(完整版)平面一般力系习题答案

合集下载

平面一般力系习题答案教学文案

平面一般力系习题答案教学文案

平面一般力系习题答

题4-5已知F1=150N,F2=200N,F3=300N,F=F’=200N.求力系向O点简化的结果;并求力系合力的大小及与原点O的距离d。

题4-6 如图所示刚架中,q = 3 kN/m,F = 6 kN,M = 10 kN⋅m,不计刚架的
自重。

求固定端A 的约束力。

题4-7 无重水平梁的支承和载荷如所示。

已知力F,力偶矩为M 的力偶和强度为q 的均匀载荷。

求支座A 和B 处的约束力。

题4-9 如图所示,各连续梁中,已知q,M,a 及θ,不计梁的自重,求各连续梁在A,B,C 三处的约束力。

题4-10 由AC 和CD 构成的组合梁通过铰链C 连接。

它的支承和受力如图所示。

已知q = 10 kN/m,M = 40 kN⋅m,不计梁的自重。

求支座A,B,D 的约束力和铰链C受力。

题4-11 求图示混合结构在荷载F的作用下,杆件1、2所受的力。

(完整版)工程力学课后详细答案

(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学习题册第二章 - 答案

工程力学习题册第二章 - 答案

第二章平面基本力系答案一、填空题(将正确答案填写在横线上)1.平面力系分为平面汇交力系、平面平行力系和平面一般力系。

2.共线力系是平面汇交力系的特例。

3.作用于物体上的各力作用线都在同一平面内 ,而且都汇交于一点的力系,称为平面汇交力系。

4.若力FR对某刚体的作用效果与一个力系的对该刚体的作用效果相同,则称FR为该力系的合力,力系中的每个力都是FR的分力。

5.在力的投影中,若力平行于x轴,则F X= F或-F ;若力平行于Y轴,则Fy=F或-F :若力垂直于x轴,则Fx=0;若力垂直于Y轴,则Fy= 0 。

6.合力在任意坐标轴上的投影,等于各分力在同一轴上投影的代数和。

7.平面汇交力系平衡的解析条件为:力系中所有力在任意两坐标轴上投影的代数和均为零。

其表达式为∑Fx=0 和∑Fy=0 ,此表达式有称为平面汇交力系的平均方程。

8.利用平面汇交力系平衡方程式解题的步骤是:(1)选定研究对象,并画出受力图。

(2)选定适当的坐标轴,画在受力图上;并作出各个力的投影。

(3)列平衡方程,求解未知量。

9.平面汇交力系的两个平衡方程式可解两个未知量。

若求得未知力为负值,表示该力的实际指向与受力图所示方向相反。

10.在符合三力平衡条件的平衡刚体上,三力一定构成平面汇交力系。

11.用力拧紧螺丝母,其拎紧的程度不仅与力的大小有关,而且与螺丝母中心到力的作用线的距离有关。

12.力矩的大小等于力和力臂的乘积,通常规定力使物体绕矩心逆时针转动时力矩为正,反之为负。

力矩以符号Mo(F) 表示,O点称为距心,力矩的单位是N.M 。

13.由合力矩定力可知,平面汇交力系的合力对平面内任一点的力矩,等于力系中的各分力对于同一点力矩的代数和。

14.绕定点转动物体的平衡条件是:各力对转动中心O点的矩的代数和等于零。

用公式表示为∑Mo(Fi) =0 。

15.大小相等、方向相反、作用线平行的二力组成的力系,称为力偶。

力偶中二力之间的距离称为力偶臂。

新编2平面力系答案

新编2平面力系答案

第二章 平面力系平衡方程的应用一、填空题2-1、力线平移定理是 。

2-2、平面汇交力系的平衡方程是 。

2-3、平面平行力系的平衡方程是 。

2-4、平面力偶力系的平衡方程是 。

2-5、平面任意力系的平衡方程的一般形式是 。

