高考数学前三道大题练习
新课标高考文科理科数学前三大题练习及详解 (7)
前三题练习(3)1、平面直角坐标系中有点(1,cos )P x ,(cos ,1)Q x ,且[],44x ππ∈-.(Ⅰ)求向量OP 与OQ 的夹角θ的余弦值用x 表示的函数()f x ; (Ⅱ)求θ的最值. 2、已知数列{}nn a 12-的前n 项和nSn69-=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设)3log3(2nn a n b -=,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和.3、 甲、乙两个同学解数学题,他们答对的概率分别是0.5与0.8,如果每人都解两道题,(Ⅰ)求甲两题都解对,且乙至少解对一题的概率;(Ⅱ)若解对一题得10分,未解对得0分、求甲、乙得分相等的概率.前三题练习(3)答案1、解:(Ⅰ))cos ,1(x OP=)1,(cos x OQ =x OQ OPcos 2=⋅∴xx OQ OP 222cos11cos cos1||||+=+∙+=∙xx x f 2cos1cos 2)(cos +==∴θ x ∈[4,4ππ-] .6分(Ⅱ)2cos ()[123cos cos x f x xx∈⇒=∈+10分 即]1,322[cos ∈θ又],0[πθ∈ , 0,322arccosmin max ==θθ 12分2.(Ⅰ)当1n =时,,62,2,3,32111110-=-=≥=∴==--n n n n S S a n a S a 时当故223--=n na ,即数列的通项公式为⎪⎩⎪⎨⎧≥-==-.)2(23,)1(32n n a n n …6分(Ⅱ)当1n =时,,31log 321=-=b 当),1()2.33log3(,222+=-=≥-n n n b n n n 时故,111)1(11+-=+=n nn n b n1165)111()3121(3111121+-=+-++-+=+++n n nb b b n由此可知,数列{}n b 的前n 项和n T 为⎪⎪⎩⎪⎪⎨⎧≥+-==)2(1165)1(31n n n T n …13分3、解(Ⅰ)24.0)8.02.08.0(5.022212222=+⨯⨯=C C C P (6)分(Ⅱ)两人都得零分的概率为 0202220.50.20.02C C ⨯=两人都得10分的概率为 121220.50.80.20.16C C ⨯⨯=两人都得20分的概率为 2222220.50.80.16C C ⨯=∴2212122222222220.50.20.50.80.20.50.80.34P C C C C C C =⨯+⨯⨯+⨯=13分ACEDPB。
高考文科数学大题专题练习 (3)
第7页
3.(2019·长郡中学月考)设数列{an}的前n项和为Sn,且Sn= n2-n+1,在正项等比数列{bn}中,b2=a2,b4=a5.
(1)求{an}和{bn}的通项公式; (2)设cn=anbn,求数列{cn=S1=1; 当n≥2时,an=Sn-Sn-1=(n2-n+1)-[(n-1)2-(n-1)+1]
第6页
b1=3对上式也成立,所以bn=n(n+2),即
1 bn
=
1 n(n+2)
=
121n-n+1 2,
所以Tn=
1 2
[
1-13
+
12-14
+
13-15
+…+
n-1 1-n+1 1
+
1n-n+1 2]=12(1+12-n+1 1-n+1 2)=34-2(n+21n)+(3n+2).
第14页
5.(2019·郑州市第一次质量预测)已知数列{an}为等比数 列,首项a1=4,数列{bn}满足bn=log2an,且b1+b2+b3=12.
(1)求数列{an}的通项公式; (2)令cn=bn·4bn+1+an,求数列{cn}的前n项和Sn.
第15页
解析 (1)由bn=log2an和b1+b2+b3=12,得log2(a1a2a3)= 12,∴a1a2a3=212.
设等比数列{an}的公比为q,∵a1=4,∴a1a2a3=4·4q·4q2= 26·q3=212,解得q=4,∴an=4·4n-1=4n.
2023届高考数学大题专项(三角函数与解三角形)练习(附答案)
(1)若 D 为 BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC;
(2)若∠ABC=45°,且 BD=3CD,求 cos∠CFB.
参考答案
1.解 (1)f(0)=2cos20+sin 0=2.
(2)方案一:选条件①.f(x)的一个周期为 π.
f(x)=2cos2x+sin 2x=(cos 2x+1)+sin 2x=√2
6.(山东潍坊一模,17)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知向量 m=(c-a,sin B),n=(b-a,sin
A+sin C),且 m∥n.
(1)求 C;
(2)若√6c+3b=3a,求 sin A.
7.(山东模考卷,18)在△ABC 中,∠A=90°,点 D 在 BC 边上.在平面 ABC 内,过点 D 作 DF⊥BC,且
-B =4√3sin B
cos
2
sin
2
3
B+ sin B =6sin Bcos B+2√3sin2B=2√3sin 2B当 2B-
π
6
π
2π
π
π
+√3.因为 0<B< ,所以- <2B6
3
6
6
7π
.
6
π
π
,即 B= 时,△ABC 面积取得最大值 3√3.
2
3
4.解 (1)在△ABC 中,因为 a=3,c=√2,B=45°,由余弦定理 b2=a2+c2-2accos B,得 b2=9+2
由正弦定理得,c2=a+b2.
因为 a=4,所以 b2=c2-4.
高考数学三轮大题纵横练及答案
高考大题纵横练 高考大题纵横练(一)1.已知函数f (x )=2sin ωx (0<ω<1)在[0,π2]上的最大值为2,当把f (x )的图象上的所有点向右平移φ(0<φ<π2)个单位后,得到图象对应函数g (x )的图象关于直线x =7π6对称.(1)求函数g (x )的解析式;(2)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知g (x )在y 轴右侧的第一个零点为C ,若c =4,求△ABC 的面积S 的最大值. 解 (1)由题意知,函数f (x )在区间[0,π2]上单调递增,∴2sin ωπ2=2, ∴ωπ2=2k π+π4,k ∈Z , 得ω=4k +12,k ∈Z .经验证当k =0时满足题意,故求得ω=12,∴g (x )=2sin(12x -φ2),故12×7π6-12φ=k π+π2,k ∈Z , ∴φ=-2k π+π6,k ∈Z ,又0<φ<π2,∴φ=π6.故g (x )=2sin(x 2-π12).(2)根据题意,得x 2-π12=k π,k ∈Z ,∴x =2k π+π6,k ∈Z ,∴C =π6.又c =4,得16=a 2+b 2-2ab cos π6,∴a 2+b 2=16+3ab ≥2ab , ∴ab ≤32+163,∴S =12ab sin C =14ab ≤8+43,∴S 的最大值为8+4 3.2.如图,在直角梯形ABCP 中,CP ∥AB ,CP ⊥CB ,AB =BC =12CP =2,D 是CP 中点,将△P AD 沿AD 折起,使得PD ⊥底面ABCD .(1)求证:平面P AD ⊥平面PCD ;(2)若E 是PC 的中点,求三棱锥A —PEB 的体积. (1)证明 ∵PD ⊥底面ABCD , ∴PD ⊥AD .又由于CP ∥AB ,CP ⊥ CB ,AB =BC , ∴四边形ABCD 是正方形, ∴AD ⊥CD .又PD ∩CD =D ,故AD ⊥平面PCD , ∵AD ⊂平面P AD , ∴平面P AD ⊥平面PCD .(2)解 ∵ AD ∥BC ,BC ⊂平面PBC , AD ⊄平面PBC ,∴ AD ∥平面PBC ,∴点A 到平面PBC 的距离即为点D 到平面PBC 的距离. 又∵PD =DC ,E 是PC 的中点, ∴PC ⊥ DE ,由(1)知AD ⊥平面PCD , ∴AD ⊥DE . 故BC ⊥ DE .又∵PC ∩BC =C ,∴DE ⊥平面PBC .又∵ AD ⊥平面PCD ,∴AD ⊥CP ,∴PC ⊥BC ,∴S△PEB=12S△PBC=12×(12×BC×PC)=2,V A—PEB=V D—PEB=13×DE×S△PEB=23.3.已知数列{a n}的前n项和为S n,且S n=2n2+n(n∈N*),数列{a n}满足a n=4log2b n+3(n∈N*).(1)求a n,b n;(2)求数列{a n·b n}的前n项和T n.解(1)由S n=2n2+n,得a1=S1=3;当n≥2时,a n=S n-S n-1=4n-1.又a1=3也适合上式.所以a n=4n-1,n∈N*,由4n-1=a n=4log2b n+3,得b n=2n-1,n∈N*.(2)由(1)知a n b n=(4n-1)2n-1,n∈N*.所以T n=3+7×2+11×22+…+(4n-1)2n-1,所以2T n=3×2+7×22+…+(4n-5)2n-1+(4n-1)2n,所以2T n-T n=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故T n=(4n-5)2n+5,n∈N*.4.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解 (1) 由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,得x =0.007 5,所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a , 由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5, 得a =224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.012 5×20×100=25(户),月平均用电量为[240,260)的用户有0.007 5×20×100=15(户),月平均用电量为[260,280)的用户有0.005×20×100=10(户),月平均用电量为[280,300]的用户有0.002 5×20×100=5(户),抽取比例=1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).5.如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆x 2a 2+y 2b 2=1(a >b >0)上不同的三点,A (32,322),B (-3,-3),C 在第三象限,线段BC 的中点在直线OA 上.(1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C )且直线PB ,PC 分别交直线OA 于M ,N 两点,证明OM →·ON →为定值并求出该定值.解 (1)由已知,得⎩⎪⎨⎪⎧18a 2+92b2=1,9a 2+9b 2=1,解得⎩⎪⎨⎪⎧a 2=27,b 2=272.∴椭圆的标准方程为x 227+y 2272=1.(2)设点C (m ,n )(m <0,n <0), 则BC 中点为(m -32,n -32).由已知,求得直线OA 的方程为x -2y =0, 从而m =2n -3.①又∵点C 在椭圆上,∴m 2+2n 2=27.② 由①②,解得n =3(舍),n =-1,从而m =-5. ∴点C 的坐标为(-5,-1).(3)设P (x 0,y 0),M (2y 1,y 1),N (2y 2,y 2). ∵P ,B ,M 三点共线,∴y 1+32y 1+3=y 0+3x 0+3,整理得y 1=3(y 0-x 0)x 0-2y 0-3.∵P ,C ,N 三点共线,∴y 2+12y 2+5=y 0+1x 0+5,整理得y 2=5y 0-x 0x 0-2y 0+3.∵点P 在椭圆上,∴x 20+2y 20=27,x 20=27-2y 20. 从而y 1y 2=3(x 20+5y 20-6x 0y 0)x 20+4y 20-4x 0y 0-9 =3(3y 20-6x 0y 0+27)2y 20-4x 0y 0+18=3×32=92. ∴OM →·ON →=5y 1y 2=452,∴OM →·ON →为定值,定值为452.6.已知函数f (x )=x +a ln x 在x =1处的切线与直线x +2y =0垂直,函数g (x )=f (x )+12x 2-bx .(1)求实数a 的值;(2)若函数g (x )存在单调递减区间,求实数b 的取值范围;(3)设x 1,x 2 (x 1<x 2)是函数g (x )的两个极值点,若b ≥72,求g (x 1)-g (x 2)的最小值.解 (1)∵f (x )=x +a ln x ,∴f ′(x )=1+ax ,∵切线与直线x +2y =0垂直, ∴f ′(1)=1+a =2,∴a =1. (2)∵g (x )=ln x +12x 2-(b -1)x (x >0),g ′(x )=1x +x -(b -1)=x 2-(b -1)x +1x .设μ(x )=x 2-(b -1)x +1,则μ(0)=1>0只需 ⎩⎪⎨⎪⎧b -12>0,Δ=(b -1)2-4>0⇒⎩⎪⎨⎪⎧b >1,b >3或b <-1⇒b >3. ∴b 的取值范围为(3,+∞).(3)令g ′(x )=0,则x 2-(b -1)x +1=0, ∴x 1+x 2=b -1,x 1x 2=1. g (x 1)-g (x 2)=ln x 1x 2+12(x 21-x 22)-(b -1)(x 1-x 2) =lnx 1x 2+12(x 21-x 22)-(x 1+x 2)(x 1-x 2) =ln x 1x 2-12x 21-x 22x 1x 2=ln x 1x 2-12(x 1x 2-x 2x 1),设t =x 1x 2,∵0<x 1<x 2,∴0<t <1,又∵⎩⎪⎨⎪⎧x 1+x 2=b -1,x 1x 2=1⇒(x 1+x 2)2x 1x 2=(b -1)2,得t +1t +2≥(72-1)2=254,∴4t 2-17t +4≥0,∴0<t ≤14.令h (t )=ln t -12(t -1t )(0<t ≤14),h ′(t )=1t -12(1+1t 2)=-(t -1)22t 2<0,∴h (t )在(0,14]上单调递减,h (t )≥h (14)=158-2ln 2.故g (x 1)-g (x 2)的最小值为158-2ln 2.高考大题纵横练(二)1.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc . (1)求角A 的大小;(2)设函数f (x )=sin x +2cos 2x2,a =2,f (B )=2+1,求b .解 (1)在△ABC 中,∵b 2+c 2-a 2=bc , 由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,∵0<A <π,∴A =π3.(2)f (x )=sin x +2cos 2 x2=sin x +cos x +1=2sin(x +π4)+1,f (B )=2sin(B +π4)+1=2+1,∴B =π4.∵a sin A =b sin B ,即2sin π3 =bsin π4, ∴b =2×2232=263.2.如图,在四棱锥P —ABCD 中,底面ABCD 为边长为2的正方形,P A ⊥BD .(1)求证:PB =PD ;(2)若E ,F 分别为PC ,AB 的中点,EF ⊥平面PCD ,求三棱锥D —ACE 的体积.(1)证明 连接AC 交BD 于点O ,连接PO ,因为底面ABCD 是正方形, 所以AC ⊥BD 且O 为BD 的中点. 又P A ⊥BD ,P A ∩AC =A , 所以BD ⊥平面P AC ,由于PO ⊂平面P AC ,故BD ⊥PO . 又BO =DO ,故PB =PD .(2)解 设PD 的中点为Q ,连接AQ ,EQ ,EQ 綊12CD ,所以AFEQ 为平行四边形,EF ∥AQ . 因为EF ⊥平面PCD , 所以AQ ⊥平面PCD ,所以AQ ⊥PD ,因为PD 的中点为Q , 所以AP =AD = 2.由AQ ⊥平面PCD ,可得AQ ⊥CD , 又AD ⊥CD ,AQ ∩AD =A , 所以CD ⊥平面P AD , 所以CD ⊥P A .又BD ⊥P A ,所以P A ⊥平面ABCD . V D —ACE =V E —ACD =13×12P A ×S △ACD=13×12×2×12×2×2=26, 故三棱锥D —ACE 的体积为26.3.已知数列{a n }的首项a 1=1,a n +1=1-14a n,其中n ∈N *.(1)设b n =22a n -1,求证:数列{b n }是等差数列,并求出{a n }的通项公式;(2)设c n =4a n n +1,数列{c n c n +2}的前n 项和为T n ,是否存在正整数m ,使得T n <1c m c m +1对于n ∈N *恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 解 (1)∵b n +1-b n =22a n +1-1-22a n -1=22(1-14a n )-1-22a n -1 =4a n 2a n -1-22a n -1=2(常数), ∴数列{b n }是等差数列. ∵a 1=1,∴b 1=2,因此b n =2+(n -1)×2=2n , 由b n =22a n -1得a n =n +12n .(2)由c n =4a n n +1,a n =n +12n 得c n =2n ,∴c n c n +2=4n (n +2)=2(1n -1n +2),∴T n =2(1-13+12-14+13-15+…+1n -1n +2)=2(1+12-1n +1-1n +2)<3,依题意要使T n <1c m c m +1对于n ∈N *恒成立, 只需1c m c m +1≥3,即m (m +1)4≥3,解得m ≥3或m ≤-4,又m 为正整数, ∴m 的最小值为3.4.某单位员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)下表是年龄的频率分布表,求正整数a ,b 的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的员工的人数分别是多少?(3) 在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率. 解 (1)由题设可知,a =0.08×5×500=200,b =0.02×5×500=50.(2)因为第1,2,3组共有50+50+200=300(人),利用分层抽样在300名员工中抽取6名员工,每组抽取人数分别为:第1组的人数为6×50300=1,第2组的人数为6×50300=1,第3组的人数为6×200300=4.所以第1,2,3组分别抽取1人,1人,4人.(3)设第1组的1位员工为A ,第2组的1位员工为B ,第3组的4位员工为C 1,C 2,C 3,C 4,则从6位员工中抽取2人有(A ,B ),(A ,C 1),(A ,C 2),(A ,C 3),(A ,C 4),(B ,C 1),(B ,C 2),(B ,C 3),(B ,C 4),(C 1,C 2),(C 1,C 3),(C 1,C 4),(C 2,C 3),(C 2,C 4),(C 3,C 4)共15种可能. 其中2人年龄都不在第3组的有:(A ,B ),共1种可能. 所以至少有1人年龄在第3组的概率为1-115=1415.5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1、F 2,短轴两个端点为A 、B ,且四边形F 1AF 2B 是边长为2的正方形.(1)求椭圆方程;(2)若C ,D 分别是椭圆长轴的左,右端点,动点M 满足MD ⊥CD ,连接CM ,交椭圆于点P ,证明:OM →·OP →为定值;(3)在(2)的条件下,试问x 轴上是否存在异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP ,MQ 的交点?若存在,求出点Q 的坐标;若不存在,请说明理由.(1)解 ∵a =2,b =c ,a 2=b 2+c 2,∴b 2=2,∴椭圆方程为x 24+y 22=1. (2)证明 C (-2,0),D (2,0),设M (2,y 0),P (x 1,y 1),则OP →=(x 1,y 1),OM →=(2,y 0),直线CM :x -24=y -y 0y 0,即y =y 04x +12y 0,代入椭圆x 2+2y 2=4得,(1+y 208)x 2+12y 20x +12y 20-4=0. ∵x 1·(-2)=4(y 20-8)y 20+8, ∴x 1=-2(y 20-8)y 20+8,∴y 1=8y 0y 20+8, ∴OP →=(-2(y 20-8)y 20+8,8y 0y 20+8), ∴OP →·OM →=-4(y 20-8)y 20+8+8y 20y 20+8=4y 20+32y 20+8=4(定值). (3)解 设存在Q (m,0)满足条件,则MQ ⊥DP ,MQ →=(m -2,-y 0),DP →=(-4y 20y 20+8,8y 0y 20+8), 则由MQ →·DP →=0,得-4y 20y 20+8(m -2)-8y 20y 20+8=0. 从而得m =0,∴存在Q (0,0)满足条件.6.已知函数f (x )=ln x +1e x(e 是自然对数的底数),h (x )=1-x -x ln x . (1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求h (x )的最大值;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数. 证明:对任意x >0,g (x )<1+e -2.(1)解 由f (x )=ln x +1e x ,得f (1)=1e, f ′(x )=1-x -x ln x x e x ,所以k =f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =1e. (2)解 因为h (x )=1-x -x ln x (x >0).所以h ′(x )=-ln x -2.令h ′(x )=0得,x =e -2. 因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增; 当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减. 所以h (x )在x =e -2处取得极大值,也是最大值.h (x )的最大值为h (e -2)=1+e -2.(3)证明 因为g (x )=xf ′(x ),所以g (x )=1-x -x ln x e x(x >0), g (x )<1+e -2等价于1-x -x ln x <e x (1+e -2).由(2)知h (x )的最大值为h (e -2)=1+e -2,故1-x -x ln x ≤1+e -2.只需证明x >0时,e x >1成立,这显然成立. 所以1-x -x ln x ≤1+e -2<e x (1+e -2),因此对任意x >0,g (x )<1+e -2.。
(学)高考数学前三题专题练习
一、(三角函数部分)1、已知A 、B 、C 的坐标分别为A(4,0)、B(0.4)、C(3cos α,3sin α)(Ⅰ)若(,0)απ∈-,且||||AC BC = .求角α的值;(Ⅱ)若0AC BC = .求22sin sin 21tan ααα++的值.2、已知向量(2sin ,cos ),,2cos ),()2a x x b x x f x a b ===⋅- 定义函数.(1) 求f (256π)的值;(2)求函数)(x f 的最小正周期及单调减区间; 高考数学前三题专题练习二、(概率部分)1、一台仪器每启动一次都随机地出现一个5位的二进制数12345A a a a a a =,其中 A 的各位数字中,11,(2,3,4,5)k a a k ==出现0的概率为13,出现1的概率为23.例如:A=10001,其中152341,0a a a a a =====.记12345a a a a a ξ=++++,当启动仪器一次时,(Ⅰ)求3ξ=的概率;(Ⅱ)求ξ的概率分布列及E ξ.2、甲、乙、丙、丁四人独立回答同一道数学问题,其中任何一人答对与否,对其它人答题结果无影响。
已知甲答对的概率为31,乙、丙、丁答对的概率均为21,设有ξ人答对此题,请写出随机变量ξ的概率分布及期望。
3、学校生物实验室养了10条金鱼,其中6条是红色的,其余是黑色的。
实验员每天随机地取出3条金鱼,准备生物老师上课使用,上完课再放回实验室。
(1)求一天中取到两种颜色金鱼的概率;(2)求一个星期的五天中,至少有三天都取到两种颜色金鱼的概率;(用分数表示)(3)在一个星期五天中,求取得两种颜色金鱼的数学期望.三、(立体几何部分)DA 1C 11、如图,直三棱柱ABC —A 1B 1C 1中,0190,2,4ACB BC AC AA ∠====,D 为棱CC 1上的一动点,M 、N 分别为11,ABD A B D ∆∆的重心.(I ) 求证:MN BC ⊥;(II )若点C 在ABD ∆上的射影正好为M ,(ⅰ)求二面角C —AB —D 的大小,(ⅱ)求点C 1到平面A 1B 1D 的距离.。
