光合作用的探索历程

合集下载

生物-(五)光合作用

生物-(五)光合作用
(五)光合作用
1.光合作用的探究历程:
年代
科学家
结论
1771 普利斯特利 植物可以更新空气
1845 1779 1864 1880
英格豪斯 梅耶
萨克斯 恩格尔曼
只有在光照下只有绿叶才可以更新空气
植物在光合作用时把光能转变成了化学 能储存起来
绿色叶片光合作用产生淀粉
氧由叶绿体释放出来,叶绿体是光合作 用的场所
下列相关叙述,正确的是
A.如果光照强度适当降低,a点左移,b点左移 B.如果光照强度适当降低,a点左移,b点右移 C.如果光照强度适当增强,a点右移,b点右移 D.如果光照强度适当增强,a点左移,b点右移
(3)温度与光合速率
(1)指出曲线中光合作用有机物合成量最多的点在哪儿? 光合速率最快的点在哪儿?
c
呼 释放
b
光照强度
吸 速
CO2
a

a点:在黑暗中的呼吸速率(只进行呼吸作用)
b点:此光照下光合速率等于呼吸速率 c点:在此条件下使光合速率最大的光照强度 净光合速率 + 呼吸速率 = 总光合速率
• 不同的农作物,对光照强弱的需求不同。 阳生植物 :喜阳光充足环境。 (如:水稻、小麦、玉米等)
阴生植物 :喜潮湿、背阴环境。 (如:胡椒、三七、人参等)
5、光合作用反应式
CO2 + H2O
光能 叶绿体 (CH2O)+O2
或者
光能 6CO2 + 12H2O 叶绿体
C6H12O6 + 6H2O+6O2
6、光合作用的实质 物质转变: 无机物
有机物
能量转变: 光能 活跃化学能 稳定化学能
7、影响因素
(1)光照强度与光合速率

光合作用的探究历程和过程

光合作用的探究历程和过程

光合作用的探究历程和过程光合作用是地球上所有生物体中最重要的能量转换过程之一、它将太阳能转化为植物等光合生物能量的过程,同时还产生了氧气。

在光合作用的探究历程中,有两位科学家提供了重要的贡献,他们分别是英国化学家约瑟夫·普利斯特利(Joseph Priestley)和荷兰医生雅各布斯·伯兰特(Jacobus van't Hoff)。

约瑟夫·普利斯特利是第一个发现植物产生氧气的人。

在1771年,他进行了一些实验,在一个密闭的容器中放置了一段草和一只小鼠。

他发现,当阳光照射到容器中,小鼠能够继续存活,但当阳光被遮住时,小鼠却窒息死亡。

这个实验验证了植物在光照下产生氧气。

荷兰科学家雅各布斯·伯兰特则进一步研究了光合作用的过程和原理。

他在1890年提出了一个重要的理论,称为光合作用定律。

该定律描述了光合作用的过程中发生的化学反应,其中光能被植物中的叶绿素吸收,然后通过光合作用转化为化学能,同时产生氧气。

光合作用是一个复杂的过程,可以分为两个阶段:光反应和暗反应。

光反应发生在叶绿体的葉綠體内。

当光照射到叶绿体时,葉綠體中的叶绿素会吸收光能,然后将其转化为化学能。

在光反应中,水分子被分解成氧气和氢离子,这个过程称为光解水。

同时,光能被转化为化学能的同时,也会产生一种叫做ATP(三磷酸腺苷)的能量分子。

ATP是细胞内储存和转移能量的主要分子。

光反应完成后,暗反应开始进行。

暗反应不需要阳光,它发生在葉綠體质粒(m stroma)中。

在暗反应中,二氧化碳和氢离子通过一系列反应被转化为葡萄糖。

这个过程称为碳固定。

光反应中产生的ATP和氢离子提供了能量和电子给暗反应使用。

近年来,科学家们对光合作用的研究也在持续进行。

他们试图了解更多关于光合作用的细节,如叶绿素的吸收光谱、光反应和暗反应中其他信号传导和调节机制,以及如何利用光合作用提高农作物产量等。

这些研究对人类的生活和环境保护都有着重要的意义。

第四节——光合作用(共21张PPT)

第四节——光合作用(共21张PPT)

光合作用为呼吸作用提供物质(有机物、O2);
呼吸作用为光合作用提供原料(CO2)
曝光
蓝色
遮光
无变化
结论:绿色叶片中光合作用中产生了淀粉
实验五 1880年 恩格尔曼实验
ATP的水解:ATP ADP+Pi+能量
HNO2
HNO3+能量
暗反应为光反应提供ADP和Pi、NADP+。
4、下图是小球藻进行光合作用示意图,图中物质A与物质B的分子量之比是(
2C3
(CH2O)
1648年 海尔蒙特实验
[H]和ATP
三、化能合成作用
—— 能够利用体外环境中的某些无机物氧化时所 释放的能量来制造有机物的合成作用
硝化细菌的化能合成:
NH硝3化细菌 HNO2+能量
HNO硝2 化细菌
自养生物 HNO3+能量
6CO2+6H2O 能量 2C6H12O6+ 6O2
比较光合作用、呼吸作用
光合作用
场所
叶绿体
条件