2-6、平面任意力系的平衡方程的二矩式形式是 ,应满足的附加条件是 。

2-7、平面任意力系的平衡方程的三矩式形式是 ,应满足的附加条件是 。

2-8、一给定平衡系统,若所能列出的独立的平衡方程的个数少于所求未知力的个数,则该问题属于 问题。

2-9、某结构受力如图所示。

已知kNm M 10=,m a 1=,各杆自重不计。

则支座D 的反力大小为 ,方向 。

2-10、杆AB 、BC 、CD 用铰链C B 、连结并支承如图。

已知kNm M 10=,各杆自重不计。

则支座D 的反力大小为 ,方向 。

2-11、三铰拱受力如图,则支座A 的反力大小为 ,则支座B 的反力大小为 。

二、判断题(正确的命题,在括号内画“√”;否则,画“╳”)( )2-12、求解平面任意力系的平衡问题时,每选一次研究对象,平衡方程的数目不受限制。

( )2-13、如果某平面力系由多个力偶和一个力组成,该力系一定不是平衡力系。

( )2-14、已知一刚体在五个力作用下处于平衡,如其中四个力的作用线汇交于点B ,则第五个力的作用线必过点B 。

三、选择题2-15、利用平衡条件求未知力的步骤,首先应( )。

A 、取隔离体 ;B 、作受力图 ;C 、列平衡方程 ;D 、求解。

2-16、一个物体上的作用力系,满足( )条件,称为平面汇交力系。

A 、作用线都在同一平面内,且汇交于一点;B 、作用线都在同一平面内,但不交于一点;C 、作用线不在同一平面内,且汇交于一点 ;D 、作用线不在同一平面内,且不交于一点。

2-17、平面汇交力系的合成结果是( )。

A 、一力偶矩;B 、一合力;C 、一力偶矩和一合力 ;D 、不能确定。

2-18、平面汇交力系的独立平衡方程数目为( )。

工程力学答案第2章

工程力学答案第2章

工程力学(第2版)第2章 平面力系题库:主观题(1-10)道 + 计算题(11-36)道 + 填空题(37-52)道 + 选择题(53-69)道 + 判断题(70-85)道 一、主观题2-1 如何利用几何法和解析法求平面汇交力系的合力?答案:利用几何法时,可根据力的平行四边形法则或作力多边形得到合力;利用解析法时,可先求Rx x Ry y F F F F ⎧=⎪⎨=⎪⎩∑∑,进而得到()()()()cos ,,cos ,RRx Ry x y R Rx R R Ry RF F F F F F i F F F j F F ⎧=+=+⎪⎨⎪==⎩∑∑ 知识点:2.1节 参考页:P19-P20 学习目标:1 难度:12-2 指出思考题2-2图的各图中,哪个是力系的合力?答案:图(a ),1F 是合力;图(b ),合力为零;图(c ),2F 是合力。

知识点:2.1节 参考页:P19-P20 学习目标:1 难度:22-3 用解析法求合力时,若选不同的直角坐标轴,所得的合力是否相同?答案:当选择不同的坐标轴时,所得力的投影不同,但合力的大小和方向是相同的。

知识点:2.1节 参考页:P20 学习目标:1 难度:22-4 已知某一平面一般力系向A 点简化得到的主矢50 N AF '=,主矩20 N m A M =⋅,试求原力系向B 点简化结果。

其中20 mm AB =。

答案:50 N BA F F ''==0350cos302010 N m A B M F -⎛⎫'=⨯⨯=⋅ ⎪⎝⎭()20 N m A B A B M M M F ⎛⎫'=+=+⋅ ⎪⎝⎭知识点:2.3节参考页:P24 学习目标:3 难度:22-5 思考题2-5图所示力F 和力偶,F F ⎛⎫''' ⎪⎝⎭对轮的作用有何不同?设轮轴静止,2F F F '''=-=。

《工程力学》第次作业解答平面力系.

《工程力学》第次作业解答平面力系.

