浙江专升本高等数学真题试卷及答案解析
专升本高等数学(含答案)
高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
2022-2023学年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)
2022-2023学年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.下列广义积分收敛的是A.A.B.C.D.2.3.()。
A.B.C. D.4.5.6.7.()。
A. B. C.D.8.A.A.B.C.D.9.10.若事件A发生必然导致事件B发生,则事件A和B的关系一定是( )。
A.B.C.对立事件D.互不相容事件11.()。
A.3B.2C.1D.2/312.13.14. A.2h B.α·2α-1 C.2 αln 2D.015.16.17.18.19.20.A.A.-1B.-2C.1D.221.22.23.24.25.()。
A.B.C.D.26.27.A.A.B.C.D.28.29.A.A.arcsinx+CB.-arcsinx+CC.tanx+CD.arctanx+C30.A.A.在(-∞,-1)内,f(x)是单调增加的B.在(-∞,0)内,f(x)是单调增加的C.f(-1)为极大值D.f(-1)为极小值二、填空题(30题)31. 设函数f(x)=e x+lnx,则f'(3)=_________。
32.33.34.35.36.37.38.39.40.41.若tanx是f(x)的一个原函数,则________.42.43.44.45.46.47.48. 设函数y=1+2x,则y'(1)=_______。
49.50.51.52.53. 曲线y=2x2+3x-26上点M处的切线斜率是15,则点M的坐标是_________。
54.55.56.57.58.59.60.三、计算题(30题)61.62.63.64.65.求函数f(x)=x3-3x+1的单调区间和极值.66.67.68.69.70.求函数f(x,y)=4(x-y)-x2-y2的极值.71.72.73.74.75.76.77.78.79.80.81.82.83.求函数f(x,y)=x2+y2在条件2x+3y=1下的极值.84.85.86.87.88.89.设函数y=x4sinx,求dy.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题) 101.计算102.103.104.105.106.107.108.109.110.已知函数y=f(x)满足方程e xy+sin(x2y)=y,求y=f(x)在点(0,1)处的切线方程.六、单选题(0题)111.A.0.4B.0.3C.0.2D.0.1参考答案1.D2.D3.B4.B5.A6.B7.A8.A9.D10.A本题考查的知识点是事件关系的概念.根据两个事件相互包含的定义,可知选项A正确。
2019年浙江省专升本高等数学真题参考答案
2019年专升本<<高等数学>>真题答案解析一、选择题:本题共有5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的.1.D【解析】极限精确定义,若存在a x n n =∞→lim ,则对于ε<->∃>∀a x N n a n ,,0.2.A【解析】B 应改为0→h ,C 是可导的必要条件,D 改为∞→h .3.B【解析】原式=⎰∑+=⋅+=∞→101sin 11sin1limdx x n n i ni n ππ4.B【解析】A.条件收敛B.0cos lim 2≠∞→n n 发散C.2=x 为瑕点,D.令t x tan =,则()20323arctan 442sin 2(22cos 1sec 11123arctan 23arctan 23arctan 2322+-=-=+==+⎰⎰⎰∞+ππππt t dt t dt tdx x 5.C 【解析】由044=+'-''y y y ,特征方程0442=+-r r ,即()022=-r ,所以()xe x c c y 221+=二、填空题:本大题共10小题,每小题4分,共40分.6.解:ee e e nn nnn nn n n n n n n n ====+=+∞→∞→⋅⋅⋅∞→∞→111sin lim1sin lim 1sin 1sin 1)1sin 1(lim 1sin 1(lim 7.解:10)5(,2)(-='-='h t t h 8.解:x e a e a x xe a x x x x x x x x 2lim )(21lim )()1ln(cos 1lim 032030-=-=-+-→→→极限存在且不等于0,且02lim 0=→x x ,1,01)(lim 0=∴=-=-∴→a a e a xx ,且212lim 0-=-→x e a x x .362122arcsin41212πππ=-==-⎰x dx x9.t t t t t t dtdx dt dx dy d dx y d ttt dx dy t dt dx t dt dy 33222cos 1sec cos sec cos )tan ((tan cos sin ,cos ,sin -=-=-='-==-=-==-=解:10.解:222011000sin ()sin lim lim lim lim (0,)xn n n n x x x x t dt g x x x C x xnx nx --→→→→====≠≠∞⎰所以12,3n n -==即.11.解:由定积分的几何意义可得,定积分为41圆的面积,211144ππ=⋅⋅=⎰.12.