①CO2的固定:

CO2+C5
2C3
②C3的还原:
2C3
[
H
]
A 酶
T
(P CH2O)
能量转换 光能→ATP中活跃的化学能
ATP中活跃的化学能→
有机物中稳定的化学能
联系
光反应为暗反应提供了[H]和ATP; 暗反应为光反应提供ADP和Pi、NADP+。
1、光合作用的过程包括光反应和暗反应。光反应
能够为暗反应提供的物质是( )A
糖类等有机物中稳定化学能
光反应能够为暗反应提供的物质是( )
CO2+C5

光合作用的探究历程和过程

光合作用的探究历程和过程

“自动空气净化器”
5、光合作用原理的运用
• 植物自身因素 • 环境因素对光合作用的影响
厉!
教师寄语:
21世纪是生命科学的世纪,科 学技术发展的车轮在不断前进!
希望同学们能站在先人的 肩膀上成为”车轮”前进的有 力推动者!
根据所学的化学知识可知,水和二氧化碳 反应,应该生成什么产物? 碳酸
哪为什么在植物光合作用的过程中产物不 是碳酸而是有机物?这说明光合作用过程 中水和二氧化碳是否直接反应? 不是直接反应的
光合作用(一)
光合作用的探究历程
人们对于光合作用的认识最早是从研究 植物的生长开始的。
植物生长所需要的物质来自哪里?
早在2000多年前,亚里士多德就提出 “植物是由土壤汁构成”,即植物生长所 需物质来自土壤。
17世纪初, 海尔蒙特的柳树实验。
海尔蒙特的实验证明:柳树重量的增加 来自雨水而并非来自土壤。
主页
导航
课堂练习
1、在光合作用实验里,如果所用的水中有 0.2%的 水分子含18O,二氧化碳中有0.68%的 二氧化碳分子含18O ,那么,植物进行光合作用 释放的氧气中,含18O的比例为
A.0.20% B.0.48%
C.0.88%
D.0.68% 注:答题请单击选项
恭不不不喜要要要你灰灰灰, 答心心心对,,,了再再再! 来来再来一一接一次次再次!!!
三、光合作用的过程:
回归课本,知识整合
1.光反应和暗反应的区别
项目 光反应阶段
暗反应阶段
场所
类囊体薄膜
叶绿体基质
条件
物质 变化
能量 变化
需光,色素和酶
需多种酶、ATP、[H]
(1) 2H2O 光 4[H]+O2

光合作用的研究历程

光合作用的研究历程

光合作用的研究历程
光合作用是生物界中最重要的能量转化过程之一,它使得植物和一些细菌能够利用光能将二氧化碳和水转化为有机物质和氧气。

对光合作用的研究历程可以追溯到18世纪。

在18世纪末,瑞士科学家亨利·德·桑特-伯万提出了光合作用的概念。

他观察到,绿色植物在光照下会释放出氧气,并假设这些植物通过吸收光能将水分解为氢和氧气。

然而,他并没有将光合作用与二氧化碳的转化联系起来。

19世纪,德国植物生理学家朱利叶斯·冯特教授继续研究光合作用,他发现了光合作用的化学反应方程式,并提出了植物中的叶绿素是光合作用的关键物质。

冯特的研究奠定了现代光合作用理论的基础。

20世纪初,美国植物生理学家约翰·麦克尔迪尔和亚瑟·希勒合作进行了一项重要实验,该实验确定了光合作用的光反应和暗反应两个阶段。

麦克尔迪尔和希勒使用了氧气浓度的变化来测量光反应的速率,并发现光合作用是一个光化学过程,产生的氧气来自于水的分解。

随着科技的发展,人们对光合作用的研究也日益深入。

通过利用放
射性同位素示踪技术,科学家们确定了光合作用的具体化学过程,揭示了光合作用的分子机制。

同时,通过基因工程和生物化学技术,科学家们还研究了光合作用调控机制和光合作用相关蛋白质的功能。

如今,对光合作用的研究已经涵盖了从分子水平到生态系统水平的多个层面。

科学家们致力于深入理解光合作用的基本原理,开发新型的光合作用模型和技术,以应对日益严重的能源和环境问题。

光合作用的研究不仅在农业和生物能源领域具有重要意义,也为其他科学领域的发展提供了重要的基础。

光合作用的探究历程

光合作用的探究历程

光合作用的探究历程:1771年,英国科学家普利斯特利通过实验证实,植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。