《工程力学》第次作业解答(平面力系).————————————————————————————————作者:————————————————————————————————日期:《工程力学》第2次作业解答(平面力系)2008-2009学年第2学期一、填空题1.合力在某坐标轴上的投影,等于其各分力在 同一轴 上投影的 代数 和。

2.画力多边形时,各分力矢量 首尾 相接,而合力矢量是从第一个分力矢量的 起点 指向最后一个分力矢量的 终点 。

3.如果平面汇交力系的合力为零,则物体在该力系作用下一定处于 平衡 状态。

4.平面汇交力系平衡时,力系中所有各力在两垂直坐标轴上投影的代数和分别等于零。

5.平面力系包括平面汇交力系、平面平行力系、平面任意力系和平面力偶系等类型。

6.力矩是力使物体绕定点转动效应的度量,它等于力的大小与力臂的乘积,其常用单位为N m ⋅或kN m ⋅。

7.力矩使物体绕定点转动的效果取决于力的大小和力臂长度两个方面。

8.力矩等于零的条件是力的大小为零或者力臂为零(即力的作用线通过矩心)。

9.力偶不能合成为一个力,力偶向任何坐标轴投影的结果均为零。

10.力偶对其作用内任一点的矩恒等于力偶矩与矩心位置无关。

11.同平面内几个力偶可以合成为一个合力偶,合力偶矩等于各分力偶矩的代数和。

12.力偶是由大小相等、方向相反、作用线不重合的两个平行力组成的特殊力系。

13.力偶没有 合力,也不能用一个力来平衡,力偶矩是转动效应的唯一度量;14.力偶对物体的作用效应取决于力偶矩的大小、力偶的转向和作用面三个要素。

15.平面任意力系向作用面内任一点简化的结果是一个力和一个力偶。

这个力称为原力系的主矢,它作用在简化中心,且等于原力系中各力的矢量合;这个力偶称为原力系对简化中心的主矩,它等于原力系中各力对简化中心的力矩的代数和。

17.平面任意力系的平衡条件是:力系的主矢和力系对任何一点的主矩分别等于零;应用平面任意力系的平衡方程,选择一个研究对象最多可以求解三个未知量。

工程力学习题册第三章 答案

工程力学习题册第三章  答案

第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。

2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。

3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。

4、平面一般力系向已知中心点简化后得到一力和一力偶距。

5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。

6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。

三个独立的方程,可以求解三个未知量。

7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。

8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。

9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。

10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。

它是平面一般力系的特殊情况。

11.平面平行力系有两个独立方程,可以解出两个未知量。

12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。

(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。

(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。

(√)(2)该力在坐标轴上的投影一定为负值。

平面任意力系习题答案

平面任意力系习题答案

平面任意力系习题答案平面任意力系习题答案在学习物理学的过程中,平面任意力系习题是非常重要的一部分。

通过解答这些习题,我们可以更好地理解和应用力学原理,提高我们的分析和解决问题的能力。

在本文中,我将为大家提供一些平面任意力系习题的答案,希望能对大家的学习有所帮助。

1. 题目:一个物体受到三个力的作用,分别是F1 = 10N,F2 = 15N,F3 = 20N,方向分别为水平向右、竖直向上和水平向左。

求物体所受合力的大小和方向。

解答:首先,我们需要将这三个力进行向量叠加。

由于F1和F3的方向相反,所以它们可以相互抵消,只需要计算F2的向量和即可。

设物体所受合力为F,根据力的平衡条件,有F + F2 = 0。

由此可得F = -F2 = -15N。

根据向量的定义,我们可以知道F的方向是竖直向下。

综上所述,物体所受合力的大小为15N,方向为竖直向下。

2. 题目:一个物体受到两个力的作用,分别是F1 = 20N,F2 = 30N,方向分别为水平向右和竖直向上。

已知物体所受合力的大小为40N,方向与F1的方向夹角为60°,求F2的大小和方向。

解答:设F2的大小为F,根据三角函数的定义,我们可以得到F1的水平分量为F1x = F1 * cos60° = 20N * 0.5 = 10N,F1的竖直分量为F1y = F1 * sin60° =20N * 0.866 = 17.32N。