解:方程两边分别对x 求导得,(1)()0x yey y xy +''+-+=所以x yx y y e y e x ++-'=-,所以dy dx ++--==--x y x y y e y xy e x xy x.13.解:(),x ∈-∞+∞236,66,y x x y x '''=+=+令0,1y x ''==-解得当1,0x y ''<-<时;1,0x y ''>->时所以,拐点为(1,2)-.14.解:222221111322x V dx xdx x ππππ====⎰⎰.15.解:2()39,9(ln 9)9(2ln 3)====x x n x n x ny y 三、计算题:本大题共8小题,其中16—19小题每小题7分,20—23小题每小题8分,共60分.16.解:原式00011(1)11111lim lim lim 222(1)2x x x x x x x x x →→→-+--++====-+.17.解:()ln(2cos )x y x x x π=++=ln ln(2cos )xx x e π++ln ln(2cos )x xx e π=++ln sin (ln 1)2cos x x x y e x x πππ-'=+++sin (ln 1)2cos x xx x xπππ-=+++(1)1y '=1(1)x dyy dx dx ='==.18.解:2,,2t x t dx tdt===则sin 22(cos )2(cos cos )2(cos sin )+Ct tdt td t t t tdt t t t =⋅=-=--=--⎰⎰⎰原式sin C =-+.19.解:当02x π≤<时,000()()cos sin sin x x xp x f t dt tdt tx ====⎰⎰;当2x ππ≤<时,222000221()()cos sin 2x x p x f t dt tdt tdt tt πππππ==+=+⎰⎰⎰221128x π=+-;22sin ,[0,)2()()11,[,]282ππππ⎧∈⎪⎪∴==⎨⎪+-⎪⎩⎰xx x p x f t dt x 20.解:距离为8s =⎰2,1,2u t u dt udu ==-=则,当0,1;8,3t u t u ====时当时283320113313=26(1)16()403s udu u duu u u =⋅=-=-=⎰⎰⎰(u -1)物体运动到8秒时离开出发点的距离为40米.21.解:2lim ()lim ()x x f x x a a --→→=+=0lim ()lim (1)0ax x x f x e ++→→=-=若2,0()1,0axx a x f x e x ⎧+≤=⎨->⎩在0x =处可导,则它在0x =处一定连续,所以0lim ()x f x -→=0lim ()(0)x f x f +→=,所以(0)0f a ==200()(0)(0)lim lim 0x x f x f x f x x ---→→-'===00()(0)0(0)lim lim 0x x f x f f xx +++→→-'===所以当0a =时,(0)0f '=,也就是函数2,0()1,0axx a x f x e x ⎧+≤=⎨->⎩在0x =处可导.22.解:平面1π的法向量为(1,1,1)=-1n ,平面2π的法向量为2(1,0,1)=-n ,所求直线的方向向量为111211⨯=-=++-12i j ks =n n i j k 又已知所求直线过点(1,0,2)A ,所以,所求直线方程为12121x y z --==.22.解:11lim lim 11n n n n n nu x nx u n x +-→∞→∞=⋅=<+收敛区间为(-1,1)当1=x 时,级数11n n ∞=∑发散;当1-=x 时,级数11(1)n n n -∞=-∑收敛;所以,收敛域为)1,1[-令111()n n S x x n ∞-==∑,则11()nn x S x xn∞=⋅=∑111(())1n n x S x x x∞-='⋅==-∑0001()ln(1)1ln(1)0()0ln(1)(0)lim ()lim1ln(1),[1,0)(0,1)()1,0xx x x S x dt x tx x S x xx x S S x xx x S x xx →→∴⋅==-----∴≠==--===--⎧∈-⋃⎪=⎨⎪=⎩⎰当时,当时,由和函数在收敛域内连续可导得,综上,11111()2ln 222-∞=⎛⎫∴== ⎪⎝⎭∑n n S n 四、综合题:本大题共3小题,每小题10分,共30分.24.解:32(4)1,(),()263OBPMBPN xy x S x S f t dt y x +'=⋅==+⎰322()41()263()4()()22214()()x f x x x f t dt f x x x f x f x f x f x x x x+⋅+=++'+-='-=-⎰由题意,化简,即,1124()(())4((1))dxdx xxf x ex e dx c xx dx c x ---⎰⎰=-+=-+⎰⎰224()4(2)0,4()44=++=++=∴=-∴=-+ 又x x c xx cx f c f x x x 25.解:成本为32()2123021c x x x x =-++323222()60()()()60(2123021)2123021,(0)()624306(45)()0,51r x x y x r x c x x x x x x x x x y x x x x x x y x x x ==-=--++=-++-≥'=-++=---'===-收入为利润为令得:或(舍)x (0,5)5(5,+∞)()y x '+0-()y x 179所以,5x =是利润()y x 的极大值点,又因为5x =是()y x 的唯一驻点,所以5x =是利润()y x 的最大值点.(5)179=y .