能与手机等设备连接的产品越来越感兴趣。
3.个性化定制需求:用户希望能够根据自身特点进行个性化设置和管理,以便更好地达到健康管理目标。
五、竞争分析竞争对手主要包括知名的家用电子秤品牌,如小米、华为等。
他们具有强大的品牌影响力和市场份额。
我们将通过以下措施与竞争对手区别开来:1.技术创新:引入更高精度的传感器和智能算法,提供更准确的测量和分析功能。
2.用户体验优化:注重界面设计和易用性,简化操作流程,提供更好的用户体验。
电子秤设计方案
电子秤设计方案引言电子秤是一种测量物体重量的设备,通常用于商业应用和家庭使用。
它具有易于读取、精确测量和便捷使用的特点,广泛应用于食品行业、物流行业以及个人家庭。
本文将介绍电子秤的设计方案,包括硬件设计和软件设计方面的内容,旨在提供一个全面的电子秤设计指南。
硬件设计传感器选择电子秤的核心部件是传感器,它能够将物体的重量转化为电信号。
在选择传感器时,需要考虑以下几个因素:•测量范围:根据应用场景的不同,选择适合的测量范围。
•精确度:高精确度的传感器可以提供更准确的重量测量结果。
•可承受重量:确保选用的传感器能够承受所测量物体的最大重量。
•耐用性:传感器需要具备一定的耐用性,以适应长时间使用的需求。
电路设计电子秤的电路设计主要包括信号放大电路和模数转换电路。
信号放大电路用于将传感器输出的微弱电信号放大到合适的电平,以便模数转换电路进一步处理。
放大电路可以使用运算放大器或差分放大器来实现。
选择合适的放大器要考虑放大倍数和噪音抑制等因素。
模数转换电路将模拟电信号转换为数字信号,以便进行数字处理。
常用的模数转换器有单片机内置的ADC(Analog-to-Digital Converter)和外部ADC芯片。
显示器选择电子秤的显示器可以选择LED数码管、LCD显示屏或者OLED显示屏等。
LED数码管简单易用,适合于小型电子秤;LCD显示屏可以显示更多信息,适合于大型电子秤;OLED显示屏在显示效果和功耗方面具有优势,适合于高端电子秤。
电源设计电子秤的电源设计要考虑电源稳定性和效率。
常用的电源包括电池和交流电源,选择合适的电源要根据电子秤的使用环境来确定。
软件设计实时数据采集电子秤的软件设计需要实现实时数据采集功能,即定时读取传感器的输出并进行处理。
可以使用中断或定时器来触发数据采集。
数据处理和显示电子秤的软件设计要实现数据处理和显示功能,对采集到的数据进行处理,并通过显示器显示出来。
可以使用滤波算法对数据进行平滑处理,提高测量结果的准确度。
智能电子秤的设计
智能电子秤的设计随着科技的不断发展,智能电子秤作为一种高科技的配备已越来越普及。
智能电子秤主要分为家用电子秤和商用电子秤。
家用电子秤主要用于家庭生活,商用电子秤主要用于商业领域。
智能电子秤不仅能够快速准确地测量物体的重量,还可以进行可视化的数据分析和储存,具有高效、方便、快捷等特点,因此被广泛应用于物流、商业、医疗、家庭等众多领域。
接下来,本文将从智能电子秤的设计及其优点等方面进行讲述。
一、智能电子秤的设计(一)硬件设计智能电子秤的硬件设计主要包括传感器、芯片、显示屏、控制器等部分。
1. 传感器传感器是智能电子秤的核心部分,能够实现对物体重量的高精度测量。
其原理是在极小的力下,变成电信号,进而经过信号放大、进行数码转换等处理过程,最终显示出来。
2. 芯片芯片是智能电子秤的控制中心,能够对传感器的数据进行处理和传输,完成计算和显示。
同时,芯片还可以用于数据存储和转换。
3. 显示屏显示屏是智能电子秤的主要输出部分,能够实时显示物体的重量以及其他状态信息,如工作状态、电池电量等。
4. 控制器控制器是智能电子秤的指挥中心,能够对传感器、芯片、显示屏等部件进行有序的协调和控制,保障智能电子秤的顺利运作。
(二)软件设计智能电子秤的软件设计主要包括控制程序、界面设计和数据处理等部分。
