Optical sensing and APDS-9900 sharing Jan 2011
Signet 9900.090 单通道接口智能传感器传输器说明书

*3-9900.090*Signet 9900 Transmitter3-9900.090 Rev. H 08/17English® instruments,, Conductivity/Resistivity,® Signal Converter required, sold separately). Panel MountOperating InstructionsField Mount® SensorFlow515*/8510*, 525*, 2000,2100, 2507, 2536*/8512*,2537, 2540*, 2551, 2552pH/ORP2724-2726 with 2750*/27512734-2736 with 2750*/27512756-WTx–2757-WTx with3719 and 2750*/27512764-2767 with 2750*/27512774-2777 with 2750*/2751Conductivity/Resistivity, Salinity2819-2823 with2850 or Cond/Res Module2839-2842 with2850 or Cond/Res ModuleLevel, Temperature, Pressure2250*, 2350*, 2450*Turbidity4150 requires 8058Dissolved Oxygen2610-41 direct to 99002610-31 requires 8058* Can be run on Loop Power(see NOTE on page 11)• English• Deutsch• Français• Español• Italiano• 中文29900 Transmitter39900 Transmitter3-9900.393 Relay Module 49900 Transmitter59900 Transmitter69900 Transmitter79900 Transmitter89900 Transmitter99900 Transmitter109900 Transmitter119900 Transmitter129900 Transmitter139900 Transmitter149900 TransmitterTechnical Notes:• The cable length from the 8058 to the 9900 must not exceed 60 m (200 ft).• When using the 8058-2, connect the loop source to Channel 1 input ONLY .• See the 8058 manual for more information.Wiring for:Signet 8058 i-Go™4-20 mA to S L ConverterO u t p u t S 3LDATA GND SHLD V+8058-1close-upBlackRed ShieldWhite 8058-19900 S 3L Inputs08058-27 8 9N/C S L DATA3close-up8058-2DATA GND V+SHLD BLACKWHITE RED 9900 S 3L InputsTechnical Notes:• Use three conductor shielded cable for sensor cable splices up to 305 m (1000 ft) max.• Maintain cable shield through cable splice.• Route sensor cable away from AC power lines.• Connect the silver (shield) wire to earth ground in case of EMI noise interference.Technical Notes:• The 2850 has no SHIELD wire.• To work correctly with the 9900, the 2850 must be set for the custom cell constant or the actual probe cell constant and the 9900 set for a 1.0 cell constant.Wiring for:* 2551-XX-21, -41Display Magmeter2250235024502551*2750/27512850Black Red ShieldWhite V+DATA GND SHLD 9900 S 3L InputsNOTE: The 2850 has no SHIELD wire.159900 Transmitter169900 Transmitter179900 Transmitter189900 Transmitter199900 Transmitter209900 TransmitterKeypad FunctionsThe four buttons of the keypad are used to navigate display modes according to the descriptions in this table. Notice that the function of each button may change depending on the display mode.3sEditInput EditSaves ChangesInput Edit Choices(Password may be required)or ororSelect another Menu ItemReturn to View Mode+2x+OrThis basic operating procedure repeats throughout the 9900 program:1. Press ENTER for 3 seconds to enter MENU mode.2. Press ► to move to the desired menu then press ENTER to select it. (Password may be required.)3. Press ▲ or ▼ to select the desired menu item for editing.4. Press ► to edit the value/selection.5. Press ENTER to store the new value/selection.6. Press ▲ or ▼ to select another menu item if desired. Repeat steps 3-5 as required.7. Press ▲+▼ to select a different menu to edit. Repeat steps 2-5 as required.8. When fi nished editing all menus, press ▲+▼ again to return to normal operation.The menu is constructed in a loop, so you can move forward and backward to select an item. After any item is saved (by pressing ENTER), the display will return to the previous menu.System Setup: Menu NavigationINPUT MenuThis is the normal display and does not time out.。