因此公司应生产5千件产品时,公司取得最大利润,并且最大利润为179万元.26.解:(1)2()()(0)(0),02f f x f f x x x ξξ'''=++<<(2)证明:()[1,1]f x M m ''- 在上有最大值和最小值,[][]2111211111()()1()(0)21,1()()()()(0)0233(),1,1()333()33m f x Mf f x f x x f f f f x dx f xdx x dx m f x M x m f M m Mf x dx ξξξξξ----''∴≤≤'''=+-'''''''=+=+=''≤≤∈-''∴≤≤∴≤≤⎰⎰⎰⎰而由()知对上式进行积分即而(3)证明:由(2)可知11()33m Mf x dx -≤≤⎰,所以113()m f x dx M-≤≤⎰[][]11()1,1()3(),1,1f x f f x dx ηη--''∴=∈-⎰ 在上只有二阶连续导数,由介值定理知,。
2019年浙江专升本高等数学真题与答案解析(详细)
浙江省2019年高职高专毕业生进入本科学习统一考试高等数学一、选择题(本大题共5小题,每小题4分,共20分) 1、设lim x→0x n =a 则说法不正确的是( )A 、对于正数2,一定存在正整数N ,使得当n >N 时,都有|x n −a |<2.B 、对于任意给定的无论多么小的正数ε,总存在整数N ,使得当n >N 时,不等于|x n −a |<ε成立.C 、对于任意给定的a 的邻域(a −ε,a +ε), 总存在整数N ,使得当n >N 时,所有的x n 都落在(a −ε,a +ε)内,而只有有限个(至多只有N 个)在这个区间外.D 、可以存在某个小的正数ε0,使得有无穷多个点ε0落在区间(a −ε0,a +ε0)外. 2、设在点x 0的某邻域内有定义,则在点x 0处可导的一个充分条件是( ) A 、lim ℎ→0f (x 0+2ℎ)−f(x 0)ℎ存在 B 、lim ℎ→0−f (x 0)−f(x 0−ℎ)ℎ存在C 、limℎ→0f (x 0+ℎ)−f(x 0−ℎ)ℎ存在 D 、lim ℎ→+∞ℎ[f (x 0+1ℎ)−f (x 0)]存在3、limx→+∞1n[√1+sin πn +√1+sin 2πn +⋯+√1+sinnπn]等于( )A 、∫√sin πx dx 10B 、∫√1+sin πx dx 10 C 、∫√1+sin x dx 10 D 、π∫√1+sin x dx 10 4、下列级数或广义积分发散的是( ) A 、∑(−1)n−1n+100∞n=1 B 、∑cos 2n ∞n=1 C 、∫√21D 、∫1(1+x 2)2dx +∞15、微分方程y ′′−4y ′+4y =0的通解为( ) A 、y =c 1x +c 2e −2x B 、y =(c 1+c 2x)e −2x C 、y =(c 1+c 2x)e 2x D 、y =(c 1+c 2x)xe −2x二、填空题(只要在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)6、极限lim x→∞(1+sin 1n )n =7、设一雪堆的高度ℎ与时间t 的关系为ℎ(t )=100−t 2,则雪堆的高度在时刻t =5时的变化率等于8、当a = 时,极限lim x→01−cos xln (1+x 3)(a −e x )存在且不等于0.9、设 ,则d 2ydx 2=10、设g (x )=∫sin t 2dx x0,且当x →0时,g (x )与x n 是同阶无穷小,则n = 11、定积分∫√1−x 2dx 10 =12、设函数y =y (x )由方程e x+y −xy =0确定,则dydx = 13、曲线y (x )=x 3+3x 2的拐点是14、由曲线y =√x ,x =1 ,x =2及x 轴围成的曲边梯形绕x 轴旋转一周而成的旋转体体积等于15、设y =32x ,则y (n)=三、计算题(本大题共8小题,其中16-19题每小题7分,20-23小题每小题8分,共60分) 16、求极限lim x→0ln (1+x )−xx 2.17、设y (x )=ln(2+cos πx)+x x ,求函数y (x )在x =1处的微分.18、求不定积分∫sin √x dx .19、设f (x )= ,求p (x )=∫f(t)xdt 在[0,π]上的表达式.x =sin t y =cos tcos x ,x ∈[0,π)x ,x ∈[π,π]20、一物体由静止到以速度v (t )=3t√t+1(m/s)作直线运动,其中t 表示运动的时间,求物体运动到8秒时离开出发点的距离。
2022年浙江省湖州市成考专升本高等数学二自考真题(含答案)
2022年浙江省湖州市成考专升本高等数学二自考真题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.下列极限计算正确的是【】A.B.C.D.2.3.称e-x是无穷小量是指在下列哪一过程中它是无穷小量【】A.x→0B.x→∞C.x→+∞D.x→∞4.【】A.0B.1C.0.5D.1.55.A.A.0B.-1C.-1D.16.f(x)=|x-2|在点x=2的导数为A.A.1B.0C.-1D.不存在7. ()。
A.0B.1C.e-1D.+∞8.9.10.()。
A.-1B.0C.1D.211.A.A.2x+1B.2xy+1C.x2+1D.x212.当x→0时,若sin2与x k是等价无穷小量,则k=A.A.1/2B.1C.2D.313.()。
A.B.C.D.14. 设?(x)具有任意阶导数,且,?ˊ(x)=2f(x),则?″ˊ(x)等于().A.2?(x)B.4?(x)C.8?(x)D.12?(x)15.A.A.B.C.D.16.17.A.x=-2B.x=-1C.x=1D.x=018.()。