根据力的平衡条件,我们可以得到F1x + F2 = 0,F1y + F = 0。

根据这两个方程可以解得F2 = -F1x = -10N,F = -F1y = -17.32N。

根据向量的定义,我们可以知道F2的方向是水平向左,F的方向是竖直向下。

综上所述,F2的大小为10N,方向为水平向左。

3. 题目:一个物体受到两个力的作用,分别是F1 = 15N,F2 = 25N,方向分别为水平向右和竖直向上。

已知物体所受合力的大小为30N,方向与F1的方向夹角为45°,求F2的大小和方向。

平面一般力系—平面平行力系的平衡方程(建筑力学)

平面一般力系—平面平行力系的平衡方程(建筑力学)
力。
平面一般力系
(1) 要使起重机不翻到,应使作用在起重机上的所有力满
足平衡条件。
当满载时,为使起重机不绕B点翻倒,这些力必须满足平
衡方程∑MB (F ) = 0 。在临界情况下,FAy= 0 。此时求出的
W3值是所允许的最小值。
由∑MB (F ) = 0得
W3min×(6+2)+ W1×2- W2×(12-2)=0
平面一般力系
平面平行力系平衡方程的应用
例4-5 某房屋的外伸梁构造及尺寸如图所示,该梁的力
学简图如图所示,已知q1= 20kN/m,q2=15kN/m。试求A、B支
座的反力。
解 取外伸梁AC为研究对象。
梁的受力图如图示。
平面一般力系
∑MA (F ) = 0
FBy
∑MB (F ) = 0
FBy×5–q1×5×2.5–q2×2×6=0
例4-6 塔式起重机如图所示。
机架重W1=400kN,作用线通过塔
架的中心。最大起重量W2=100kN
,最大悬臂长为12m,轨道AB的
间距为4m。平衡锤重W3,到机身
中心线距离为6m。试问:(1)
保证起重机在满载和空载时做到
不翻倒,平衡锤重W3的范围;(
2)当平衡锤重W3=80kN时,求满
载时轨道A、B对起重机轮子的反
20 5 2.5 15 2 6
kN 86kN ()
5
–FAy×5+q1×5×2.5–q2×2×1 =0
20 5 2.5 15 2 1
FAy
kN 44kN ()
5
校核: ∑F = 86 + 44 - 15 ×2 - 20 ×5 = 0

工程力学(高教第3版 陈位宫主编)习题解答:第4章 平面一般力系

工程力学(高教第3版 陈位宫主编)习题解答:第4章 平面一般力系

第4章 平面一般力系题4-1 解:kN 73230cos 32R .F F F 'x =+=kN 230sin 31R -=--=F F F'ykN 393)()(2R 2R R .F F F 'y 'x '=+=230sin 31)(321⨯-⨯-⨯-==∑ F F F M F m M i O Om kN 2⋅-= m 590R.F M d 'O==题4-2 解:以A 为原点,在x 处取微段d x 。