高考数学练习卷及含答案 (3)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、在长方体ABCD—A′B′C′D′的12条棱中,与棱AA′成异面直线的棱有()A.3条B.4条C.6条D.8条2、如图1在正方体ABCD—A′B′C′D′中,直线AC与直线BC′所成的角为() A.30°B.60°C.90°D.45°3、若a∥α,⊂bα,则a和b的关系是()A.平行B.相交C.平行或异面D.以上都不对4、已知PD⊥矩形ABCD所在的平面(图2),图中相互垂直的平面有()A.1对B.2对C.3对D.5对5、棱长为2的正方体内切球的表面积为()A.π4B.π16C.π8D.π26.函数sin24y xπ⎛⎫=+⎪⎝⎭在一个周期内的图像可能是()PA BCD图27.在ABC △中,若2AB BC CA === ,则AB BC ⋅ 等于()A.23- B.23 C.-2 D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m 10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A. B. C.2 D.111.等边△ABC 的边长为a,过△ABC 的中心O 作OP⊥平面ABC,且OP=63a,则点P 到△ABC 的边的距离为()A.a B.32a C.33a D.63a 12.已知函数f (x)是定义域为R 的奇函数,给出下列6个函数:①g (x)=sin x (1-sin x)1-sin x ;②g (x)=sin(52π+x);③g (x)=1+sin x-cos x 1+sin x+cos x;④g (x)=lg sin x ;⑤g (x)=lg(x2+1+x);⑥g (x)=2ex+1-1。
高考数学练习卷及含答案 (7)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.已知关于x 的方程02=-+a ax x 有两个不等的实根,则()A、4-<a 或0>a B、0≥a C、04<<-a D、4->a 2.已知a ⊥b ,并且a ),3(x =,b)12,7(=,则x=()A47-B47C37-D373.等差数列{}n a 中,12010=S ,那么29a a +的值是()A12B24C 16D484.下列函数为奇函数的是()A.1+=x y B.2x y =C.xx y +=2D.3x y =5.已知a、b 为两个单位向量,则一定有()A.a =bB.若a //b ,则a =bC.1=⋅b a D.bb a a ⋅=⋅6、设x∈R,则“|x﹣|<”是“x 3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7、已知a=log 2e,b=ln2,c=log,则a,b,c 的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b 8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.311.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有()A.38C种B.38A种C.39C种D.311C种12.某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有()A.6种B.8种C.12种D.16种二、填空题(共4小题,每小题5分;共计20分)1.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.2.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.3.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________,最大值是___________.4.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = _____.三、大题:(满分70分)1.已知数列{an}和{bn}满足a1=1,b1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.2.已知函数()11ln x f x x x -=-+.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线e xy =的切线.3.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C.(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P,Q 两点,点P 在第一象限,PE⊥x 轴,垂足为E,连结QE 并延长交C 于点G.(i)证明:PQG △是直角三角形;(ii)求PQG △面积的最大值.4.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P.(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.6.直线02=-+y x l :,一束光线过点)13,0(+P ,以︒120的倾斜角投射到l 上,经l 反射,求反射线所在直线的方程.参考答案:一、选择题:1-5题答案:AABDD 6-10题答案:ADACA 11-12题答案:AC6、设x∈R,则“|x﹣|<”是“x 3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x 3<1,解得x<1,故“|x﹣|<”是“x 3<1”的充分不必要条件,故选:A.7、已知a=log 2e,b=ln2,c=log,则a,b,c 的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log 2e>1,0<b=ln2<1,c=log =log 23>log 2e=a,则a,b,c 的大小关系c>a>b,故选:D.8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.10、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.二、填空题:152、433、0,54、{1,6}三、大题:1.解:(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+.又因为a1+b1=l,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a1–b1=l,所以{}n n a b -是首项为1,公差为2的等差数列.(2)由(1)知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.2.解:(1)f(x)的定义域为(0,1),(1,+∞)单调递增.因为f(e)=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又1101x <<,1111111(ln ()01x f x f x x x +=-+=-=-,故f(x)在(0,1)有唯一零点11x .综上,f(x)有且仅有两个零点.(2)因为0ln 01e x x -=,故点B(–lnx0,01x )在曲线y=ex 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y=ex 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x ,所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y=ex 的切线.3.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i)设直线PQ 的斜率为k,则其方程为(0)y kx k =>.由22142y kx x y =⎧⎪⎨+=⎪⎩得x =记u =(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii)由(i)得||2PQ =221||2PG k =+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k ++===++++‖.设t=k+1k ,则由k>0得t≥2,当且仅当k=1时取等号.因为2812tS t =+在[2,+∞)单调递减,所以当t=2,即k=1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.4.解:(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==.由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.分析:先求1l 与2l 的交点,再列两条直线夹角公式,利用l 与3l 夹角为4π,求得l 的斜率.也可使用过两直线交点的直线系方程的方法省去求交点的过程,直接利用夹角公式求解.解法一:由方程组⎩⎨⎧=--=+0104302y x y x 解得直线1l 与2l 的交点)1,2(-.于是,所求直线l 的方程为)2(1-=+x k y .又由已知直线03253=+-y x l :的斜率253=k ,而且l 与3l 的夹角为4π,故由两直线夹角正切公式,得3314tan kk k k +-=π,即k k 251254tan +-=π.有125125±=+-k k ,15252±=+-k k ,当15252=+-k k 时,解得37-=k ;当15252-=+-kk 时,解得73=k .故所求的直线l 的方程为)2(731-=+x y 或)2(371--=+x y ,即01373=--y x 或01137=-+y x .解法二:由已知直线l 经过两条直线1l 与2l 的交点,则可设直线l 的方程为0)2()1043(=++--y x y x λ,(*)即010)42()3(=--++y x λλ.又由l 与3l 的夹角为4π,3l 的方程为0325=+-y x ,有212112214tanB B A A B A B A +-=π,即)42)(2()3(55)42()2)(3(1--++⨯---+=λλλλ,也即λλ+-=2312141,从而1231214=+-λλ,1231214-=+-λλ.解得139-=λ,1137=λ.代入(*)式,可得直线l 的方程为01373=--y x 或01137=-+y x .说明:此题用到两直线的夹角公式,注意夹角公式与到角公式的区别。
高考数学大题专题练习 (1)
10 10
+
5 5
3 ×
1010=
2 10 .
第8页
3.(2019·东北三省三校第一次联考)设函数 f(x)=sin2x-π6+ 2cos2x.
(1)当 x∈0,π2时,求函数 f(x)的值域; (2)△ ABC 的内角 A,B,C 所对的边分别为 a,b,c,且 f(A) =32, 2a= 3b,c=1+ 3,求△ ABC 的面积.
1--
11002=3
10 10 .
在△ ABC 中,由正弦定理得sinaA=sibnB,
即 3
310=sin2B,
10
第7页
∴sinB= 55.又 A∈π2,π,故 B∈0,π2,
∴cosB= 1-sin2B=
1-
552=2
5
5 .
∴cos(B - A) = cosBcosA + sinBsinA = 255 ×-
∵ 2a= 3b,∴由正弦定理可得 2sinA= 3sinB,
∴sinB=
2 2.
第11页
∵0<B<23π,∴B=π4.
∴sinC=sin(π-A-B)=sin(A+B)=
6+ 4
2 .
∵由正弦定理可得sincC= 42=sibnB,
∴b=2.
∴S△ ABC=12bcsinA=3+2
3 .
第12页
4.(2019·广东省六校第二次联考)已知△ ABC 的三个内角 A, B,C 所对的边分别为 a,b,c,且 asinAsinB+bcos2A=53a.
(1)求ba; (2)若 c2=a2+85b2,求角 C 的大小.
第13页
解析 (1)由正弦定理及已知条件得 sin2AsinB+sinBcos2A= 53sinA,即 sinB(sin2A+cos2A)=53sinA,
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习(附答案)
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习1.[2023ꞏ新课标Ⅰ卷]已知在△ABC中,A+B=3C,2sin (A-C)=sin B.(1)求sin A;(2)设AB=5,求AB边上的高.2.△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.3.[2023ꞏ新课标Ⅱ卷]记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC面积为3,D为BC的中点,且AD=1.(1)若∠ADC=π3,求tan B;(2)若b2+c2=8,求b,c.4.[2022ꞏ新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin 2B1+cos 2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.5.[2023ꞏ全国乙卷(理)]在△ABC 中,已知∠BAC =120°,AB =2,AC =1. (1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.6.[2023ꞏ河北石家庄模拟]在①cos C =217 ,②a sin C =c cos ⎝⎛⎭⎫A -π6 ,这两个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B =π3 ,D 是边BC 上一点,BD =5,AD =7,且________,试判断CD 和BD 的大小关系________.注:如果选择多个条件分别解答,按第一个解答计分.7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2 a +b =2c ,求sin C .8.[2022ꞏ全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531 ,求△ABC 的周长.参考答案1.答案解析:方法一 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -π4 )=sin (3π4 -A ),展开并整理得2 (sin A -cos A )=22 (cos A +sin A ), 得sin A =3cos A ,又sin 2A +cos 2A =1,且sin A >0,所以sin A =31010 .(2)由正弦定理BCsin A =AB sin C ,得BC =AB sin C ×sin A =522×31010 =35 ,由余弦定理AB 2=AC 2+BC 2-2AC ꞏBC cos C ,得52=AC 2+(35 )2-2AC ꞏ35 cos π4 , 整理得AC 2-310 AC +20=0, 解得AC =10 或AC =210 ,由(1)得,tan A =3>3 ,所以π3 <A <π2 ,又A +B =3π4 ,所以B >π4 ,即C <B ,所以AB <AC ,所以AC =210 ,设AB 边上的高为h ,则12 ×AB ×h =12 ×AC ×BC sin C ,即5h =210 ×35 ×22 ,解得h =6,所以AB 边上的高为6.方法二 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -C )=sin [π-(A +C )]=sin (A +C ),所以2sin A cos C -2cos A sin C =sin A cos C +cos A sin C , 所以sin A cos C =3cos A sin C , 易得cos A cos C ≠0,所以tan A =3tan C =3tan π4 =3,又sin A >0,所以sin A =332+12 =31010 . (2)由(1)知sin A =31010 ,tan A =3>0,所以A 为锐角,所以cos A =10,所以sin B =sin (3π4 -A )=22 (cos A +sin A )=22 ×(1010 +31010 )=255 ,由正弦定理AC sin B =ABsin C ,得AC =AB ꞏsin Bsin C =5×25522=210 ,故AB 边上的高为AC ×sin A =210 ×31010 =6.2.答案解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ꞏAB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ꞏAB cos A .②由①②得cos A =-12 .因为0<A <π,所以A =2π3 .(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23 ,从而AC =23 sin B ,AB =23 sin (π-A -B )=3cos B -3 sin B .故BC +AC +AB =3+3 sin B +3cos B =3+23 sin ⎝⎛⎭⎫B +π3 . 又0<B <π3 ,所以当B =π6 时,△ABC 周长取得最大值3+23 . 3.答案解析:(1)因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12 ×AD ×DC sin ∠ADC =2×12 ×1×DC ×32 =3 , 解得DC =2,所以BD =DC =2,a =4.因为∠ADC =π3 ,所以∠ADB =2π3 .在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ꞏBD cos ∠ADB =1+4+2=7,所以c =7 .在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ꞏDC ꞏcos ∠ADC =1+4-2=3,所以b =3 .在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714 ,所以sin B =1-cos 2B =2114 .(2)因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ꞏBD =-AD 2+DC 2-b 22AD ꞏDC , 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3 ,所以a =23 .在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc ,所以S △ABC =12 bc sin ∠BAC =12 bc 1-cos 2∠BAC=12 bc 1-⎝⎛⎭⎫-2bc 2=12 b 2c 2-4 =3 ,解得bc =4.则由⎩⎪⎨⎪⎧bc =4b 2+c 2=8 ,解得b =c =2. 4.答案解析:(1)由已知条件,得sin 2B +sin A sin 2B =cos A +cos A cos 2B .所以sin 2B =cos A +cos A cos 2B -sin A sin 2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos 2B ≠0,则B ≠π2 ,所以cos B ≠0,所以sin B =-cos C =12 .又0<B <π3 ,所以B =π6 .(2)由(1)知sin B =-cos C >0,则B =C -π2 ,所以sin A =sin (B +C )=sin (2C -π2 )=-cos 2C .由正弦定理,得a 2+b 2c 2 =sin 2A +sin 2B sin 2C =cos 22C +cos 2Csin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C =2+4sin 4C -5sin 2C sin 2C=2sin 2C +4sin 2C -5≥22sin 2C ꞏ4sin 2C -5=42 -5,当且仅当sin 2C =22 时,等号成立,所以a 2+b 2c 2 的最小值为42 -5. 5.答案解析:(1)如图,由余弦定理得BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC =22+12+2×2×1×12 =7,得BC =7 .方法一 由正弦定理ACsin ∠ABC =BC sin ∠BAC ,得sin ∠ABC =1×327=2114 .方法二 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ꞏBC =4+7-12×2×7 =5714 , 所以sin ∠ABC =1-cos 2∠ABC =21 .(2)方法一 由sin ∠ABC =2114 ,得tan ∠ABC =35 ,又tan ∠ABC =DA AB =DA 2 ,所以DA =235 ,故△ADC 的面积为12 DA ꞏAC ꞏsin (120°-90°)=12 ×235 ×1×12 =3 .方法二 △ABC 的面积为12 AC ꞏAB ꞏsin ∠BAC =12 ×1×2×32 =32 ,S △ADC S △BAD=12AC ꞏAD ꞏsin ∠CAD12AB ꞏAD ꞏsin ∠BAD =sin 30°2×sin 90° =14 ,故△ADC 的面积为15 S △ABC =15 ×3 =3.6.答案解析:设AB =x ,在△ABD 中由余弦定理可得:49=x 2+25-2ꞏx ꞏ5ꞏcos π3 =x 2+25-5x , 即x 2-5x -24=0,解得x =8. 方案一 选条件①.由cos C =217 得sin C =277 , ∵A +B +C =π,∴sin A =sin (B +C )=32 ×217 +12 ×277 =5714 ,在△ABC 中由正弦定理可得:BC 5714 =8277,解得:BC =10,∴CD =BD =5. 方案二 选条件②.由正弦定理可得:a =2R sin A ,c =2R sin C ,代入条件a sin C =c cos ⎝⎛⎭⎫A -π6 得:sin A sin C =sin C ꞏ⎝⎛⎭⎫32cos A +12sin A =32 cos A sin C +12 sin A sin C ,∴12 sin A sin C =3cos A sin C ,因为A 为三角形内角,所以tan A =3 ,故A =π3 , 所以△ABC 为等边三角形,所以BC =8,∴CD =3,所以CD <BD .7.答案解析:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12 . 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2 sin A +sin (120°-C )=2sin C ,即62 +3 cos C +12 sin C =2sin C ,可得cos (C +60°)=-2.由于0°<C <120°,所以sin (C +60°)=22 ,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60°=6+2 .8.答案解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ),∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C .由余弦定理,得a 2+c 2-b 22 =b 2+c 2-a 2-a 2+b 2-c 22. 整理,得2a 2=b 2+c 2.(2)由(1)知2a 2=b 2+c 2.又∵a =5,∴b 2+c 2=2a 2=50.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即25=50-5031 bc ,∴bc =312 .∴b +c =b 2+c 2+2bc =50+31 =9, ∴a +b +c =14.故△ABC 的周长为14.。
高考专项练习数学试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像与x轴的交点个数为()。
A. 1个B. 2个C. 3个D. 无法确定2. 在△ABC中,若∠A = 60°,∠B = 45°,则△ABC的内角和为()。
A. 120°B. 135°C. 150°D. 180°3. 下列函数中,是奇函数的是()。
A. y = x^2B. y = |x|C. y = x^3D. y = x^44. 若log2(3x - 1) = 3,则x的值为()。
A. 2B. 4C. 8D. 165. 已知数列{an}的前n项和为Sn,若a1 = 2,且an + 1 = 3an,则S5的值为()。
A. 62B. 63C. 64D. 656. 下列复数中,是纯虚数的是()。
A. 2 + 3iB. 4 - 5iC. 1 + 2iD. -1 - 2i7. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为()。
A. ±1B. ±2C. ±3D. ±48. 在等差数列{an}中,若a1 = 3,d = 2,则第10项an的值为()。
A. 21B. 23C. 25D. 279. 若不等式x^2 - 5x + 6 > 0的解集为()。
A. x < 2 或 x > 3B. x < 3 或 x > 2C. x < 2 或 x < 3D. x > 2 或 x > 310. 下列各式中,正确的是()。
A. sin(α + β) = sinαcosβ + cosαsinβB. cos(α + β) =cosαcosβ - sinαsinβC. tan(α + β) = tanα + tanβD. cot(α + β) = cotα - cotβ二、填空题(本大题共5小题,每小题10分,共50分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an的值为______。
高考数学大题经典习题
1. 对于函数()321(2)(2)3f x a x bx a x =-+-+-。