A.1/2B.1C.2D.319.20.21. A.1/2 B.1 C.3/2 D.222.23.24.设f(x)的一个原函数为Xcosx,则下列等式成立的是A.A.f'(x)=xcosxB.f(x)=(xcosx)'C.f(x)=xcosxD.∫xcosdx=f(x)+C25.设函数f(x)=xlnx,则∫f'(x)dx=__________。
A.A.xlnx+CB.xlnxC.1+lnx+CD.(1/2)ln2x+C26.函数曲线y=ln(1+x2)的凹区间是A.A.(-1,1)B. (-∞,-1)C.(1,+∞)D. (-∞,+∞)27. A.2x+cosy B.-siny C.2 D.028.29.30.二、填空题(30题)31.32.33.34.35.36.37.设函数y=xsinx,则y"=_____.38.39.40. 设函数y=f(-x2),且f(u)可导,则dy=________。
2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)
2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.()。
A.-1/4B.-1/2C.1/4D.1/22.3.4.5.下列定积分的值等于0的是()。
A.B. C. D.6.7.8.9.10.11.函数y=lnx在(0,1)内()。
A.严格单调增加且有界B.严格单调增加且无界C.严格单调减少且有界D.严格单调减少且无界12. 设?(x)=In(1+x)+e2x, ?(x)在x=0处的切线方程是().A.3x-y+1=0B.3x+y-1=0C.3x+y+1=0D.3x-y-1=013.14.A.A.-1B.-2C.1D.215.16.下列结论正确的是A.A.B.C.D.17.()。
A.0B.1C.2D.318.19.A.0B.e-1C.2(e-1)D.20.A.A.B.C.D.21.已知事件A和B的P(AB)=0.4,P(A)=0.8,则P(B|A)=A.A.0.5B.0.6C.0.65D.0.723.()。
A.B.C.D.24.25.A.A.有1个实根B.有2个实根C.至少有1个实根D.无实根26.27.()。
A.B.C.D.28.29.当x→0时,无穷小量x+sinx是比x的【】A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小30.A.2x+3yB.2xC.2x+3D.二、填空题(30题)31.32.33.34.35.36.37.38.39.40.41.42.43.44.45. 设y=3sinx,则y'__________。
46.47.48.49.50.51.52.53.54.设函数y=x n+2n,则y(n)(1)=________。
55.56.57.58.59.60.三、计算题(30题)61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题)101.102.103.104. (1)求曲线y=1-x2与直线y-x=1所围成的平面图形的面积A。
2022-2023学年浙江省绍兴市成考专升本高等数学二自考真题(含答案带解析)
2022-2023学年浙江省绍兴市成考专升本高等数学二自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.A.A.0B.1C.2D.33.()。
A.-1/4B.-1/2C.1/4D.1/24.A.A.B.C.D.5.设事件A,B相互独立,A,B发生的概率分别为0.6,0.9,则A,B都不发生的概率为()。
A.0.54B.0.04C.0.1D.0.46.7.设函数?(x)=sin(x2)+e-2x,则?ˊ(x)等于()。
A.B.C.D.8.9.A.A.B.C.D.10.若随机事件A与B互不相容,且P(A)=0.4,P(B)=0.3,则P(A+B)=()。
A.0.82B.0.7C.0.58D.0.5211. ()。
A.0B.1C.cos1-2sin1D.cos1+2sin112.下列命题正确的是()。
A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量13.()。
A.0B.1C.nD.n!14.15.设函数y=sin(x2-1),则dy等于().A.cos(x2-1)dxB.-cos(x2-1)dxC.2xcos(x2-1)dxD.-2xcos(x2-1)dx16.17.()。
A.B.C.D.18.()。
A.B.C.D.19.()。
A.B.C.D.20.21.下列广义积分收敛的是A.A.B.C.D.22.23.【】A.高阶无穷小B.低阶无穷小C.等价无穷小D.不可比较24.25.26.27.()。
A.0B.1C.㎡D.28.29.30.A.A.B.C.D.二、填空题(30题)31.设函数y=x2Inx,则y(5)=__________.32.33.设曲线y=ax2+2x在点(1,a+2)处的切线与y=4x平行,则a=______.34.35.五人排成一行,甲、乙二人必须排在一起的概率P=__________.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.曲线y=2x2在点(1,2)处的切线方程y=______.57.58.59.60. 函数y=lnx,则y(n)_________。
专升本高数试题及详解答案
专升本高数试题及详解答案一、选择题(本题共5小题,每小题3分,共15分)1. 下列函数中,不是偶函数的是()。
A. y = x^2B. y = |x|C. y = cos(x)D. y = sin(x)2. 函数f(x) = 2x^3 - 6x^2 + 9x + 5在区间(-∞,+∞)内的最大值是()。