1)合力:作用在此段上分布集度载荷为x lq q x =, d x 上分布的力为x q d x则:⎰⎰===llx Q qlx x l q x q F 002d d2)合力对A 点之矩: 2031d )(ql x x q F m lxQ A ==⎰题4-3 解(a ):取AB 梁为研究对象,画受力图∑=0xF ,045cos 2=+Ax F ∑=0yF,045sin 2=-+B Ay F F∑=0)(F mA,0645sin 2451=⨯-⨯+-B F .得:kN 41.F Ax -= kN 11.F Ay -= kN 52.F =解(b ):取AC 刚架为研究对象∑=0yF,0534=-⨯-A F∑=0)(F m A ,0355.134=⨯-⨯⨯-A m得:kN 17=A F m kN 33⋅=A m解(c ):取AB 刚架为研究对象∑=0x F ,0535=⨯-Ax F ∑=0yF ,0545=⨯-+B Ay F F ∑=0)(F m A,05.2535254525.2=⨯⨯+⨯⨯-⨯+B F 得:kN 3=Ax F kN 5=Ay F kN 1-=B F题4-4解:取均质杆AB 为研究对象,画受力图∑=0xF ,015cos =-T Ax F F ∑=0yF,015sin =-- T Ay F W F∑=0)(F m A ,sin 45cos 2⨯+- AB F ABWT 得:kN 6830.F Ax = kN 1831.F Ay = kN 7070.F T =题4-5解:取立柱为研究对象∑=0xF ,0=⨯+h q F Ax ∑=0yF,0=--G P F Ay∑=0)(F m A ,02=⨯-⨯⨯-a P hh q m A 得:kN 20-=Ax F kN 100=Ay F m kN 130⋅=A m题4-6 解:1)取整体为研究对象∑=0xF,0=-T Ax F F∑=0y F ,0=-+W F F B Ay ∑=0)(F mA,0)5.1()2(4=--+-⨯r F r W F T B得:N 1200=Ax F N 150=Ay F N 1050=B F 2)取AB 杆为研究对象∑=0)(F mD,0sin 222=+⨯+⨯-θBC B Ay F F FN 1500-=BC FAyBBB题4-7解:取整体为研究对象∑=0xF ,0cos =--βW F F BD Ax∑=0y F ,0sin =---βW W P F Ay∑=0)(F m B ,045sin 45cos 45cos 2=⨯+⨯- AB F AB F ABPAx Ay 得:kN 74.F Ax = kN 94.F Ay = kN 1022.F BD =题4-8解:取汽车为研究对象∑=0)(F mD0)2(5.14213=+-⨯+⨯-⨯x P x F P P ExP P x P F E 31245.1)2(-++=∑=0)(F mE0)4()5.1(2312=+-⨯+--⨯x P x F x P P DxP x P x P F D 2)4()5.1(231⨯-++-=当空载时(P 3=0): 0≥D F 得 m 53.x ≥当满载时: 0≥E F 得 kN 353≤PF BD W βαPABCWF AxF Ay 1.5mxE F EF D题4-9 解:1)取整体为研究对象∑=0)(F mA03N =⨯-⨯a F a F DF F D 31N =2)取AB 杆为研究对象∑=0)(F mB023=⨯-⨯-a F a F AyF F Ay32=3)取AD 杆为研究对象∑=0yF,0N =++-D Ey Ay F F FF F Ey 31=∑=0)(F m A 032323N =⨯++-a F a F a F D Ey ExF F Ex =题4-10 解:1)取整体为研究对象∑=0)(F mE01612520=⨯-⨯⨯A FkN 75=A F2)取BD 杆为研究对象∑=0)(F mD0105.7520=⨯-⨯⨯By FkN 75=By F3)取AC 杆为研究对象∑=0)(F mC043255.2=⨯-+⨯A BxBy F F F kN 26=Bx F题4-11 解:1)取整体为研究对象∑=0)(F mA0)(=+-⨯bll W l F CxkN 7=Cx F∑=0xF0=+Ax Cx F F kN 7-=Ax F∑=0yF0=-+W F F Ay Cy (1)2)取CEB 杆为研究对象∑=0)(F mB032=⨯+⨯-⨯-l F l F l F Cx Cy TkN 3=FDyA代入(1)得:kN 3=Ay F题4-12 解a ):1)取BC 梁为研究对象∑=0)(F m B0630cos 3120=⨯+⨯-C FkN 369.F C =∑=0xF030sin =- C Bx F FkN 634.F Bx =∑=0y F 030cos 620=+⨯-CBy F F kN 60=By F2)取AB 梁为研究对象∑=0)(F mA0340=⨯--By A F mm kN 220⋅=A m∑=0x F 0=-Bx Ax F FkN 634.F Ax =∑=0yF0=-By Ay F FkN 60=Ay F解b ):1)取CD 梁为研究对象∑=0)(F m C04515=⨯+-⨯-D FkN 52.F D =∑=0xF 0=Cx F ∑=0yF05=+-D Cy F FkN 52.F =D2)取AB 梁为研究对象∑=0)(F m A0435215=⨯-⨯-⨯+⨯-Cy B F FkN 15=B F∑=0xF 0=Ax F∑=0yF05.255=--+-B Ay F FkN 52.F Ay -=解c ):1)取BC 梁为研究对象∑=0)(F mB046=⨯+-C FkN 51.F C =∑=0y F 041=-+C B F FkN 521.F B =2)取铰链B 为研究对象∑=0yF012=-B B F FkN 522.F B =3)取AB 梁为研究对象因其受二力和一力偶平衡,则其二力必等值反向构成一力偶。