1. 控制程序控制程序是智能电子秤的核心部分,它能够对硬件部分进行调控和管理,包括传感器、芯片、显示屏和控制器等部分,实现数据采集、传输、处理和显示等一系列操作。
2. 界面设计界面设计是智能电子秤的外观样式,包括屏幕显示方式、按键设置等方面的设计。
通过人性化的设计,可以让消费者更加方便、快捷地使用智能电子秤。
3. 数据处理数据处理是智能电子秤的最终目的,通过对采集到的数据进行处理和分析,可以得到更加准确和有用的数据,从而更好地进行判断和决策。
二、智能电子秤的优点智能电子秤的优点十分明显:1. 精准度高智能电子秤采用高精度传感器,能够快速、准确地测量物体的重量。
电子秤的方案
1.测量范围与精度:
-测量范围:1kg-30kg;
-分度值:0.01kg;
-精度:±0.02kg。
2.传感器:
-采用高精度压力传感器;
-传感器具备自检功能,确保长期稳定运行。
3.人机交互界面:
- 4英寸高清显示屏;
-支持触摸操作;
-显示内容:重量、单价、总价等。
4.数据存储与传输:
-产品通过国家强制认证(CCC)。
四、生产与检验
1.生产过程对关键工序进行质量控制,提高产品合格率;
-生产过程中,对不合格品进行隔离处理,防止流入下一道工序。
2.检验:
-对产品进行全检,确保每台电子秤符合性能指标;
-按照国家相关标准,对产品进行安全性、稳定性、可靠性等测试;
电子秤的方案
第1篇
电子秤方案
一、方案概述
为满足市场对高精度、高稳定性电子秤的需求,本方案拟设计一款具备以下特点的电子秤产品:
1.符合国家相关法律法规及行业标准;
2.采用高精度传感器,确保测量准确性;
3.优化人机交互界面,提高用户体验;
4.具备数据存储和传输功能,便于数据分析和管理;
5.节能降耗,绿色环保。
-内置大容量存储,可存储超过10000条交易记录;
-支持USB和蓝牙数据传输方式;
-支持云端数据同步,便于分析和管理。
三、详细设计方案
1.硬件设计:
-选择符合国家标准的电子元件;
-设计具备过载和短路保护的电路;
-采用防干扰技术,增强系统稳定性。
2.软件设计:
-模块化软件架构,便于维护和升级;
-支持多语言界面;
二、产品目标与规格
1.测量能力:
简易电子秤的设计
简易电子秤的设计一、简易智能电子秤系统结构与原理称重传感器:当被称物体放置在秤盘上时,压力传感器产生力电效应,将物体的压力转换成与被称物体压力成一定函数关系的电信号。
信号处理电路:该电信号先通过前端信号处理电路进行初步处理,以增强信号的稳定性和准确性。
AD转换器:经过信号处理的模拟电信号需要通过AD转换器(如H711芯片)将其转换成数字信号,以便于微控制器进行处理。
H711是一款专为高精度电子秤设计的24位AD转换器芯片,具有集成度高、响应速度快、抗干扰性强等优点。
微控制器(MCU):数字信号送入微控制器后,MCU通过扫描键盘和各种功能开关,根据输入内容和开关状态进行判断、分析和控制,完成各种运算和显示功能。
显示模块:微控制器将计算结果输出到显示模块,如数码管或液晶显示屏,以显示被称物体的重量、价格等信息。
通过以上结构与原理,简易智能电子秤能够实现物体的准确称重,并通过微控制器的处理和控制,提供更多的智能化功能。
二、硬件设计在简易电子秤的设计中,硬件部分是实现秤重功能的基础。
本节将详细介绍电子秤的硬件设计,包括传感器选择、信号处理电路、显示模块和电源管理。
传感器是电子秤的核心部件,负责将物体的重量转换为电信号。
在本设计中,我们选用应变式称重传感器。
这种传感器基于金属电阻应变片的原理,当物体施加压力时,应变片会产生电阻变化,通过惠斯通电桥转换为电压信号输出。
这种传感器具有灵敏度高、稳定性好、抗干扰能力强等特点。
传感器输出的电压信号非常微弱,需要通过信号处理电路进行放大、滤波和线性化处理。
信号处理电路主要包括放大器、滤波器和AD转换器。
放大器:使用运算放大器对传感器信号进行放大,以满足后续电路的处理需求。
显示模块用于直观地显示秤重结果。
本设计采用LCD显示屏,可以清晰地显示数字和字符。