A. 5B. 9C. 12D. 无法确定3. 设曲线y = x^2上点P(-1, 1),则过点P的切线方程为()。
A. y = -2x - 1B. y = -x - 2C. y = x - 2D. y = 2x + 14. 以下哪个级数是收敛的?()A. ∑((-1)^n)/nB. ∑n^2C. ∑(1/n)D. ∑((-1)^(n+1))/n^25. 若函数f(x)在点x=a处连续,则必有()。
A. f(a)存在B. f(a) = 0C. lim(x->a-) f(x) = f(a)D. lim(x->a+) f(x) = f(a)二、填空题(本题共5小题,每小题2分,共10分)1. 若函数f(x) = 3x - 5,则f(2) = _______。
2. 曲线y = x^3在点(1,1)处的切线斜率为 _______。
3. 设数列{an}是等差数列,且a3 = 7,a5 = 13,则该数列的公差d= _______。
4. 若级数∑an收敛,则级数∑(an/2^n) _______(填“收敛”或“发散”)。
5. 利用定积分的几何意义,计算曲边梯形的面积,若y = 2x + 1在[0, 2]上的面积为 _______。
三、解答题(本题共4小题,共75分)1. (15分)求函数f(x) = x^2 - 4x + 3的单调区间,并证明。
2. (15分)设函数f(x) = ln(x + 2),求f(x)的n阶导数f^(n)(x)。
3. (20分)计算定积分∫[0, 4] (2x^2 - 3x + 1) dx,并说明其几何意义。
2019年专升本高数真题答案解析(浙江)
17. 解: y ( x) ln( 2 cos x) x x ln( 2 cos x) e x ln x ,因此:
y
2
1 cos x
(2
cos x)
e x ln x (ln
x
1)
2
sin x cos x
x x (ln
x
1)
,故
y x1 1,所以 dy x1 dx
18. 解: 令 t x , x t 2 , dx 2tdt ,故:原式 sin t 2tdt 2 t sin tdt
24. 解:由题意可知: ( f (x) 4)x 2 f (t)dt 1 x3 1 ,初值条件为: f (2) 0
2
x
63
两边对 x 求导得: 1 xf (x) 1 f (x) 2 f (x) 1 x2 ,
2
2
2
整理得到: f (x) 1 f (x) x 4 ,故 P(x) 1 , Q(x) x 4 ,
x
x
x
x
故:
f
(x)
e
(
1 x
) dx
[
x
4
e
(
1 x
) dx
dx
C]
x[
x
1
4 x2
dx
C]
x
x
4 x
C
x2 4 Cx ,由于初值条件为: f (2) 0 ,因此 C 4 ,即: f (x) x2 4x 4 y
M
P
x
O
BN
25. 解:设利润为 f (x) ,由题意可得:
x0
x2 nxn1
A
此: n 1 2 ,故 n 3
(A 0, A ) ,因
浙江专升本数学历年真题
浙江专升本数学历年真题一、选择题1. 下列哪个集合是有限集?A. 正整数集B. 实数集C. 自然数集D. 有理数集答案: C2. 设函数 f(x) = x^3 - 3x^2 - 4x + 12,下列哪个点是 f(x) = 0 的解?A. (1, 1)B. (2, 2)C. (3, 3)D. (4, 4)答案: B3. 下列哪个不等式的解集表示函数 f(x) = x^2 - 4x + 3 的值域?A. x ≤ 2B. x ≥ 2C. x > 2D. x < 2答案: B4. 已知集合 A = {1, 2, 3, 4, 5},B = {3, 4, 5, 6, 7},求A ∩ B。
A. {3, 4, 5}B. {1, 2, 3, 4, 5, 6, 7}C. {3, 4, 5, 6, 7}D. {1, 2}答案: A二、解答题1. 解方程组:2x + y = 5x - y = 1解答:将第二个方程两边同时加上 y:2x + y = 5x - y + y = 1 + y化简得到:2x + y = 5x = 1 + y将第二个方程的结果代入第一个方程:2(1 + y) + y = 5化简得到:2 + 2y + y = 53y + 2 = 53y = 3y = 1将 y 的值代入第一个方程得到:2x + 1 = 52x = 4x = 2所以方程组的解为 x = 2,y = 1。
2. 已知函数 f(x) = x^2 - 3x + 2,求函数的最大值。
解答:首先求出函数的导数:f’(x) = 2x - 3令导数等于 0,求得驻点:2x - 3 = 0x = 3/2将驻点代入函数得到最大值:f(3/2) = (3/2)^2 - 3(3/2) + 2化简得到:f(3/2) = 9/4 - 9/2 + 2f(3/2) = 1/4所以函数 f(x) 的最大值为 1/4。
3. 计算集合S = {1, 2, 3, …, 99, 100} 中所有奇数的和。
浙江专升本高等数学真题答案解析
高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题: 本大题共 5 小题,每小题 4 分,共 20 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