(1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过22sin cos t t t -t 的取值范围;(2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。
1. (1)由()321(2)(2)3f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+-因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根因为()f x 的图像上每一点的切线的斜率不超过22sin cos t t t -+所以()2'2sin cos f x t t t x R ≤-∈恒成立, 而()()2'21f x x =--+,其最大值为1.故22sin cos 1t t t -≥(2)当2a =-时,由()f x 在R 上单调,知0b =当2a ≠-时,由()f x 在R 上单调()'0f x ⇔≥恒成立,或者()'0f x ≤恒成立. ∵()2'(2)2(2)f x a x bx a =-+-+-,2244(4)0b a ∴∆=+-≤可得224a b +≤从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为4S π=2. 函数cx bx ax x f ++=23)((0>a )的图象关于原点对称,))(,(ααf A 、))(,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .(Ⅰ)求b 的值;(Ⅱ)求函数)(x f 的解析式;(Ⅲ)若mm x f x 6)(],1,2[->-∈恒成立,求实数m 的取值范围. 2. (Ⅰ) b =0(Ⅱ)3'2()()30,f x ax cxf x ax c αβ=+∴=+=的两实根是则 03c a αβαβ+=⎧⎪⎨⋅=⎪⎩|AB|=2222()()()()4()2f f αβαβαβ⇒-+-=⇒-=又01a a >∴= 3()32x f x x =-(Ⅲ) [2,1]x ∈-时,求()f x 的最小值是-53. 已知()d cx bx ax x f +++=23是定义在R 上的函数,其图象交x 轴于A ,B ,C 三点,若点B的坐标为(2,0),且()x f 在]0,1[-和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.(1)求c 的值;(2)在函数()x f 的图象上是否存在一点M (x 0,y 0),使得()x f 在点M 的切线斜率为3b若存在,求出点M 的坐标;若不存在,说明理由;3. ⑴ ∵()x f 在[]0,1-和[]2,0上有相反单调性,∴ x=0是()x f 的一个极值点,故()0'=x f ,即0232=++c bx ax 有一个解为x=0,∴c=0 ⑵ ∵()x f 交x 轴于点B (2,0)∴()a b d d b a 24,048+-==++即令()0'=x f ,则abx x bx ax 32,0,023212-===+ ∵()x f 在[]2,0和[]5,4上有相反的单调性∴4322≤-≤a b , ∴36-≤≤-ab假设存在点M (x 0,y 0),使得()x f 在点M 的切线斜率为3b ,则()b x f 30'=即 032302=-+b bx ax ∵ △=()()⎪⎭⎫ ⎝⎛+=+=-⨯⨯-94364334222a bab ab b b a b又36-≤≤-ab , ∴△<0∴不存在点M (x 0,y 0),使得()x f 在点M 的切线斜率为4. 已知函数x x f ln )(=(1)求函数x x f x g -+=)1()(的最大值;(2)当b a <<0时,求证22)(2)()(ba ab a a f b f +->-; 4. (1)x x f x g x x f -+==)1()(,ln )()1()1ln()(->-+=∴x x x x g 111)(-+='x x g 令,0)(='x g 得0=x 当01<<-x 时,0)(>'x g 当0>x 时0)(<x g ,又0)0(=g∴ 当且仅当0=x 时,)(x g 取得最大值0(2))1ln(ln lnln ln )()(bb a b a a b a b a f b f -+-=-==-=- 由(1)知bab b b a a f b f x x -=--≥-≤+)()()1ln( 又222222)(2212,0b a a b b b a b b a a b ab b a b a +->-∴+>∴>+∴<< 5. 已知)(x f 是定义在1[-,0()0 ,]1上的奇函数,当1[-∈x ,]0时,212)(x ax x f +=(a 为实数).(1)当0(∈x ,]1时,求)(x f 的解析式;(2)若1->a ,试判断)(x f 在[0,1]上的单调性,并证明你的结论;(3)是否存在a ,使得当0(∈x ,]1时,)(x f 有最大值6-.5. (1)设0(∈x ,]1,则1[-∈-x ,)0,212)(x ax x f +-=-,)(x f 是奇函数,则212)(x ax x f -=,0(∈x ,]1;(2))1(222)(33x a x a x f +=+=',因为1->a ,0(∈x ,]1,113≥x ,013>+xa ,即0)(>x f ',所以)(x f 在0[,]1上是单调递增的.(3)当1->a 时,)(x f 在0(,]1上单调递增,25)1()(max -=⇒==a a f x f (不含题意,舍去),当1-≤a ,则0)(=x f ',31a x -=,如下表)1()(3max af x f -=0(22226∈=⇒-=⇒-=x a ]1,所以存在22-=a 使)(x f 在0(,]1上有最大值6-..6. 已知5)(23-+-=x x kx x f 在R 上单调递增,记ABC ∆的三内角C B A ,,的对应边分别为c b a ,,,若ac b c a +≥+222时,不等式[])4332()cos(sin 2+<+++m f C A B m f 恒成立. (Ⅰ)求实数k 的取值范围;(Ⅱ)求角B cos 的取值范围;(Ⅲ)求实数m 的取值范围.19. (1)由5)(23-+-=x x kx x f 知123)(2+-='x kx x f , )(x f 在R 上单调递增,∴0)(>'x f 恒成立,∴03>k 且0<∆,即0>k 且0124<-k ,∴31>k ,当0=∆,即31=k 时,22)1(123)(-=+-='x x kx x f , ∴1<x 时0)(>'x f ,1>x 时,0)(>'x f ,即当31=k 时,能使)(x f 在R 上单调递增,31≥∴k . (2) ac b c a +≥+222,由余弦定理:2122cos 222=≥-+=ac ac ac b c a B ,∴30π≤<B ,----5分 (3) )(x f 在R 上单调递增,且[])4332()cos(sin 2+<+++m f C A B m f ,所以 4332)cos(sin 2+<+++m C A B m =++=++-=++--429cos cos 433cos sin 433)cos(sin 222B B B B C A B 87)21(cos 2≥++B ,---10分 故82<-m m ,即9)1(2<-m ,313<-<-m ,即40<≤m ,即160<≤m7. 已知函数36)2(23)(23-++-=x x a ax x f(I )当2>a 时,求函数)(x f 的极小值(II )试讨论曲线)(x f y =与x 轴的公共点的个数。
2023届新高考数学复习:专项(等高线问题)经典题提分练习(附答案)
2023届新高考数学复习:专项(等高线问题)经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( )A .1B .2C .3D .42.(2023ꞏ全国ꞏ高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( )A .(]1,1-B .[]1,1-C .[)1,1-D .()1,1-3.(2023秋ꞏ四川泸州ꞏ高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,34.(2023ꞏ全国ꞏ高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)5.(2023ꞏ全国ꞏ高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .1136.(2023ꞏ全国ꞏ高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( ) A .ln 33-B .3ln 22-C .ln 23-D .1-7.(2023ꞏ吉林长春ꞏ东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x=-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+8.(2023ꞏ全国ꞏ高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭9.(2023ꞏ全国ꞏ高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .810.(2023秋ꞏ宁夏ꞏ高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞11.(2023秋ꞏ湖北武汉ꞏ高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .1212.(2023秋ꞏ河南郑州ꞏ高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 13.(2023秋ꞏ江西上饶ꞏ高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( ) A .()4,5 B .(]4,5C .()4,+∞D .[)4,+∞14.(2023春ꞏ全国ꞏ高三校联考专题练习)已知函数11()||||f x x a x b xa x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( )A .1B .3C .5D .7二、多选题15.(2023秋ꞏ云南昆明ꞏ高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x16.(2023ꞏ全国ꞏ高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭17.(2023ꞏ全国ꞏ高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a-++=的不同实根的个数只能是1,2,3,618.(2023秋ꞏ辽宁大连ꞏ高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x19.(2023秋ꞏ山西太原ꞏ高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( ) A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣20.(2023秋ꞏ重庆铜梁ꞏ高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( ) A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为1221.(2023ꞏ全国ꞏ高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( ) A .0B .1C .99D .100三、填空题22.(2023秋ꞏ石河子一中校考阶段练习)已知函数()2e ,0ln ,>0x x x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-.23.(2023ꞏ贵州贵阳ꞏ校联考模拟预测)已知函数()()22log 1,13,1910,3,22x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则()()()()34121111x x x x ----的取值范围是______.24.(2023秋ꞏ河南郑州ꞏ高一郑州市第七中学校考期末)已知函数()()2121xx f x f x x ⎧≤⎪=⎨->⎪⎩,,,若方程()f x a =有四个不相等的实数根1x ,2x ,3x ,4x ,则22222341x x x x +++的取值范围为__________.25.(2023春ꞏ广东揭阳ꞏ高一校考阶段练习)已知函数()()ln ,036,36x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若当方程()f x m =有四个不等实根()12341234,,,x x x x x x x x <<<时,不等式22341230kx x x x k ++≤+恒成立,则实数k 的最大值为____________.26.(2023秋ꞏ江西宜春ꞏ高一江西省丰城中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,且1234x x x x <<<,则()2221234x x x x +++的取值范围为___________.27.(2023秋ꞏ湖北ꞏ高一赤壁一中校联考阶段练习)()22log ,0269,2x x f x x x x ⎧<<=⎨-+≥⎩,若关于x 的方程()()()()222100f x t f x t t t -+++=≤有且仅有四个不相等的实数根1x 、2x 、3x 、()41234x x x x x <<<,则1234x x x x t +++的取值范围为__________.28.(2023ꞏ江苏ꞏ高一期末)已知函数22122,0()2log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程 f (x ) =a 有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则212344x x x x x ++的取值范围是 _________ 29.(2023秋ꞏ河南濮阳ꞏ高三濮阳南乐一高校考阶段练习)已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______.30.(2023秋ꞏ福建福州ꞏ高一福州四中校考期末)已知函数22sin (10)()44(01)log (1)x x f x x x x x x π-<⎧⎪=-<⎨⎪-⎩………,若()()h x f x a =-有5个零点,则这五个零点之和的取值范围是____________. 四、双空题31.(2023秋ꞏ江西抚州ꞏ高二校联考阶段练习)已知函数ln ,02()(4),24x x f x f x x ⎧<≤=⎨-<<⎩,若当方程()f x m =有四个不等实根1x 、2x 、3x 、4x ,(1x <2x <3x <4x ) 时,不等式22341211kx x x x k ⋅++≥+恒成立,则x 1ꞏx 2=________,实数k 的最小值为___________.32.(2023秋ꞏ天津和平ꞏ高三耀华中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程() f x m =恰有三个不相等的实根,则这三个根之和为________;若方程() f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为______. 33.(2023ꞏ全国ꞏ高三专题练习)已知函数()12,011,04x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩ ,若函数3()()2g x f x =-有4个零点1x ,2x ,3x ,4x ,则1234x x x x +++=____________;若关于x 的方程25()()02f x f x a -+= ()a R ∈有8个不相等的实数根,则a 的取值范围是____________. 34.(2023秋ꞏ广东汕头ꞏ高一统考期末)设函数()22122,02log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程()f x m =有四个不同的解,1x ,2x ,3x ,4x ,且1234x x x x <<<,则m 的取值范围是_____,1234244x x x x x ++的取值范围是__________.参考答案一、单选题1.(2023·全国·高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+ ③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( ) A .1 B .2C .3D .4【答案】B【过程解析】对于①:作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故①正确;对于②:由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,e ex x x x +=+∈+, 所以12341(0,e e2)x x x x +++∈+-,故②错误;对于③:方程()f x ax =的实数根的个数,即为函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a>时()0g x '<,即()g x 单调递减, 所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭, 又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故③错误; 对于④:21()(()10f x a f x a -++=,所以1[()][()]0f x a f x a--=, 所以()f x a =或1()f x a =, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个,若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能有1,2,3,6个,即方程不同实数根1,2,3,6,故④正确; 故选:B .2.(2023·全国·高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1- B .[]1,1-C .[)1,1-D .()1,1-【答案】A【过程解析】21log 12x x =-⇒=. 先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数, 11121,2111212-⨯+=-⨯+=-, 从而()(]31223411,1x x x x x ⋅++∈-⋅. 故选:A3.(2023秋·四川泸州·高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,3【答案】A【过程解析】作出函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩的图象,如图所示:方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<, 则01m <<,()33,4x ∈3log x m =即:3231log ,log x m x m ==-,所以3231log log 0x x +=, 321log 0x x =,所以211x x =,根据二次函数的对称性可得:3410x x +=,()()()()341212343423333391*********x x x x x x xx x x x x x x --==-+--=-+-+,()33,4x ∈考虑函数()21021,3,4y x x x =-+-∈单调递增,3,0x y ==,4,3x y ==所以()33,4x ∈时2331021x x -+-的取值范围为()0,3.故选:A4.(2023·全国·高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)【答案】A【过程解析】画出分段函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…的图像如图:令互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3)=t ,t ∈(0,12), 则x 1∈22(log ,0)3,x 2∈(0,1),x 3∈(1,2), 则123111222xxx⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝=1+t +1﹣t +22t ﹣2=2+22t ﹣2, 又t ∈(0,12),∴123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝∈(95,42).故选:A .5.(2023·全国·高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .113【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y t =,它与()f x 图象的四个交点的横坐标依次为1x ,2x ,3x ,()41234x x x x x <<<,因为函数()y f x =的图象关于3x =对称,所以32416,6x x x x =-=-,12ln ln x x -=,即121=x x ,且213x <<,显然341x x >,不等式()223412190k x x x x -++-≥变形为2212349()1x x k x x -+≥-,3421121212(6)(6)366()376()x x x x x x x x x x =--=-++=-+,222212121212()2()2x x x x x x x x +=+-=+-,所以222121234129()11()1366()x x x x x x x x -+-+=--+,由勾形函数性质知12221x x x x +=+在2(1,3)x ∈时是增函数,所以12221102,3x x x x ⎛⎫+=+∈ ⎪⎝⎭, 令12t x x =+,则102,3t ⎛⎫∈ ⎪⎝⎭,211()6(6)t g t t -=-2116(6)t t -=-,22(6)25()6(6)t g t t --'=-,当102,3t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,()g t 单调递减,所以7()(2)24g t g <=,所以724k ≥,即k 的最小值是724. 故选:A .6.(2023·全国·高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( )A .ln 33-B .3ln 22-C .ln 23-D .1-【答案】A【过程解析】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根, 即2()20g t t t m =-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,作出()f x 的图象,函数y t =与()f x 三个不等实根123,,x x x ,且123x x x <<,那么1221xx e t ==,可得312x t =-,101t <≤,所以21311223ln 4x x x t t --=--,构造新函数1()3ln 4(01),()3h t t t t h t t'=--<≤=-当()0h t '<时,10,,()3t h t ⎛⎫∈∴ ⎪⎝⎭在10,3⎛⎫⎪⎝⎭单调递减;当()0h t '>时,1,1,()3t h t ⎛⎫∈∴ ⎪⎝⎭在1,13⎛⎫ ⎪⎝⎭单调递增;∴当13t =时,(t)h 取得最小值为ln 33-,即21322x x x --的最小值为ln 33-; 故选:A7.(2023·吉林长春·东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x =-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+【答案】A【过程解析】由()f x 过程解析式,在(,0]-∞上()f x 单调递增且值域为(0,1],在(0,)+∞上()f x 单调递增且值域为(0,)+∞, 函数()f x 图象如下:所以,()f x 的值域在(0,1]上任意函数值都有两个x 值与之对应,值域在(1,)+∞上任意函数值都有一个x 值与之对应,要使()(())F x g f x m =-恰有三个不同的零点123,,x x x ,则()g x 与y m =的交点横坐标一个在(0,1]上,另一个在(1,)+∞上,由2()2g x x x =-+开口向下且对称轴为1x =,由上图知:01m <<,此时12()()g t g t m ==且12012t t <<<<,122t t +=,结合()f x 图象及123x x x <<有1321e 3xx t ==,323x t =,则112123ln ,,333t t tx x x ===, 所以11123121433ln ln 233t tx x x t t t -+=-+=-+,且101t <<, 令4()ln 23h x x x =-+且01x <<,则1434()33xh x x x -=='-,当3(0,4x ∈时()0h x '>,()h x 递增;当3(,1)4x ∈时()0h x '<,()h x 递减;所以max 33()()ln 144h x h ==+,故12333x x x -+最大值为3ln 14+.