1779年,荷兰科学家英格豪斯证明植物只有在光下才能更新空气。

1785年,由于发现了空气的组成,人们才明确绿叶在光下放出的是氧气,吸收的是二氧化碳。

1845年,德国科学家梅耶指出,植物通过光合作用把光能转化为化学能。

1864年,德国科学家萨克斯实验成功证明了光合作用的产物中还有淀粉。

1939年,美国科学家鲁宾和卡门利用同位素标记法探究证明光合作用释放的氧气来自水。

20世纪40年代,美国科学家卡尔文用同位素标记法探明了光合作用产物中的碳来自反应物中的二氧化碳(卡尔文循环)。

光合作用的探究历程:1771年,英国科学家普利斯特利通过实验证实,植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。

1779年,荷兰科学家英格豪斯证明植物只有在光下才能更新空气。

1785年,由于发现了空气的组成,人们才明确绿叶在光下放出的是氧气,吸收的是二氧化碳。

1845年,德国科学家梅耶指出,植物通过光合作用把光能转化为化学能。

1864年,德国科学家萨克斯实验成功证明了光合作用的产物中还有淀粉。

1939年,美国科学家鲁宾和卡门利用同位素标记法探究证明光合作用释放的氧气来自水。

20世纪40年代,美国科学家卡尔文用同位素标记法探明了光合作用产物中的碳来自反应物中的二氧化碳(卡尔文循环)。

光合作用的探究历程:1771年,英国科学家普利斯特利通过实验证实,植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。

1779年,荷兰科学家英格豪斯证明植物只有在光下才能更新空气。

1785年,由于发现了空气的组成,人们才明确绿叶在光下放出的是氧气,吸收的是二氧化碳。

1845年,德国科学家梅耶指出,植物通过光合作用把光能转化为化学能。

1864年,德国科学家萨克斯实验成功证明了光合作用的产物中还有淀粉。

1939年,美国科学家鲁宾和卡门利用同位素标记法探究证明光合作用释放的氧气来自水。

光合作用的探究历程

光合作用的探究历程
CO2的还原:
2C3 + [H]
酶 ATP
(CH2O) + C5
下图是光合作用过程图解,请分析后回答下列问题:
H 2O 光 B F CO2 G J I
A
C
D
E+Pi
H
水 色素 O2 ①图中A是______,B是_______,它来自于______的分解。 基质 [H] ②图中C是_______,它被传递到叶绿体的______部位,用 暗反应用作还原剂,还原C 于____________________ 3。 色素吸收 的光能 ATP ③图中D是____,在叶绿体中合成D所需的能量来自______ C3化合物 糖类 ④图中G________,F是__________,J是_____________ C5化合物 光反应 [H]和ATP ⑤图中的H表示_______, H为I提供__________
能量变化:光能转变为活跃的化学能贮存在ATP中
类囊体膜
H2O
O2
[H]

Pi +ADP
ATP
2、暗反应阶段
CO2的 固定 CO2
2C3
叶绿体基质 多种酶
C 3的 还原
卡尔文循环
C5 (CH2O)
【小结】
条件: 场所: [H] 、ATP、酶 叶绿体的基质中 CO2的固定:CO2+C5

物质变化:
2C3 (CH2O)
光能利用率
光合作用效率
1、控制光照强度 2、适当补充CO2 3、适宜的温度 4、矿质元素( 合理施肥) 5、水( 合理灌溉)
(四)、化能合成作用
1、化能合成作用:
少数菌类利用体外环境中某些无机物氧化 时释放的能量来制造有机物。

第2课时 光合作用的探究历程和过程

第2课时 光合作用的探究历程和过程

气外还有淀粉,同时还证明光是光合作用的必要条件。(自身对照
实验,自变量为光照,因变量为叶片的颜色变化)
思考:(萨克斯的实验) a.为什么对天竺葵先进行暗处理?
黑暗(饥饿)处理 是验证光合作用产 物和验证CO2是光合 作用原料实验的必 需操作。
暗处理是为了将叶片内原有的淀粉运走耗尽。 b.为什么让叶片的一半曝光,另一半遮光呢?
不足:没有考虑到光照的影响。实验缺少空白对照,说服
力不强。
3.1779年,英格豪斯实验结论:
普利斯特利的实验只有在阳光的照射下才能成功;植物体 只有绿叶才能更新污浊的空气。(1785年,由于发现了空
气的组成,人们才明确绿叶在光下放出的气体是氧气,吸
收的是二氧化碳。) 4.1845年,德国科学家梅耶指出,植物进行光合作用时,把光能转化 成化学能储存起来。 5.1864年,德国植物学家萨克斯的实验证明:光合作用的产物除氧
物质和B物质的相对分子质量之比是( C )
A.1∶2 C.8∶9 B.2∶1 D.9∶8
6.(2012·正定模拟)请按时间先后顺序排列下列事件( C ) ①德国科学家萨克斯证明了绿色叶片在光合作用中产生了淀粉 ②美国科学家鲁宾和卡门用同位素标记法证明光合作用释放的氧 气全部来自参加反应的水
③英国科学家普利斯特利指出植物可以更新空气
恩格尔曼 鲁宾 卡门
ห้องสมุดไป่ตู้
氧由叶绿体释放出来,叶绿体是 光合作用的场所
光合作用释放的氧来自水
卡尔文
CO2 中的碳转换成有机物的碳的途径
思考:光合作用的反应式 光能 CO2+H2O (CH2O)+O2 叶绿体 1.光合作用的原料:二氧化碳 、水 2.光合作用的产物:有机物、氧气 3.光合作用的条件:光能 4.光合作用的场所:叶绿体