11.已知函数f(x)ex ,则x=0 是函数 f(x)的().(A)可去间断点(B)连续点(C)跳跃间断点(D)第二类间断点2. 设函数f(x)在[a,b]上连续,则下列说法正确的是().(A)必存在(a,b),使得a b f(x)dx f()(b a)(B)必存在(a,b),使得f(b)-f(a)=f '()(b a)(C)必存在(a,b),使得f ()(D)必存在(a,b),使得f'()03 下列等式中,正确的是().(A)f'(x)dx f(x)(B) df ( x ) f( x)(C)d f ( x ) dxf ( x)dx4. 下列广义积分发散的是().+111+ln x + x(A)0dx (B)0dx(C)0xdx(D)0e dx1+x21 x25.微分方程 2 y x sin 则其特解形式为().e x ,y -3 y(A ) ae xsin x(B ) xe x( a cos x b sinx )(C ) xae xsinx(D ) e x( a cos x b sinx )非选择题部分注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用 2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二.填空题: 本大题共 10 小题,每小题 4 分,共 40 分。
6.已知函数f ( x )的定义域为(0,1), 则函数f (2 x)的定义域为 ___________________17. 已知lim (1+kx )x 2, 则k= ___________________x 08. 若f (x) ln(1 x 2), 则limf (3) f (3 h )h_________________________.x 09. 设函数y y ( x )由方程e y xy e 0, 则dy | x 0________________________10. 方程x 52 x 5 0的正根个数为 ________111.已知函数yx x,求y ___________12.定积分-sin x cos xdx_____________13.设函数f ( x )连续,则 dx dxtf ( t 2) dt ___________设在区间[a,b]上f(x)>0,f'(x)<0,f''(x)>0,14. 令S 1 = a bf ( x ) dx , S 2 f ( b )( b a ), S 3 1 [ f ( a ) f( b )]( b a ),2则S 1,S 2,S 3的大小顺序 _______15. 幂级数 a n ( x 1) n在x 3, 条件收敛,则该级数的收敛半径R = _____n 1三、计算题:本题共有 8 小题,其中 16-19 小题每小题 7 分,20-23小题每小题 8分,共 60 分。
浙江专升本高数练习题
浙江专升本高数练习题一、函数、极限与连续1. 判断下列函数的单调性:(1) y = 3x 5(2) y = 2x^2 + 4x + 12. 求下列极限:(1) lim(x→0) (sinx x) / x^3(2) lim(x→1) (1 x^2) / (1 x)3. 讨论函数f(x) = |x 1|在x = 1处的连续性。
4. 求函数f(x) = e^x / (1 + x)的间断点。
二、一元函数微分学1. 求下列函数的导数:(1) y = x^3 3x^2 + 2(2) y = (3x + 1)^52. 求下列函数的微分:(1) y = sin(2x + 1)(2) y = ln(x^2 + 1)3. 设函数f(x) = x^2 + 2x,求f'(x)在x = 1处的切线方程。
4. 求函数f(x) = x^3 3x在区间[1, 2]上的最大值和最小值。
三、一元函数积分学1. 计算不定积分:(1) ∫(3x^2 2x + 1)dx(2) ∫(e^x cosx)dx2. 计算定积分:(1) ∫(从0到π) sinx dx(2) ∫(从1到e) 1/x dx3. 设函数f(x) = x^2,计算曲线y = f(x)与直线x = 1,x = 3及x轴所围成的平面图形的面积。
四、多元函数微分学1. 求二元函数f(x, y) = x^2 + y^2 2x 4y + 6的极值。
2. 设函数z = f(x, y) = x^2 + y^2,求∂z/∂x和∂z/∂y。
3. 求函数f(x, y) = x^3 + y^3 3xy在点(1, 1)处的切平面方程。
五、多元函数积分学1. 计算二重积分:(1) ∬D (x^2 + y^2) dxdy,其中D为圆x^2 + y^2 ≤ 1所围成的区域。
(2) ∬D e^(x+y) dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 2。
2. 计算三重积分:(1) ∭E (x^2 + y^2 + z^2) dV,其中E为球体x^2 + y^2 + z^2 ≤ 4所围成的区域。
浙江数学专升本试题及答案
浙江数学专升本试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 + 4x + 3 = 0的解?A. x = -1B. x = -3C. x = 1D. x = 32. 函数f(x) = 2x^3 - 5x^2 + 7x - 1在x=2处的导数值是:A. 2B. 5C. 8D. 103. 已知数列{an}满足a1 = 2,an+1 = an + n,求a5的值是:A. 10B. 15C. 20D. 254. 一个圆的半径为5,其面积为:A. 25πB. 50πC. 75πD. 100π5. 已知集合A={1, 2, 3},B={2, 3, 4},求A∩B的结果是:A. {1}B. {2, 3}C. {2, 3, 4}D. {1, 2, 3}6. 根据题目所给的几何图形,求其体积的计算公式是:A. V = πr^3B. V = 1/3πr^2hC. V = πr^2hD. V = 4/3πr^37. 已知向量a=(2, 3),b=(-1, 2),求向量a与b的点积是:A. -1B. 1C. 3D. 58. 一个函数f(x)在区间(a, b)内连续,且f(a) = f(b) = 0,根据罗尔定理,至少存在一点c∈(a, b)使得:A. f'(c) = 0B. f(c) = 0C. f'(c) = 1D. f(c) = 19. 根据题目所给的统计数据,求样本均值的公式是:A. μ = Σxi / nB. μ = Σxi / (n-1)C. σ = Σ(xi - μ)^2 / nD. σ = Σ(xi - μ)^2 / (n-1)10. 一个随机变量X服从二项分布B(n, p),其期望E(X)等于:A. npB. nC. pD. 2np答案:1. B2. D3. B4. B5. B6. B7. D8. A9. A10. A二、填空题(每题2分,共20分)11. 将分数1/3转换为小数是________。