安捷伦科技推出采用微型ChipLED表面封装的经济型环境亮度传感器

安捷伦科技推出采用微型ChipLED表面封装的经济型环境亮度传感器该器件可控制手机和便携式产品的LCD 显示屏背光,为照明应用提供开关控制2005 年5 月18 日,中国北京–安捷伦科技公司(Agilent Technologies, 纽约证券交易所上市代号:A) 日前宣布,为手机、消费电子、商用和工业产品提供一款新型模拟输出环境亮度传感器。
安捷伦APDS-9002 传感器采用微型ChipLED 无铅表面封装,它是业内体积最小的器件之一,产品尺寸仅为2.00mm x 1.25 mm x 0.80 mm。
其紧凑的封装缩小了电路板空间,从而可以实现外形更薄、功能更丰富的产品。
安捷伦环境亮度传感器为PDA、笔记本电脑、便携式DVD 播放机、MP3 播放机、便携式摄像机和数码相机及手机提供了理想的节电解决方案。
它们还可以用来控制室内和室外照明灯、路灯及电子标志和信号灯的开关。
安捷伦科技公司半导体产品事业部中国及香港地区总经理李艇先生说,“我们新推出的ChipLED 亮度传感器满足了一系列的应用需求,包括对价格和尺寸非常敏感的手机应用。
袖珍型传感器不但提高了性能,还明显地改善了当前由电池供电的产品所日益关注的功耗问题。
”与安捷伦以前推出的HSDL-9001 亮度传感器相比,APDS-9002 进一步改善了性能,包括保证在2.4 V - 5.5 V 扩展电压范围内工作,其工作温度范围也扩大至-40℃到+85℃。
安捷伦创新的环境亮度传感器采用人眼仿真检测环境亮度,然后把信号传送给手机,以便在需要时打开显示屏的背光和键盘灯。
新型传感器可检测周围环境的亮度水平,并通过提供高度线性的成比例输出,来调节显示屏或键盘的背光。
如果周围光线充足,设计人员提供的逻辑控制可以关闭背光,以减少电池充电的时间或更换电池的次数。
安捷伦环境亮度传感器的性能要优于硅光电二极管亮度检测的解决方案,因为其频谱响应的尖峰值与人眼的波长相同。
传感器也同样适应从自然的阳光到荧光、传统的白炽灯和卤素灯等不同的光源。
利戈先进激光干涉仪引力波天文台真空兼容材料表说明书

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific CollaborationLIGO-E960050-v4 Advanced LIGO12 Nov 2009 see DCC record for approvalLIGO Vacuum Compatible Materials ListD. Coyne (ed.)Distribution of this document:LIGO Science CollaborationThis is an internal working noteof the LIGO Project.California Institute of Technology LIGO Project – MS 18-341200 E. California Blvd.Pasadena, CA 91125Phone (626) 395-2129Fax (626) 304-9834E-mail:*****************.edu Massachusetts Institute of Technology LIGO Project – NW17-161175 Albany StCambridge, MA 02139Phone (617) 253-4824Fax (617) 253-7014E-mail:*************.eduLIGO Hanford Observatory P.O. Box 1970Mail Stop S9-02Richland WA 99352Phone 509-372-8106Fax 509-372-8137LIGO Livingston ObservatoryP.O. Box 940Livingston, LA 70754Phone 225-686-3100Fax 225-686-7189/CHANGE RECORDRevisionDateAuthority DescriptionA30 Jul 1996Initial Release Initial ReleaseB/v1 5 Apr 2004DCNE030570-01 Added approved materials for initial LIGO, clarified the designation "presently used", or "provisional" materials, added independent approval for Initial LIGO and AdvancedLIGO approval.v2 9 Sep 2009See DCC record ∙ Removed distinction between initial and advanced LIGO for approval∙ Made an explicit notation in the materials list if the use of a material is restricted (or not)∙ Moved a number of materials from the provisionally approved to the approved list, although in some cases with restrictions (e.g. carbon steel, Sm-Co, Nd-Fe-B, Vac-Seal, copper, Tin-Lead solder, etc.) and removed the provisional list from the document∙ Added a number of materials to the approved list, although in some cases with restrictions (e.g. adhesives,aluminum bronze, etc.) ∙ Added a few materials to the explicitly excluded list, e.g.aluminum alloy 7000 series, brass (aka manganese bronze), free-machining grades of stainless steel (303, 303S, 303Se) except as small fasteners, etc. ∙ Added a number of references∙ Added a section on general restrictions on materials (e.g. no castings, material certifications are always required, only the grades and sources called out for the polymers are permitted, etc.)