微处理器将处理后的重量数据发送给LCD 显示屏进行显示。
电源管理是确保电子秤稳定运行的关键。
本设计采用内置电池供电,通过电源管理模块进行电压稳定和电池电量监测。
基于51单片机的电子秤的设计
基于51单片机的电子秤的设计一、设计要求和总体方案(一)设计要求设计一款基于 51 单片机的电子秤,能够实现以下功能:1、测量范围:0 5kg。
2、测量精度:01g。
3、具备数码管显示功能,能够实时显示测量的重量值。
4、具有去皮功能,方便测量容器的重量。
(二)总体方案本电子秤主要由传感器、信号调理电路、A/D 转换电路、51 单片机、数码管显示电路和按键电路等组成。
传感器将物体的重量转换为电信号,经过信号调理电路进行放大和滤波处理后,送入 A/D 转换电路转换为数字信号。
51 单片机对数字信号进行处理和计算,得到物体的重量值,并通过数码管显示电路进行显示。
按键电路用于实现去皮等功能。
二、硬件设计(一)传感器选择选用电阻应变式传感器,它具有精度高、稳定性好、测量范围广等优点。
当物体放在传感器上时,传感器的电阻值会发生变化,通过测量电阻值的变化可以得到物体的重量。
(二)信号调理电路由于传感器输出的信号比较微弱,需要经过信号调理电路进行放大和滤波处理。
放大电路采用仪表放大器,它具有高共模抑制比、低噪声等优点。
滤波电路采用无源 RC 滤波器,去除信号中的高频噪声。
(三)A/D 转换电路选用 ADC0809 作为 A/D 转换芯片,它是 8 位逐次逼近型 A/D 转换器,具有转换速度快、精度高等优点。
(四)51 单片机选择AT89C51 单片机作为控制核心,它具有性能稳定、价格低廉、编程简单等优点。
(五)数码管显示电路采用共阳数码管进行显示,通过 74HC573 锁存器驱动数码管。
(六)按键电路使用独立按键实现去皮、清零等功能。
三、软件设计(一)主程序流程主程序首先进行系统初始化,包括初始化单片机的 I/O 口、A/D 转换芯片等。
然后进入循环,不断读取 A/D 转换的结果,并进行数据处理和计算,得到物体的重量值,最后将重量值发送到数码管显示。
(二)数据处理算法采用线性拟合的方法对 A/D 转换的结果进行处理,得到与重量值对应的数字量。
电子秤设计与制作
判断、分析、各种运算 • 运算结果送到内存贮器,需要显示时,CPU发出指令,从
内存贮器中读出送到显示器显示,或送打印机打印
R1R2 R3R4
当:R1 = R2 = R3 = R4 = R R+△R1、R+△R2、R+△R3、R+△R4
V R R 1 R R 4 e R R 1 R R 2R R 3 R R 4
Ve R 1 R 2 R 3 R 4 4R R R R
在力的作用下,R1、R3被拉伸,阻值增大,△R1、△R3正值, R2、R4被压缩,阻值减小,△R2、△R4为负值。
电子秤设计与制作
(三)电子秤主要部件
称重传感器 1.常用各种称重传感器: 电阻应变式、电容式、压磁式、压电式、谐振式等 2.电阻应变式称重传感器:电阻应变式称重传感器是把电阻应变计粘贴在弹性敏感
元件上,然后以适当方式组成电桥的一种将力(重量)转换成电信号的传感器。
电子秤设计与制作
若不考虑Rm,在应变片电阻变化以前,电桥 的输出电压为: V R1 R4 e
2、硬件设计与制作 3.电源部分
DRAWN BY JIMOOM
桥式整流
1
T1
D1
U2 稳压管
LM7808
1 Vin
Vout 3
限流电阻
D2 R2 2.2 2W
4007
U3 稳压管
LM7805
VDD
1 Vin
Vout 3
GND 2
GND 2
220V AC
电子秤方案设计
电子秤方案设计概述电子秤广泛应用于商业领域,可以精确测量物体的重量。
本文档旨在介绍一种基于电子秤的方案设计。
功能需求1.精确测量物体的重量。
2.支持重量单位切换。
3.提供易于阅读的显示界面。
4.支持数据存储和导出功能。