故选:A8.(2023·全国·高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭【答案】D【过程解析】因为01m <<, 所以()f x 的大致图象,如图所示:当x m ≤时,()()222f x x m =-+≥,因为存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解, 所以3log 2m >,又01m <<, 解得109m <<, 故选:D9.(2023·全国·高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .8【答案】A【过程解析】由方程()()5222g x g x -+=可得()1g x =±, 因为函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩, 设0x >,则0x -<,则()()|lg |(|lg ()|)|lg ||lg |0g x g x x x x x +-=+---=-=, 所以()g x 为奇函数且1x ,2x ,3x ,4x 是()1g x =±的根, 所以12340x x x x +++=,不妨有12()()1g x g x ==-,34()()1g x g x ==, 所以1234()()()()0g x g x g x g x +++=.故12341234()()()()x x x x g x g x g x g x +++++++的值是0. 故选:A .10.(2023秋·宁夏·高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y a =,当02a <≤时,直线y a =与函数()f x 图象有四个交点,由图象知124x x +=-,2324log log x x -=,即341x x =,(0)2f =, 2log 2x -=,14x =,所以3114x ≤<, 所以12343314x x x x x x +++=-++,由对勾函数性质知函数3314y x x =-++在31,14x ⎡⎫∈⎪⎢⎣⎭上是减函数,所以31,14x ⎡⎫∈⎪⎢⎣⎭时,331142,4y x x ⎛⎤=-++∈- ⎥⎝⎦.故选:A .11.(2023秋·湖北武汉·高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .12【答案】D【过程解析】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <-<≤<<<,124x x +=-,由()()()()()()333433434log 1log 1log 110111x x x x x x --=-⇒--=⇒--=,∴()()34342112122251x x x x =-+++-5922≥=, 当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫-=-≥-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =-=-+1t =.所以)1234122x x x x ++的最小值为91422-=. 故选:D12.(2023秋·河南郑州·高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 【答案】D【过程解析】作函数()y f x =和y m =的图象,如图所示:当1m =时,()()2122log 1log 1x x +=+,即()()2122log 11,log 11x x +=-+=,解得121,12x x =-=,此时1212x x =-,故A 错误;结合图象知,02m <<,当3x >时,可知34,x x 是方程()2125522f x x x m =-+=,即2102520x x m -+-=的二根,故3410x x +=,()3425221,25x x m =-∈,端点取不到,故BC错误;当13x -<≤时,()()2122log 1log 1x x +=+,即()()2122log 1log 1x x -+=+, 故()2221log log 111x x =++,即21111x x =++,所以()()21111x x ++=, 故1212x x x x +=-,即12121x x x x +=-,所以12111x x +=-,故D 正确. 故选:D.13.(2023秋·江西上饶·高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a=有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( )A .()4,5B .(]4,5C .()4,+∞D .[)4,+∞【答案】B【过程解析】作出函数()221,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象如下:因为方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<, 所以有122x x +=-,341x x =, 故3123234322()2x x x x x x x -+=+, 再由2log 1x =可得2x =或12x =,即3112x <≤, 令2()2g x x x =+,(112x ≤<), 任取12112x x ≤<<,则120x x -<,12110x x ->, 所以()12121212122211()()2222g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12121210x x x x ⎛⎫=--< ⎪⎝⎭,即12()()<g x g x , 所以函数2()2g x x x =+在1,12⎡⎫⎪⎢⎣⎭上单调递减, 又152g ⎛⎫= ⎪⎝⎭,4(1)g =,所以()(4,5]g x ∈.即3122342()x x x x x -+的取值范围是(4,5]. 故选:B.14.(2023春·全国·高三校联考专题练习)已知函数11()||||f x x a x b x a x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( ) A .1 B .3 C .5 D .7【答案】C【过程解析】因为11()||||f x x a x b x a x =++-+--,11()||||()f a x a x x b f x a x x-=-+++-=-,所以函数()f x 的图象关于直线2ax =对称, 设五个零点分别为12345,,,,x x x x x ,且12345x x x x x <<<<, 则15243,,2a x x a x x a x +=+==, 所以1234555222a a x x x x x a a ++++=++==,所以1a =, 则312x =,由3333311()|||1|01f x x x b x x =++-+-=-,可得11|2||12|22b ++-+=,则5b =.故选:C. 二、多选题15.(2023秋·云南昆明·高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x【答案】BCD【过程解析】因为ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,所以当(2,0]x ∈-时,()ln(2)f x x =+, 当2(]0,x ∈时,()(2)f x f x =-,所以2(2,0]x -∈-时,(2)ln(22)ln f x x x -=-+=, 所以ln(2),(2,0]()ln ,(0,2]x x f x x x ⎧+∈-⎪=⎨∈⎪⎩, 作出()f x 的图象如图所示,若()f x m =有4个解,则()y f x =与y m =的图象有4个交点,如图(0,ln 2]m ∈,所以1113,1,()ln(2)2x f x x ⎡⎫∈--=-+⎪⎢⎣⎭,(]2221,0,()ln(2)x f x x ∈-=+,由12()()f x f x =,得12ln(2)ln(2)x x -+=+, 即12ln(2)ln(2)0x x +++=,所以12ln[(2)(2)]0x x ++=,所以12(2)(2)1x x ++=, 所以12122()30x x x x +++=,当20x =时,120x x =; 当20x <时,由基本不等式可得12x x +<-所以1230x x ->,解得01<<3>(舍); 所以12[0,1)x x ∈, 所以A 错误,B 正确,对于C ,3331,1,()ln 2x f x x ⎡⎫∈=-⎪⎢⎣⎭,(]4441,2,()ln x f x x ∈=,因为34()()f x f x =,所以34ln ln x x -=,所以34ln ln 0x x +=,即()34ln 0x x =, 所以341x x =,所以C 正确,对于D ,因为2424(1,0],(1,2],2x x x x ∈-∈+=,所以()()224222211(1,0]x x x x x =+=+-∈-,所以D 正确. 故选:BCD16.(2023·全国·高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭【答案】AC【过程解析】当0x ≤时,()e x f x x =⋅,此时()(1)e x f x x '=+⋅,令()0f x '>,解得10-<≤x ,令()0f x '<,解得1x <-,可得()f x 在(,1)-∞-上单调递减,在(1,0)-上单调递增,且1(1),(0)0ef f -=-=,∴当0x ≤时,1()0ef x -≤≤,故A 正确; 作出如图所示图像:由22()3()()2g x f x mf x m =--有6个不同的零点, 等价于223()()20f x mf x m --=有6个不同的实数根, 解得()f x m =或2()3m f x =-, ∵341x x ⋅=,∴若343311012,10x x x x ⎛⎫+=+∈ ⎪⎝⎭,可得31110x <<,而当0m >时,120e 3m -<-<,可得302e m <<,而3112e 10f ⎛⎫<= ⎪⎝⎭;当0m <时,10e m -<<,可得22033e m <-<而2113e 10f ⎛⎫<= ⎪⎝⎭, 故3x 的范围为1,110⎛⎫ ⎪⎝⎭的子集,34x x +的取值范围不可能为1012,10⎛⎫⎪⎝⎭,故B 选项错误;该方程有6个根,且()()()345f x f x f x ==,知341x x ⋅=且()()()126f x f x f x ==,当0m <时,()()()1261,0e f x f x f x m ⎛⎫===∈- ⎪⎝⎭,()()()3452(0,1)3m f x f x f x ===-∈,联立解得1,0e m ⎛⎫∈- ⎪⎝⎭, ()()()()()()12345615133332,0e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-=∈- ⎪⎝⎭,故C 正确;当0m >时,()()()12621,03e m f x f x f x ⎛⎫===-∈- ⎪⎝⎭, ()()()345(0,1)f x f x f x m ===∈,联立解得30,2e m ⎛⎫∈ ⎪⎝⎭,()()()()()()123456153333230,2e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-+=∈ ⎪⎝⎭.故D 错误.故选:AC.17.(2023·全国·高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a -++=的不同实根的个数只能是1,2,3,6【答案】AD【过程解析】对于A :作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故A 正确;对于B :由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,1)e x x x x +=+∈+,所以12341(0,1)ex x x x +++∈+,故B 错误;对于C :方程()f x ax =的实数根的个数,即可函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a >时()0g x '<,即()g x 单调递减,所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭,又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故C 错误; 对于D :21()()()10f x a f x a -++=,所以1[()][()]0f x a f x a--=,所以()f x a =或1()f x a=, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个, 若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能由1,2,3,6个,即方程不同实数根1,2,3,6,故D 正确; 故选:AD .18.(2023秋·辽宁大连·高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x【答案】BCD【过程解析】由过程解析式可得()f x 图象如下图所示:若()f x m =有四个不同的实数根,则()f x 与y m =有四个不同的交点, 由图象可知:123423468x x x x <<<<<<<<,01m <<; 对于A ,()()12f x f x = ,即()()2122log 2log 2x x -=-,()()2122log 2log 2x x ∴--=-,()22211log log 22x x ∴=--,()()12221x x ∴--=, 整理可得:()1212412x x x x +=++,A 错误;对于B ,()()34f x f x = ,3x ∴与4x 关于直线6x =对称,3412x x ∴+=,B 正确; 对于C ,3x 与4x 是方程()2161702x m f m x x -+-==-的两根, ()34217342x x m m ∴=-=-,又01m <<,()3432,34x x ∴∈,C 正确;对于D ,()()()()()()211g x f x m f x m f x m f x =+--=-+⎡⎤⎡⎤⎣⎦⎣⎦,由()0g x =得:()f x m =或()1f x =-,()f x m =的根为1234,,,x x x x ;()1f x =-的根为6,()g x ∴的零点为12346,,,,x x x x ,D 正确.故选:BCD.19.(2023秋·山西太原·高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣【答案】ACD 【过程解析】函数()f x 的图象如上所示,方程()f x a =的解可以转化为函数()f x 与y a =图象交点的横坐标,由图可知01a <<,故A 正确;由题意可知2122log log x x -=,即212log 0x x =,解得121=x x ,由图可知212x <<,所以1222122x x x x +=+,令2212=+y x x ,则函数2212=+y x x 在()1,2上单调递增,当21x =时,3y =,22x =时,92y =,所以122xx +的范围为93,2⎛⎫⎪⎝⎭,故B 错;函数2813y x x =-+的对称轴为4x =,所以348x x +=,又121=x x ,所以12342218x x x x x x +++=++,函数()22218g x x x =++在()1,2上单调递增,()110g =,()2122g =,所以12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭,故C 正确;122222x x x x +=+,函数()2222h x x x =+在(上单调递减,)2上单调递增,h=,()13h =,()23h =,所以)122x x ⎡+∈⎣,故D 正确.故选:ACD.20.(2023秋·重庆铜梁·高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( )A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为12【答案】BCD【过程解析】()()()()()12939366f x f x f x f x f x +=++=--+=--=-+()()()()3333f x f x f x f x =-++=---+=--=.所以()()12f x f x =+,A 错误.因为()()33f x f x +=-+,所以()f x 的图象关于直线3x =对称,B 正确. 画出()f x 的一种可能图象,如图所示,不妨假设1234x x x x <<<.根据对称性有: 当()03a f <<-时,126x x +=-,3418x x +=,123412x x x x +++=,C 正确. 当()30f a <<时,1218x x +=-,346x x +=,123412x x x x +++=-,D 正确. 故选:BCD21.(2023·全国·高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( )A .0B .1C .99D .100【答案】BC【过程解析】如图所示:因为关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,所以01a <≤.2101y x x =++的对称轴为5x =-,所以1210x x +=-. 因为34lg lg x x =,所以34lg lg 0x x +=,即341x x =,431x x =. 因为3lg 1x ≤,所以31110x ≤<. 所以()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭, 因为110y x x ⎛⎫=-- ⎪⎝⎭,1110x ≤<为减函数,所以()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-.故选:BC 三、填空题22.(2023秋·石河子一中校考阶段练习)已知函数()2e ,0ln ,>0xx x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-. 【答案】①②④【过程解析】设()2e xg x x =-,其中x ∈R ,则()()21e xg x x '=-+,当1x <-时,()0g x ¢>,此时函数()g x 单调递增, 当1x >-时,()0g x ¢<,此时函数()g x 单调递减, 所以,函数()g x 的极大值为()21eg -=,且当0x <时,()0g x >, 作出函数()f x 、y b =的图象如下图所示:。
全国统一高考数学练习卷及含答案 (1)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。
新课标高考文科理科数学前三大题练习及详解 (6)
前三题练习(4)1.(本小题满分13分)已知向量a =)sin,(cos x x , b =)cos ,cos (x x -, c =)0,1(-.(Ⅰ)若6π=x ,求向量a 、c 的夹角;(Ⅱ)当]89,2[ππ∈x 时,求函数12)(+⋅=b a x f 的最大值.2.(本小题满分13分)已知袋中装有大小相同的2个白球和4个红球.(Ⅰ)从袋中随机地将球逐个取出,每次取后不放回,直到取出两个红球为止,求取球次数ξ的数学期望;(Ⅱ)从袋中随机地取出一个球,放回后再随机地取出一个球,这样连续取4次球,求共取得红球次数η的方差.3. (本小题满分13分)如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ;(Ⅱ)求二面角P -AM -D 的大小; (Ⅲ)求点D 到平面AMP 的距离.M PDCBA前三题练习(4)答案1.(本小题满分13分)已知向量a =)sin,(cos x x , b =)cos ,cos (x x -, c =)0,1(-.(Ⅰ)若6π=x ,求向量a 、c 的夹角;(Ⅱ)当]89,2[ππ∈x 时,求函数12)(+⋅=b a x f 的最大值.解: (Ⅰ)当6π=x 时,cos ,a c a c a c⋅==⋅…………………2分6coscos π-=-=x ……………………………3分5cos6π= (4)分∵π≤≤c a,0∴65,π=c a …………………………6分(Ⅱ)1)cos sin cos(212)(2++-=+⋅=x x x b a x f……………………8分)1cos2(cos sin 22--=x x x)42sin(22cos 2sin π-=-=x x x …………………………10分∵]89,2[ππ∈x∴]2,43[42πππ∈-x ,故]22,1[)42sin(-∈-πx ………………………11分∴当4342ππ=-x ,即2π=x 时,1)(max =x f………………………13分12.(本小题满分13分)已知袋中装有大小相同的2个白球和4个红球.(Ⅰ)从袋中随机地将球逐个取出,每次取后不放回,直到取出两个红球为止,求取球次数ξ的数学期望;(Ⅱ)从袋中随机地取出一个球,放回后再随机地取出一个球,这样连续取4次球,求共取得红球次数η的方差.解:(Ⅰ) 依题意,ξ的可能取值为2,3,4 ……………………………1分52)2(2624===A A P ξ; ……………………………3分52)()3(3613221412===AC A C C P ξ; ……………………………5分51)()4(4613331422===AC A C C P ξ; ……………………………7分∴ 514514523522=⨯+⨯+⨯=ξE .故取球次数ξ的数学期望为14.5…………………………8分(Ⅱ) 依题意,连续摸4次球可视作4次独立重复试验,且每次摸得红球的概率均为32,则η)32,4(B……………………………10分∴98)321(324=-⨯⨯=ηD .故共取得红球次数η的方差为8.9……………………………13分13. (本小题满分13分)如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ;(Ⅱ)求二面角P -AM -D 的大小; (Ⅲ)求点D 到平面AMP 的距离.解法1:(Ⅰ) 取CD 的中点E ,连结PE 、EM 、EA ∵△PCD 为正三角形∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°=3∵平面PCD ⊥平面ABCDMPDCBAEABCDPM∴PE ⊥平面ABCD …………………3分 ∵四边形ABCD 是矩形∴△ADE 、△ECM 、△ABM 均为直角三角形 由勾股定理可求得 EM=3,AM=6,AE=3∴222AEAM EM=+……………………………5分∴∠AME=90°∴AM ⊥PM ……………………………6分 (Ⅱ)由(Ⅰ)可知EM ⊥AM ,PM ⊥AM ∴∠PME是二面角P -AM -D的平面角……………………………8分∴tan ∠PME=133==EMPE∴∠PME=45° ∴二面角P-AM-D为45°; ……………………………10分 (Ⅲ)设D 点到平面PAM 的距离为d ,连结DM ,则PAMD ADM P V V --=……………………………11分∴dS PE S PAM ADM ⋅=⋅∆∆3131 而2221=⋅=∆CD AD SADM在R t P E M ∆中,由勾股定理可求得PM=6.132P A M S A M P M ∆∴=⋅=,所以:d⨯⨯=⨯⨯33132231,∴362=d.即点D 到平面PAM 的距离为362.……………………………13分解法2:(Ⅰ) ∵四边形ABCD 是矩形 ∴BC ⊥CD∵平面PCD ⊥平面ABCD∴BC ⊥平面PCD ……………………………2分 而PC ⊂平面PCD ∴BC ⊥PC 同理AD ⊥PD 在Rt △PCM 中,PM=62)2(2222=+=+PCMC同理可求PA=32,AM=6∴222PAPMAM =+ (5)分∴∠PMA=90°即PM ⊥AM ……………………6分 (Ⅱ)取CD 的中点E ,连结PE 、EM ∵△PCD 为正三角形∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°=3∵平面PCD ⊥平面ABCDEBCDPM∴PE ⊥平面ABCD 由(Ⅰ) 可知PM ⊥AM ∴EM ⊥AM ∴∠PME是二面角P -AM -D的平面角……………………………8分∴sin ∠PME=2263==PMPE∴∠PME=45° ∴二面角P-AM-D为45°; ……………………………10分(Ⅲ)同解法(Ⅰ)解法3:(Ⅰ) 以D 点为原点,分别以直线DA 、DC 为x 轴、y 轴,建立如图所示的空间直角坐标系D xyz -,依题意,可得),0,2,0(),3,1,0(),0,0,0(C P D)0,2,2(),0,0,22(M A (2)分∴)3,1,2()3,1,0()0,2,2(-=-=PM)0,2,2()0,0,22()0,2,2(-=-=AM …4分∴0)0,2,2()3,1,2(=-⋅-=⋅AM PM即AMPM ⊥,∴AM ⊥PM. ……………………………6分(Ⅱ)设),,(z y x n =,且⊥n 平面PAM ,则⎪⎩⎪⎨⎧=⋅=⋅0AM n PM n即⎪⎩⎪⎨⎧-⋅⋅,2(),,(,1,2(),,(z y x z y x ∴⎪⎩⎪⎨⎧=+-=-+022032y x z y x⎪⎩⎪⎨⎧==yx y z 23取1=y ,得)3,1,2(=n ……………………………6分取)1,0,0(=p ,显然⊥p 平面ABCD ∴2263cos===结合图形可知,二面角P -AM -D为45°;……………………………10分(Ⅲ) 设点D 到平面PAM 的距离为d ,由(Ⅱ)可知)3,1,2(=n 与平面PAM 垂直,则d =362)3(1)2(|)3,1,2()0,0,22(|222=++⋅.即点D 到平面PAM 的距离为362.……………………………13分。