光合作用的发现历程

光合作用的发现历程

光合作用的发现历程光合作用是指植物利用光能将二氧化碳和水转化成为有机化合物和氧气的生物化学过程。

光合作用的发现历程始于17世纪初,经历了一系列研究,最终在20世纪初被完全阐明。

下面将详细介绍光合作用的发现历程。

早在公元木纹时期,人们就观察到植物在阳光照射下会生长,并且得到实验证明光是植物生长所必需的。

然而,直到17世纪初,光合作用的本质还不为人们所知。

1648年,荷兰科学家Jan Baptist van Helmont进行了一项著名的实验,他将一棵柳树幼苗种在一固定重量的土壤中,仅给予水作为营养源。

五年后,他惊讶地发现柳树幼苗的体重增加了164磅,而土壤的重量仅增加了2磅。

这个实验被认为是光合作用观念的先驱,但当时并没有对这一观念展开深入的研究。

1779年,Jan Ingenhousz发表了一篇名为《植物生命的新发现》的论文。

他通过实验证明了在阳光下,植物具有释放氧气的能力。

他发现在光照条件下,植物能够释放氧气,而在无光照条件下则反而释放二氧化碳。

他得出的结论是植物只有在光照条件下才能进行光合作用,并产生氧气。

十九世纪初,法国生物学家Joseph Priestley和瑞士化学家Jean Senebier进一步研究了植物对氧气和二氧化碳的利用。

他们发现植物对光的反应是一种顺序性的反应,即先吸收二氧化碳,然后释放氧气。

这一观察为后来的研究奠定了基础。

到了十九世纪末和二十世纪初,德国生物学家和植物生理学家在光合作用的研究中取得了重大突破。

1883年,薄叶片(F.F.Félix Dujardin研究的一种叶状藻类)被发现可以根据光线的强度来改变它的生长方向。

1905年,德国生物学家Einstein首次提出光合作用与光的物理性质之间的关系。

他认为光合作用是通过光子能量的吸收和转换来实现的。

并通过实验证明了光是光合作用所必需的能量源。

1905年,德国生物学家Wilhelm Pfeffer提出了关于光合作用的另一个重要名词,“光合反应”的概念。

光合作用探究历程

光合作用探究历程

光合作用探究历程在我们生活的这个地球上,植物是生命的重要组成部分。

它们通过一种神奇的过程——光合作用,将阳光转化为生命所需的能量和物质。

那么,人类是如何逐步揭开光合作用这一神秘面纱的呢?这是一个充满探索和发现的历程。

早在公元前 3 世纪,古希腊哲学家亚里士多德就对植物的生长产生了好奇。

但当时的科学水平有限,人们对植物生长的理解还非常浅显。

到了17 世纪,比利时的科学家海尔蒙特做了一个著名的柳树实验。

他将一棵柳树苗种在一个木桶里,桶里有事先称过重量的土壤。

然后,只给柳树浇水,五年后,柳树的重量增加了很多,而土壤的重量几乎没有减少。

这个实验让人们开始思考,植物生长的物质来源可能不仅仅是土壤。

18 世纪,英国科学家普利斯特利进行了一系列实验。

他把一只点燃的蜡烛和一只小白鼠分别放在密闭的玻璃罩内,蜡烛不久就熄灭了,小白鼠很快也死去了。

然后,他又分别把一盆植物和点燃的蜡烛、小白鼠放在密闭的玻璃罩内,结果蜡烛没有熄灭,小白鼠也能正常地活着。

普利斯特利认为,植物可以更新空气。

但他并不知道植物更新了空气中的什么成分。

后来,荷兰科学家英格豪斯经过反复实验,发现在有光的条件下,植物才能更新空气。

但是,当时人们仍然不清楚植物究竟是把空气中的哪种成分更新了。