5.具备稳定的性能和可靠的工作环境。
硬件设计传感器电子秤的核心部分是重量传感器。
一种常见的重量传感器是称重传感器,它基于应变片原理工作。
当物体放在传感器上时,应变片产生微小的变形,从而改变电桥电路的电阻,进而测量物体的重量。
处理器为了处理传感器的输出并实现其他功能需求,我们需要选择一款适用的处理器。
常用的处理器选择包括单片机和嵌入式处理器。
考虑到性能和灵活性的要求,我们可以选择一款高性能的ARM Cortex-M系列微控制器。
显示器为了提供易于阅读的显示界面,我们可以选择一款液晶显示屏作为电子秤的显示器。
液晶显示屏可以显示物体的重量,并支持重量单位切换。
软件设计传感器读取在软件设计中,我们需要编写代码读取传感器的输出。
通过使用处理器的模拟输入引脚,我们可以读取传感器的模拟电压值,并将其转换为物体的重量值。
显示界面为了提供易于阅读的显示界面,我们需要在显示屏上显示物体的重量。
可以通过调用显示屏的API来更新显示屏上的重量数值,并根据用户需求切换重量单位。
数据存储和导出为了支持数据存储和导出功能,我们可以使用一块闪存芯片来存储电子秤的测量数据。
可以在处理器上实现文件系统,通过调用文件系统API来读取、写入和导出数据。
稳定性和可靠性为了确保电子秤的稳定性和可靠性,我们需要对硬件进行合理的布局和设计。
例如,可以给传感器提供合适的电源和保护电路,以避免电压干扰和测量误差。
性能测试完成电子秤的硬件和软件设计后,需要进行性能测试以确保其功能的正常运行。
性能测试可以包括以下几个方面:1.精确度测试:通过在秤上放置已知重量的物体,并比较测量值和已知值的差异来测试电子秤的精确度。
2.稳定性测试:对重量传感器进行长时间稳定性测试,并观察其输出值的稳定性和一致性。
基于单片机的电子秤设计
基于单片机的电子秤设计一、引言二、设计要求与整体方案(一)设计要求1、测量范围:能够满足常见物品的质量测量,通常为 0 10kg 或更大。
2、精度要求:达到一定的测量精度,如 01g 或更高。
3、显示功能:清晰显示测量结果,包括质量数值和单位。
4、稳定性:在不同环境条件下保持测量结果的稳定性和可靠性。
(二)整体方案本设计采用单片机作为核心控制单元,结合称重传感器、信号调理电路、A/D 转换电路、显示模块和电源模块等组成电子秤系统。
称重传感器将物体的质量转换为电信号,经过信号调理电路进行放大、滤波等处理后,由 A/D 转换电路将模拟信号转换为数字信号,单片机对数字信号进行处理和计算,最终将测量结果通过显示模块显示出来。
三、硬件设计(一)称重传感器选择合适的称重传感器是电子秤设计的关键。
常见的称重传感器有电阻应变式、电容式等。
电阻应变式传感器具有精度高、稳定性好等优点,被广泛应用于电子秤中。
其工作原理是当物体加载在传感器上时,弹性体发生形变,粘贴在弹性体上的电阻应变片也随之产生电阻变化,通过测量电阻变化即可得到物体的质量。
(二)信号调理电路由于称重传感器输出的信号较弱且存在干扰,需要经过信号调理电路进行处理。
信号调理电路通常包括放大器、滤波器等。
放大器用于将传感器输出的微弱信号放大到适合 A/D 转换的范围;滤波器用于去除信号中的噪声和干扰,提高信号的质量。
(三)A/D 转换电路A/D 转换电路将模拟信号转换为数字信号,以便单片机进行处理。
选择 A/D 转换器时需要考虑其分辨率、转换速度、精度等参数。
常见的 A/D 转换器有 ADC0809、ADS1115 等。
(四)单片机单片机作为电子秤的控制核心,负责处理和计算测量数据,并控制整个系统的工作。
选择单片机时需要考虑其性能、资源、成本等因素。
常见的单片机有 STM32、51 单片机等。
(五)显示模块显示模块用于显示测量结果,常见的有液晶显示屏(LCD)和数码管。
智能秤产品设计方案模板
智能秤产品设计方案模板1. 引言智能秤是一种集成了先进的传感技术和智能化算法的电子称重设备。
