蒙特卡罗方法课件(清华大学_林谦)

合集下载

蒙特卡罗方法课件1

蒙特卡罗方法课件1

N
其中Ds为区域Ds的体积。这是数值方法难以作到的。
因此,在具有随机性质的问题中,如考虑的系统形状很复杂,难以用 一般数值方法求解,而使用蒙特卡罗方法,不会有原则上的困难。
(3)收敛速度与问题的维数无关 由误差定义可知,在给定置信水平情况下,MC方法的误差为O(N-1/2) , 与问题本身的维数无关。维数的变化,只引起抽样时间及估计量计算时 间的变化,不影响误差。这一特点,决定了蒙特卡罗方法对多维问题的 适应性。
三、常用概念及定理
1、随机变量 2、数学期望:即均值
离散型随机变量
连续型随机变量
3、方差:即随机变量相对于其数学期望的偏离程度
4、大数定理:即当n趋于无限大时,随机变量的平均值将 稳定于某值(真值)。 5、中心极限定理:即讨论随机变量序列部分和的分布 渐近于正态分布的一类定理。这组定理是 数理统计学和误差分析的理论基础,指出 了大量随机变量近似服从正态分布的条件。
§2 蒙特卡罗方法概述---MC优点
(1)能够比较逼真地描述具有随机性质的事物的特点及物理实验过程 从这个意义上讲,蒙特卡罗方法可以部分代替物理实验,甚至可以得 到物理实验难以得到的结果。用蒙特卡罗方法解决实际问题,可以直 接从实际问题本身出发,而不从方程或数学表达式出发。它具有直观、 形象的特点。 (2)受几何条件限制小 计算s维空间中的任一区域Ds上的积分:
g g ( x1 , x2 ,, xs )dx1dx2 dxs
Ds
无论区域Ds的形状多么特殊,只要能给出描述Ds的几何特征的条件, 就可以从Ds中均匀产生N个点:
( x , x ,, x )
(i ) 1
(i ) 2
(i ) s
得到积分的近似值:
Ds gN N

《蒙特卡罗模拟》PPT课件

《蒙特卡罗模拟》PPT课件
(3)系统模拟法:是用数字对含有随机变量的系统进行模拟,可看作 是蒙特卡洛法的应用。一般说来,蒙特卡洛法用于静态计算,而系统模 拟法用于动态模型计算。我们主0,1]区间上均匀分布随机数的产生
定义 1:设 R 为[0,1]上服从均匀分布的随机变量,即的分布密度函数与 分布函数分别为:
布物物的理理随方方机法法数::一。一是是放放射射性性物物质质随随机机蜕蜕变变;;二二是是电电子子管管回回路路的的热热噪噪声声。(。(如如
②可可产将将生热热方噪噪法声声源源装装于于计计算算机机外外部部,,按按其其噪噪声声电电压压的的大大小小表表示示不不同同的的随随机机 物数数理。。方此此法法法:产产一生生是的的放随随射机机性性性物最最质好好随,,机但但蜕产产变生生;过过二程程是复复电杂杂子。。)管)回路的热噪声。(如 可查查将随随热机机噪数数声表表源-----装---””R于Raan计ndd算TTaa机bblel外e”(”(部11,995按555其年年噪由由美声美国电国兰压兰德的德公大公司小司编表编制示制,不,有同有随的随机随机数机数 数1100。00 此万万法个个产。。))生随随的机机随数数机表表性中中最的的好数数,字字但具具产有有生均均过匀匀程的的复随随杂机机。性)性,,没没有有周周期期性性。。使使 查用用随时时机,,数可可表根根-据据---需需”R要要an任任d取T取a一b一l段e段”(((1横9横5或或5 竖年竖)由)。。美如如国需需兰220德0个公个,司,便编便可可制从从,中有中取随取(机(顺数顺 1次次00))万2200个个个。,),需随需要机要几几数位位表取取中几几的位位数,,字随随具机机有数数均表表匀无无的所所随谓谓机位位性数数,,,没不不有能能周四四期舍舍性五五入。入。使。 用 次由 个由个时 )我递 随递随2,们推 机推机0可在数公个数公根使是式,是式据用由(需由(中需第如要第如可要同几i同i以个任余个位余在按取数按取数E一一公一几公x定c段式定e位式l公(中)公,)式产横在式随在推生或计推机计算随竖 算算数算出机机)出表机。来数内来无内如的,产的所产需,命生,谓生故令2伪故0位伪并为随个并数随非R机,非a,机真n数便真d不数正(:可正能:的)由从的四由随于中随于舍机第取机第五数(i数+入。i1+顺。。1 由但但递满满推足足公::式(如同余数公式)在计算机内产生伪随机数:由于第 i+1 个aa随))机有有数较较是好好由的的第随随机i机个、、按均均一匀匀定性性公。。式推算出来的,故并非真正的随机数。 但abcbdcbdc) ))满)) ))))有 算周足算周 算 故算故周算较 法期:法期 法 这法期法这好 过长过长 可 是过长可是的 程、程、 再 目程、再目随 不重不前重 现不前重现机 退复退复 , 最退复,最、 化化性性 速常化性速常均 ((差差 度 用(差度用即匀 即的。 快。即的。快不方性 不。不方。能法。 能能法反。反反。cd复复))复出出算算出现现法法现某某过可某一程再一一常不现常常数退,数数。化速。。)))度快。