19 世纪初,瑞士学者索绪尔发现,植物在光下吸收二氧化碳,同时释放出氧气。

这一发现让人们对光合作用的认识又进了一步。

随着科学技术的不断发展,科学家们能够更深入地研究光合作用。

1864 年,德国科学家萨克斯做了一个经典的实验。

他把绿色叶片放在暗处几小时,目的是消耗叶片中的营养物质。

然后,他把叶片的一半曝光,另一半遮光。

一段时间后,他用碘液处理叶片,发现曝光的那一半呈深蓝色,遮光的那一半则没有颜色变化。

这个实验证明了光合作用的产物除了氧气,还有淀粉。

进入 20 世纪,美国科学家鲁宾和卡门利用同位素标记法进行了研究。

他们用氧的同位素分别标记水和二氧化碳,然后使它们分别成为光合作用的原料。

光合作用探索历程

光合作用探索历程
植物在光合作用中产生了淀粉 。
阮建英
福安二中
恩格尔曼实验
1880年,恩格尔曼实验
光合作用的场所是叶绿体,产物是氧气.
阮建英
福安二中
探究三:鲁宾、卡门的实验
C18O2
(一)
O2
CO2
(二)
18O
2
H2O 绿藻
H218O 绿藻
阮建英
鲁宾和卡门实验
福安二中
探究三:鲁宾、卡门的实验
提出问题 作出假设 设计实验 实施实验 结果分析 得出结论 A气体无放射性,B气体具有放射性;而且等体 积二者的质量比为8︰9 。 光合作用产生的氧气来自于水,而不是来自于 二氧化碳。
小鼠死亡,蜡烛也熄灭 小鼠存活,蜡烛仍燃烧
植物能产生动物呼吸和蜡烛燃烧 所需要的气体。 植物可以更新空气(吸收CO2, 产生O2)。
阮建英
福安二中
荷兰的英格豪斯的实验
英格豪斯的 实验
他的不能?
阮建英
福安二中
光合作用探究历程
1785年,明确绿叶在光下放出的是氧气, 吸收的是二氧化碳; 1845年,梅耶指出,植物在进行光合作 用时,把光能转变成化学能储存起来
义的试验
阮建英
福安二中
探究一:普利斯特利的实验
1771
年 英 国 科 学 家 普 利 斯 特 利
实验组 对照组
结论:植物可以更新空气
阮建英
福安二中
探究一:普利斯特利的实验
提出问题
植物可以影响空气成分吗? 植物可以影响空气成分。
小鼠 和点 燃的 蜡烛
作出假设
设计实验 实施实验 结果分析 得出结论
光照,密 闭玻璃罩 绿色植物
阮建英
福安二中

光合作用探究历程

光合作用探究历程

光合作用探究历程光合作用是地球上一种至关重要的生物化学过程,它能够利用光能将二氧化碳和水转化为有机物,并释放出氧气。

这个过程对维持大气中的氧气含量、提供养分和能量来源以及维持生物多样性都起着举足轻重的作用。

本文将探究光合作用的历程,从其起源、重要发现到深入研究等方面进行论述。

1. 光合作用的起源光合作用最早起源于约35亿年前的地球上的原始生物,这些生物利用光能进行自养生长。

起初,光合作用并不完善,只能在无氧环境下进行,产生的氧气无法排出。

然而,随着地球大气中氧气含量的逐渐增加,光合作用也得以持续发展和改进。

2. 光合作用的重要发现光合作用的重要性在18世纪和19世纪得以逐渐揭示。

著名的科学家约瑟夫·普里斯特利发现植物在光照下能够产生氧气,并可以将二氧化碳转化为有机物。

这项发现被认为是现代光合作用研究的开端。

随后,众多科学家如詹姆斯·伊恩·希尔、罗宾·海尔、鲁道夫·马格努斯等陆续对光合作用的化学过程以及相关的生物分子机制进行了进一步研究和发现,为后续的光合作用研究打下了坚实的基础。