∙ Most outgassing rate values remain blank in the materials list (pending)v3 16 Sep 2009 See DCCrecord∙ Added SEI-ISI actuators to approved list∙ Clarified that no castings refers to metals only∙ Added exception for the use of grinding to prepare the leads for in-vacuum photodiodes ∙ Added numbers to the rows of the approved materials list for easier reference∙ Added the grade and source for PEEK and carbon-loaded PEEKV4 12 Nov 2009See DCC record ∙ Explicitly added the Ferritic Stainless Steels (400 series) to the approved materials list. Of high vapor pressureelements, these alloys have 0.06% P max and 0.15% S max, which is well under the 0.5% max allowed inLIGO-L080072-00 [Ref. b )7]TABLE OF CONTENTS1Introduction (4)2Scope (4)3Nomenclature and Acronyms (4)4Ultra-High Vacuum Material Concerns (5)5Vacuum Requirements (5)6Procedure for Qualifying New Materials (6)7VRB wiki Log (6)8General Restrictions (6)9Approved Materials (7)10Explicitly Rejected Materials (20)11References for the approved materials table (20)LIST OF TABLESTable 1: Approved Construction Materials (8)1 IntroductionAll items to be installed inside LIGO Observatory vacuum systems must be on the "approved materials" list (components and materials).2 ScopeThe materials listed herein are those which are intended for use in vacuum. Materials used for items which are temporarily inside a LIGO vacuum system, but do not reside in vacuum (e.g. alignment fixtures, installation tooling, etc.) are not restricted to this material list. These items (referred to as "Class B"1 as opposed to "Class A" items which remain in the vacuum system) must comply with LIGO cleanliness standards and must not leave residues of non-vacuum compatible materials (e.g. hydrocarbon lubricants).3 Nomenclature and AcronymsLIGOAdL AdvancedADP Ammonium Di-hydrogen Phosphate [(NH4)H2PO4]AES Auger Electron SpectroscopyAMU Atomic Mass UnitFTIR Fourier Transform Infrared SpectroscopyHC HydrocarbonsLIGOInL InitialKDP Potassium Di-hydrogen Phosphate [KH2PO4]LIGO Laser Interferometer Gravitational Wave ObservatoryOFHC Oxygen Free High-Conductivity CopperNEO Neodymium Iron BoronPFA Perfluoroalkoxy fluoropolymer (Du Pont)PTFE Polytetrafluorethylene (Du Pont)PZT Lead-Zirconate-TitanateRTV Room Temperature Vulconizing Silicone elastomerSIMS Stimulated Ion Mass SpectroscopyUHV Ultra High VacuumVRB LIGO Vacuum Review BoardXPS X-ray Photoelectric Spectroscopy1 Betsy Bland (ed.), LIGO Contamination Control Plan, LIGO-E09000474 Ultra-High Vacuum Material ConcernsThere are two principal concerns associated with outgassing of materials in the LIGO vacuum system:a)Outgassing increases the gas load (and column density) in the system and consequently mayeither compromise the interferometer phase noise budget or require higher pumping capacity. Reduction with time, whether 1/t (range of adsorption energies) or 1/sqrt(t) (diffusion followed by desorption) is important and the particular gas species (whether condensable or non-condensable) is critical. Even inherently compatible, low outgassing materials (e.g. 6061 aluminum alloy) will contribute to the gas load (especially if not properly cleaned and/or copious amounts are installed into the vacuum system). However, the most significant risk is likely to be from materials which have inherently high outgassing rates (e.g. water outgassing from flouroelastomers such as Viton® and Flourel®).The literature is most useful in providing total and water outgassing rates. Since in LIGO, there is a special problem of larger phase noise sensitivity to (and concern of optical contamination from) heavy hydrocarbons, where possible, the hydrocarbon outgassing or surface contamination information should be provided.b)Outgassing is a potential source of contamination on the optics with the result of increasedoptical losses (scatter and absorption) and ultimately failure due to heating. The amount of outgassing is less important than