【3】导数【2023年高考数学复习——大题狂练解答210道】
2023年高考数学复习——大题狂练:导数(15题)一.解答题(共15小题)1.(2022秋•包头月考)已知函数f(x)=x3﹣a(x2+2x+2).(1)若a=2,求f(x)的单调区间;(2)证明:f(x)只有一个零点.2.(2022•梅河口市校级开学)已知函数f(x)=(1﹣x)e x﹣a(x2+1)(a∈R).(1)求f(x)的单调区间;(2)若f(x)有两个不同的零点x1,x2,证明:x1+x2<0.3.(2022春•大兴区期末)已知函数f(x)=.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求f(x)的最大值与最小值.4.(2022春•汪清县校级期末)已知函数,x∈(0,+∞).(1)求函数f(x)的图象在点(2,f(2))处的切线方程;(2)求函数f(x)的单调递增区间.5.(2022春•资阳期末)已知曲线f(x)=ax3﹣bx2+2在点(1,f(1))处的切线方程为y =1.(1)求a、b的值;(2)求f(x)的极值.6.(2022春•静安区校级期末)求函数f(x)=tan x的导函数,并由此确定正切函数的单调区间.7.(2022春•长宁区校级期末)求下列函数的导数:(1)f(x)=3x4+sin x;(2).8.(2022春•兴义市校级月考)已知函数f(x)=ax3+cx(a≠0)当x=1时,f(x)取得极值﹣2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;9.(2022春•乳山市校级月考)已知函数.(1)求函数f(x)的极值;(2)若函数y=f(x)的图象与直线y=0恰有三个交点,求实数a的取值范围.10.(2022春•重庆月考)已知函数f(x)=(x+a)e x.(1)若f(x)在x=1处取得极小值,求实数a的值;(2)若f(x)在(﹣1,1)上单调递增,求实数a的取值范围.11.(2022春•睢县校级月考)若函数f(x)=ax3+12x+a的减区间为(﹣2,2),求实数a 的值.12.(2022春•睢县校级月考)求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.13.(2022春•黄梅县期中)设函数f(x)=x3+x2﹣3x.(1)求函数f(x)的单调区间和极值;(2)求函数f(x)在[0,3]上的最值.14.(2022春•抚州期中)已知函数.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的极值.15.(2022春•焦作期中)已知函数f(x)=xln2x.(1)求f(x)的导函数f'(x);(2)设x0是f(x)的零点,求曲线y=f(x)在点(x0,f(x0))处的切线方程.2023年高考数学复习——大题狂练:导数(15题)参考答案与试题解析一.解答题(共15小题)1.(2022秋•包头月考)已知函数f(x)=x3﹣a(x2+2x+2).(1)若a=2,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【考点】利用导数研究函数的单调性.【专题】函数思想;转化法;导数的综合应用;数学抽象;数学运算.【分析】(1)把a=2代入函数解析式,求出导函数,由导函数大于0求解原函数的增区间,由导函数小于0求解原函数的减区间;(2)问题转化为a=只有一个根,令g(x)=,利用导数研究其单调性,即可证明f(x)只有一个零点.【解答】解:(1)若a=2,则f(x)=x3﹣2x2﹣4x,f′(x)=x2﹣4x﹣4,由f′(x)=x2﹣4x﹣4>0,解得x<2﹣2或x>,由f′(x)=x2﹣4x﹣4<0,解得2﹣2<x<,∴f(x)的单调增区间为(﹣∞,2﹣2),(,+∞),单调减区间为(2﹣2,);证明:(2)函数f(x)的定义域为R,令f(x)=0,得x3﹣a(x2+2x+2)=0,则a=,令g(x)=,可得g′(x)==≥0,∴g(x)为单调增函数,∴关于x的方程至多有一个实根,又当x→﹣∞时,g(x)→﹣∞,当x→+∞时,g(x)→+∞,则g(x)的值域为R,故f(x)只有一个零点.【点评】本题考查利用导数研究函数的单调性,考查函数零点的判定,考查化归与转化思想,是中档题.2.(2022•梅河口市校级开学)已知函数f(x)=(1﹣x)e x﹣a(x2+1)(a∈R).(1)求f(x)的单调区间;(2)若f(x)有两个不同的零点x1,x2,证明:x1+x2<0.【考点】利用导数研究函数的单调性;利用导数研究函数的最值.【专题】分类讨论;分析法;综合法;导数的综合应用;数学运算.【分析】(1)求导后,根据f'(x)与0的大小关系,分a≥0,,和四种情况,讨论即可;(2)参变分离可得,设,求导,判断其单调性,结合分析法,将问题转化为证明g(x2)﹣g(﹣x2)<0,再构造新函数h(x)=(1﹣x)e2x ﹣x﹣1,x∈(0,1),证明h(x)<0,即可.【解答】(1)解:f′(x)=﹣xe x﹣2ax=﹣x(e x+2a),①当a≥0时,令f′(x)>0,解得x<0;令f′(x)<0,解得x>0,所以f(x)的减区间为(0,+∞),增区间为(﹣∞,0);②当a<0时,若ln(﹣2a)=0,即时,f′(x)≤0在R上恒成立,所以f(x)的减区间为R,无增区间;若ln(﹣2a)<0,即时,令f′(x)>0,解得ln(﹣2a)<x<0;令f′(x)<0,解得x<ln(﹣2a)或x>0,所以f(x)的增区间为(ln(﹣2a),0),减区间为(﹣∞,ln(﹣2a)),(0,+∞);若ln(﹣2a)>0,即时,令f′(x)>0,解得0<x<ln(﹣2a);令f′(x)<0,解得x<0或x>ln(﹣2a),所以f(x)的增区间为(0,ln(﹣2a)),减区间为(﹣∞,0),(ln(﹣2a),+∞),综上所述:当a≥0时,f(x)的减区间为(0,+∞),增区间为(﹣∞,0);当时,f(x)的减区间为R,无增区间;当时,f(x)的增区间为(ln(﹣2a),0),减区间为(﹣∞,ln(﹣2a)),(0,+∞);当时,f(x)的增区间为(0,ln(﹣2a)),减区间为(﹣∞,0),(ln(﹣2a),+∞).(2)证明:令f(x)=(1﹣x)e x﹣a(x2+1)=0,则,设,则g(x1)=g(x2)=a,所以,令g′(x)>0,解得x<0,令g′(x)<0,解得x>0,所以g(x)在(﹣∞,0)上单调递增,在(0,+∞)上单调递减,又当x<1时,g(x)>0,当x>1时,g(x)<0,不妨设x1<x2,则x1<0<x2<1,要证x1+x2<0,即证x1<﹣x2,因为g(x)在(﹣∞,0)上单调递增,所以只需证g(x1)<g(﹣x2),即证g(x2)<g(﹣x2),需证g(x2)﹣g(﹣x2)<0,即证,设h(x)=(1﹣x)e2x﹣x﹣1,x∈(0,1),则h′(x)=(1﹣2x)e2x﹣1,令u(x)=h′(x),则u′(x)=﹣4xe2x<0在(0,1)上恒成立,所以u(x)在(0,1)上单调递减,所以h′(x)=u(x)<u(0)=0,即h(x)在(0,1)上单调递减,所以h(x)<h(0)=0,故x1+x2<0.【点评】本题考查利用导数研究函数的单调性,证明不等式,理解函数的单调性与导数之间的联系,函数的零点与方程的根之间的关系是解题的关键,考查转化思想,逻辑推理能力和运算能力,属于难题.3.(2022春•大兴区期末)已知函数f(x)=.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求f(x)的最大值与最小值.【考点】利用导数研究函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(Ⅰ)对f(x)求导,进而求得f'(0)=3、f(0)=4,即可写出(0,f(0))处的切线方程;(Ⅱ)利用导数研究f(x)的单调性并确定极值,结合区间上函数值的符号判断最值情况.【解答】解:(Ⅰ)由题设,,则f'(0)=3,而f(0)=4,故(0,f(0))处的切线方程y﹣4=3x,即3x﹣y+4=0.(Ⅱ)由(Ⅰ),令3﹣8x﹣3x2=(3+x)(1﹣3x)=0,则x=﹣3或,若f'(x)<0,则x<﹣3或时,在上f(x)递减;若f'(x)>0,则时,则上f(x)递增;所以极小值为,极大值为,而(﹣∞,﹣3)上f(x)<0,上f(x)>0,综上,f(x)的最小值为,最大值为.【点评】本题主要考查导数的几何意义,由导数求函数最值的方法等知识,属于基础题.4.(2022春•汪清县校级期末)已知函数,x∈(0,+∞).(1)求函数f(x)的图象在点(2,f(2))处的切线方程;(2)求函数f(x)的单调递增区间.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】整体思想;综合法;导数的综合应用;数学运算.【分析】(1)先求函数的导函数,然后求出切线的斜率,再求切线方程即可;(2)令f′(x)>0,解得0<x<2,即可求出函数的单调递增区间.【解答】解:(1)已知函数,x∈(0,+∞),则=,则,f(2)=ln2﹣1,则函数f(x)的图象在点(2,f(2))处的切线方程为:y﹣(ln2﹣1)=0,即所求切线方程为:y=ln2﹣1;(2)由(1)可得:令f′(x)>0,解得0<x<2,即函数f(x)的单调递增区间为(0,2).【点评】本题考查了导数的几何意义,重点考查了利用导数求函数的单调区间,属基础题.5.(2022春•资阳期末)已知曲线f(x)=ax3﹣bx2+2在点(1,f(1))处的切线方程为y =1.(1)求a、b的值;(2)求f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)由题意可知切线方程可知切点坐标为(1,1),切线的斜率为0,结合导函数的解析式得到关于a,b的方程组,求解方程组可得a,b的值;(2)结合(1)的结论可得f'(x)=6x2﹣6x,利用导数研究函数的单调性,然后求解函数的极值即可.【解答】解:(1)由函数的解析式可得f'(x)=3ax2﹣2bx,由切线方程可知切点坐标为(1,1),切线的斜率为0,从而有:,求解方程组可得,故a=2,b=3.(2)由题意可得f(x)=2x3﹣3x2+2,f'(x)=6x2﹣6x,当x∈(﹣∞,0)时,f'(x)>0,f(x)单调递增,当x∈(0,1)时,f'(x)<0,f(x)单调递减,当x∈(1,+∞)时,f'(x)>0,f(x)单调递增,故函数的极大值为f(0)=2,函数的极小值为f(1)=1.【点评】本题主要考查导数的几何意义,利用导数求函数的极值等知识,属于基础题.6.(2022春•静安区校级期末)求函数f(x)=tan x的导函数,并由此确定正切函数的单调区间.【考点】利用导数研究函数的单调性.【专题】对应思想;定义法;导数的综合应用;数学运算.【分析】根据导函数及定义域,即可求解单调区间.【解答】解:,又定义域为,所以单调递增区间为,无单调递减区间.【点评】本题考查了利用导数研究函数的单调性,属基础题.7.(2022春•长宁区校级期末)求下列函数的导数:(1)f(x)=3x4+sin x;(2).【考点】导数的运算.【专题】计算题;对应思想;定义法;导数的概念及应用;数学运算.【分析】(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.【解答】解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.【点评】本题主要考查导数的基本运算,比较基础.8.(2022春•兴义市校级月考)已知函数f(x)=ax3+cx(a≠0)当x=1时,f(x)取得极值﹣2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】计算题;方程思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)分析已知条件,当x=1时,f(x)取得极值﹣2得,可解得a,c;(2)由f'(x)>0 确定增区间,由f'(x)<0 得减区间,从而确定极值点.【解答】解:(1)由题意可得f′(x)=3ax2+c,又当x=1时,f(x)取得极值﹣2,∴,据此可得a=1,c=−3,∴f(x)=x3﹣3x.(2)f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,得x=±1,当﹣1<x<1时,f′(x)<0,函数f(x)单调递减;当x<﹣1或x>1时,f′(x)>0,函数f(x)单调递增;∴函数f(x)的递增区间是(﹣∞,﹣1)和(1,+∞);递减区间为(﹣1,1).因此,f(x)在x=﹣1处取得极大值,且极大值为f(﹣1)=2.【点评】本题主要考查利用导数研究函数的极值,利用导数研究函数的单调性等知识,属于基础题.9.(2022春•乳山市校级月考)已知函数.(1)求函数f(x)的极值;(2)若函数y=f(x)的图象与直线y=0恰有三个交点,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】计算题;转化思想;综合法;导数的综合应用;逻辑推理;数学运算.【分析】(1)求出导函数,求出极值点,通过函数的单调性,求解函数的极值即可.(2)函数y=f(x)的图象与直线y=0恰有三个交点,只需极大值大于0,极小值小于0,然后求解即可.【解答】解:(1)由已知得函数f(x)的定义域为R,函数.则f'(x)=x2﹣ax﹣2a2=(x﹣2a)(x+a),x﹣2a>0,f'(x)>0恒成立,故函数f(x)在x>2a上单调递增,当x+a<0时,由f'(x)>0,单调递增,﹣a<x<2a时;由f'(x)<0,单调递减,x=﹣a时函数取得极大值:+1.x=2a时函数取得极小值:1﹣a3.(2)函数y=f(x)的图象与直线y=0恰有三个交点,可得1﹣<0,解得a>,得实数a的取值范围为(,+∞).【点评】本题考查函数导数的应用,函数的单调性以及函数的极值的求法,考查分析问题解决问题的能力,是中档题.10.(2022春•重庆月考)已知函数f(x)=(x+a)e x.(1)若f(x)在x=1处取得极小值,求实数a的值;(2)若f(x)在(﹣1,1)上单调递增,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】导数的综合应用;数学运算.【分析】(1)由函数在x=1处取得极小值,可得在x=1处导函数为0,计算出a,再进行检验即可;(2)由函数在(﹣1,1)单调递增,故其导函数在(﹣1,1)恒大于等于0,从而进行参变分离求解即可.【解答】解:(1)因为f'(x)=e x+(x+a)e x=(x+a+1)e x,所以f'(1)=(a+2)e=0,得a=﹣2,此时f'(x)=(x﹣1)e x,令f'(x)>0,解得x>1,f(x)在(﹣∞,1)上单调递减,在(1,+∞)上单调递增,所以f(x)在x=1处取得极小值,满足题意,所以实数a的值为﹣2;(2)由(1)知,f'(x)=(x+a+1)e x,由已知有f(x)在(﹣1,1)上单调递增,故f'(x)≥0在(﹣1,1)上恒成立,因为e x>0,所以x+a+1≥0在(﹣1,1)上恒成立,即a≥﹣x﹣1在(﹣1,1)上恒成立,故a≥0,故实数a的取值范围为[0,+∞).【点评】本题主要考查利用导函数研究函数极值及单调性,属于基础题.11.(2022春•睢县校级月考)若函数f(x)=ax3+12x+a的减区间为(﹣2,2),求实数a 的值.【考点】利用导数研究函数的单调性.【专题】函数思想;综合法;导数的综合应用;数学运算.【分析】由2和﹣2是f′(x)的零点得出实数a的值.【解答】解:f′(x)=3ax2﹣12.易知2和﹣2是f′(x)的零点且a>0,所以f′(2)=f′(﹣2)=12a﹣12=0,解得a=1.经检验成立.故实数a的取值为1.【点评】本题考查利用导数研究函数的单调性,属于基础题.12.(2022春•睢县校级月考)求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.【考点】导数的运算.【专题】计算题;方程思想;综合法;导数的概念及应用;数学运算.【分析】根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.【解答】解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x ﹣3).(4)∵w(x)=ln(5x+6)2,∴【点评】本题考查导数的计算,注意复合函数的导数计算,属于基础题.13.(2022春•黄梅县期中)设函数f(x)=x3+x2﹣3x.(1)求函数f(x)的单调区间和极值;(2)求函数f(x)在[0,3]上的最值.【考点】利用导数研究函数的最值;利用导数研究函数的极值.【专题】函数思想;综合法;导数的综合应用;直观想象;数学运算.【分析】(1)对函数求导后,利用导函数的正负确定函数的单调区间及极值;(2)利用极值及端点函数值,比较大小可得答案.【解答】解:(1)f′(x)=x2+2x﹣3=(x+3)(x﹣1),令f′(x)=0,则x=﹣3或x=1,列表如下:x(﹣∞,﹣3)﹣3(﹣3,1)1(1,+∞)+0﹣0+f′(x)f(x)单调递增9单调递减﹣单调递增∴f(x)的增区间为(﹣∞,﹣3),(1,+∞);减区间为(﹣3,1);在x=﹣3处取得极大值为9;在x=1处取得极小值为﹣.(2)由上知f(x)在[0,3]上的极小值为f(1)=﹣,又f(0)=0,f(3)=9,所以f(x)在[0,3]上的最大值为9,最小值为﹣.【点评】本题考查了利用导数确定函数的单调区间及求给定区间上的最值,属于基础题.14.(2022春•抚州期中)已知函数.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;综合法;导数的概念及应用;逻辑推理;数学运算.【分析】(1)分别确定切点坐标和切线的斜率即可求得切线方程;(2)由题意首先确定函数的单调性,然后求解函数的极值即可.【解答】解:(1)由函数的解析式可得f(0)=1,f′(x)=x2﹣4,∴f′(0)=﹣4,则切线方程为y﹣1=﹣4x,即4x+y﹣1=0.(2)令f′(x)=0可得x1=﹣2,x2=2,在区间(﹣∞,﹣2)上,f′(x)>0,f(x)单调递增,在区间(﹣2,2)上,f′(x)<0,f(x)单调递减,在区间(2,+∞)上,f′(x)>0,f(x)单调递增,则函数的极大值为,函数的极小值为.【点评】本题主要考查导数的几何意义,导数的应用,利用导数研究函数的极值等知识,属于基础题.15.(2022春•焦作期中)已知函数f(x)=xln2x.(1)求f(x)的导函数f'(x);(2)设x0是f(x)的零点,求曲线y=f(x)在点(x0,f(x0))处的切线方程.【考点】利用导数研究曲线上某点切线方程.【专题】函数思想;综合法;导数的综合应用;数学运算.【分析】(1)直接求导即可;(2)先求出,f(x0)=0,再求得切线斜率,由此可得切线方程.【解答】解:(1)函数的定义域为(0,+∞),;(2)易知,f(x0)=0,且,∴曲线f(x)在点处的切线方程为.【点评】本题考查导数的运算以及利用导数研究曲线上某点的切线方程,考查运算求解能力,属于基础题.考点卡片1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a ≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【典型例题分析】题型一:和差积商的导数典例1:已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f(2014)+f(﹣2014)+f′(2015)﹣f′(﹣2015)=()A.0 B.2014 C.2015 D.8解:f′(x)=a cos x+3bx2,∴f′(﹣x)=a cos(﹣x)+3b(﹣x)2∴f′(x)为偶函数;f′(2015)﹣f′(﹣2015)=0∴f(2014)+f(﹣2014)=a sin(2014)+b•20143+4+a sin(﹣2014)+b(﹣2014)3+4=8;∴f(2014)+f(﹣2014)+f′(2015)﹣f(﹣2015)=8故选D.题型二:复合函数的导数典例2:下列式子不正确的是()A.(3x2+cos x)′=6x﹣sin x B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=解:由复合函数的求导法则对于选项A,(3x2+cos x)′=6x﹣sin x成立,故A正确;对于选项B,成立,故B正确;对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确;对于选项D,成立,故D正确.故选C.【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.2.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.3.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.4.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f(x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.5.利用导数研究曲线上某点切线方程【考点描述】利用导数来求曲线某点的切线方程是高考中的一个常考点,它既可以考查学生求导能力,也考察了学生对导数意义的理解,还考察直线方程的求法,因为包含了几个比较重要的基本点,所以在高考出题时备受青睐.我们在解答这类题的时候关键找好两点,第一找到切线的斜率;第二告诉的这点其实也就是直线上的一个点,在知道斜率的情况下可以用点斜式把直线方程求出来.【实例解析】例:已知函数y=xlnx,求这个函数的图象在点x=1处的切线方程.解:k=y'|x=1=ln1+1=1又当x=1时,y=0,所以切点为(1,0)∴切线方程为y﹣0=1×(x﹣1),即y=x﹣1.我们通过这个例题发现,第一步确定切点;第二步求斜率,即求曲线上该点的导数;第三步利用点斜式求出直线方程.这种题的原则基本上就这样,希望大家灵活应用,认真总结.。
2024届新高考数学大题精选30题--概率统计(1)含答案