3. 光合作用的深入研究随着科技的不断进步,对光合作用的研究也得到了显著推进。

通过光合作用相关蛋白复合体的结晶、酶的解析以及光合膜的结构分析,科学家们逐渐揭示了光合作用的分子机制和能量转换过程。

光合作用的核心是叶绿素分子的光合反应中心,它能够吸收太阳能并将其转化为化学能,进而催化二氧化碳的还原和水的氧化反应。

光合作用还涉及到一系列辅助色素和蛋白质分子,它们协同工作保证了光能的高效利用。

4. 光合作用在生态系统中的作用光合作用不仅在维持植物的生长和发育中起着核心作用,也在整个生态系统的运作中发挥着关键作用。

通过将二氧化碳转化为有机物,光合作用为其他生物提供了养分来源。

同时,光合作用还能够释放出氧气,维持大气中的氧气含量,为动物呼吸提供必需的氧气。

光合作用还通过能量的流动和化学能的储存,维持了生物圈中的能量平衡,维持了生物多样性和生态系统的稳定性。

光合作用的原理和应用

光合作用的原理和应用
第一组向绿色植物提供C18O2 和 H2O
C18O2
A气体 O2
H 2O
第二组向同种绿色植物提供 H218O和CO2
18O B气体 2
A气体无放射性,B气体有放射性
CO2
结论:光合作用产生的氧气 来自于水
H218O
返回1
7、卡尔文循环
用14C标记的CO2供小球藻实验,
追踪检测其放射性。探明CO2中的
二 光合作用的原理和应用
(一)光合作用的探究历程
1、海尔蒙特实验 2、普利斯特利实验(1771年) 3、1779年,荷兰的英格豪斯
4、1864年,德国萨克斯实验
5、恩格尔曼水绵实验(1880年) 6、美国鲁宾和卡门实验(1939年) 7、卡尔文循环
1、海尔蒙特实验
结论:水分是植物建造自身的原料
返回1

ATP
能量
光能 ATP中活跃化学能
暗反应
条件: 酶 场所: 叶绿体基质 过程: 物 2c3 质 能量
[H]
2C3
供氢
固 多种酶 参加催化 定
CO2
C5
酶 co2+ C5 2c 3 酶
[H] ATP
酶 还
ATP
供能
(CH2O) ADP+Pi C5


ATP 酶 ADP+Pi +能量
[糖类]
光反应阶段与暗反应阶段的比较
项目 场所 区 条件 物质 变化 别 能量 转化 联 系 光反应阶段
类囊体的薄膜上 需光、色素和酶
水的光解:2H2O 光

暗反应阶段
叶绿体的基质中 不需光、色素;需多种酶
CO2的固定:CO2+C5 C3的还原:2C3 2C3

光合作用的发展历程

光合作用的发展历程

光合作用的发展历程
1.17世纪,人们开始注意到植物生长与光的作用有关。

例如,英国
化学家普里斯特利(Joseph Priestley)于1765年发现了植物可以通过光合作用将二氧化碳转化为氧气。

2.18世纪的科学进步促进了对人体器官和过程的了解,特别是植物
的绿色物质、光、二氧化碳和水之间的关系。

3.18世纪后期至19世纪,随着新化学体系的建立和新生物学理论
的兴起,对光合作用的研究逐渐深入。

4.19世纪末至20世纪初,光合作用的氧化还原反应机制和光合作
用的能量转换路径开始受到重视。

5.光合作用研究的重大突破:
6.1932年,英国科学家鲁宾斯坦(Martin Lowry)提出了ATP作为
细胞内能量物质的观点。

7.1934年,美国科学家查默斯戈尔德(Melvin Calvin)领导的团队
研究了暗反应的过程,并揭示了卡尔文循环的存在,从而完善了对光合作用基本过程的认识。

8.20世纪末至21世纪初,光合作用的研究继续深入,特别是在光
合作用过程中如何利用光能的问题上取得了新的进展。

高中生物必修1-光合作用的原理和应用

高中生物必修1-光合作用的原理和应用
光能,在叶绿体中将二氧化碳和水转化为储存能量的有机物,并释放氧气的过程。其探究历程经历了多位科学家的实验,最终揭示了光合作用的原理和过程。光合作用分为光反应和暗反应两个阶段,光反应发生在类囊体薄膜上,需要光、色素和酶,主要进行水的光解和ATP的合成。暗反应发生在叶绿体基质中,需要酶、[H]和ATP,主要进行CO2的固定和C3的还原。光反应为暗反应提供[H]和ATP,暗反应则消耗这些物质并生成有机物。光合作用的实质是合成有机物并储存能量。此外,光合作用原理在农业生产中有广泛应用,通过控制光照、CO2浓度、温度等环境因素,可以提高光合作用的强度,从而增加农作物的产量。

光合作用的探究历程

光合作用的探究历程

光合作用的探究历程关于植物光合作用的研究,早在17世纪初就开始了。

当时,有一位名叫赫尔蒙特的比利时医生就做过这样一个有趣的试验。

他把十分容易生根成活的一段柳树枝条种植在一个大瓦盆里。

在种植之前,他称量了柳树枝条的质量(2.27kg)和瓦盆中干燥沙土的质量(90.8kg)。

此后,只向盆中浇雨水,不再添加其他东西。

5年以后,当赫尔蒙特再次进行称量时,柳树枝条已经长成重达76.86kg的柳树,而瓦盆中干燥沙土的质量仅仅减少了千分之一左右。

柳树增加的质量远远大于土壤减少的质量。

所以,根据这个试验,赫尔蒙特认为,使柳树生长并增加质量的物质,主要来源于雨水,而不是土壤。

这个结论在今天看来虽然并不十分科学和严谨,但是,它开创了人们使用定量的方法来研究生物学的先例,是对生物学研究的一个重要贡献。

[背景材料:海尔蒙特(Jan Baptist van Helmont),比利时化学家,生物学家,医生。

他在化学理论和实践上都有卓越贡献,从而成为炼金术向近代化学转变时期的代表人物。

他所做的柳树实验也是生物研究上划时代的工作。

海尔蒙特有一个著名的实验,就是把两百磅的土壤烘干称重,然后在土里种下5磅重的柳树种子,收集雨水灌溉;五年后柳树长成169磅3盎司重,土壤再烘干称重,只少了2盎司。