习题解答(平面力系)

习题解答(平面力系)

② 受力如图 ③ 选坐标、取矩点B点 ④ 列方程为:
X 0 X B 0; Y 0 YB P 0; YB P
M B 0 M B P DE 0
解方程得
M B 100011000( Nm 7 )
① 再研究CD杆 ② 受力如图
o M 0 , S sin 45 CE P ED 0 E CA ③ 取E为矩心,列方程
FB
FAx 0 FAy FB F 0 FB 2a M F 3a 0
17
习题2-14
解答要点:
q
D A
M
B
F
C
F
1.取整体为研究对象
q
FAX
2.受力分析如图
FAY
D 3.列平衡方程如下:
A
M
B
C
F F
FB
x y
0, 0,
FAx 0 FAy FB F qa 0
M A
FA
B
FB
对于c图
M M 0, FBl cos M 0 FB l cos
16
习题2-14
解答要点: 1.取整体为研究对象 2.受力分析如图 3.列平衡方程如下:
A
M
B
F
FAX
A
FAY
M
B
F
F 0, F 0, M ( F ) 0,
x y A
19
习题2-20
解答要点一: 1.先取BC为研究对象
A
B
FBY
M
y C
x

M
FC
2.受力分析如图
3.列平衡方程如下:

平面一般力系

平面一般力系

平面一般力系(3)班级 姓名 学号
一、选择题(将答案的序号填入划线内。


图示两种桁架中,1杆的内力为-------。

① 在(a)中不为零,在(b)中为零;
② 在(a)中为零,在(b)中不为零;
③ 在(a)(b)中均为零;
④ 在(a)(b)中均不为零;
二、填空题(将简要答案填入划线内。


图示桁架。

已知力1P 、2P 和长度a 。

则杆1内力1F =--------;
杆2内力2F =--------;
杆3内力3F =--------;
三、计算题(解题要求:①明确研究对象画受力图,内力设为拉力;②列平衡方程求解)
1、平面悬臂桁架所受的载荷如图所示。

求杆1,2和3的内力。

2、桁架受力如图所示,已知kN 101
=F ,kN 2032==F F 。

试求桁架4,5,7,10各杆的内力。

F。

3、平面桁架的支座和载荷如图所示。

ABC为等边三角形,E,F为两腰中点,又AD=DB。

求杆CD的内力CD
(提示:先判断零杆,再用截面法计算)
4、平面桁架的支座和载荷如图所示,求杆1,2和3的内力。

(提示:先截断AD、3、2杆,用截面法分析;再取C节点)。

平面一般力系的平衡 作业及答案

平面一般力系的平衡 作业及答案

平面一般力系的平衡一、判断题:1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。

()图12.图示三个不为零的力交于一点,则力系一定平衡。

()图23.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。

()4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度轴,那么Σ=0。

()图3 图45.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。

()图5 图66.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。

()7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。

()8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同()图7 图89.图8所示梁,若求支反力时,用平面一般力系的平衡方程不能全部求出。

()10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。

试判断哪种施力方法省力。

()图9 图1011.力在坐标轴上的投影和该力在该轴上分力是相同的。

()12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ()。

13.平面任意力系,其独立的二力矩式平衡方程为∑Fx=0,∑M A=0,∑M B =0,但要求矩心A、B的连线不能与x轴垂直。

()二、选择题1.同一个力在两个互相平行的同向坐标轴上的投影()。

A.大小相等,符号不同B.大小不等,符号不同C.大小相等,符号相同D.大小不等,符号相同2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。

这说明()。

图11A.支反力R0与P平衡B.m与P平衡C.m简化为力与P平衡D.R0与P组成力偶,其m(R0,P)=-P·r与m平衡3. 图12所示三铰刚架,在D角处受一力偶矩为m的力偶作用,如将该力力偶移到E角出,支座A、B的支反力()。

