初一下册二元一次方程练习题含答案)

合集下载

初一下册二元一次方程组练习题含答案)

初一下册二元一次方程组练习题含答案)

4.解方程组:
考 点: 专 题: 分
解二元一次方程组. 809625
计算题. 把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.
初一下册二元一次方程组练习题含答案
析:

答: 解:(1)原方程组化为

①+②得:6x=18, ∴ x=3.
代入①得:y= .
所以原方程组的解为

点 要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能 评: 消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.
16.解下列方程组:(1)
(2)
考 点: 分 析: 解 答:
解二元一次方程组. 809625
观察方程组中各方程的特点,用相应的方法求解.
解:(1)①×2﹣②得:x=1, 将 x=1 代入①得: 2+y=4, y=2.
∴ 原方程组的解为

初一下册二元一次方程组练习题含答案
(2)原方程组可化为
①×2﹣②得: ﹣y=﹣3, y=3. 将 y=3 代入①得: x=﹣2.
5.解方程组:
考 点: 专 题: 分 析: 解 答:
解二元一次方程组. 809625
计算题;换元法. 本题用加减消元法即可或运用换元法求解.
解:

①﹣②,得 s+t=4, ①+②,得 s﹣t=6,


解得

所以方程组的解为

点 此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法. 评:
6.已知关于 x,y 的二元一次方程 y=kx+b 的解有 和
解二元一次方程组. 809625

七年级数学下册 二元一次方程组测试题及答案(共五套) 百度文库

七年级数学下册 二元一次方程组测试题及答案(共五套) 百度文库

七年级数学下册 二元一次方程组测试题及答案(共五套) 百度文库一、选择题1.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m+n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=2.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b)(a ﹣b)的值为( ) A .15B .﹣15C .16D .﹣163.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23C .16-D .164.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( ) A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩5.同时适合方程2x+y=5和3x+2y=8的解是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .31x y ==-⎧⎨⎩6.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了( ) A .16题B .17题C .18题D .19题7.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( )A .1a =-B .1a =C .23a =D .32a =8.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁9.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣210.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②11.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( )A .9B .6C .3D .112.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣13二、填空题13.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.14.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 15.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.16.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.17.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .18.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________19.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.20.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.21.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.22.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本. 23.关于x ,y 的二元一次方程组5323x y x y a+=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.24.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.三、解答题25.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.26.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.27.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)28.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.29.已知12xy=⎧⎨=⎩是二元一次方程2x y a+=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x,y),如果过其中任意两点作直线,你有什么发现?x013y62030.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.2.B解析:B【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵21xy=⎧⎨=⎩是关于x、y的方程组27ax bybx ay+=⎧⎨+=⎩的解,∴2227a bb a=,=+⎧⎨+⎩解得14ab-⎧⎨⎩=,=∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.3.A解析:A【分析】根据方程的解满足方程,课的关于k的方程,根据解方程,可得答案.【详解】解:由题意,得6×(-3)k-2×2=8,解得k=-2 3 ,故选A.【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k方程是解题关键.4.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.5.B解析:B 【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择. 【详解】解:方法一:把各个选项的答案依次代入,只有B 答案适合方程组; 方法二:由题意,得25,328x y x y +=⎧⎨+⎩①=,②①×2-②得,x=2, 代入①得,2×2+y=5,y=1故原方程组的解为2,1.x y =⎧⎨=⎩故选:B . 【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.6.D解析:D 【分析】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +,根据“不答的题比答错的题多2道”以及“总分是74分”,列出方程组解出即可. 【详解】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +, 根据题意得:()25?–2474x y y x y ⎧+=+⎨-=⎩,解得:192x y =⎧⎨=⎩,故小杰他答对了19题,故选:D . 【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.B解析:B 【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值.【详解】解:根据题意,∵2x y a =⎧⎨=⎩是方程25x y +=的一个解,∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.8.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.9.C解析:C 【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】解:()21119x y kx k y +=⎧⎪⎨+-=⎪⎩①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=,代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10.B解析:B 【分析】根据等式基本性质进行分析即可. 【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确. 故选B. 【点睛】考核知识点:二元一次方程.11.C解析:C 【分析】根据二元一次方程组的解及解二元一次方程组即可解答. 【详解】 解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩ 解得:1 2a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C . 【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.12.D解析:D 【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求. 【详解】解:根据题中的新定义得:2201842019x y y x -=⎧⎨+=-⎩①②,①+②得:3x+3y =﹣1, 则x+y =﹣13. 故选:D . 【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.二、填空题 13.51 【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积. 【详解】解:设小长方形的长、宽分别为、, 依题意得: ,即, 解得:, , ,解析:51 【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y , 依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩,818S∴=⨯=小长方形,729DC DE EC ∴=+=+=, 11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.14.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=解析:13x y =⎧⎨=⎩无数 【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27, 解得:3(98)x y -=, ∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x 看做已知数求出y .15.【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z =32(舍) 即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.16.19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az,整理得:4z=3y+6x ①, 当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%20%32bx by bz bx by bz ,整理得:z=3x ②,由①②可得:y=2x ,∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x ,故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键. 17.【解析】【分析】可以设最小的正方形的边长为x ,第二小的正方形的边长为y ,根据已知AB=CD=32cm ,可得到两个关于x 、y 的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:768 43【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:64332 2532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:768 43【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.18.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y +=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 19.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。