本文将介绍一个智能秤产品设计方案,旨在提供一个完整的设计框架,以实现高精度、便捷实用的秤产品。
2. 产品概述智能秤是一种可用于家庭、商业和工业等不同场景的称重设备。
其基本功能包括准确测量物体重量、显示重量数值以及与其他设备或系统进行数据传输。
3. 技术规格- 重量范围:该智能秤适用于不同重量范围,可根据具体需求设计。
常见的可选范围包括100g至10kg、500g至50kg等。
- 精度:智能秤应具备高精度重量测量能力,误差范围应在0.1%以内。
- 显示屏:秤面配备液晶显示屏,以显示实时重量数值和其他相关信息。
- 电源:可使用电池供电,以实现无线移动使用。
也可设计为通过电源适配器或USB接口供电。
- 数据传输:具备蓝牙、Wi-Fi或USB等接口,可将测量数据传输给配套的移动应用程序、电脑或其他设备。
- 材质:秤面材质通常选用耐磨、防滑的材料,如钢化玻璃或塑料。
- 外观设计:外形简洁、美观,符合人机工程学原理,易于操作和清洁。
4. 功能设计- 重量测量:通过秤面传感器将被称物体的重力转化为电信号,经过计算和处理后得出准确的重量数据。
- 单位切换:可根据用户需求,在不同的计量单位(如千克、克、磅)之间切换显示。
- 零件称重:智能秤支持将轻量零件放置在已有物体上进行称重,以准确计算出零件的重量。
- 数据传输与存储:通过蓝牙、Wi-Fi或USB等接口将称重数据传输至移动应用程序、电脑或其他设备进行存储和分析。
- 自动关机:在一段时间内没有使用时,智能秤具备自动关机功能,以节省能源。
5. 用户界面设计- 液晶显示屏:在秤面上配置液晶显示屏,实时显示重量数据和其他相关信息。
- 易操作性:设计简洁的按键布局和直观的操作界面,以提供用户友好的使用体验。
- 背光灯:显示屏配备背光灯,可在光线较暗的环境下方便用户使用。
6. 安全性与可靠性设计- 过载保护:设计秤能够在超重时自动停止工作,以保护秤的内部结构和传感器。
电子行业电子秤毕业设计
电子行业电子秤毕业设计1. 引言本文档旨在描述电子行业电子秤的毕业设计方案。
电子秤是一种常见的应用于超市、商场等场所的测量仪器,用于测量物体的重量。
随着电子技术的发展,电子秤在精度、功能和性能方面都有了很大的提升。
通过本毕业设计,旨在设计和实现一款电子行业电子秤,满足电子秤在实际使用中的需求。
2. 项目背景电子秤是电子行业的关键设备,其准确性和稳定性直接影响到行业的生产效率和产品质量。
当前市场上的电子秤存在着一些问题,比如精度不高、稳定性差等。
因此,设计和实现一款性能优良的电子行业电子秤是非常有必要的。
3. 项目目标本项目的目标是设计和实现一款电子行业电子秤,具有以下特点:•高精度:电子秤能够实现较高的测量精度,满足电子行业的需要。
•稳定性:电子秤具有良好的稳定性,能够在不同环境下保持较高的测量精度。
•多功能:电子秤具有多种功能,可以实现不同场景下的测量需求。
•易用性:电子秤操作简单,具有良好的用户体验。
4. 方案设计4.1 硬件设计电子秤的硬件设计是整个项目的关键部分。
主要包括传感器、显示屏、电路板等组成。
传感器:选择高精度的称重传感器,能够实现对物体重量的精确测量。
显示屏:选择适合电子秤显示的LCD显示屏,能够清晰地显示测量结果。
电路板:设计合理的电路板,确保传感器信号的准确采集和处理,以及与显示屏的良好连接。
4.2 软件设计电子秤的软件设计是实现多功能和易用性的关键。
主要包括数据处理算法、用户界面设计等。
数据处理算法:设计合理的数据处理算法,能够对称重传感器采集的原始数据进行准确的计算和转换,得到准确的称重结果。
用户界面设计:设计直观、简洁的用户界面,方便用户操作和观察测量结果。
4.3 电子秤的实现根据硬件和软件设计的方案,进行实际的电子秤的制作和调试工作。
5. 项目进度安排本项目按照以下进度安排进行实施:•第一周:完成项目背景和目标的研究和分析。
•第二周:进行电子秤硬件的设计和选型工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