the molecular species that is outgassed. Little is known of the most important contamination sources or the mechanisms that lead to the optical loss(e.g., UV from second harmonic generation, double photon absorption photoeffect, simplemolecular decomposition in the optical fields leaving an absorbing residue, etc.).In the approved materials list, one column entry indicates whether the listed material has the potential for (is suspected of) being a significant contributor as regards a) or b) or both.5 Vacuum RequirementsAn allocation of high molecular weight hydrocarbon outgassing budget to assemblies within the AdL UHV is given in LIGO-T0400012. However, this document is in need of revision (a) to reflect the pumping capacity of the beam tube (which reduces the requirements considerably), and (b) to more accurately reflect the evolved AdL configuration.An allocation of total gas load for AdL has not been made as yet. With the elimination of the significant amount of Flourel® flouroelastomer in InL (spring seats, parts of the InL seismic isolation system), the water load will decrease dramatically. However, recent calculations3 of test mass damping due to residual gas suggest that this may not be sufficient. We will need to achieve a total pressure of 10-9 torr or less in proximity to each test mass. A total gas load budget/estimate will be created.The limits on optical loss due contamination are < 1 ppm/yr absorption and < 4 ppm/yr scatter loss2 D. Coyne, Vacuum Hydrocarbon Outgassing Requirements, LIGO-T0400013 N. Robertson, J. Hough, Gas Damping in Advanced LIGO Suspensions, LIGO-T0900416-v1for any test mass (TM), high reflectance (HR), surface4.6 Procedure for Qualifying New MaterialsA request to qualify a new material or component/assembly should be addressed to the LIGO Chief Engineer or the LIGO Vacuum Review Board with a justification regarding the need for the new material and an estimate of the amount of material required. Materials can only be added to the "approved" list after extensive testing in accordance with the document "LIGO Vacuum Compatibility, Cleaning Methods and Procedures"5.7 VRB wiki LogThis revision captures all relevant LIGO Vacuum Review Board (VRB) decisions as of the date of this release. For more recent direction not yet captured in a revision of this document, see the LIGO VRB wiki log (access restricted to LSC members).8 General Restrictions1)Material certifications are required in every case.2)Only the grades called out3)Only the grades and sources called out for the polymers (unless otherwise noted).4)All polymers are restricted (even if approved). The use of an approved polymer in a newapplication must be approved. Despite the fact that some polymer materials are approved for use, these materials should be avoided if possible and used sparingly, especially if used in proximity to LIGO optics.5)Special precautions must be taken for adhesives. Often the shelf life for adhesives islimited. All adhesives should be degassed as part of the preparation procedure. Extreme care must be taken when mixing multi-part adhesives, to insure that the proper ratio is used and accurately controlled.6)No metal castings, including no aluminum tooling plate.7)All surfaces are to be smooth (preferably ≤ 32 micro inches Ra). All metal surfaces areideally machined.8)All machining fluids must be fully synthetic (water soluble, not simply water miscible) andfree of sulfur, chlorine, and silicone.9)No bead or sand blasting is