2022年浙江成人高考专升本高等数学(二)真题及答案
2022年浙江成人高考专升本高等数学(二)真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数2()sin ,(),f x x g x x ==则(())f g x =( )A .是奇函数但不是周期函数B .是偶函数但不是周期函数C .既是奇函数又是周期函数D. 既是偶函数又是周期函数2. 若20(1)1lim 2x ax x →+-=,则a =( )A. 1B. 2C. 3D. 43.设函数()f x 在0x =处连续,()g x 在0x =处不连续,则在0x =处() A. ()()f x g x 连续 B. ()()f x g x 不连续C. ()()f x g x +连续D. ()()f x g x +不连续4. 设arccos y x =,则'y =( )A.B. C. D.5.设ln()x y x e -=+,则'y =( ) A. 1x x e x e --++ B. 1xx e x e ---+ C. 11x e -- D. 1x x e -+6.设(2)2sin n y x x -=+,则()n y =( )A. 2sin x -B. 2cos x -C. 2sin x +D. 2cos x +7.若函数()f x 的导数'()1f x x =-+,则( )A. ()f x 在(,)-∞+∞单调递减B. ()f x 在(,)-∞+∞单调递增C. ()f x 在(,1)-∞单调递增D. ()f x 在(1,)+∞单调递增8.曲线21x y x =-的水平渐近线方程为( ) A. 0y = B. 1y = C. 2y = D. 3y =9.设函数()arctan f x x =,则'()f x dx =⎰( )A. arctan x C +B. arctan x C -+C. 211C x ++D. 211C x-++ 10.设x y z e +=,则(1,1)dz = ( )A. dx dy +B. dx edy +C. edx dy +D. 22e dx e dy +第II 卷(非选择题,共110分)二、填空题(11-20小题,每题4分,共40分) 11. lim 2x x x e x e x→-∞+=- .12.当0x → 时,函数()f x 是x 的高阶无穷小量,则0()lim x f x x→= . 13. 设23ln 3y x =+,则'y = . 14.曲线y x x =1,2)处的法线方程为 .15. 2cos 1x x dx x ππ-=+⎰ . 16. 1201dx x =+⎰ .17. 设函数0()tan x f x u udu =⎰,则'4f π⎛⎫= ⎪⎝⎭ . 18.设33,z x y xy =+则2z x y ∂=∂∂ . 19.设函数(,)z f u v =具有连续偏导数,,,u x y v xy =+=则z x∂=∂ . 20.设A ,B 为两个随机事件,且()0.5,()0.4,P A P AB ==则(|)P B A = .三、解答题(21-28题,共70分。
浙江省专升本《高等数学》试卷
浙江省专升本《高等数学》试卷一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.下列函数相等的是( )A .2,x y y xx==B.y y x==C.2 ,y x y == D.|| ,y x y ==2.曲线xe y x=()A .仅有水平渐近线B .既有水平又有垂直渐近线C .仅有垂直渐近线D .既无水平又无垂直渐近线3.设区域D 由直线,()x a x b b a ==>,曲线()y f x =及曲线()y g x =所围成,则区域D 的面积为()A .[()()]baf xg x dx−⎰B .|[()()]|ba f x g x dx −⎰C .[()()]bag x f x dx−⎰D .|()()|baf xg x dx−⎰4.若方程lnzx y=确定二元隐函数(,)z f x y =,则z x ∂=∂()A .1B .x eC .xyeD .y5.下列正项级数收敛的是()A .2131n n ∞=+∑ B .21ln n n n ∞=∑ C .221(ln )n n n ∞=∑ D.2n ∞=二、填空题(只需在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.当0x →时,2sin x a x +与x 是等价无穷小,则常数a 等于.2.设函数2sin 21, 0()0ax x e x f x xa x ⎧+−≠⎪=⎨⎪=⎩在(,)−∞+∞内连续,则a = .3.曲线1y x=在点(1,1)处的切线方程为.4.设()sin xf t dt x x =⎰,则()f x =. 5.设函数22ln()z x y =+,则11|x y dz === .6.定积分22(x −−⎰=.7.过点(1,2,0)−并且与平面23x y z ++=垂直的直线方程为.8.