《蒙特卡罗方法》PPT课件

《蒙特卡罗方法》PPT课件

1.引言
MC的基础 – 随机过程
1 定义,X=X (x,t) 随时间变化的随机变量,或时间随机变量序列
2 按分布函数,分类 a) 平稳随机过程 b) Markov 过程 c) 独立增量随机过程 d) 独立随机过程
14 完整版ppt
1.引言
MC的基础 - 平稳随机过程
1 定义:X(t) , 如果它的n维(n个状态)概率密度与初始分布无关,即对任何 n 和 t’满足fx(x1,x2,…,xn; t1,t2,..,tn)=fx(x1,..,tn +t’) 含义:平稳随机过程的统计特性与所选择的时间起点无关,不随时间的 推移而变化,即是“时间平稳的”。
Monte Carlo名字的由来: • 是由Metropolis在二次世界大战期间提出的:Manhattan 计划,研究与原子弹有关的中子输运过程;
• Monte Carlo是摩纳哥(monaco)的首都,该城以赌博闻名
Nicholas Metropolis (1915-1999)
完整版ppt
Monte-Carlo, Monaco
2 统计特性 1)一维概率密度与时间无关 2)二维概率密度,只与两个状态对应的时间间隔Δt有关,其时间自相关 仅是Δt的函数
3 应用: 电阻的热噪声,电子信号,…
15 完整版ppt
1.引言
MC的基础 - Markov 链
1 定义:在可列个离散状态x1,x2,..xN 和离散时间t1,t2,..tn, 若随 机过程在tm+k时刻变成任一状态xi的概率,只与tm时刻的 状态有关(无后效),而与此前状态无关,称离散随机序列
(2) 确定性模拟方法。它是通过数值求解一个个的粒子运动方程 来模拟整个系统的行为。在统计物理中称为分子动力学 (Molecular Dynamics)方法。此外, 近年来还发展了神经元 网络方法和原胞自动机方法。

蒙特卡罗方法课件(清华大学 林谦)

蒙特卡罗方法课件(清华大学 林谦)

计算机模拟试验过程
计算机模拟试验过程,就是将试验过程(如投针, 射击)化为数学问题,在计算机上实现。以上述两个 问题为例,分别加以说明。 例1. 蒲丰氏问题 例2. 射击问题(打靶游戏) 由 上 面 两 个 例题看出 , 蒙特卡罗方 法常以一个 “概率模型”为基础,按照它所描述的过程,使用由 已知分布抽样的方法,得到部分试验结果的观察值, 求得问题的近似解。
蒙特卡罗方法又称随机抽样技巧或统计试验方法。 半个多世纪以来,由于科学技术的发展和电子计算机 的发明 ,这种方法作为一种独立的方法被提出来,并 首先在核武器的试验与研制中得到了应用。蒙特卡罗 方法是一种计算方法,但与一般数值计算方法有很大 区别。它是以概率统计理论为基础的一种方法。由于 蒙特卡罗方法能够比较逼真地描述事物的特点及物理 实验过程,解决一些数值方法难以解决的问题,因而 该方法的应用领域日趋广泛。
现假设该运动员进行了 N 次射击,每次射击的弹 着 点 依 次 为 r1 , r2 , … , rN , 则 N 次 得 分 g(r1) , g(r2),…,g(rN)的算术平均值
1 gN N
g (r )
i 1 i
N
代表了该运动员的成绩。换言之,为积分<g>的估 计值,或近似值。 在该例中,用N次试验所得成绩的算术平均值作 为数学期望<g>的估计值(积分近似值)。
一些人进行了实验,其结果列于下表 :
实验者 沃尔弗(Wolf) 年份 1850 投计次数 5000 π的实验值 3.1596
斯密思(Smith)
福克斯(Fox) 拉查里尼 (Lazzarini)
1855
1894 1901
3204
1120 3408
3.1553