便携电子称的设计方案
电子秤的应用系统是由硬件和软件所组成。
硬件指单片机、扩展的存储器、扩展的输入输出设备等部分;软件是各种工作程序的总称。
硬件和软件只有紧密配合、协调一致,才能提高系统的性能价格比。
从一开始设计硬件时,就应考虑相应软件的设计方法,而软件设计是根据硬件原理和系统的功能要求进行的。
一、基本要求:
1、电子秤称重范围:0~;重量误差不大于;
2、数码管显示或者液晶显示:所称物体重量
二、特色与创新:
使用单片机为控制核心,大大简化了系统的组成构造,且单片机可拓
展性强,可以很方便的对系统进行拓展和应用。
2、使用键盘输入数据,操作简单,方便。
3、中文液晶显示所称量的物品重量,数量,单价,金额和所有物品的总金额。
4、具有去皮功能。
5、当物品重量超过电子秤量程,即过载情况或者是物品重量小于A/D
转换器所能转换的最小精度,即欠量程的时候,具有超重报警功能。
三、设计原理及设计基本思路:
电子称重技术的基本原理:称重技术的根本任务是测量各种状态下物体重量。
实质上是测量被称物体质量,我们知道,质量的测量是物体在重力场下的重力测量获得的,用公式W=mg,w 是物体的重量,g 是在重力场的重力加速度,m 是物体的质量。
目前无论是利用杠杆的原理,还是利用弹性元件的弹力与被测物体的重力达到平衡来测量物体的质量,都没有离开两个必须的条件:一是重力场,二是静力平衡。
随着现代传感技术的发展,人们已从传统的机械杠杆原理测量物体的质量,发展到现在的电子称重,即用传感器把重力信号转变成电信号,利用电子计算机技术,根据电信号同重力信号的数学模型,间接的求出物体的质量。
系统的基本设计思路:
按照设计的基本要求,系统可分为三大模块,数据采集模块、控制器模块、人机交互界面模块。
其中数据采集模块由压力传感器、信号的前级处理和A/D转换部分组成。
转换后的数字信号送给控制器处理,由控制器完成对该数字量的处理,驱动显示模块完成人机间的信息交换。
此部分对软件的设计要求比较高,系统的大部分功能都需要软件来控制。
在扩展功能上,本设计增加了一个过载、欠量程报警提示。
四、系统的组成:
本系统以AT89C51单片机为核心,主要制作原理是通过压力传感器使物品的
压力信号转变为微弱的电信号,运用信号放大调理电路使电信号得到放大和整理,再将此信号进行A/D转换,使模拟信号转换成数字信号,再将其输入单片机中,利用单片机对其进行处理,最后用数码管显示出来。
本系统主要由压力传感器、信号放大电路、A/D转换、信号处理、键盘输入、数码管显示、报警电路、电源等组成。
系统总体框图如下:
图2-1系统总体框图
五、软件设计思想
本系统米用C语言作为编程语言。
汇编语言作为传统嵌入式系统的编程语言,具有执行效率高等优点,但其本身是一种低级语言,编成效率低下,且可移植性和可读性差,维护极不方便,从而导致整个系统的可靠性也较差。
而C语言以其结构化和能产生高效代码等优势满足了设计要求,是嵌入式系统编程的首选。
用C 语言进行嵌入式系统的开发,具有汇编语言编程所不可比拟的优势:可以大幅度加快开发进度;无需精通单片机指令集和具体的硬件,也能够编出符合硬件实际专业水平的程序;可以实现软件的结构化编程,她使得软件的逻辑结构变得清晰、
有条理,便于开发小组计划项目、分工合作。
源程序的可读性和可维护性都很好;省去了人工分配单片机资源的工作;可移植性强;C语言提供auto、static、flash
等存储类型。
由于涉及到大量数据的运算,程序不宜采用汇编语言,C语言大大缩短了开发时间,且程序可读性非常好。
软件所实现的功能
①称重
②计价
③累计,去皮
④标定
⑤键盘、显示
本系统采用4X4键盘,键盘电路与单片机的口相连。
键盘的扫描程序步骤如下:查询是否有键按下。
查询按下键所在的行、列位置。
对得到的行号和列号译码,得到键值。
键的抖动处理,延时扫描。
六、主程序流程图。