permitted.4 G. Billingsley et. al., Core Optics Components Design Requirements Document, section 4.2.2.6 of LIGO-T080026-00. The timescale for accumulation (i.e. the time span between in situ re-cleaning of the test mass optics) has been chosen here to be 1 year. It is possible that a somewhat shorter time span could be accommodated.5 D. Coyne (ed.), LIGO Vacuum Compatibility, Cleaning Methods and Qualification Procedures, LIGO-E96002210)No grinding is permitted (due to potential contamination from the grinding wheel matrix),except for (a) grinding maraging steel blades to thickness6 and (b) photodiode lead end preparation for pin sockets.11)Parts should be designed and fabricated to provide venting for enclosed volumes12)For design applications where dimensional control is extremely important or tolerances areexceedingly tight, it is the responsibility of the design engineer to (a) establish a basis for baking parts at temperatures lower than the default temperatures (defined in LIGO-E960022), and (b) get a waiver for a lower temperature bake from the LIGO Vacuum Review Board.13)All materials must be cleaned with appropriate chemicals and procedures (defined in LIGO-E960022) and subsequently baked at “high temperature”. The appropriate temperature is defined in LIGO-E960022. Typical hold duration at temperature is 24 hours. The preferred bake is in a vacuum oven so that the outgassing rate can be shown to be acceptable by Residual Gas Assay (RGA) measurement with a mass spectrometer. If the part is too large to be placed in a vacuum oven, then it is air baked (or dry nitrogen baked) and then its surface cleanliness is established by FTIR measurement.14)Welding, brazing, soldering have special restrictions and requirements7 defined in LIGO-E0900048.15)For commercially produced components with potentially many materials used in theconstruction, a detailed accounting of all of the materials and the amounts used must be submitted for review. It may be necessary for some components to get certifications (per article or serial number) of the materials employed in their manufacture, so that material substitutions by the manufacturer are visible to LIGO.9 Approved MaterialsThe following Table lists materials which are approved for use in all LIGO vacuum systems. In many cases the materials are restricted to a particular application. Use of the material for another application must be approved by either the LIGO Chief Engineer or the LIGO Vacuum Review Board. References for the approved materials list table are given in the last section.6 C. Torrie et. al., Manufacturing Process for Cantilever Spring Blades for Advanced LIGO, LIGO-E09000237 C. Torrie, D. Coyne, Welding Specification for Weldments used within the Advanced LIGO Vacuum System, LIGO-E0900048LIGO LIGO-E960050-v410 Explicitly Rejected Materials1)Alkali metals2)Aluminum alloy 7000 series: due to the high zinc content3)Brass (aka manganese bronze): due to high zinc content4)Cadmium or zinc plating on metal parts: Cadmium and zinc have prohibitively high vapourpressures. Crystalline whiskers grow on cadmium, can cause short circuits.5)Delrin™ or similar polyacetal resin plastics: Outgassing products known to contaminatemirrors.6)Dyes7)Epoxy Tra-Bond 2101: outgassing was measured by LIGO to be too high (note that this isnot a low outgassing epoxy formulation)8)Inks9)Manganese bronze (aka brass): due to high zinc content10)Oils and greases for lubrication11)Oilite™ or other lubricant-impregnated bearings12)Oriel MotorMike™ actuators filled with hydrocarbon oil, not cleanable13)Palladium14)Soldering flux15)Stainless Steel, free-machining grades (303, 303S, 303Se): allowable only as smallhardware components (nuts, bolts, washers), due to high sulfur or selenium content16)RTV Type 61517)Tellurium11 References for the approved materials table1.Dayton, B.B. (1960) Trans. 