平面一般力系例题

平面一般力系例题

v XD
∑X =0
− X A ⋅ 2a + X D ⋅ a = 0 X′ ∴ X A = D = −P 2 XA − XD + XB = 0
Y A − Y D + YB = 0
X B = X D − X A = −2 P + P = − P
∑Y = 0
X A = −P YA = − P
Y A = Y D − YB = − P − 0 = − P
成为恒等式

X =0 ∑Y = 0

平面力偶系的平衡方程
∑ mi = 0
四、静定与静不定 独立方程数 ≥ 未知力数目—为静定 独立方程数< 未知力数目—为静不定 五、物系平衡 物系平衡时,物系中每个构件都平衡, 解物系问题的方法常是:由整体 由整体 局部 单体
六、解题步骤与技巧 解题步骤
解题技巧 充分发挥二力杆的直观性; 充分发挥二力杆的直观性; 灵活使用合力矩定理。 灵活使用合力矩定理。
v XB
v XC
v YB
v YC
分析: 分析:
v XA
A v YA
v D YD v XB v B YB
v XD
1、ADB杆中包含了所有未知数,先分 析它。 它有六个反力,不可直接求解。 2、整体。
四个未知反力。但可求出垂直方向反力。
1、研究整体,求出B处垂直方向反力。 。 2、分析DEF杆
v XB
∑m
NC =
C
= 0:
YB ⋅ 2a − Pa = 0
P P 20 = = = 14.14 kN 0 2 cos α 2 cos 45 2
Pa P YB = = = 10 kN 2a 2
20 2 X B = N C ⋅ sin α = ⋅ = 10 kN 2 2

平面力系习题及答案

平面力系习题及答案

平面力系习题及答案平面力系习题及答案引言:在物理学中,平面力系是一个重要的概念。

它描述了在一个平面内作用的多个力的相互作用和平衡状态。

理解平面力系的性质和解决与之相关的习题是物理学学习的重要内容。

本文将介绍一些常见的平面力系习题,并提供详细的解答。

一、斜面上的物体考虑一个斜面上的物体,如何确定物体在斜面上的受力情况和平衡状态呢?解答:首先,我们需要将斜面上的力分解为垂直于斜面的分力和平行于斜面的分力。

根据牛顿第二定律,物体在垂直方向上的受力和平行方向上的受力应该平衡。

因此,可以根据斜面的倾角和物体的质量来确定这两个方向上的受力情况。

二、悬挂物体考虑一个悬挂在绳子上的物体,如何确定绳子和物体之间的受力情况和平衡状态呢?解答:首先,我们需要将绳子的拉力分解为垂直于绳子的分力和平行于绳子的分力。

根据牛顿第二定律,物体在垂直方向上的受力应该等于物体的重力,而在平行方向上的受力应该为零。

因此,可以根据物体的质量和绳子的角度来确定这两个方向上的受力情况。

三、平衡力系考虑一个平衡力系,如何确定各个力的大小和方向呢?解答:对于一个平衡力系,各个力的大小和方向应该满足力的平衡条件。

即,合力为零。

我们可以通过分析各个力的向量和方向,利用几何关系和三角函数来求解各个力的大小和方向。

四、平面力系的应用平面力系的概念和解题方法在实际生活中有很多应用。

例如,我们可以利用平面力系的原理来解决物体在斜坡上滑动的问题,或者解决悬挂物体的平衡问题。

此外,平面力系的概念也可以应用于机械设计和结构分析等领域。

结论:平面力系是物理学中一个重要的概念,理解和掌握平面力系的性质和解题方法对于物理学学习和实际应用都具有重要意义。

通过解决平面力系的习题,我们可以加深对物理学原理的理解,并提高解决实际问题的能力。

希望本文提供的平面力系习题及答案能对读者有所帮助。

平面一般力系习题

平面一般力系习题

平面一般力系习题在力学中,平面一般力系是指力作用在一个平面内的力的集合。

解决平面一般力系的习题,需要熟悉平面力的相关概念和定律,并能够应用力的平衡条件进行分析和计算。

下面将介绍一些关于平面一般力系的习题,并给出解答过程。

习题一:有两个力F1和F2作用在一个物体上,力F1的大小为10N,方向与x轴正方向夹角为30°;力F2的大小为8N,方向与y 轴正方向夹角为60°。

求合力的大小和方向。

解答:将力F1分解为x轴和y轴上的分力F1x和F1y,由三角函数可知F1x=F1*cos30°=10N*cos30°=10N*0.866≈8.66N,F1y=F1*sin30°=10N*sin30°=10N*0.5=5N。