二重积分11sin x ydx dy y⎰⎰= .9.幂级数1!nn n n x n ∞=∑的收敛半径R = .10.微分方程20xy y '−=的通解是.三、计算题(本题共有10个小题,每小题6分,共60分) 1. 求011lim()1x x x e →−−.2.已知函数lnsin(12)y x =−,求dy dx. 3.求不定积分arctan x xdx ⎰.4.函数2, 0,()2, 0,x x f x x x +≤⎧=⎨−>⎩,计算11()f x dx −⎰的值.5.设函数(,)z z x y =是由方程22xy z e z e −+−=所确定,求212|x y dz ==−.6.设D 是由直线0,1x y ==及y x =围成的区域,计算2y DI e dxdy −=⎰⎰.7.设由参数方程2, 2,t x e y t t ⎧=⎨=+⎩所确定的函数为()y y x =,求212|t d ydx =, 8.求函数22(,)328f x y x y xy x =+−+的极值.9.求微分方程223xy y y e '''+−=的通解.10.将函数21()43f x x x =++展开成(1)x −的幂级数.四、综合题(本题3个小题,共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形D 是由曲线xy e =,直线y e =及y 轴所围成的,求:⑴平面图形D 的面积;⑵平面图形D 绕y 轴旋转一周所成的旋转体的体积.2. 欲围一个面积为1502m 的矩形场地.所用材料的造价其正面是每平方米6元,其余三面是每平方米3元.问场地的长、宽各为多少时,才能使所用的材料费最少.3.设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内可导且(0)(1)0f f ==,1()12f =,证明:存在(0,1)ξ∈使()1f ξ'=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试
高等数学
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
1.)
)
A.3.)
A.C.
1211-2⎩=+3
2z y 12A.
6
π
B.
4
π C.
3
π D.
2
π5.在下列级数中,发散的是------------------------------------------------()
A.
)
1ln(1
)1(1
1
+-∑∞
=-n n
n B.
∑∞
=-1
1
3n
n n
C.n
n n 31)
1(1
1
∑∞
=-- D.
∑∞
=-1
1
3n
n n
非选择题部分
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或
6.7.8.9.10.14.函数lnx 在x=1处的幂级数展开式为__________
的交点坐标是
5z 2y 2x 与平面z 2-3
-y 32x 直线.15=++==+_____
三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分。
计算题必须写出必要的计算过程,只写答案的不给分。
)
(f ),0(1
)1(f 16.42
x x x x x x 求设≠+=+
19dx x
x x x 121.3
2⎰+++求
dx
cosx -sinx 22.20
⎰π
计算轴
所围成的平面图形绕()求曲线(y )0b a y b -x 23.2
22>>=+a 旋转一周所得的旋转体体积
⎰--=x
x dt t f t x x x 0
)
(f )()(sin )(f 26.为连续函数,试求设
浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试
高等数学参考答案
选择题部分
一、选择题:本大题共5小题,每小题4分,共20分。
1.B
2.B
3.B
4.C
5.D
6.7.8.9.128
14.]2,0(,1)1()1(0
1
∈+--∑∞
=+x n x n n n 15.
(1,1,1)
四、计算题:本题共有8小题,其中16-19小题每小题7分,20-23
小题每小题8分,共60分。
计算题必须写出必要的计算过程,只写答案的不给分。
解:11)1(f 2
=
=+x ,令t x =+
1
,则f(t)=
1
22
代入得
把’)1,1(,y xy 3y 2y'23-⋅+=y’=1
有相同的公切线 1a 2=+∴1
-b ,1-a ==∴
20.ax x x f -=ln )(令,
a x x f -=
1)(',令)('x f =0,得x=a 1易得x=a
1
是极大值点也为最大值点
(1)当a=e 1
时,一个根;
(2)当0<a<e 1
时,两个根;
C
arctanx ++令令∴∴四、综合题:本大题共3小题,每小题10分,共30分。
24.4
''32
)1(6y 1-x 3-x x y -==x x ,)()(‘
(1).令y´=0,得驻点x=0和x=3以及定义域不存在的点x=1
易得y 在())上单调递减单调递增;在(3 , 1) , 3(; 1 , ∞+∞-,极小值为y(3)=
4
27
,
无极大值。
(2).令y"=0,得驻点x=0和及定义域不存在的点x=1
易得y 在()) , 1(,)1 , 0;凹区间为(0 , 凸区间为∞+∞-,拐点为(0,0)。
(3).易得1=x 是函数的垂直渐近线,
又∞=∞→23x 1-x x lim )
( ,无水平渐近线∴
1
由,得1
)0(',0)0(sin )()("⎩⎨
⎧==-=+f f x x f x f y=)xcosx sinx (21
+。