6th Nat. Vacuum Congress; p 1012.Schram, A. (1963) Le Vide, No 103, p 553.Holland, Steckelmacher, Yarwood (1974) Vacuum Manual4.Lewin, G. (1965) Fundamentals of Vacuum Science and Technology, p 725.Coyne, D., Viton Spring Seat Vacuum Bake Qualification, LIGO-T970168-00, 10 Oct 1997.6.Coyne, D., Allowable Bake Temperature for UHV Processing of Copper Alloys, LIGO-T0900368-v2, 11 Aug 2009.7.Worden, J., Limits to high vapor pressure elements in alloys, LIGO- L080072-00, 12 Sep 2008.8.Coyne, D., VRB Response to L070131-00: Unacceptability of 7075 Aluminum Alloy in theLIGO UHV?,LIGO-, LIGO-L070132-00, 11 Nov 2008.20LIGO LIGO-E960050-v49.Worden, J., VRB response to L080042-00, Is 303 stainless steel acceptable in the LIGOVacuum system?, LIGO-L080044-v1, 12 Jan 2009.10.Worden, J., VRB response to nickel-phosphorous plating issues , LIGO-L0900024-v1, 20 Feb2009.11.Torrie, C. et. al., Manufacturing Process for Cantilever Spring Blades for Advanced LIGO,LIGO-E0900023-v6, 23 Jun 2009.12.Worden, J., VRB Response to Flourel/Viton O-ring questions, LIGO-L070086-00, 12 Oct2007.13.Coyne, D. (ed), LIGO Vacuum Compatibility, Cleaning Methods and Qualification Procedures,LIGO- E96002214.Process Systems International, Inc., Specification for Viton Vacuum Bakeout, LIGO VacuumEquipment - Hanford and Livingston, LIGO- E960159-v1, 18 Dec 1996.15.Coyne, D., Component Specification: Material, Process, Handling and Shipping Specificationfor Fluorel Parts, LIGO-E970130-A, 17 Nov 1997.16.Process Systems International, Inc., WA Site GNB Valve Modification Report Update (PSIV049-1-185) and LA Mid Point Valve O-Ring Specification, LIGO-C990061-00, 21 Jan 1999.17.Process Systems International, Inc., Vacuum Equipment: O Ring Specification, Rev. 06, LIGO-E960085-06, 7 Jan 1997.18.ASTM, Standard Specification for Steel Wire, Music Spring Quality, A 228/A 228M – 07.19.Worden, J., Re: L0900002-v1: VRB request: all SmCo magnets UHV compatible?, LIGO-L0900011-v1, 3 Feb 2009.20.C. Torrie, et. al., Summary of Maraging Steel used in Advanced LIGO, LIGO-T090009121。
北京大学联合安捷伦科技使用93000测试系统测试国内规模最大、自主知识产权的CPU系统芯片

北京大学联合安捷伦科技使用93000测试系统测试国内规模最大、自主知识产权的CPU系统芯片
佚名
【期刊名称】《电子工业专用设备》
【年(卷),期】2003(32)6
【摘要】北京大学微处理器研究开发中心和全球领先的半导体测试解决方案提供商安捷伦科技(NYSE:A)2003年10月31日在北京联合宣布,具有完全自主知识产权的北大众志CPU已经在安捷伦93000系统级芯片系列测试系统上成功进行量产测试。
【总页数】1页(P38-38)
【关键词】自主知识产权;NYSE;规模;提供商;国内;量产;北京大学微处理器研究开发中心;安捷伦科技;系统芯片;系统级芯片
【正文语种】中文
【中图分类】TN402;F407.63
【相关文献】
1.方舟科技选择安捷伦93000系统芯片测试系统 [J],
2.海尔采用安捷伦科技93000 SOC系列设备测试机顶盒芯片 [J],
3.威宇科技添购安捷伦93000测试系统建立中国第一条1Gbps高速测试生产线[J],
4.威宇科技添购安捷伦93000测试系统建立中国第一条1Gbps高速测试生产线
[J], 章从福;
5.宝扬科技选用安捷伦93000测试系列成功验证32位CPU [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
APDS-9960 中文资料

I / O 引脚配置
工作空气温度范围内的绝对最大额定值(除非另有说明)*
*超出“绝对最大额定值”列出的值可能会导致设备永久性损坏。 这些仅是压力额定值,并不 意味着在这些或超出“推荐操作条件”之下的任何其他条件下的设备的功能操作。 长时间暴露 于绝对最大额定条件可能会影响器件的可靠性。 注 1.所有电压都相对于 GND。 推荐工作条件
靠近操作 接近检测功能通过光电二极管检测由集成 LED 提供的反射 IR 能量进行距离测量。 以下寄 存器和控制位控制接近操作,操作流程如图 8 所示。 表 1.近程控制
图 8.详细接近图