《蒙特卡罗方法》ppt课件

《蒙特卡罗方法》ppt课件

I
1 dx 0 1 x2
解:选择分布函数
(x) 1(42x)
3
y(x)
xHale Waihona Puke (x')dx'
4x
x2
0
3
x(y) 2 43y
1.3.3 Metropolis 算法
对积分区间的重要抽样要求我们获得x(y),而这只对极少数的分 布 (x)可以解析地做到。
Metropolis 算法: 一种很普遍的产生具有任不测形的给定概率分布随机变量的方法。
r (Rt) 来决议是“接受〞还是“回绝〞这 (一R实n ) 验步.假设r大于l,那么接受这一步
(取Rn+1=Rt);而假设r小于1,那么以概率r 接受这步.这时我们把r和一个 在[0,1]区间上均匀分布的随机数比较,假设 <r就接受这一步.假设这 一实验步不被接受,就舍弃它.而取Rn+1=Rn;这样产生出Rn+1之后,可 以从Rn+1出发迈出一个实验步按照同样的过程产生Rn+2,‘恣意’点R0都 可以用作随机行走的起点.
narea of yellowpart
N area of the square 4
4n N
圆周率的值
π = 3. 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 41 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 47713 .....

蒙特卡罗方法PPT课件

蒙特卡罗方法PPT课件

第1页/共83页
蒙特卡 罗方法
直接方法
可以分解为各个独立 过程的随机性事件
统计方法 数值求解多维定积分
第2页/共83页
5.1 基本思想和一般过程
• Buffon投针实验
• 1768年,法国数学家Comte de Buffon利用投针实验估计 值
L
d
p 2L
d
第3页/共83页
• 长度为 l的针随机地落在相距为d>l 的一组水平线之间, 求针与线相交的概率?
分布的随机数的抽样,进行大量的计算随机模拟实验,从中获得随机变量 的大量试验值。各种概率模型具有不同的概率分布,因此产生已知概率分 布的随机变量,是实现Monte Carlo方法的关键步骤。最简单、最基本、 最重要的一个概率分布是(0,1)上的均匀分布 (或称矩形分布)。随机数就 是具有这种均匀分布的随机变量。对于其他复杂概率模型的概率分布可以 用数学方法在此基础上产生。因此,随机数是Monte Carlo模拟的基本工 具。
方法就叫做简单抽样法或非权重随机抽样法。
• 随机抽样法的真正优势表现在对较高维积分的近似求解,诸如在多体动力
学和统计力学中所遇到的问题。蒙待卡罗方法对较高维体系的积分误差仍

,而这时梯形定则给出的误差变为1/m2/D,这里D为维数。
1m
第21页/共83页
5.3.1 简单抽样 • 将其推广到多维的情况
模拟这个概率过程。对于本来不是随机性质的确定性问题,比如计算定积 分、解线性方程组及偏微分方程边值问题等,要用蒙特卡罗方法求解,就 必须事先构造一个人为的概率过程,它的某些参量正好是所要求的问题的 解。
第10页/共83页
5.1 基本思想和一般过程 • (2) 实现从已知概率分布的抽样 • 有了明确的概率过程后,为了实现过程的数字模拟,必须实现从已知概率