七年级初一数学下学期 二元一次方程组测试题及答案(共五套)

七年级初一数学下学期 二元一次方程组测试题及答案(共五套)

七年级初一数学下学期 二元一次方程组测试题及答案(共五套)一、选择题1.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩3.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( )A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=44.已知方程组32453x y ax y -=⎧⎨+=⎩的解x 与y 互为相反数,则a 等于( )A .3B .﹣3C .﹣15D .155.下列判断中,正确的是( ) A .方程x y =不是二元一次方程 B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解6.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了( ) A .16题B .17题C .18题D .19题7.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天9.已知且x +y =3,则z 的值为( ) A .9B .-3C .12D .不确定10.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩11.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩12.两位同学在解方程组时,甲同学由278ax by xcx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为A .452a b c ===-,,B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,,二、填空题13.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____.14.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.15.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 16.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.17.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.18.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.19.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.20.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____. 21.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.22.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)23.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 24.若是满足二元一次方程的非负整数,则的值为___________.三、解答题25.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.26.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题: 若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.27.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.28.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程(2)变形:4105x y y ++=, 即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,将1y =-代入(1)得4x =,所以原方程组的解为41x y =⎧⎨=-⎩.[解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩,(2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 29.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.30.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?31.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.32.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数。

七年级下册二元一次方程计算题含答案

七年级下册二元一次方程计算题含答案

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

初一数学下册二元一次方程组测试题及答案(共五套)

初一数学下册二元一次方程组测试题及答案(共五套)