接近结果受三个基本因素的影响:红外 LED 发射,红外接收和环境因素,包括目标距离和 表面反射率。 IR 接收信号路径从四个[定向手势]光电二极管的 IR 检测开始,并以 PDATA 寄存器中的 8 位 接近结果结束。来自光电二极管的信号被组合,放大和偏移调整以优化性能。相同的四个光 电二极管用于手势操作以及邻近操作。二极管配对形成两个信号路径:UP / RIGHT 和 DOWN / LEFT。不管配对,任何一个光电二极管都可以被掩蔽,以排除其对接近结果的贡献。屏蔽 成对的二极管之一有效地将信号减少一半,并使满量程结果从 255 减少到 127.为了校正全量 程的这种减小,可以设置接近增益补偿位 PCMP,返回 F.S.到 255.使用 PGAIN 控制位,增益 可以从 1x 调整到 8x。通过调整 POFFSET_UR 和 POFSET_DL 寄存器来实现偏移校正或串扰 补偿。器件的模拟电路将偏移值作为减法运算到信号累加中;因此,正偏移值具有降低结果的 效果。 在光学上,IR 发射显示为脉冲串。脉冲数由 PPULSE 位设置,每个脉冲的周期可以使用 PPLEN 位进行调节。使用 LDRIVE 控制位可以选择 IR 发射的强度;对应四个,出厂校准,电流等级。 如果需要更高的强度(例如较长的检测距离或深色玻璃下方的器件放置),则 LEDBOOST 位 可用于将电流升高至额外的 300%。 集成 IR LED 的 LED 占空比和随后的功耗可以使用表 2 所示的下表和等式计算。如果接近事 件按照 AWAIT 和 WLONG 设置的等待时间分隔,那么总的 LED 关闭时间必须增加等待时间。
干式荧光免疫分析仪产品技术要求广州蓝勃生物科技

2.性能要求2.1.功能2.1.1.分析仪应具有ID卡信息读取功能;2.1.2.具备数据显示功能:用分析仪测试后,可查询检测结果;2.1.3.具有打印功能;2.1.4.分析仪具备开机自检功能;2.1.5.分析仪应具备数据接口:LIS接口,传输协议为UDP,存储格式为文本格式;2.1.6.分析仪应具备用户访问控制:采用基于角色的访问控制(R B A C:R o l e-B a s e d Access Control)方法,分为管理员和普通用户两个级别,普通用户权限:只能访问本用户的测试数据;管理员权限:可访问所有用户的测试数据。
2.2.性能2.2.1.重复性批内测量重复性,CV≤10%。
2.2.2.稳定性仪器开机处于稳定工作状态后第4h、第8h的测试结果处于稳定工作状态时的测试结果的相对偏倚量,σ≤±8%。
2.2.3.线性相关性在不小于2个数量级的浓度范围内,线性相关系数(r)≥0.97。
2.2.4.准确性检测偏差,△n≤±15%。
2.3.外观与结构2.3.1.分析仪外形应平整,表面不应有明显的凹凸痕、划痕、裂纹、变形、霉斑、锋棱、毛刺。
表面镀层不应起泡、龟裂和脱落。
2.3.2.分析仪外表的各处文字、符号应完整,标记应清晰、准确、牢固。
2.3.3.分析仪的紧固件连接应可靠、不得有松动。
2.3.4.分析仪的运动部件应平稳,不应有卡滞、突跳。
2.4.安全要求应符合GB4793.1-2007、GB4793.9-2013和YY0648-2008中适用章条的要求。
2.5.环境试验要求分析仪的环境试验应符合GB/T14710-2009中气候环境试验Ⅰ组、机械环境试验Ⅱ组和表1的规定;运输试验和对电源的适应能力分别符合GB/T14710-2009中4 章、5章的规定。
2.6.电磁兼容要求应符合GB/T18268.1-2010和GB/T18268.26-2010中适用章条的要求。
apds9930原理

apds9930原理
APDS9930是一种数字环境光和接近传感器,其工作原理是通
过发射红外光和检测接收到的反射红外光来测量环境光的强度和物体的接近程度。
APDS9930使用红外发射二极管发射红外光,并使用四个光敏
元件(红色,绿色,蓝色和红外线)来检测接收到的光信号。
利用各个光敏元件的敏感程度与环境光的波长特性不同的特点,可以将接收到的光信号转换为数字信号。
其工作原理可以概括为以下几个步骤:
1. 发射红外光:APDS9930通过红外发射二极管发射红外光。
2. 接收反射红外光:发射的红外光会遇到周围物体并发生反射,APDS9930通过红外敏感元件接收到反射光。
3. 处理光信号:APDS9930通过内置的光敏元件将接收到的红
外光转换为电信号,并将其放大和滤波处理。
4. 转换为数字信号:经过处理后,APDS9930将得到的光电信
号转换为数字信号,这些数字信号表示环境光强度和物体的接近程度。
5. 输出结果:APDS9930可以通过数字接口将测量结果输出给
外部设备,例如微控制器或电脑。
APDS9930是一种常用于自动亮度调节、触摸屏、近距离探测
等应用的传感器,具有高精度、低功耗等特点。
迈瑞DP-9900全数字台式

产品名称:黑白B超规格/型号:DP-9900全数字台式单位:台品牌:迈瑞产地:深圳Coldfire 处理器应用ColdFire 嵌入式微处理器,运算速度提高5倍,带来成像质量完美飞跃五大成像技术五项领先成像技术集中应用,图像质感清晰呈现[DBF 全数字波束形成]全数字超声诊断仪的核心技术,实现图像获取、处理过程的全数字转化,保证图像不失真,边缘清晰[RDA 实时动态孔径成像]接收孔径随着回波的深度实时动态地连续的变化,保证了远近场具有均匀一致的高分辨率[DFS 数控动态频率扫描]宽频带探头多频率同时发射,接收时系统内的数字化自适应带通滤波器,根据检查部位深浅差异,自动选择最佳的接收频率,有效地解决了分辨率和穿透力之间的矛盾,在同一幅图像上实现了最佳分辨率和最高穿透力[DRA 实时动态声束变迹]随深度连续地抑制旁瓣,有效降低背景噪声,获得最高信噪比,实现高清晰度图像[DRF 实时逐点动态接收聚焦]最理想的接收聚焦技术,大大改善了远近场的图像颗粒均匀度和提高整场组织的分辨率,获得高质量的二维图像特殊的分析软件[中国人群公式]最适合中国人群的产科分析软件,精确推算胎儿胎龄和预产期胎儿生理评分:客观的、量化的评价晚期妊娠胎儿宫内窘迫发生可能性,为临床制定处理方案提供参考[PSAD测定]更为准确的评估前列腺疾患脱机诊断可在患者离机状态下对保留的动态图像数据进行第二次论断所必须的分析测量,后处理放大、操作IP 功能6种参数优化组合,8种设置,集成于一键调节,使复杂的图像调节变得轻松、简单升级功能提供系统升级平台,最新版本软件以磁盘方式存贮,用户只需点击系统升级,系统将自动更新软件,保证系统的先进性独特的断面图分析对临床诊断非常有意义的分析软件工具,将使得超声诊断进入量化过程内置数字化图像管理系统图像资料以数字化存储在机器内,无任何失真,方便图像资料的管理存储大容量电影回放手动和自动两种方式可选,使您能轻松捕获最理想的图像中文界面(英文可选)方便用户操作,提高工作效率和减少培训时间检查条件预置功能检查时只需选中相应的检查模式键,系统即进入最佳的检查状态友好操作导航系统提供操作同步帮助信息,使复杂的操作变得轻松自如。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Your Imagination, Our Innovation
APDS-9300 Digital ALS with I2C Interface
Description The APDS-9300 is a low-voltage Digital ALS that converts light intensity to digital signal output, It connect the MCU via direct I2C interface. Each device consists of one broadband photodiode (visible plus infrared) and one infrared photodiode. Two integrating ADCs convert the photodiode currents to a digital output. Benefit ■ Full 16-bit ADC data for higher illumination accuracies. ■ Wide illumination range from 0.1 Lux to 40,000 LUX. ■ Able to work with very dark windows for for aesthetic appeal ■ Programmable Interrupt Function ■ 16-Bit Digital Output with I2C Fast-Mode at 400 kHz ■ Miniature ChipLED Package ■ Height - 0.55mm, Length - 2.60mm, Width - 2.20mm Block Diagram