大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.2024届新高考数学大题精选30题--概率统计(1)3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO问界M7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望Eξ .5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a 中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i=1,第i局乙当裁判0,第i局甲或丙当裁判,i=1,2,⋅⋅⋅,n,p i=P X i=1,X表示前n局中乙当裁判的次数.(1)求事件“n=3且X=1”的概率;(2)求p i;(3)求E X ,并根据你的理解,说明当n充分大时E X 的实际含义.附:设X,Y都是离散型随机变量,则E X+Y=E X+E Y.8(2024·安徽池州·二模)学校组织某项劳动技能测试,每位学生最多有3次测试机会.一旦某次测试通过,便可获得证书,不再参加以后的测试,否则就继续参加测试,直到用完3次机会.如果每位学生在3次测试中通过的概率依次为0.5,0.6,0.8,且每次测试是否通过相互独立.现某小组有3位学生参加测试,回答下列问题:(1)求该小组学生甲参加考试次数X的分布列及数学期望E X ;(2)规定:在2次以内测试通过(包含2次)获得优秀证书,超过2次测试通过获得合格证书,记该小组3位学生中获得优秀证书的人数为Y,求使得P Y=k取最大值时的整数k.9(2024·辽宁·二模)一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为-2的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.10(2024·广东湛江·一模)甲进行摸球跳格游戏.图上标有第1格,第2格,⋯,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为P n n=1,2,3,⋅⋅⋅,25.(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;(2)证明:数列P n-P n-1n=2,3,⋅⋅⋅,24为等比数列.11(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是13,击中区域乙的概率是14,击中区域丙的概率是18,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.12(2024·河北邢台·一模)小张参加某知识竞赛,题目按照难度不同分为A类题和B类题,小张回答A类题正确的概率为0.9,小张回答B类题正确的概率为0.45.已知题库中B类题的数量是A类题的两倍.(1)求小张在题库中任选一题,回答正确的概率;(2)已知题库中的题目数量足够多,该知识竞赛需要小张从题库中连续回答10个题目,若小张在这10个题目中恰好回答正确k个(k=0,1,2,⋯,10)的概率为P k,则当k为何值时,P k最大?13(2024·湖南衡阳·模拟预测)某电竞平台开发了A、B两款训练手脑协同能力的游戏,A款游戏规则是:五关竞击有奖闯关,每位玩家上一关通过才能进入下一关,上一关没有通过则不能进入下一关,且每关第一次没有通过都有再挑战一次的机会,两次均未通过,则闯关失败,各关和同一关的两次挑战能否通过相互独立,竞击的五关分别依据其难度赋分.B款游戏规则是:共设计了n(n∈N*且n≥2)关,每位玩家都有n次闯关机会,每关闯关成功的概率为13,不成功的概率为23,每关闯关成功与否相互独立;第1次闯关时,若闯关成功则得10分,否则得5分.从第2次闯关开始,若闯关成功则获得上一次闯关得分的两倍,否则得5分.电竞游戏玩家甲先后玩A、B两款游戏.(1)电竞游戏玩家甲玩A款游戏,若第一关通过的概率为34,第二关通过的概率为23,求甲可以进入第三关的概率;(2)电竞游戏玩家甲玩B款游戏,记玩家甲第i次闯关获得的分数为X i i=1,2,⋯,n,求E X i关于i的解析式,并求E X8的值.(精确到0.1,参考数据:2 37≈0.059.)14(2024·湖南邵阳·模拟预测)2023年8月3日,公安部召开的新闻发布会公布了“提高道路资源利用率”和“便利交通物流货运车辆通行”优化措施,其中第二条提出推动缓解停车难问题.在持续推进缓解城镇老旧小区居民停车难改革措施的基础上,因地制宜在学校、医院门口设置限时停车位,支持鼓励住宅小区和机构停车位错时共享.某医院门口设置了限时停车场(停车时间不超过60分钟),制定收费标准如下:停车时间不超过15分钟的免费,超过15分钟但不超过30分钟收费3元,超过30分钟但不超过45分钟收费9元,超过45分钟但不超过60分钟收费18元,超过60分钟必须立刻离开停车场.甲、乙两人相互独立地来该停车场停车,且甲、乙的停车时间的概率如下表所示:停车时间/分钟0,1515,30 30,45 45,60甲143a14a 乙162b13b设此次停车中,甲所付停车费用为X ,乙所付停车费用为Y .(1)在X +Y =18的条件下,求X ≥Y 的概率;(2)若ξ=X -Y ,求随机变量ξ的分布列与数学期望.15(2024·湖北·一模)2023年12月30号,长征二号丙/远征一号S运载火箭在酒泉卫星发射中心点火起飞,随后成功将卫星互联网技术实验卫星送入预定轨道,发射任务获得圆满完成,此次任务是长征系列运载火箭的第505次飞行,也代表着中国航天2023年完美收官.某市一调研机构为了了解当地学生对我国航天事业发展的关注度,随机的从本市大学生和高中生中抽取一个容量为n的样本进行调查,调查结果如下表:学生群体关注度合计关注不关注大学生12n710n高中生合计3 5 n附:α0.10.050.00250.010.001χα 2.706 3.841 5.024 6.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(1)完成上述列联表,依据小概率值α=0.05的独立性检验,认为关注航天事业发展与学生群体有关,求样本容量n的最小值;(2)该市为了提高本市学生对航天事业的关注,举办了一次航天知识闯关比赛,包含三个问题,有两种答题方案选择:方案一:回答三个问题,至少答出两个可以晋级;方案二:在三个问题中,随机选择两个问题,都答对可以晋级.已知小华同学答出三个问题的概率分别是34,23,12,小华回答三个问题正确与否相互独立,则小华应该选择哪种方案晋级的可能性更大?(说明理由)16(2024·湖北·二模)吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(r ,y )到直线y =bx +a 的距离的平方和S =ni =1(bx i +a -y i )2 来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程y =b x +a.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:b =ni =1(x i -x )(y i -y)ni =1(x i -x)2,a =y -b x.17(2024·山东枣庄·一模)有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为12.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第n n ∈N *,n ≥5 次答题后游戏停止的概率为a n .①求a n ;②a n 是否存在最大值?若存在,求出最大值;若不存在,试说明理由.18(2024·安徽合肥·二模)树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为x 1,x 2,x 3,⋯,x n ,其平均数记为x,方差记为s 21;把第二层样本记为y 1,y 2,y 3,⋯,y m ,其平均数记为y,方差记为s 22;把总样本数据的平均数记为z ,方差记为s 2.(1)证明:s 2=1m +nn s 21+x -z 2 +m s 22+y -z 2 ;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布N μ,σ2 ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为A ,B ,C ,D 四个等级,试确定各等级的分数线(精确到1).附:P μ-σ≤X ≤μ+σ ≈0.68,302≈17,322≈18,352≈19.19(2024·福建福州·模拟预测)甲企业生产线上生产的零件尺寸的误差X服从正态分布N0,0.22,规定X∈-0.2,0.2的零件为合格品.的零件为优等品,X∈-0.6,0.6(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量ξ∼Nμ,σ2,则Pμ-σ<ξ<μ+σ=0.9545,=0.6827,Pμ-2σ<ξ<μ+2σPμ-3σ<ξ<μ+3σ=0.9973)20(2024·河北保定·二模)某兴趣小组调查并统计了某班级学生期末统考中的数学成绩和建立个性化错题本的情况,用来研究这两者是否有关.若从该班级中随机抽取1名学生,设A =“抽取的学生期末统考中的数学成绩不及格”,B =“抽取的学生建立了个性化错题本”,且P (A |B )=23,P (B |A )=56,P B =23.(1)求P A 和P A B .(2)若该班级共有36名学生,请完成列联表,并依据小概率值α=0.005的独立性检验,分析学生期末统考中的数学成绩与建立个性化错题本是否有关,个性化错题本期末统考中的数学成绩合计及格不及格建立未建立合计(3)为进一步验证(2)中的判断,该兴趣小组准备在其他班级中抽取一个容量为36k 的样本(假设根据新样本数据建立的列联表中,所有的数据都扩大为(2)中列联表中数据的k 倍,且新列联表中的数据都为整数).若要使得依据α=0.001的独立性检验可以肯定(2)中的判断,试确定k 的最小值参考公式及数据:χ2=n ad -bc 2a +b c +d a +c b +d,n =a +b +c +d .α0.010.0050.001x a6.6357.87910.82821(2024·浙江绍兴·模拟预测)书接上回.麻将学习小组中的炎俊同学在探究完问题后返回家中观看了《天才麻将少女》,发现超能力麻将和现实麻将存在着诸多不同.为了研究超能力麻将,他使用了一些”雀力值”和”能力值”来确定每位角色的超能力麻将水平,发现每位角色在一局麻将中的得分与个人值和该桌平均值之差存在着较大的关系.(注:平均值指的是该桌内四个人各自的“雀力值”和“能力值”之和的平均值,个人值类似.)为深入研究这两者的关系,他列出了以下表格:个人值与平均值之差x-9-6-30369得分y-38600-23100-10900+11800+24100+36700(1)①计算x ,y 的相关系数r ,并判断x ,y 之间是否基本上满足线性关系,注意:保留至第一位非9的数.②求出y 与x 的经验回归方程.③以下为《天才麻将少女》中几位角色的”雀力值”和”能力值”:角色宫永照园城寺怜花田煌松实玄雀力值249104能力值241636试估计此四位角色坐在一桌打麻将每一位的得分(近似至百位)(2)在分析了更多的数据后,炎俊发现麻将中存在着很多运气的成分.为衡量运气对于麻将对局的影响,炎俊建立了以下模型,其中他指出:实际上的得分并不是一个固定值,而是具有一定分布的,存在着一个标准差.运气实际上体现在这一分布当中取值的细微差别.接下去他便需要得出得分的标准差.他发现这一标准差来源自两个方面:一方面是在(1)②问当中方程斜率b 存在的标准差Δb ;另一方面则是在不影响平均值的情况下,实际表现“个人值”X 符合正态分布规律X ~N μ,σ2 .(μ为评估得出的个人值.)已知松实玄实际表现个人值满足P X >10.5 =0.02275,求(1)③中其得分的标准差.(四舍五入到百位)(3)现在新提出了一种赛制:参赛者从平均值为10开始进行第一轮挑战,之后每一轮对手的”雀力值”和”能力值”均会提升至原来的43.我们设进行了i 轮之后,在前i 轮内该参赛者的总得分为E X i ;若园城寺怜参加了此比赛,求ni =1E X i2i参考数据和公式:①7i =1x i y i =1029000;7i =1y 2i =4209320000.②相关系数r =ni =1x i -x y i -yni =1x i -x2ni =1y i -y2;经验回归方程y =b x +a ,b =ni =1x i -x y i -yni =1x i -x2,a =y -b ⋅x;Δbb=1r 2-1n -2,其中n 为回归数据组数.③对于随机变量X~Nμ,σ2,Pμ-σ≤X≤μ+σ≈0.6827,Pμ-2σ≤X≤μ+2σ≈0.9545,Pμ-3σ≤X≤μ+3σ≈0.9973.④x <<1时,1+xα≈1+αx,α∈R;⑤对间接计算得出的值f=xy有标准差Δf满足Δff=Δx x 2+Δy y 2.⑥13136≈3.2×10-4;6.8≈2.6;2946524≈1715×1+9×10-422(2024·江苏南通·模拟预测)“踩高跷,猜灯谜”是我国元宵节传统的文化活动. 某地为了弘扬文化传统,发展“地摊经济”,在元宵节举办形式多样的猜灯谜活动.(1)某商户借“灯谜”活动促销,将灯谜按难易度分为B、C两类,抽到较易的B类并答对购物打八折优惠,抽到稍难的C类并答对购物打七折优惠,抽取灯谜规则如下:在一不透明的纸箱中有8张完全相同的卡片,其中3张写有A字母,3张写有B字母,2张写有C字母,顾客每次不放回从箱中随机取出1张卡片,若抽到写有A的卡片,则再抽1次,直至取到写有B或C卡片为止,求该顾客取到写有B卡片的概率.(2)小明尝试去找全街最适合他的灯谜,规定只能取一次,并且只可以向前走,不能回头,他在街道上一共会遇到n条灯谜(不妨设每条灯谜的适合度各不相同),最适合的灯谜出现在各个位置上的概率相等,小明准备采用如下策略:不摘前k1≤k<n条灯谜,自第k+1条开始,只要发现比他前面见过的灯谜适合的,就摘这条灯谜,否则就摘最后一条,设k=tn,记小明摘到那条最适合的灯谜的概率为P.①若n=4,k=2,求P;②当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k+1k+1+⋯+1n-1=ln nk)23(2024·安徽·模拟预测)某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i次答题所得分数X i i∈N*的数学期望为E X i.(ⅰ)求E X1,E X2,E X3,并猜想当i≥2时,E X i与E X i-1之间的关系式;(ⅱ)若ni=1E X i>320,求n的最小值.24(2024·辽宁·模拟预测)某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物P ,统计其中A 种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i i =1,2,⋯,20 .设该区域中A 种的数目为M ,B 种的数目为N (M ,N 均大于100),每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E X i +X j =E X i +E X j ,D X i +X j =D X i +D X j (i )证明:E X =E X 1 ,D X =120D X 1 ;(ii )该小组完成所有试验后,得到X i 的实际取值分别为x i i =1,2,⋯,20 .数据x i i =1,2,⋯,20 的平均值x =30,方差s 2=1.采用x和s 2分别代替E X 和D X ,给出M ,N 的估计值.(已知随机变量x 服从超几何分布记为:x ∼H P ,n ,Q (其中P 为总数,Q 为某类元素的个数,n 为抽取的个数),则D x =nQ P 1-QPP -nP -1 )25(2024·广东广州·一模)某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由n (n ≥3,n ∈N *)位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知A 团队每位成员闯过第一关和第二关的概率分别为34和12,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若n =3,用X 表示A 团队闯关活动结束时上场闯关的成员人数,求X 的均值;(2)记A 团队第k (1≤k ≤n -1,k ∈N *)位成员上场且闯过第二关的概率为p k ,集合k ∈N *p k <3128中元素的最小值为k 0,规定团队人数n =k 0+1,求n .26(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”、已知0<P B <1,证明:P A B >P A B.27(2024·湖南·二模)某大学有甲、乙两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去甲或乙运动场的概率均为12,每次选择相互独立.设王同学在某个假期的三天内去运动场锻炼的次数为X ,已知X 的分布列如下:(其中a >0,0<p <1)X0123Pa (1-p )2apa a 1-p(1)记事件A i 表示王同学假期三天内去运动场锻炼i 次i =0,1,2,3 ,事件B 表示王同学在这三天内去甲运动场锻炼的次数大于去乙运动场锻炼的次数.当p =12时,试根据全概率公式求P B 的值;(2)是否存在实数p ,使得E X =53若存在,求p 的值:若不存在,请说明理由;(3)记M 表示事件“甲运动场举办锻炼有奖的抽奖活动”,N 表示事件“王同学去甲运动场锻炼”,0<P M <1.已知王同学在甲运动场举办锻炼有奖的抽奖活动的情况下去甲运动场锻炼的概率,比不举办抽奖活动的情况下去甲运动场锻炼的概率大,证明:P M ∣N >P M ∣N.28(2024·山东济南·二模)随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为14.例如在1秒末,粒子会等可能地出现在1,0,-1,0,0,1,0,-1四点处.(1)设粒子在第2秒末移动到点x,y,记x+y的取值为随机变量X,求X的分布列和数学期望E X ;(2)记第n秒末粒子回到原点的概率为p n.(i)已知nk=0(C k n)2=C n2n求p3,p4以及p2n;(ii)令b n=p2n,记S n为数列b n的前n项和,若对任意实数M>0,存在n∈N*,使得S n>M,则称粒子是常返的.已知2πnnen<n!<6π 142πn n e n,证明:该粒子是常返的.29(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2n ,⋯.如果一个数列a n 的p 阶差数列a pn 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 13;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.。
新课标高考文科理科数学前三大题练习及详解 (3)
前三题练习71、(本小题满分12分)已知:())()222sin cos 2cos (1f x x x x x R =++-+∈(Ⅰ)请说明函数()y f x =的图象可由函数sin 2y x =的图象经过怎样的变换得到;(7分)(Ⅱ)设函数()y f x =图象位于y 轴右侧的对称中心从左到右依次为A 1、A 2、A 3、A 4、…、nA …、()n N *∈,试求A 4的坐标。
(5分)2、(本小题满分13分)已知229()(3) ().32f x x x ax a R =--∈(I )若过函数f (x )图象上一点P (1,t )的切线与直线x -2y +b =0垂直,求t 的值;(6分)(II )若函数)x (f 在)1,1( -内是减函数,求a 的取值范围.(7分)3、(本小题满分14分) 在直三棱柱ABC -A 1B 1C 1中,AB=BC=CA=a ,AA 1(I )求AB 1与侧面CB 1所成的角;(4分)(II )若点P 为侧棱AA 1的中点,求二面角P -BC -A 的大小;(5分)(Ⅲ)在(II )的条件下,求点A 到平面PBC 的距离.(5分)前三题练习7答案1.解:(Ⅰ) ()22sin cos )cos 2f x x x x =++-2cos 2x x=+ ……………………2分∴1()sin 2cos 222f x x x =+cossin 2sincos 266x xππ=+C 1B 1A 1CBAsin 26x π⎛⎫=+ ⎪⎝⎭sin 212x π⎛⎫=+ ⎪⎝⎭ (5)分所以函数()y f x =的图象可由函数sin 2y x =的图象向左平移12π个单位得到。
…………7分(Ⅱ)∵函数sin y x=图象的对称中心为(,0)k π,k Z∈……………………8分由2,6x k k Zππ+=∈得函数()y f x =的对称中心为(,0)212k ππ-,k Z∈……10分k依次取1,2,3,4……可得A 1、A 2、A 3、A 4……各点,∴A 4的坐标为23(,0)12π……………………………………………………12分2.解: (I )∵,x 3ax2x 32)x (f 23--=∴.3ax 4x2)x (f 2--='…………1分则过P (1,t )的切线斜率为k =()/114f a =--.………2分又∵它与直线x -2y +b =0垂直, ∴14a --=-2, 即14a =,∴()3221332f x x x x=--…………5分D PABCA 1B 1C 1又∵P (1,t )在f (x )的图象上,∴t =176-.……………6分(II ) 函数)x (f 在)1,1( -内是减函数∴2()243f x x ax '=--<0对于一切(1,1)x ∈-恒成立。
往年数学高考前三大道题练习题
高考模拟试题1.(本小题满分12分)已知坐标平面上三点)0,2(A ,)2,0(B ,)sin ,(cos ααC .(1)若2()7OA OC += (O 为原点),求向量与夹角的大小; (2)若⊥,求α2sin 的值. 2.(本小题满分14分)已知向量()()2sin ,cos m x x π=--u r,,2sin()2n x x π⎫=-⎪⎭r ,函数()1f x m n =-⋅u r r .(1)求函数()f x 的解析式;(2)当[]0,x π∈时,求()f x 的单调递增区间; (3)说明()f x 的图象可以由()sin g x x =的图象经过怎样的变换而得到. 3.(本小题满分12分)已知函数()2sin 2cos 2f x x x x ==++∈,R ,求:(Ⅰ)函数()f x 的最大值及取得最大值的自变量x 的集合;(Ⅱ)函数()f x 的单调增区间. 4.(本小题满分12分)已知函数()4cos sin()6f x x x a π=⋅++的最大值为2。
(1)求a 的值及()f x 的最小正周期;(2)求()f x 的单调递增区间。
5.(本小题满分12分)已知函数.2cos 32cos 2sin)(2xx x x f +=(1)求当],0[π∈x 时,)(x f 的零点;(2)求)(x f 的值域;(3)将)(x f 的图象经过怎样的平移,使得平移后的图象关于原点对称? 6. (本小题满分12分)在中,角A ,B ,C 所对的边分别为a ,b,c,面积.(1) 求角C 的大小;(2) 求的最大值,以及取得最大值时角A 的值.7.(本小题满分12分)已知向量)cos ,(sin A A m =,)cos ,sin (B B n -=,C 2cos =∙, 且C B A ,,分别为ABC ∆的三边c b a ,,所对的角。
(Ⅰ)求角C 的大小; (Ⅱ)若B C A sin ,sin ,sin 成等比数列,且18)(=-∙AC AB CA ,求b a +的值。
2024届高考(江西、广西、贵州、甘肃专用)数学大题必刷专项(立体几何)练习(附答案)
2024届高考(江西、广西、贵州、甘肃专用)数学大题必刷专项(立体几何)练习一、解答题1.(2023ꞏ安徽亳州ꞏ安徽省亳州市第一中学校考模拟预测)已知四棱锥P ABCD -中,侧面PAD 为等边三角形,底面ABCD 为直角梯形,//AB CD ,90ABC ∠=︒,122BC CD AB ===,PA BD ⊥.(1)求证:平面PAD ⊥平面ABCD ; (2)求直线PC 与平面PBD 所成角的正弦值.2.(2023ꞏ湖北黄冈ꞏ浠水县第一中学校考模拟预测)如图,在三棱台111-A B C ABC 中,112A B =,4AB AC ==,11AA CC ==13BB =,π2BAC ∠=.(1)证明:平面11A ACC ⊥平面ABC ;(2)设D 是BC 的中点,求平面11A ACC 与平面1A AD 夹角的余弦值.3.(2023ꞏ湖北恩施ꞏ校考模拟预测)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,2AC BE ==,M 为线段CD上一点.(1)求证:DE AM ⊥;(2)若EM 与平面ACD 所成角为π3,求平面AMB 与平面ACD 所成锐二面角的余弦值. 4.(2023ꞏ山东泰安ꞏ统考模拟预测)四棱锥S ABCD -中,底面ABCD 为矩形,2,60AD SA SAB ==∠= ,45SAD ∠= ,平面SAD 与平面SBC 的交线为l .(1)求证:直线l 平行于平面ABCD ; (2)求二面角D SA B --的余弦值.5.(2023ꞏ山东泰安ꞏ统考模拟预测)如图1,在平行四边形ABCM 中,2AB BC ==,60MAD ∠=︒,D 为CM 的中点,12AF FC = ,AH HD = ,沿AD 将△MAD 翻折到PAD的位置,如图2,PF AC ⊥.(1)证明://HF 平面PBD ;(2)求平面PBC 和平面PCD 的夹角.6.(2023ꞏ福建宁德ꞏ校考模拟预测)如图,已知多面体EACBD 中,EB ⊥底面ACBD ,EB =1,AB =2,其中底面由以AB 为直径的半圆ACB 及正三角形ABD 组成(1)若BC =1,求证:BC ∥平面ADE .(2)半圆AB 上是否存在点M ,使得二面角M AE D --是直二面角?若存在,求出AMBM的值;若不存在,请说明理由.7.(2023ꞏ福建厦门ꞏ统考模拟预测)筝形是指有一条对角线所在直线为对称轴的四边形.如图,四边形ABCD 为筝形,其对角线交点为,2O AB BD BC ===,将ABD △沿BD 折到A BD ' 的位置,形成三棱锥A BCD -'.(1)求B 到平面A OC '的距离;(2)当1A C '=时,在棱A D '上是否存在点P ,使得直线BA '与平面POC 所成角的正弦值为14?若存在,求A P A D ''的值;若不存在,请说明理由.8.(2023ꞏ安徽合肥ꞏ合肥市第六中学校考模拟预测)如图所示的几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以边AD 所在直线为旋转轴旋转2π3得到的,M 是BE 的中点.(1)设N 是 CF上的一点,且AN CD ⊥,求FDN ∠的大小; (2)当2AB =,4=AD 时,求二面角C AM F --的余弦值.9.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知直角梯形形状如下,其中AB AD ⊥,26DC AB AE ==,6AB =,2AD =.(1)在线段CD 上找出点F ,将四边形ADFE 沿EF 翻折,形成几何体A BE D CF ''-.若无论二面角A EF B '--多大,都能够使得几何体A BE D CF ''-为棱台,请指出点F 的具体位置(无需给出证明过程).(2)在(1)的条件下,若二面角A EF B '--为直二面角,求棱台A BE D CF ''-的体积,并求出此时二面角B A D E ''--的余弦值.10.(2023ꞏ山西ꞏ校联考模拟预测)如图,斜四棱柱1111ABCD A B C D -的底面ABCD 为等腰梯形,且//AB CD ,点1A 在底面的射影点O 在四边形ABCD 内部,且1112,4,1,AD BC CD AA AB A O AA BC ======⊥.(1)求证:平面ABCD ⊥平面11ACC A ;(2)在线段11B D 上是否存在一点M ,使得平面MBC 与平面ABCD夹角的余弦值为7,若存在,求111B MB D 的值;若不存在,请说明理由. 11.(2023ꞏ河北ꞏ统考模拟预测)在圆柱12O O 中,等腰梯形ABCD 为底面圆1O 的内接四边形,且1AD DC BC ===,矩形ABFE 是该圆柱的轴截面,CG 为圆柱的一条母线,1CG =.(1)求证:平面1O CG ∥平面ADE ;(2)设DP DE λ=,[]0,1λ∈,试确定λ的值,使得直线AP 与平面ABG 所成角的正弦值. 12.(2023ꞏ湖南长沙ꞏ长郡中学校考模拟预测)如图,在直角梯形ABCD 中,//AD BC ,AD CD ⊥,四边形CDEF 为平行四边形,对角线CE 和DF 相交于点H ,平面CDEF ⊥平面ABCD ,2BC AD =,60DCF ∠=o ,G 是线段BE 上一动点(不含端点).(1)当点G 为线段BE 的中点时,证明://AG 平面CDEF ;(2)若1,2AD CD DE ===,且直线DG 与平面CDEF 成45 角,求二面角E DG F --的正弦值.13.