这证明树木的重量增加来自雨水而非土壤。

世界各地生物课本都会提到这一段记载。

接着他继续写道:『根据圣经创世记第一章,上帝创造世界的第一天,就创造了天,创造了地,也创造了水,水一定是非常重要的。

我的柳树实验,是要证明上帝创造世界的第三天,上帝说:『天下的水要聚在一处,使旱地露出来。

』事就这样成了。

上帝说:『地要发生青草和结种子的菜蔬,并结果子的树木,各从其类,果子都包着核。

』事就这样成了。

这件事就是:树木只要有种子,只要有水,就能供给植物生长所需。

』这段记载说明了,海尔蒙特研究柳树实验的动机是为了印证圣经创世记第一章。

这段记载却没被收录在我国的任何一本生物课本里,以致学生看海尔蒙特种了五年的柳树,辛苦地把一堆土弄来弄去,以为他只是单纯地为了科学,而不知这个柳树实验是他对信仰的求证与表白。

光合作用探究历程

光合作用探究历程

光合作用探究历程光合作用是植物通过光能将二氧化碳和水转化为有机物质和释放氧气的过程。

对光合作用的探究历程可以追溯到17世纪初,随着科学技术的进步,人们对光合作用的了解也不断深入。

光合作用的起源可以追溯到植物生命的初期。

早期的地球大气中主要是二氧化碳和水蒸汽,而光合作用是植物生存和繁衍的基础。

然而,对于光合作用的探究是在17世纪初开始的。

在1643年,意大利人查尔斯·斯图尔特发现了光对绿色植物的作用。

他将一堵墙分成两半,一半被遮住不透光,另一半则被阳光照射。

经过一段时间后,他发现被阳光照射的一半植物长得更好,而被遮住的一半则几乎不生长。

这个实验引起了人们的兴趣,也为后来的研究提供了基础。

到了18世纪,研究者开始深入研究光合作用的化学过程。

英国科学家约瑟夫·普利斯特利发现了绿色植物在光照下会产生氧气。

他将一片绿色植物放置在密闭的容器中,使用酒精燃烧,发现氧气的火焰更为明亮。

这个实验进一步确认了光合作用是植物释放氧气的过程。

到了19世纪,研究者开始探索光合作用的化学方程式和机理。

德国科学家朱斯塞普·法托尼提出了光合作用是通过光能将二氧化碳和水转化为葡萄糖和氧气的过程。

这个方程式被称为光合作用方程式,成为了后来研究的基础。

在20世纪初期,科学家们追溯和发现光合作用的主要酶。

瑞典生物化学家卡尔·辛斯泰恩和德国生物化学家奥托·瓦沃尔德研究了光合作用的黑暗反应。

他们发现黑暗反应需要一种酶-鲨烯二磷酸羧化酶,这个酶可以催化二氧化碳和鲨烯二磷酸转化为有机物质。

随着科学技术的不断发展,人们对光合作用的研究也在不断深入。

现代科学家已经发现光合作用的详细过程和整个过程中所涉及的酶和分子。

他们通过利用生物化学技术和分子生物学技术,揭示了光合作用的机理以及植物如何感知光线,利用光能将二氧化碳和水转化为有机物质。

今天,光合作用的研究已经超出了单个植物的范畴,也包括了微生物和其他光合细菌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1782年,拉瓦锡证明参与光合作用气体是CO2和O2。 结果
结论: 光合作用过程需要CO2参与
• 1845年,德国科学家梅耶指出: 植物在进行光合作用时,把光能转换成化学能 储存起来。
• 光能转换成化学能,贮存于什么物质中呢? • 光合作用吸收CO2 ,释放O2 ,还可能消耗 了H2O ,那么最终的产物应该是什么呢?
年代 1771 1779 1845 1864 1880
科学家
普利斯特利 英格豪斯 R.梅耶 萨克斯 恩格尔曼
结论
植物可以更新空气 只有在光照下只有绿叶才可以更 新空气 植物在光合作用时把光能转变成 了化学能储存起来
绿色叶片光合作用产生淀粉
氧由叶绿体释放出来,叶绿体是 光合作用的场所 光合作用释放的氧来自水 光合产物中有机物的碳来自CO2
1939
20世纪40代
鲁宾
卡门
卡尔文
二、光合作用的场所、动力、原料、产物:
通过以上的研究和探索,你知道 光合作用的 场所、动力、原料、产物是分别是什么吗? 2.动力:光 1.场所:叶绿体 3.原料:二氧化碳 水 4.产物:糖类 氧气
概念:绿色植物通过叶绿体,利用光能,把二氧 化碳和水转化成储存着能量的有机物,并且释放 出氧气的过程。
四、光合作用的过程
H2O
①水的光解
O2
[H] 供氢 酶
2c3 ②