蒙特卡洛方法的应用课件

蒙特卡洛方法的应用课件
化结构的设计参数。
材料属性模拟
蒙特卡洛方法可以模拟材料的物理和化学属性,如热导率、电 导率、扩散系数等,为材料的选择和应用提供依据。
结构可靠性分析
蒙特卡洛方法可以用于结构可靠性分析,通过模拟结构在 不同工况下的失效概率,评估结构的可靠性和安全性。
系统可靠性分析
系统可靠性评估
蒙特卡洛方法可以用于评估系统 的可靠性,通过模拟系统在不同 条件下的运行状态,评估系统的 可靠性和故障概率。
控制系统优化
蒙特卡洛方法可以用于控制系统的优化,通过模拟控制系 统的不同参数和控制策略,优化控制系统的性能和稳定性 。
控制系统故障诊断
蒙特卡洛方法可以用于控制系统的故障诊断,通过模拟控 制系统的运行状态和故障模式,诊断控制系统的故障和问 题。
05
蒙特卡洛方法在社会科学领 域的应用
人口统计学模拟
总结词
要点一
金融风险管理
蒙特卡洛方法可以用于评估金融衍生品的风险,通过模拟 标的资产价格的波动,计算出衍生品的价值及其波动性。
要点二
物理模拟
蒙特卡洛方法可以用于模拟物理现象,如粒子运动、气体 扩散等,通过大量模拟实验得出物理量的统计结果。
感谢您的观看
THANKS
它通过构造一个概率模型或随机过程 ,将需要求解的问题转化为一个概率 问题,然后通过大量的随机抽样来近 似求解该概率问题。
蒙特卡洛方法的原理
蒙特卡洛方法的原理基于大数定律和中心极限定理,通过大量的随机抽样来逼近真实概率分布的特征 值或概率质量函数。
在每个抽样点上,根据问题的具体条件和约束,进行相应的计算和判断,最终得到问题的近似解。
化学反应模拟
总结词
蒙特卡洛方法在化学领域常用于模拟化 学反应的过程和机理。

《蒙特卡罗方法》课件

《蒙特卡罗方法》课件
蒙特卡罗方法的优缺点
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。

概率统计中的MonteCarlo方法及其建模应用PPT课件

概率统计中的MonteCarlo方法及其建模应用PPT课件
下面叙述的抽样方法是能够克服这些困难的比较好的方法。
南京信息工程大学
2020/1/11 17:32
复合抽样方法
复合抽样方法的基本思想是由kahn提出的。
考虑如下复合分布:
f (x) f2(x | y)dF1(y)
其中f2(x|y)为给定Y=y时X的条件密度,F1(y)为Y的分布函数 如果X密度函数f(x)难于抽样,而X关于Y的条件密度函数 f2(x|y)以及Y的分布F1(y)均易于抽样,则X的随机数抽样:
i=1
i=1
x xI , I 1,2,...
I-1
其中令I=1时 pi 0 i=1
p1
O
x1
pI 1 pI O
O
O
0 xI 1 xI
F(x)
为了实现由任意离散型分布的随机抽样,直接抽样方法 是非常理想的!
南京信息工程大学
2020/1/11 17:32
[1]离散型分布
例1.
掷骰子点数的抽样
P( X
1 I ) pi 6
按照离散分布的直接抽样:
(1)由U(0,1)抽取u
I -1
I
(2) x I , 当 pi u pi
i =1
i =1
即:
I 1 u I , I {1,2,3,4,5,6}, x I
6
6
等价于:I 1 6u I, I 1,2,3,4,5,6, x I
收敛速度与问题维数无关
– Monte Carlo方法的收敛速度为O(n -1/2),与一般数值方法相比很慢。 因此,用Monte Carlo方法不能解决精确度要求很高的问题
– Monte Carlo方法误差只与标准差和样本容量n有关,而与样本所 在空间无关,即Monte Carlo方法的收敛速度与问题维数无关,而 其他数值方法则不然。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


d
0
于是有
2l 2l aP as N


l sin
0
dx 2l a a
例2.射击问题
设射击运动员的弹着点分布为
8 9 10 环数 7 0.2 命中8环 0.1 0.3 0.5 概率 0.1 0 . 5 命中9环 用计算机作随机试验(射击) 的方法为,选取一个随机数ξ,按 命中10环 右边所列方法判断得到成绩。 这样,就进行了一次随机试 验(射击),得到了一次成绩 N 1 g(r),作N次试验后,得到该运 g N g (ri ) 动员射击成绩的近似值 N i 1 0.1 命中7环
1 2