(2023ꞏ广东佛山ꞏ华南师大附中南海实验高中校考模拟预测)如图,在四棱锥P ABCD -中,AB CD ,AB AD ⊥,22BC CD AB ===,E 为PC 中点.(1)在棱PD 上是否存在点Q ,使得//AQ 平面EBD ?说明理由;(2)若PC ⊥平面PAD ,PC PD =,求平面PAD 与平面EAB 所成角的余弦值.14.(2023ꞏ广东广州ꞏ广州六中校考三模)四棱锥P ABCD -中,AD BC ∥,22AB AD BC ===,60ABC ∠=︒,PA CD ⊥,PD AC ⊥,点E 是棱PD 上靠近点P 的三等分点.(1)证明:PA ⊥平面ABCD ;(2)若平面PAC 与平面EAC 的夹角的余弦值为10,求四棱锥P ABCD -的体积. 15.(2023ꞏ广东深圳ꞏ深圳中学校考模拟预测)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =.DG ⊥平面ABCD ,2DA DC DG ===.(1)求平面EBC 与平面BCF 的夹角的正弦值;(2)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.16.(2023ꞏ广东深圳ꞏ统考模拟预测)在正三角形ABC 中,E 、F 、P 分别是AB -、AC 、BC 边上的点,满足AE :EB CF =:FA CP =:1PB =:2(如图1).将AEF △沿EF 折起到1A EF 的位置,使二面角1A EF B --成直二面角,连结11,A B A P (如图2)(1)求证:FP //平面1A EB ; (2)求证:1A E ⊥平面BEP ;(3)求直线1A E 与平面1A BP 所成角的大小.17.(2023ꞏ江苏无锡ꞏ校联考三模)如图,已知在平面四边形ABCD 中,2AB BC ==,AC CD ==,=90ACD ∠︒,现将ABC 沿AC 翻折到PAC △的位置,使得2PD =.(1)求证:平面PAD ⊥平面ACD ;(2)点M 在线段CD 上,当二面角M AP D --的大小为6π时,确定M 点的位置.18.(2023ꞏ江苏常州ꞏ江苏省前黄高级中学校考模拟预测)如图,在三棱台ABC —111A B C 中,1111122BB B C C C BC AB BC ====⊥,,平面11AA B B ⊥平面11BB C C .(1)证明:AB ⊥平面11BB C C ; (2)若二面角1B C C A --的大小是π6,求侧面11AAC C 与底面ABC 所成二面角的正弦值. 19.(2023ꞏ江苏苏州ꞏ模拟预测)在如图所示的圆锥中,已知P 为圆锥的顶点,O 为底面的圆心,其母线长为6,边长为ABC 内接于圆锥底面,OD OP λ= 且1,12λ⎡⎤∈⎢⎥⎣⎦.(1)证明:平面DBC ⊥平面DAO ;(2)若E 为AB 中点,射线OE 与底面圆周交于点M ,当二面角A DB C --的余弦值为519时,求点M 到平面BCD 的距离.20.(2023ꞏ辽宁沈阳ꞏ东北育才学校校考模拟预测)如图,棱长为2的正方体1111ABCD A B C D -中,P 为线段11B D 上动点.(1)证明:CP 平面1A BD ;(2)当直线BP 与平面11A BCD D 到平面1A BP 的距离. 21.(2023ꞏ江苏盐城ꞏ盐城中学校考三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面⊥BDF 平面BCG ;(2)若平面BDF 与平面ABG且线段AB 长度为2,求点G 到直线DF 的距离.22.(2023ꞏ重庆沙坪坝ꞏ重庆南开中学校考模拟预测)如图所示,正三棱柱111ABC A B C -中各条棱长均为2,点,,M N E 分别为棱1,,AC AA AB 的中点.(1)求异面直线MN 和CE 所成角的正切值; (2)求点B 到平面MEN 的距离.23.(2023ꞏ云南ꞏ校联考模拟预测)如图,正ABC 是圆柱底面圆O 的内接三角形,其边长为a .AD 是圆O 的直径,PA 是圆柱的母线,E 是AD 与BC 的交点,圆柱的轴截面是正方形.(1)记圆柱的体积为1V ,三棱锥-P ABC 的体积为2V ,求12V V ; (2)设F 是线段PE 上一点,且12FE PF =,求二面角A FC O --的余弦值. 24.(2023ꞏ黑龙江哈尔滨ꞏ哈尔滨三中校考模拟预测)在长方体1111ABCD A B C D -中,12AB BC CC ==,点P 为棱11C D 上任意一点.(1)求证:平面11AAC C ⊥平面PBD ;(2)若点E 为棱1CC 上靠近点C 的三等分点,求点P 在棱11C D 上什么位置时,平面BDE 与平面PBD . 25.(2023ꞏ吉林ꞏ长春吉大附中实验学校校考模拟预测)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面,,ABC E F 分别是,PA PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,证明:l ⊥平面PCB ;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.26.(2023ꞏ江苏ꞏ金陵中学校联考三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE AD =,ABC 为底面圆O 的内接正三角形,圆锥的高18DO =,点P 为线段DO 上一个动点.(1)当PO =PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.27.(2023ꞏ广东深圳ꞏ校考二模)如图1所示,等边ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 边的中点.现将ABC 沿CD 折叠,如图2所示.(1)证明:CD EF ⊥;(2)折叠后若AB a =,求二面角A BD E --的余弦值.28.(2023ꞏ湖南邵阳ꞏ邵阳市第二中学校考模拟预测)如图,在ABC 中,90B ?,P 为AB 边上一动点,//PD BC 交AC 于点D ,现将PDA 沿PD 翻折至PDA ' .(1)证明:平面CBA '⊥平面PBA ';(2)若24PB CB PD ===,且A P AP '⊥,线段A C '上是否存在一点E (不包括端点),使得锐二面角E BD C --的余弦值为14,若存在求出A E EC '的值,若不存在请说明理由.29.(2023ꞏ湖南衡阳ꞏ校考模拟预测)如图,ADM △是等腰直角三角形,AD DM ⊥,四边形ABCM 是直角梯形,AB BC ⊥,MC BC ⊥,且222AB BC CM ===,平面ADM ⊥平面ABCM .(1)求证:AD BM ⊥;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,三棱锥M ADE -的体积为18? 30.(2023ꞏ浙江温州ꞏ统考二模)已知三棱锥D ABC -中,△BCD 是边长为3的正三角形,,AB AC AD AD ==与平面BCD(1)求证:AD BC ⊥;(2)求二面角D AC B --的平面角的正弦值.参考答案一、解答题1.(2023ꞏ安徽亳州ꞏ安徽省亳州市第一中学校考模拟预测)已知四棱锥P ABCD -中,侧面PAD 为等边三角形,底面ABCD 为直角梯形,//AB CD ,90ABC ∠=︒,122BC CD AB ===,PA BD ⊥.(1)求证:平面PAD ⊥平面ABCD ; (2)求直线PC 与平面PBD 所成角的正弦值. 【答案】(1)证明见解析【详细分析】(1)由题意,利用勾股定理逆定理证明AD BD ⊥,由已知PA BD ⊥,证明BD ⊥平面PAD ,从而证明平面PAD ⊥平面ABCD ; (2)建立空间直角坐标系,利用空间向量法计算可得.【过程详解】(1)四棱锥P ABCD -中,90ABC ∠=︒,122BC CD AB ===,则BD ==AD 4AB =, 222BD AD AB ∴+=,AD BD ∴⊥,又PA BD ⊥,且PA AD A ⋂=,,PA AD ⊂平面PAD , BD ∴⊥平面PAD ,又BD ⊂平面ABCD ,∴平面ABCD ⊥平面PAD ,即平面PAD ⊥平面ABCD ;(2)如图建立空间直角坐标系,则()0,0,0D ,()0,B,()C,P,所以()0,DB =uu ur,(PC =-,DP =,设平面PBD 的法向量为(),,n x y z=,则00n DB n DP ⎧⋅==⎪⎨⋅==⎪⎩ ,令x =1z=-,所以)1n =-,设直线PC 与平面PBD 所成角为θ,则sin 248n PC n PCθ⋅===⨯⋅ , 所以直线PC 与平面PBD.2.(2023ꞏ湖北黄冈ꞏ浠水县第一中学校考模拟预测)如图,在三棱台111-A B C ABC 中,112A B =,4AB AC ==,11AA CC ==13BB =,π2BAC ∠=.(1)证明:平面11A ACC ⊥平面ABC ;(2)设D 是BC 的中点,求平面11A ACC 与平面1A AD 夹角的余弦值.【答案】(1)证明见解析 (2)23【详细分析】(1)由线面垂直证面面垂直,根据题中条件,在平面ABC 中,AB 垂直于两平面的交线AC ,只需再证其与平面11A ACC 内的另外一条与AC 相交的直线垂直即可.(2)建立空间直角坐标系,两平面法向量的夹角余弦值的绝对值即为平面11A ACC 与平面1A AD 夹角的余弦值. 【过程详解】(1)证明:由三棱台111-A B C ABC 知:11//A B AB ,在梯形11A ABB 中,取AB 的中点E ,连接1B E , 因112A B =,4AB AC ==故11A B AE =,四边形11A AEB 是平行四边形,∴11B E AA ==122EB AB ==,13BB = 所以22211B E EB BB +=,1π2BEB ∴∠=,即1B E AB ⊥, 因11//B E AA ,所以1BA AA ⊥, 又因π2BAC ∠=,所以BA AC ⊥, 又因1AA AC A = ,所以BA ⊥平面11A ACC , 因BA ⊂平面ABC ,所以平面11A ACC ⊥平面ABC ; (2)解:取AC 的中点O ,11AC 的中点F ,连接OD ,OF ,则//OD AB , 因AB AC ⊥,所以OD AC ⊥,由条件知:四边形11A ACC 是等腰梯形,所以OF AC ⊥, 平面11A ACC ⋂平面=ABC ACOF ⊂平面11A ACC ,平面11A ACC ⊥平面ABC∴OF ⊥平面ABC ,分别以OA ,OD ,OF 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图,则在等腰梯形11A ACC中,由平面几何知识可得:2OF ==,∴()2,0,0A ,()0,2,0D ,()11,0,2A ,()2,2,0AD =- ,()11,0,2AA =-设平面1A AD 的法向量(),,x y z μ=r, 则由1AA AD μμ⎧⊥⎪⎨⊥⎪⎩ 得22020x y x z -+=⎧⎨-+=⎩,令2x =,得2y =,1z =,所以()2,2,1μ=,又平面11A ACC 的法向量()0,1,0ν=, 设平面11A ACC 与平面1A AD 的夹角为θ,则2cos 3μνθμν⋅===⋅. 3.(2023ꞏ湖北恩施ꞏ校考模拟预测)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD均为正三角形,2AC BE ==,M 为线段CD上一点.(1)求证:DE AM ⊥; (2)若EM 与平面ACD 所成角为π3,求平面AMB 与平面ACD 所成锐二面角的余弦值. 【答案】(1)证明见解析;13.【详细分析】(1)取AC 中点O ,利用面面垂直的性质、线面垂直的性质证明//DE OB 即可推理作答.(2)利用(1)中信息,建立空间直角坐标系,借助空间向量求解作答.【过程详解】(1)取AC 中点O ,连接DO 、OB ,在正ACD 和正ABC 中,2AC =,则,,DO AC BO AC DO BO ⊥⊥=,而平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,BO ⊂平面ABC ,于是DO ⊥平面ABC ,BO ⊥平面ACD ,又BE ⊥平面ABC ,即有//DO EB ,而DO EB ==因此四边形DOBE 是平行四边形,则//DE OB ,从而DE ⊥平面ABC ,AM ⊂平面ADC , 所以DE AM ⊥.(2)由(1)知,DE ⊥平面ADC ,EMD ∠为EM 与平面ADC 的所成角,即π3EMD ∠=, 在Rt EDM △中,1πtan3DE DM ===,即M 为DC 中点, 由(1)知,,,OB OC OD 两两垂直,建立如图所示的空间直角坐标系O xyz -,则1(0,1,0),(0,1,0),(0,2A B D C M -,3(0,2AB AM == ,显然平面DAC 的一个法向量为1(1,0,0)= n ,设平面MAB 的一个法向量为2(,,)n x y z =,则2203022n AB y n AM y z ⎧⋅+=⎪⎨⋅=+=⎪⎩,令1x =,得2(1,n = ,121212|||cos ,|||||n n n n n n ⋅〈〉===所以平面AMB 与平面ACD所成锐二面角的余弦值为13. 4.(2023ꞏ山东泰安ꞏ统考模拟预测)四棱锥S ABCD -中,底面ABCD为矩形,2,60AD SA SAB ==∠= ,45SAD ∠= ,平面SAD 与平面SBC 的交线为l .(1)求证:直线l 平行于平面ABCD ; (2)求二面角D SA B --的余弦值.【答案】(1)证明见解析【详细分析】(1)根据题意证得//AD 平面SBC ,结合线面平行的性质定理证得//AD 直线l ,再由线面平行的判定定理,即可证得//l 平面ABCD ;(2)以点A 为原点,建立空间直角坐标系,设(,,)AS a b c = ,取AB 的方向向量(0,1,0)e = ,根据60SAB ∠= ,45SAD ∠=,利用向量的夹角公式,求得AS =,进而求得平面ADS 和平面ABS 的一个法向量,结合向量的夹角公式,即可求解. 【过程详解】(1)证明:因为底面ABCD 是矩形,可得//AD BC , 又因为AD ⊄平面SBC ,BC ⊂平面SBC ,所以//AD 平面SBC , 因为AD ⊂平面SAD ,且平面SAD ⋂平面SBC l =,所以//AD 直线l , 又因为l ⊄平面ABCD ,AD ⊂平面ABCD ,所以//l 平面ABCD .(2)解:以点A 为原点,,AD AB ,垂直于平面ABCD 的直线AZ 分别为x 轴、y 轴和z轴,建立如图空间直角坐标系,则(0,0,0),A D,则AD =,设(,,)AS a b c = ,取AB的方向向量(0,1,0)e = ,因为60SAB ∠= ,45SAD ∠= ,可得cos ,2AS AD AS AD AS AD ⋅==1cos ,2AS e AS e AS e ⋅===,又因为2SA =,可得2AS == ,即2224a b c ++=,解得1,1a b c ===,即AS =,设平面ADS 法向量为111(,,)m x y z =,则111100m AD m AS y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取11z =,可得110,1x y ==-,所以(0,1,1)m =-, 设平面ABS 的法向量为222(,,)n x y z =,则222200n e y n AS y z ⋅==⎧⎪⎨⋅++=⎪⎩,取取2z =221,0x y ==,所以(1,0,n =,所以cos ,3m n m n m n ⋅===-,由图象可得,二面角D SA B --为锐二面角, 所以二面角D SA B --的余弦值为3.5.(2023ꞏ山东泰安ꞏ统考模拟预测)如图1,在平行四边形ABCM中,2AB BC ==,60MAD ∠=︒,D 为CM 的中点,12AF FC = ,AH HD = ,沿AD 将△MAD 翻折到PAD的位置,如图2,PF AC ⊥.(1)证明://HF 平面PBD ; (2)求平面PBC 和平面PCD 的夹角.【答案】(1)证明见解析(2)π4【详细分析】(1)确定PAD 为正三角形,AC BD G ⋂=,证明//HF DG ,得到证明. (2)确定AD ⊥平面PHF ,AC BC ⊥,建立空间直角坐标系,确定平面PCD 和平面PBC 的法向量,根据向量的夹角公式计算得到答案.【过程详解】(1)PA PD ==,60PAD ∠=︒,PAD 为正三角形,AH HD =,则H 为AD 中点,设AC BD G ⋂=,//CD AB ,12CD AB =,故12CG GA =,故G 为AC 的三等分点,13AF AC =,F 为AC 的三等分点,即F 为AG 的中点,故//HF DG ,DG ⊂平面PBD ,HF ⊄平面PBD ,故//HF 平面PBD .(2)由题设易得AD =,60DAB ∠=︒,22212cos 312292BD AD AB AD AB BAD =+-⋅∠=+-=, 故222AD BD AB +=,即AD BD ⊥,//HF DG ,故AD HF ⊥,AD PH ⊥,PH HF H = ,、PH HF 在面PHF 内,故AD ⊥平面PHF .PF 在面PHF 内,故AD PF ⊥,又PF AC ⊥,AC AD A = ,、AC AD 在面ABCD 内,故PF ⊥平面ABCD .在Rt PFH 中,PF =由题意易得∠ABC =60°,∠BAC =30°,则∠ACB =90°,故AC BC ⊥,过点C 作平面ABCD 的垂线为z 轴,以CA CB,分别为x 轴、y 轴正方向,建立如图所示坐标系.则()0,0,0C,()B ,()3,0,0A,(P,3,2D ⎛⎫⎪ ⎪⎝⎭,3,2CD ⎛⎫= ⎪ ⎪⎝⎭,(CP =,()CB = , 设平面PCD 的一个法向量为(,,)n x y z =,则30220n CD x y n CP x ⎧⋅==⎪⎨⎪⋅==⎩,令1x =,则y z ==(n =设平面PBC 的一个法向量为111(,,)m x y z =,则111020m CB m CP x ⎧⋅==⎪⎨⋅==⎪⎩ , 令11x =,则10y =,1z =,所以(1,0,m =,设平面PBC 和平面PCD 的夹角为θ,[]0,πθ∈,则cos cos ,2m n θ=== ,π4θ=, 所以平面PBC 和平面PCD 的夹角为π4. 6.(2023ꞏ福建宁德ꞏ校考模拟预测)如图,已知多面体EACBD 中,EB ⊥底面ACBD ,EB =1,AB =2,其中底面由以AB 为直径的半圆ACB 及正三角形ABD 组成(1)若BC =1,求证:BC ∥平面ADE .(2)半圆AB 上是否存在点M ,使得二面角M AE D --是直二面角?若存在,求出AMBM的值;若不存在,请说明理由. 【答案】(1)证明见过程详解(2)存在,AMBM=【详细分析】(1)根据题意详细分析可得30CAB ∠=︒,进而可证AD AC ⊥,AD //BC ,根据线面平行的判定定理详细分析证明;(2)建系,设()()cos ,sin ,0,0,πM θθθ∈,分别求平面ADE 、平面MAE 的法向量,结合面面垂直的向量关系运算求解.【过程详解】(1)由题意可得:AC BC ⊥,则1sin 2BC CAB AB ∠==, 且CAB ∠为锐角,则30CAB ∠=︒,因为三角形ABD 为正三角形,则60DAB ∠=︒, 可得90DAC DAB CAB ∠=∠+∠=︒,即AD AC ⊥, 所以AD //BC ,AD ⊂平面ADE ,BC ⊄平面ADE ,可得BC ∥平面ADE .(2)如图,以AB 的中点O 为坐标原点,AB 为x 轴,AB 的中垂线为y 轴建立空间直角坐标系,则()()()()1,0,0,1,0,0,0,,1,0,1A B D E --, 可得()()2,0,1,1,AE AD =-=-uu u r uuu r , 设平面ADE 的法向量(),,n x y z =,则200n AE x z n AD x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,令x =1,y z =-=,即1,n =-r,设()()cos ,sin ,0,0,πM θθθ∈,平面MAE 的法向量(),,m a b c =, 因为()cos 1,sin ,0AM θθ=-uuu r ,则()20cos 1sin 0m AE a c m AM a b θθ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ , 令sin a θ=,则1cos ,2sin y z θθ=-=,即()sin ,1cos ,2sin m θθθ=-u r,若二面角M AE D --是直二面角,则()1cos 0n m θθθ⋅=--+=r u r,整理得cos 1θθ+=,联立方程22cos 1sin cos 1θθθθ⎧+=⎪⎨+=⎪⎩,解得sin 3837cos 38θθ⎧=⎪⎪⎨⎪=-⎪⎩或sin 0cos 1θθ=⎧⎨=⎩,因为()0,πθ∈,则sin 0θ>,可得sin 3837cos 38θθ⎧=⎪⎪⎨⎪=-⎪⎩,即37,3838M ⎛⎫- ⎪ ⎪⎝⎭ 所以AM BM ===,可得当19AMBM ==时,二面角M AE D --是直二面角.7.(2023ꞏ福建厦门ꞏ统考模拟预测)筝形是指有一条对角线所在直线为对称轴的四边形.如图,四边形ABCD为筝形,其对角线交点为,2O AB BD BC ===,将ABD △沿BD 折到A BD ' 的位置,形成三棱锥A BCD -'.(1)求B 到平面A OC '的距离;(2)当1A C '=时,在棱A D '上是否存在点P ,使得直线BA '与平面POC 所成角的正弦值为14?若存在,求A PA D ''的值;若不存在,请说明理由.【答案】(1)1 (2)存在;13A P A D =''或79A P A D =''【详细分析】(1)根据线面垂直的判定可得BD ⊥平面A OC ',进而可得B 到平面A OC '的距离112d BD ==. (2)以O 为原点,,,OD OE OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,再设[]()1,,0,12A P A D λλλλ⎛⎫='=-∈ ⎪ ⎪⎝'⎭,根据线面角的空间向量求法求解即可.【过程详解】(1)因为2AB BD BC ===,所以BD 不可能为四边形ABCD 的对称轴,则AC 为四边形ABCD 的对称轴, 所以AC 垂直平分BD ,所以,A O BD CO BD '⊥⊥. A O '⊂平面,A OC CO '⊂平面,A OC A O CO O ⋂'='所以BD ⊥平面A OC '. 所以B 到平面A OC '的距离112d BD ==. (2)存在点P ,使得直线BA '与平面POC 所成角的正弦值为14. 过O 作OE ⊥平面BCD ,所以,,OD OE OC 两两垂直.以O 为原点,,,OD OE OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系由(1)得平面BCD ⊥平面A OC ',因为1,1OA OC A C =='='所以12A ⎛⎫ ⎪ ⎪⎝⎭'.设[]()1,,0,122A P A D λλλλλ⎛⎫='=-∈ ⎪ ⎪⎝'⎭11,2222OP OA A P λλλ⎛⎫=+=-- ⎪ ⎪''⎝⎭()OC =设平面POC 的法向量(),,n x y z =r0n OC n OP ⎧⋅=⎪⎨⋅=⎪⎩所以011022y x y z λλ=⎧⎪⎫⎨⎛⎫++-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎩ 令2z λ=,则1x λ=-所以平面POC 的一个法向量()1,0,2n λλ=-设直线BA '与平面POC 所成角为θ12BA ⎛⎫= ⎪ ⎪⎝⎭'1sin cos ,4BA n BA n BA n θ⋅===='''. 所以13λ=或79λ=,所以存在点P ,使得直线BA '与平面POC 所成角的正弦值为1143A P A D =''或79A P A D =''. 8.(2023ꞏ安徽合肥ꞏ合肥市第六中学校考模拟预测)如图所示的几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以边AD 所在直线为旋转轴旋转2π3得到的,M 是BE 的中点.(1)设N 是 CF上的一点,且AN CD ⊥,求FDN ∠的大小; (2)当2AB =,4=AD 时,求二面角C AM F --的余弦值.【答案】(1)π6(2)1319【详细分析】(1)依题意可得CD ⊥平面AND ,即可得到CD DN ^,从而得解; (2)建立空间直角坐标系,利用空间向量法计算可得. 【过程详解】(1)因为AN CD ⊥,AD CD ⊥,又,AN AD ⊂平面AND ,AN AD A = ,所以CD ⊥平面AND . 又DN ⊂平面ADN ,所以CD DN ^. 又2π3FDC ∠=,所以2πππ362FDN FDC NDC ∠=∠-∠=-=. (2)由(1)以D 为坐标原点,分别以DC ,DN ,DA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得()0,0,4A ,()2,0,0C ,()M,()F -, 故()2,0,4AC =-,()AM =,()4AF =--,设(),,m x y z=是平面AMC 的一个法向量.由00m AM m AC ⎧⋅=⎪⎨⋅=⎪⎩,得0240x x z ⎧=⎪⎨-=⎪⎩,取1x =,可得11,2m ⎛⎫= ⎪ ⎪⎝⎭ . 设(),,n a b c =是平面AMF 的一个法向量.由00n AM n AF ⎧⋅=⎪⎨⋅=⎪⎩,得040a a c ⎧=⎪⎨--=⎪⎩,取1a =,可得11,2n ⎛⎫=- ⎪ ⎪⎝⎭ .所以11113cos ,19m n m n m n +-⋅==⋅ ,由图可知二面角C AM F --为锐二面角, 所以二面角C AM F --的余弦值为1319.9.