① 固 多种酶 定
co2
C5
光能
叶绿体 中的色 素
ATP
供能 原
参加催化
酶② 酶 ADP+Pi
[糖类] 暗反应
稳定化学能
(CH2O)
光反应
能量转化: 光能
ATP活跃化学能 *O O元素: H2*O 2
*C 3
元素转移
C元素: *C O2
分析研讨 结论: 植物能"净化"空气。
深入思考 提问:当人们重复普利斯特利的实验时,有 的获得成功,有的总是失败,甚至发现植物还 会更严重地污染空气。为什么学者们会得到不 同的实验结果呢?
1779年,荷兰的英根豪斯
结论1:只有在光下 植物才能更新空气。
普利斯特利的实验只有在阳光照射下才能成功
结论2:植物体的绿叶 在光下才能更新空气。
1864年,德国植物学家萨克斯实验
绿色 叶片
黑暗 处理
48小时
曝光 遮光
2小时
碘蒸汽 变蓝
结论: 1.光合作用的产物是淀粉 2.光合作用需要光
不变蓝
• 光合作用释放的O2到底是来自H2O ,还是 CO2呢? • 同位素标记法研究
1939年 美国 鲁宾 卡门
C18O2
O2 CO2
光照下 的 球藻悬 液
*CH
2O
光反应阶段
1.光反应阶段
吸收、传递 和转换光能
色素、酶 条件 : 光、 场所:基粒类囊体膜上 水的光解:H2O 反应
光、酶
叶绿体中的色素 光、酶
[H]+O2
ATP的合成:ADP+Pi
产物: [H]、O2、ATP 能量转变: 光能
叶绿体
ATP
ATP中活跃的化学能
1648 海尔蒙特(比利时)
他将一棵重2.3kg的柳苗栽 种到一个盛有土壤的木桶 中,木桶内土壤的重量是 90kg。此后,他只用纯净 的雨水浇灌柳苗。为了防 止灰尘落入,他专门制作 了桶盖。
柳苗生长 之迷
5年过去了,柳苗渐渐地 长大了。他再次称量柳 苗和土壤的重量,结果 使海尔蒙特大吃一惊: 柳苗重量增加 74.5 kg, 土 壤重量仅减少了 0.057kg!
研讨互动
结论:柳苗生长所需要的物质,并不是由土壤 直接转化的,水才是使植物增重的物质。 提问过渡 海尔蒙特的实验结论完全正确吗?从植 物生活环境的角度分析植物生长需要的物质 来源,还应该考虑什么因素?
1771年普利斯特利实验
一段时间后
一段时间后
普 利 斯 特 利 实 验
结论:植物可以更新空气。
18O 2
H2O H218O 证实:光合作用释放的氧气来于水
• 光合作用产生的有机物中的碳 ,是否来自 CO2呢?
• 同位素标记法研究 20世纪40年代,美国科学家卡尔文 (M.Calvin)
碳的同位素
14 14
C
CO2
光能 叶绿体
14
14
CO2
CO2+ H2O
( CH2 O)+O2
一、光合作用探索历应式:
CO2 + H2 O
*
光能
叶绿体
(CH2O)+
*
O2
根据所学的化学知识可知,水和二氧化碳 反应,应该生成什么产物? 碳酸
哪什么在植物光合作用的过程中产物不是 碳酸而是有机物?这说明光合作用过程中 水和二氧化碳是否直接反应? 不是直接反应的 哪光合作用的过程是怎样的?其全过程分 为几个阶段? 全过程根据条件的不同分为光反应和暗反应 两个阶段
叶 绿 体 的 结 构
外膜 内膜 囊状结构 (类囊体) 基质 基粒
一颗种子入土,能萌发长成幼 苗,一颗幼嫩的小苗.可长成一 颗参天大树,一棵果树能结出 丰硕的果实.但你想过吗,绿色 开花植物的生长和发育需要哪 些物质?这些问题的答案涉及 光合作用的奥秘.
不唯上,不唯书,要唯实!
18世纪中期以前,人们一直认为:植物生长 所需的营养物质全都来源于土中。包括古希腊哲 学家亚里士多德也这么认为。亚里士多德的结论 实际上只是一个经验上的推测,并没有进行相应 的科学实验。 今天,老师在课堂上引入四个科 学实验,与同学们一起体验光合作用发现的艰辛 过程!
相关文档
最新文档