将力F2分解为x轴和y轴上的分力F2x和F2y,由三角函数可知F2x=F2*sin60°=8N*sin60°=8N*0.866≈6.93N,F2y=F2*cos60°=8N*cos60°=8N*0.5=4N。

合力的分量为Fx=F1x+F2x=8.66N+6.93N≈15.59N,Fy=F1y+F2y=5N+4N=9N。

合力的大小为F=√(Fx²+Fy²)=√(15.59N²+9N²)≈18.07N。

合力的方向与x轴的夹角θ为tanθ=Fy/Fx=9N/15.59N≈0.577。

因此,合力的大小为约18.07N,方向与x轴的夹角约为0.577弧度。

习题二:一个物体受到三个力F1、F2和F3的作用,力F1的大小为8N,方向与x轴正方向夹角为60°;力F2的大小为6N,方向与y轴正方向夹角为45°;力F3的大小为10N,方向与x轴正方向夹角为120°。

求合力的大小和方向。

解答:将力F1分解为x轴和y轴上的分力F1x和F1y,由三角函数可知F1x=F1*cos60°=8N*cos60°=8N*0.5=4N,F1y=F1*sin60°=8N*sin60°=8N*0.866≈6.93N。

2 平面力系 答案

2 平面力系  答案

q
FP
C
A
dB
FP1
FP
d
d
d
d
解:取梁 BC 为研究对象
q
FP
C
A
dB
FP1
FAy
FAx
FP
FB
d
d
d
d
列平衡方程
Fx 0 MA(F) 0 MB(F) 0
解得:
FAx 0
qd
d 2
FP
d
FB
2d
FP1
3d
0
qd
5d 2
FP
d
FAy
2d
FP1
d
0
FAx 0 FAy 15kN FB 21kN
4m
E
A
B F FP G
W FP D
1m 1mC
3m
3m
6m
解:(1)选起重机为研究对象,画受力图
M F (F) 0
2FRG 1FP 5W 0
FRG 50 kN (2)选梁 CD 研究对象,画受力图 M C (F) 0
6FRD 1FR'G 0
E
F FP
G
FR F
FR G
1m 1m 3m
C
E
G
F
A
B
D
解:
E
取整体为研究对象
MA(F) 0
FNB
AB
F
1 2
ABsin
60
0
A FAx
FAy
FNB
3F 4
按虚线截断结构,取右边进行分析
MD(F) 0
FCG DB sin 60 FNB DB F DF sin 60 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题4-5已知F1=150N,F2=200N,F3=300N,F=F’=200N.求力系向O点简化的结果;并求力系合力的大小及与原点O的距离d。

题4-6 如图所示刚架中,q = 3 kN/m,F = 6 √2kN,M = 10 kN⋅m,不计刚架的自重。

求固定端A 的约束力。

题4-7 无重水平梁的支承和载荷如所示。

已知力F,力偶矩为M 的力偶和强度为q 的均匀载荷。

求支座A 和B 处的约束力。

题4-9 如图所示,各连续梁中,已知q,M,a 及θ,不计梁的自重,求各连续梁在A,B,C 三处的约束力。

题4-10 由AC 和CD 构成的组合梁通过铰链C 连接。

它的支承和受力如图所示。

已知q = 10 kN/m,M = 40 kN⋅m,不计梁的自重。

求支座A,B,D 的约束力和铰链C受力。

题4-11 求图示混合结构在荷载F的作用下,杆件1、2所受的力。

相关文档
最新文档