x
x
e
t 2 / 2
dt
当N充分大时,有如下的近似式 2 t 2 / 2 P e dt 1 X N E( X ) N 2 0 其中α称为置信度,1-α称为置信水平。
N 1-α成立,且误差收敛速度的阶为 O( N 1 / 2 ) 。 通常,蒙特卡罗方法的误差ε定义为
ˆ
1 N 2 1 N 2 X ( X ) i i N i 1 N i 1
ˆ 。 来代替,在计算所求量的同时,可计算出
减小方差的各种技巧
显然,当给定置信度 α后,误差ε由σ和N决定。要 减小ε,或者是增大N,或者是减小方差σ2。在σ固定的 情况下,要把精度提高一个数量级,试验次数N需增加 两个数量级。因此,单纯增大N不是一个有效的办法。 另一方面,如能减小估计的均方差σ,比如降低一 半,那误差就减小一半,这相当于N增大四倍的效果。 因此降低方差的各种技巧,引起了人们的普遍注意。 后面课程将会介绍一些降低方差的技巧。
效率
一般来说,降低方差的技巧,往往会使观察一个 子样的时间增加。在固定时间内,使观察的样本数减 少。所以,一种方法的优劣,需要由方差和观察一个 子样的费用(使用计算机的时间)两者来衡量。这就 是蒙特卡罗方法中效率的概念。它定义为 2 c,其中c 2 是观察一个子样的平均费用。显然 c 越小,方法越 有效。
例1. 蒲丰氏问题
为了求得圆周率π值,在十九世纪后期,有很多人 作了这样的试验:将长为2l的一根针任意投到地面上, 用针与一组相间距离为2a( l<a)的平行线相交的频 率代替概率P,再利用准确的关系式: 2l P a 求出π值 2l 2l N ( ) aP a n 其中N为投计次数,n为针与平行线相交次数。这 就是古典概率论中著名的蒲丰氏问题。
1. 蒙特卡罗方法的基本思想
二十世纪四十年代中期,由于科学技术的发展和 电子计算机的发明,蒙特卡罗方法作为一种独立的方 法被提出来,并首先在核武器的试验与研制中得到了 应用。但其基本思想并非新颖,人们在生产实践和科 学试验中就已发现,并加以利用。


两个例子 例1. 蒲丰氏问题 例2. 射击问题(打靶游戏) 基本思想 计算机模拟试验过程
1) 能够比较逼真地描述具有随机性质 的事物的特点及物理实验过程
从这个意义上讲,蒙特卡罗方法可以部分代替物 理实验,甚至可以得到物理实验难以得到的结果。用 蒙特卡罗方法解决实际问题,可以直接从实际问题本 身出发,而不从方程或数学表达式出发。它有直观、 形象的特点。
2) 受几何条件限制小
在计算s维空间中的任一区域Ds上的积分 g g ( x1 , x2 ,, xs )dx1dx2 dxs
一些人进行了实验,其结果列于下表 :
实验者 沃尔弗(Wolf) 年份 1850 投计次数 5000 π的实验值 3.1596
斯密思(Smith)
福克斯(Fox) 拉查里尼 (Lazzarini)
1855
1894 1901
3204
1120 3408
3.1553
3.1419 3.1415929
例2. 射击问题(打靶游戏)

基本思想
由以上两个例子可以看出,当所求问题的解是某 个事件的概率,或者是某个随机变量的数学期望,或 者是与概率、数学期望有关的量时,通过某种试验的 方法,得出该事件发生的频率,或者该随机变量若干 个具体观察值的算术平均值,通过它得到问题的解。 这就是蒙特卡罗方法的基本思想。 当随机变量的取值仅为 1或 0时,它的数学期望就 是某个事件的概率。或者说,某种事件的概率也是随 机变量(仅取值为1或0)的数学期望。
现假设该运动员进行了 N 次射击,每次射击的弹 着 点 依 次 为 r1 , r2 , … , rN , 则 N 次 得 分 g( r1 ) , g(r2),…,g(rN)的算术平均值
1 N g N g (ri ) N i 1
代表了该运动员的成绩。换言之,为积分<g>的估 计值,或近似值。 在该例中,用N次试验所得成绩的算术平均值作 为数学期望<g>的估计值(积分近似值)。
Ds
时,无论区域Ds的形状多么特殊,只要能给出描述Ds 的几何特征的条件,就可以从Ds中均匀产生N个点 (i ) (i ) ( x1(i ) , x2 ,, xs ) ,得到积分的近似值。 Ds N (i ) (i ) (i ) gN g ( x , x , , x 1 2 s ) N i 1 其中Ds为区域Ds的体积。这是数值方法难以作到的。 另外,在具有随机性质的问题中,如考虑的系统 形状很复杂,难以用一般数值方法求解,而使用蒙特 卡罗方法,不会有原则上的困难。
如何产生任意的(x,ζ)? x在[0,a]上任意取值,表示 x在[0,a]上是均匀分布的, 其分布密度函数为: 类似地,ζ的分布密度函数 为: 因此,产生任意的(x,ζ) 的过程就变成了由f1(x)抽样x及 由f2(ζ)抽样ζ的过程了。由此得 到: 其中ξ1,ξ2均为(0,1)上均匀 分布的随机变量。
误差
蒙特卡罗方法的近似值与真值的误差问题,概率论 的中心极限定理给出了答案。该定理指出,如果随机 变量序列X1,X2,…,XN独立同分布,且具有有限非 零的方差σ2 ,即
0 2 ( x E ( X )) 2 f ( x)dx
f(X)是X的分布密度函数。则 N P X E ( X ) x N lim N
蒙特卡罗方法又称随机抽样技巧或统计试验方法。 半个多世纪以来,由于科学技术的发展和电子计算机 的发明 ,这种方法作为一种独立的方法被提出来,并 首先在核武器的试验与研制中得到了应用。蒙特卡罗 方法是一种计算方法,但与一般数值计算方法有很大 区别。它是以概率统计理论为基础的一种方法。由于 蒙特卡罗方法能够比较逼真地描述事物的特点及物理 实验过程,解决一些数值方法难以解决的问题,因而 该方法的应用领域日趋广泛。
2. 蒙特卡罗方法的收敛性,误差
蒙特卡罗方法作为一种计算方法,其收敛性与误 差是普遍关心的一个重要问题。