LED, PD
Ambient Light Sensors
Analog Output
APDS-9800
ALS: Analog Output PS: Analog Output & Digital ON/OFF, Built-in signal conditioning
HSDL- 9100 Signal Conditioning IC APDS-9700
Avago Technologies Confidential
Isolation Products Division
Your Imagination, Our Innovation
Optical Sensor Portfolio
•Ambient Light Sensors • Detection of Lighting Condition •
Automotive
Page 7
Avago Technologies Confidential
Isolation Products Division
Your Imagination, Our Innovation
Analog Output Ambient Light Sensor (ALS)
• A basic Analog output ALS consists of a photo-diode and an amplifier. The photo-diode is well design to detect the light source close to the human eye response. The amplifier is to amplify the weak signal output from the photo-diode.
• Power savings and extend panel life Object
VCC
ALS
Light (LUX)
Proximity Sensor
Photo-diode MCU Amplifier
RL
Signal Conditioning
Page 3
Avago Technologies Confidential
Photo-diode
VOUT
Amplifier
RL
Page 8
Avago Technologies Confidential
Isolation Products Division
Your Imagination, Our Innovation
APDS-9005 Analog ALS
Description APDS-9005 is a low cost analog-output ambient light photo sensor in miniature chipLED lead-free surface mount package. The APDS-9005 is ideal for applications in which the measurement of ambient light is used to control display backlighting. Features & Benefit ■ Output linearity across wide illumination range ■ Low sensitivity variation across various light sources ■ Miniature 6-pin ChipLED Leadfree surface-mount package: ■ Height – 0.55mm, Width – 1.60 mm, Depth – 1.50 mm ■ Vcc supply 1.8 to 5.5V Schematic Block Diagram
ቤተ መጻሕፍቲ ባይዱ
APDS-9300
APDS-9301
Digital SMBus
APDS-9702
Digital I2C Write, Digital ON/OFF O/P
Integrated Proximity Sensor APDS-9120
Analog Output & Digital ON/OFF Built-in signal conditioning
VCC
Light (LUX)
Vcc = 1.8V
Average Vout vs Lux (Vcc = 1.8V, T = 25C, White LED Source) 1.4 1.2 Average Vout (V) 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 500 600 700 800 900 1000 Lux RL = 1kohm RL = 1.8kohm RL = 2.2kohm RL = 2.7kohm RL = 3.3kohm RL = 4.3kohm RL = 5kohm RL = 7.5kohm RL = 12kohm
Your Imagination, Our Innovation
Ambient Light Sensor
Jan 2011
Page 6
Avago Technologies Confidential
Isolation Products Division
Your Imagination, Our Innovation
VCC Light Photo-diode APDS-9005 Amplifier Load resistor RL
Vout
Output Response
Additional Information Visit us at: /pages/en/optical_sensors /ambient_light_photo_sensors/apds-9005/
VCC
Light
MCU Photo-diode ADC Digital interface
Amplifier
Page 10
Digital ALS simplified Block Diagram
Avago Technologies Confidential
Isolation Products Division
APDS-9900
ALS: I2C Output PS: I2C Output, Built-in signal conditioning, LED Driver
APDS-9303
Page 5
Avago Technologies Confidential
Isolation Products Division
Page 9 Avago Technologies Confidential
Isolation Products Division
Your Imagination, Our Innovation
Digital Output Ambient Light Sensor (ALS)
• A digital output ALS consists of photo-diodes, amplifier, Analog-to-Digital Converter (ADC) and Digital Interface. It converts light luminance to a digital signal output, and communicates with MCU via digital interface protocol I2C or SMBus.
Ambient Light Sensor – Segment Focus
Residential/ Commercial Lighting Management Electronic Display Signboards Traffic Lights
Security Devices
Portable Handhelds
Isolation Products Division