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知直角梯形形状如下,其中AB AD ⊥,26DC AB AE ==,6AB =,2AD =.(1)在线段CD 上找出点F ,将四边形ADFE 沿EF 翻折,形成几何体A BE D CF ''-.若无论二面角A EF B '--多大,都能够使得几何体A BE D CF ''-为棱台,请指出点F 的具体位置(无需给出证明过程).(2)在(1)的条件下,若二面角A EF B '--为直二面角,求棱台A BE D CF ''-的体积,并求出此时二面角B A D E ''--的余弦值. 【答案】(1)4DF =或F 为靠近点D 的三等分点;.【详细分析】(1)延长,DA CB 交于点O ,连接OE 并延长交CD 于F,翻折后证明平面//AEB 平面DFC 即可推理作答.(2)根据给定条件,证明D E '⊥平面EFC ,再利用锥体的体积公式结合割补法求出体积,建立空间直角坐标系求出面面角的余弦作答.【过程详解】(1)在直角梯形ABCD 中,延长,DA CB 交于点O ,连接OE 并延长交CD 于F ,如图,//AB CD ,212DC AB ==,2AE =,于是2DF DO DCAE AO AB===,则4DF =,F 为靠近点D 的三等分点,将四边形ADFE 沿EF 翻折,即将ODF △沿EF 翻折,无论二面角A EF B '--多大, 所成几何体均为三棱锥O DFC -,显然//,AE DF DF ⊂平面,DFC AE ⊄平面DFC , 于是//AE 平面DFC ,同理//BE 平面DFC ,而,,AE BE E AE BE ⋂=⊂平面AEB , 因此平面//AEB 平面DFC ,从而几何体A BE D CF ''-是棱锥O DFC -被平行于底面DFC 的平面所截,截面和底面间的部分,即几何体A BE D CF ''-是棱台,所以无论二面角A EF B '--多大,都能够使得几何体A BE D CF ''-为棱台,4DF =,F 为靠近点D 的三等分点.(2)翻折前2,2DF AE DC AB ==,将DA ,FE ,CB 延长一倍,三线交予点O , 在等腰直角三角形ODF 中,DE OF ⊥,在棱台A BE D CF ''-中,D E OF '⊥, 又二面角A EF B '--为直二面角,D E '⊥平面EFC ,即三棱锥D OFC '-的体积为1111843232D OFC V D E FC OD '-'=⋅⋅=⋅⋅⋅=又三棱锥A OBE '-的体积18A OBE D OFC V V ''--==则有棱台A BE D CF ''-的体积为A BE D CF V ''-== 在线段DC 上取2DG =,有AE DG =,四边形AEGD 为平行四边形,,AD EG EG EB =⊥ ,又D E '⊥面EFC ,则,D E EB D E EG ''⊥⊥,以E 为原点,,2EG EB B 'x ,y ,z 的单位向量建立空间直角坐标系,则(2,2,0),(0,0,(0,4,0),(0,0,0)O D B E '--,(2,2,(2,6,0)OD OB '==,(2,2,0),(0,0,OE ED '==,取平面OD B '的法向量为1(,,)n a b c = ,11220260n OD a b n OB a b '⎧⋅=++=⎪⎨⋅=+=⎪⎩,令1b =,取1(n =- , 取面OD E '的法向量2(,,)n r s t =,则222200n OE r s n ED ⎧⋅=+=⎪⎨⋅==⎪'⎩,令1r =,得2(1,1,0)n =- ,显然二面角B A D E ''--的平面角为锐角,设为α,121212cos |cos ,3||||n n n n n n α⋅=〈〉===, 所以二面角B A D E ''--的余弦值为3.10.(2023ꞏ山西ꞏ校联考模拟预测)如图,斜四棱柱1111ABCD A B C D -的底面ABCD 为等腰梯形,且//AB CD ,点1A 在底面的射影点O 在四边形ABCD 内部,且1112,4,1,AD BC CD AA AB A O AA BC ======⊥.(1)求证:平面ABCD ⊥平面11ACC A ;(2)在线段11B D 上是否存在一点M ,使得平面MBC 与平面ABCD夹角的余弦值为7,若存在,求111B MB D 的值;若不存在,请说明理由. 【答案】(1)证明见解析 (2)存在,1111.2B M B D =【详细分析】(1)作出辅助线,得到四边形ADCE 为菱形,得到AC BC ⊥,得到线面垂直,得到平面ABCD ⊥平面11ACC A ;(2)建立空间直角坐标系,得到各点坐标,设111B M B D BD λλ== ,由二面角的大小得到12λ=. 【过程详解】(1)在等腰梯形ABCD 中,12,4AD BC CD AA AB =====, 过C 作//CE AD 交AB 于E ,则四边形ADCE 是菱形, 2AE EB ∴==,BCE ∴△是等边三角形,60,60,30ABC DCE ECB ACD ACE ∠∠∠∠∠∴===== , 90,ACB AC BC ∴∠=⊥ ,又111,,,AA BC AA AC A AA AC ⊥⋂=⊂平面11AAC C ,∴BC ⊥平面11ACC A ,又BC ⊂平面ABCD ,∴平面ABCD ⊥平面11ACC A .(2)由(1)平面ABCD ⊥平面11ACC A ,∵1A O ⊥平面1,ABCD A O ⊂平面11ACC A ,∴点1A 在底面的射影O 在AC 上,且1A O AC ⊥,又111,2,A O AA AO ==∴=由(1)知AC =CO ∴=以O 为原点,1,,OA OE OA 分别为,,x y z 轴,建立如图空间直角坐标系O xyz -,则O ())()()()()10,0,0,,2,0,,0,1,0,0,0,1AB C D A -,则())()1,3,0,0,2,0AA BD BC ==-=- ,设111B M B D BD λλ==,[]0,1λ∈,则()))1111,3,03,1BM BB B M AA B M λλ=+=+=+-=-,易知平面ABCD 的一个法向量为()0,0,1m =, 设平面MBC 的法向量为(),,n x y z = ,则)20130n BC y n BM x y z λλ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,解得0y =, 令1x =得,z =,故()n =,cos ,7m n m n m n ⋅===,解得:12λ=, 所以1111.2B M B D = 11.(2023ꞏ河北ꞏ统考模拟预测)在圆柱12O O 中,等腰梯形ABCD 为底面圆1O 的内接四边形,且1AD DC BC ===,矩形ABFE 是该圆柱的轴截面,CG 为圆柱的一条母线,1CG =.(1)求证:平面1O CG ∥平面ADE ;(2)设DP DE λ=,[]0,1λ∈,试确定λ的值,使得直线AP 与平面ABG 所成角的正弦值为35. 【答案】(1)证明见解析(2)13λ=或23λ=【详细分析】(1)先证明AE ∥平面1O CG 以及AD ∥平面1O CG ,根据面面平行的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,求得平面ABG 的一个法向量,根据空间角的向量求法,即可求得答案.【过程详解】(1)在圆柱12O O 中,AE CG ∥,AE ⊄平面1O CG ,CG ⊂平面1O CG , 故AE ∥平面1O CG ;连接1DO ,因为等腰梯形ABCD 为底面圆1O 的内接四边形,1AD DC BC ===,故111π3AO D CO D BO C ∠=∠=∠=, 则1AO D 为正三角形,故11π3O AD CO B ∠=∠=,则1AD O C ∥, AD ⊄平面1O CG ,1O C ⊂平面1O CG , 故AD ∥平面1O CG ;又,,AE AD A AE AD ⋂=⊂平面ADE , 故平面ADE ∥平面1O CG .(2)如图,以1O 为坐标原点,在底面圆1O 过点1O 垂直于平面ABFE 作直线为x 轴, 以112,O B O O 为,y z 轴建立空间直角坐标系,由于1,1AD DC BC CG ====,由(1)可知11AO =, 故()()1101001,010(0,11),,22,,,,,,,,A B G D E ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则2,,,3(020)1,AB AG ⎛⎫== ⎪ ⎪⎝⎭, 设平面ABG 的一个法向量为(,,)n x y z =,则00n AB n AG ⎧⋅=⎪⎨⋅=⎪⎩,即20302y x y z =⎧⎪⎨++=⎪⎩,令x =n =,由DP DE λ=,[]0,1λ∈,11,2DE ⎫=-⎪⎪⎝⎭,可得1111222,,222,,22,P AP λλλλλλ⎛⎫⎛⎫---=--+ ⎪ ⎪ ⎪ ⎪∴⎝⎭⎝⎭, 设直线AP 与平面ABG 所成角为π,[0,2θθ∈,则||sin |cos ,|35||||n AP n AP n AP θ⋅=〈〉===, 即得29920λλ-+=,解得13λ=或23λ=,符合[]0,1λ∈,故13λ=或23λ=.12.(2023ꞏ湖南长沙ꞏ长郡中学校考模拟预测)如图,在直角梯形ABCD 中,//AD BC ,AD CD ⊥,四边形CDEF 为平行四边形,对角线CE 和DF 相交于点H ,平面CDEF ⊥平面ABCD ,2BC AD =,60DCF ∠=o ,G 是线段BE 上一动点(不含端点).(1)当点G 为线段BE 的中点时,证明://AG 平面CDEF ;(2)若1,2AD CD DE ===,且直线DG 与平面CDEF 成45 角,求二面角E DG F --的正弦值.【答案】(1)证明见解析【详细分析】(1)连接,GH AG ,由三角形中位线和边长关系可知四边形ADHG 是平行四边形,即可证明//AG 平面CDEF ;(2)根据题意可知,以C 为原点建立空间直角坐标系,可设BG BE λ=利用空间向量即可表示出DG,进而确定G 点位置,再分别求得两平面的法向量即可得出二面角E DGF --的正弦值为7. 【过程详解】(1)证明:连接,GH AG ,如下图(1)中所示:因为四边形CDEF 为平行四边形,所以H 是CE 中点, 又G 点为线段BE 的中点,则//GH BC ,且12GH BC =, 又//AD BC 且12AD BC =,所以,//GH AD GH AD =, 所以四边形ADHG 是平行四边形,所以//AG DH ,又AG ⊄平面CDEF ,DH ⊂平面CDEF ,所以//AG 平面CDEF ;(2)以C 为原点,,CB CD 为,x y 轴,过C 且在平面CDEF 内与CD 垂直的直线为z 轴,建立空间直角坐标系,如图(2)所示:由平面CDEF ⊥平面ABCD ,60DCF ∠=o ,2CD DE ==可知,,CDF DEF V V 均为边长为2的正三角形,则有()()((02020000D B E F ,,,,,,,,,设()2,3,01BG BE λλλλ==-<< ,则()()()2,32,2,022,3DG BG BD λλλλ=-=---=--,()1,0,0e =为平面CDEF 的法向量,所以cos ,2DG e ==,解得12λ=(其中0λ=舍去),所以31,2G ⎛ ⎝⎭, 设平面EDG 的法向量为()111,,m x y z =r,则有()(()11111111111,,011,,1,02222m DE x y z y m DG x y z x y z ⎧⋅=⋅=+=⎪⎪⎨⎛⎫⋅=⋅-=-+=⎪ ⎪ ⎪⎪⎝⎭⎩, 令11z =,则11x y ==()m =.设平面FDG 的法向量为()222,,n x y z =r,则有()(()22222222222,,0,011,,1,022n DF x y z y n DG x y z x y ⎧⋅=⋅-=-=⎪⎪⎨⎛⋅=⋅-=-=⎪ ⎪⎝⎭⎩, 令21z =,则220,x y ==()n =所以cos ,7m n m n m n ⋅===-.所以二面角E DG F --= 即二面角E DG F --的正弦值为7. 13.(2023ꞏ广东佛山ꞏ华南师大附中南海实验高中校考模拟预测)如图,在四棱锥P ABCD -中,AB CD ,AB AD ⊥,22BC CD AB ===,E 为PC 中点.(1)在棱PD 上是否存在点Q ,使得//AQ 平面EBD ?说明理由;(2)若PC ⊥平面PAD ,PC PD =,求平面PAD 与平面EAB 所成角的余弦值.【答案】(1)存在,理由见解析【详细分析】(1)取PD 的中点Q ,利用线面平行的判定证明AQ ∥平面EBD ; (2)取DC 的中点为O ,证明,BO DC BO PO ⊥⊥,PO CD ⊥,以点O 为坐标原点,建立坐标系,利用向量法证明即可.【过程详解】(1)取PD 的中点Q ,连接,QE AQ ,则QE ∥CD ,又AB ∥CD ,QE AB =,所以四边形ABEQ 为平行四边形,AQ ∥BE . 因为BE ⊂平面EBD ,AQ ⊄平面EBD ,BE ∥AQ , 所以AQ ∥平面EBD .(2)取DC 的中点为O ,连接,BO PO,AD =,1PO =. 若PC ⊥平面PAD ,PC PD =,因为,PD AD ⊂平面PAD , 则PC PD ⊥,PC AD ⊥,且PC PD ==,又AD CD ⊥,PC CD C ⋂=,,PC CD ⊂平面PCD ,所以AD ⊥平面PCD , 所以AD PO ⊥,又BO ∥AD ,所以,BO DC BO PO ⊥⊥, 又PC PD =,DC 的中点为O ,所以PO CD ⊥, 则以点O 为原点,建立如下图所示的空间直角坐标系:()))()()110,0,1,1,0,,0,1,0,0,1,0,0,,22P ABD CE ⎛⎫-- ⎪⎝⎭()110,1,0,,22AB BE ⎛⎫== ⎪⎝⎭ ,平面PAD 的法向量为()0,1,1PC =-. 设平面EAB 的法向量为(),,n x y z =r,011022AB n y BE n y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令2z =,则,0,23n ⎛⎫= ⎪ ⎪⎝⎭r 设平面PAD 与平面EAB 所成角为θcos cos ,PC nPC n PC nθ⋅===⋅ 所以平面PAD 与平面EAB14.(2023ꞏ广东广州ꞏ广州六中校考三模)四棱锥P ABCD -中,AD BC ∥,22AB AD BC ===,60ABC ∠=︒,PA CD ⊥,PD AC ⊥,点E 是棱PD 上靠近点P 的三等分点.(1)证明:PA ⊥平面ABCD ;(2)若平面PAC 与平面EAC 的夹角的余弦值为10,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析(2)2【详细分析】(1)先证明AC ⊥平面PAD ,从而推出AC PA ⊥,结合PA CD ⊥,根据线面垂直的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,确定平面PAC 的法向量,求得平面EAC 的法向量,根据面面角的向量求法可求得PA 的长,根据棱锥的体积公式即可求得答案. 【过程详解】(1)依题意,在4BC △中,60,2,1ABC AB BC ∠=== ,由余弦定理可得AC ===则222AC BC AB +=,∴AC BC ⊥,∵AD BC ∥,∴AD AC ⊥,又,,,PD AC PD AD D PD AD ⊥=⊂ 平面PAD , ∴AC ⊥平面PAD ,∵PA ⊂平面PAD ,∴AC PA ⊥,又PA CD ⊥,,,CD AC C CD AC =⊂ 平面ABCD , 故PA ⊥平面ABCD ;(2)以A 为坐标原点,,,AC AD AP的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,设AP m =,则(0,0,0),),(0,2,0(0,0,)A C D P m ,22(0,,)33E m ,由(1)可知,,,,,AC PA PA AD PA AC A PA AC ⊥⊥=⊂ 平面PAC ,故AD ⊥平面PAC ,∴平面PAC 的一个法向量为(0,2,0)AD =,设平面EAC 的法向量为(,,)n x y z =,且AC = ,22(0,,)33AE m = ,则00,220033n AC y mz n AE =⎧⋅=⎪∴⎨⎨+=⋅=⎪⎪⎩⎩ , 取1z =-,所以(0,,1)n m =-,因为平面PAC 与平面EAC的夹角的余弦值为10,所以|cos ,|||10||||AD n AD n AD n ⋅〈〉===,解得3m =, 所以四棱锥P ABCD -的体积为111(12)33322ABCD S PA ⨯⨯=⨯+=15.(2023ꞏ广东深圳ꞏ深圳中学校考模拟预测)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =.DG ⊥平面ABCD ,2DA DC DG ===.(1)求平面EBC 与平面BCF 的夹角的正弦值;(2)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.【答案】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1ABCDS EFNB高考数学试题(整理三大题)(一)17.已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 14αβ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,,a (cos 2)α=,b ,且∙a b m =.求22cos sin 2()cos sin ααβαα++-的值.18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率.19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。
已知∠ABC =45°,AB =2,BC=22,SA =SB =3。
(Ⅰ)证明:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的大小;(二)17.在ABC △中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC △18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率;(II )连续抛掷2次,求向上的数之和为6的概率;(III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。
19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是AB 、SC 的中点。
求证:EF ∥平面SAD ;(三)17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ.(I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率;(2)甲、两人中至少有一人获二等奖的概率.19. 在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(III )求CD 与平面AOB 所成角的最大值(四)17.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求:(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC的中点。
(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
OCADBE21A A BC D E FP QH A ' B ' C 'D ' G (五)17.已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间.18. 某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。
设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。
(I )求取6件产品中有1件产品是二等品的概率。
(II )若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率。
19. 如图,在四棱锥中,侧面PAD ⊥底面ABCD,侧棱底面ABCD 为直角梯形,其中BC ∥AD,AB ⊥CD,AD=2AB=2BC=2,O 为AD 中点。
(1)求证:PO ⊥平面ABCD;(2)求异面直线PB 与CD 所成角的余弦值; (3)求点A 到平面PCD 的距离(六)17. 设函数f(x)=a ·b ,其中向量a =(2cos x ,1),b =(cos x , 3sin2x ),x ∈R. (Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y=2sin2x 的图象按向量c=(m ,n)(|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值.18. 盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:(Ⅰ)抽出的3张卡片上最大的数字是4的概率;(Ⅱ)抽出的3张中有2张卡片上的数字是3的概念; (Ⅲ)抽出的3张卡片上的数字互不相同的概率.19. 如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°。
(1)求DP 与CC 1所成角的大小;(2)求DP 与平面AA 1D 1D 所成角的大小。
(七)17.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.18. 甲、乙、丙3人投篮,投进的概率分别是25, 12, 13.现3人各投篮1次,求:(Ⅰ)3人都投进的概率;(Ⅱ)3人中恰有2人投进的概率. 19. 如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '. (Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值, 并求出这个值;(Ⅲ)若12b =,求D E '与平面PQEF 所成角的正弦值.(八)17.在ABC △中,已知内角A π=3,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95.(Ⅰ)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答); (Ⅱ)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率.19. 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.ABCD E A 1 B 1 C 1D 13A 1 A C 1B 1BDC (九)17.在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA ⋅=,且9a b +=,求c .18. 甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.两甲,乙两袋中各任取2个球. (Ⅰ)若n=3,求取到的4个球全是红球的概率; (Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n. 19. 如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.证明:AE ⊥PD ;(十)17.设函数()f x =·a b ,其中向量(cos2)mx =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.18.甲、乙、丙三人在同一办公室工作。
办公室只有一部电话机,设经过该机打进的电话是打给甲、乙、丙的概率依次为16、13、12。
若在一段时间内打进三个电话,且各个电话相互独立。
求:(Ⅰ)这三个电话是打给同一个人的概率; (Ⅱ)这三个电话中恰有两个是打给甲的概率;19.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC,1A A =AB =,2AC =,111AC =,12BD DC=. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ;(十一)17. 在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S . 18. 已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;19. 如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,090,BAD FAB BC∠=∠=//=12AD ,BE //=12AF ,,G H 分别为,FA FD 的中点(Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ),,,C D F E 四点是否共面?为什么? (Ⅲ)设AB BE =,证明:平面ADE ⊥平面CDE(十二)17.已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.18. 某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率.19. 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ====== (I )求证:AO ⊥平面BCD ;(II )求异面直线AB 与CD 所成角的大小;(III )求点E 到平面ACD 的距离。