收敛性 误差 减小方差的各种技巧 效率
收敛性
由前面介绍可知,蒙特卡罗方法是由随机变量X的 简单子样X1,X2,…,XN的算术平均值: 1 N X N Xi N i 1 作为所求解的近似值。由大数定律可知, 如X1,X2,…,XN独立同分布,且具有有限期望值 (E(X)<∞),则 P lim X N E ( X ) 1 N 即随机变量X的简单子样的算术平均值 X N ,当子 样数N充分大时,以概率1收敛于它的期望值E(X)。
3. 蒙特卡罗方法的特点

1) 2) 3) 4) 5) 6)
优点 缺点 1) 收敛速度慢。 能够比较逼真地描述具有随 机性质的事物的特点及物理 2) 误差具有概率性。 实验过程。 3) 在粒子输运问题中, 受几何条件限制小。 计算结果与系统大 收敛速度与问题的维数无关。 小有关。 具有同时计算多个方案与多 个未知量的能力。 误差容易确定。 程序结构简单,易于实现。
因此,可以通俗地说,蒙特卡罗方法是用随机试 验的方法计算积分,即将所要计算的积分看作服从某 种分布密度函数f(r)的随机变量g(r)的数学期望
g g (r ) f (r )dr
0

通过某种试验,得到N个观察值r1,r2,…,rN(用概 率语言来说,从分布密度函数 f(r) 中抽取 N 个子样 r1 , r2 , … , rN ,),将相应的 N 个随机变量的值 g(r1) , g(r2),…,g(rN)的算术平均值
这表明,不等式 X N E ( X )

近似地以概率
N 上式中 与置信度α是一一对应的,根据问题的要 求确定出置信水平后,查标准正态分布表,就可以确 定出 。


下面给出几个常用的α与的数值: α

0.5 0.6745
0.05 1.96
0.003 3
关于蒙特卡罗方法的误差需说明两点:第一,蒙特 卡罗方法的误差为概率误差,这与其他数值计算方法 是有区别的。第二,误差中的均方差σ是未知的,必须 使用其估计值
蒙特卡罗方法
在核技术中的应用
林谦
目 录
第一章 第二章 第三章 第四章 蒙特卡罗方法概述 随机数 由已知分布的随机抽样 蒙特卡罗方法解粒子输运问题
教材

蒙特卡罗方法在实验核物理中的应用
许淑艳 编著 原子能出版社

蒙特卡罗方法
清华大学
参考书

蒙特卡罗方法及其在粒子输运问题中的应用
裴鹿成 张孝泽 编著 科学出版社

蒙特卡罗方法
徐钟济 编著 上海科学技术出版社
联系方式

电话
83918

电子邮件
linqian@
第一章 蒙特卡罗方法概述
1. 2. 3. 4.

蒙特卡罗方法的基本思想 蒙特卡罗方法的收敛性,误差 蒙特卡罗方法的特点 蒙特卡罗方法的主要应用范围 作业
第一章 蒙特卡罗方法概述
设r表示射击运动员的弹着点到靶心的距离,g(r) 表示击中r处相应的得分数(环数),f(r)为该运动员的 弹着点的分布密度函数,它反映运动员的射击水平。 该运动员的射击成绩为
相关文档
最新文档