初一数学下册二元一次方程组测试题及答案(共五套)一. 选择题1. 某校七年级1班学生为了参加学校文化评比买了 22张彩色的卡纸制作如卞图形(每个 图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆 形,要使圆形和三角形正好配套,需要剪三角形的卡纸有X 张,剪圆形的卡纸有y 张,可 列式为()3. 已知关于■ y 的二元一次方程组P x+2"=I ∩给出下列结论:①当k = 5时,此方程3x+Ay = 10组无解;②若此方程组的解也是方程6x + 15y = 16的解,则k = lO ;③无论整数k 取何钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数•设该物 品的价格是X 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()(Sy-X=3f Sy-X = 3 A. <B. <∖ly-x = 4[7y-x = -4fx+y = 22A* [5x = 6y(x+ y = 22 U [3x = lOy5x + 2v = 132.方程组彳C “的解是()3x-y = 10x+y = 22 B.<-[6x = 5y(x+y = 22 D.<‘ [10x = 3yB.X = -I.y=3值,此方程组一定无整数解a 、y 均为整数),其中正确的是( A.①②③4. 己知方程组〈B.①③2x+y = 7/ o ,则 5x-5y + lQ 的值是() x+2y=SC.②③5B ・-5C ・ 15《九章算术》中有一道“盈不足术"的问题,原文为:今有人共买物,人出八,盈三;人 出七,不足四,问人数,物价各几何?意思是:〃现有几个人共同购买一件物品,每人出8A. 5. D. 25y-Sx = -3 7y-x = -4A. 1 B ・ 2 C.・ 1D ・ O7. 若二元一次方程3χ-y=7,2x+3y=l, y=kχ-9有公共解,则k 的取值为(). 8. 甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水 行船用24小时,若设船在静水中的速度为X 「米/时,水流速度为米/时,则下列方程 组中正确的是()x-y=a+39.己知实数a 、m 满足a>m ,若方程组{ 的解x 、y 满足x>y 时,有2x+y = baa> -3 ,则m 的取值范围是() A. m > - 3B. m≥ - 3C. m≤ - 3D. m < - 3解,则兀一 y 的值为()A. 2B. 10C. 一2 D ・ 412. 若二元一次方程3x ∙ y=-7, x+3y 二1, y=kx+9有公共解,则k 的取值为() A. 3B.・3C.・4D. 4二填空题13. 自来水厂的供水池有7个进出水「I,每天早晨6点开始进出水,且此时水池中有水 15%,在每个进出水「I 是匀速进出的情况下,如果开放3个进I I 和4个出口,5小时将水池 注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有 水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过_小 时水池的水刚好注满.14. 某公园的门票价格如表:购票人数 1〜50 51 〜IOO 100以上 门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b(a>b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票 费为1290元;若两Sy-X = 3D* [7y-x = 46. 己知关于x. y 的二元一次方程组 (OX-y = 4 ∖3x+by = 4的解是y = -2则α+b 的值是(A. 3B. -3C. -4 D ・4A. 18(χ+y) = 360 24(Jr- y) = 360 B '18(x-y) = 360 24(x+y) = 36010.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺 杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余, 螺杆,y 个工人做螺母,则列出正确的二元一次方程组为()rχ+y=95® - 22y=0若设安排X 个工人做 A ・B.*尸95 16x-22y=0;x+4y = 3^ ’的解也是二元一次方程2x + 3y = 10的x-y = 2kx+y=95 • C 4x - 22y=0 t•11・若关于X, y 的二元一次方程组D.上+尸95JGX-II 尸 0-y) = 360 一 y) = 360 D'18(χ+y) = 360 24(x+ y) = 360 U个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a二: b= .15.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有—个苹果. {x+y=l-aC V,给出下列结论:①当4 = 1时,方程组的解兀一丿= 3α+ 3也是方程x—『=3的解;②当X与y互为相反数时,α = I③不论a取什么实数,2x+y 的值始终不变;④若Z = *Λy,则Z的最人值为1.正确的是___________________________ (把正确答案的序号全部都填上)17. ________________________________ 蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5: 6: 1时,该公司得到的总利润率为.18. ____ 我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与11才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人:选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与I I才与选信息技术的人数之和的5倍;选趣味数学与选演讲与I I才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有人.19.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有—道普通题.20. __________________________________________________________________ 国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器I I 榜上有名.其中选李子坝轻轨站的人数比选磁器I I的少8人;选洪崖洞的人数不仅比选磁器I I的多,且为整数倍;选磁器I I与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍:选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有__________________ 人.(x + 2y = 2k-321. ___________________________________________________ 若方程组(2x+y_k的解适合χ+y=2,则k的值为 __________________________________________________ •f3x+/Hy = I6(X= 722.若关于x 、y 的二元一次方程组{ c 仁的解是{ 「则关于x 、y 的二元一[zx+ny = I JIy = 33(X + V)+ IrI(X - V)= 16 2(") +唇归5的解是—•23. 定义一种新运算“※”,规定兀※y = ax + by 29其中α. b 为常数,且 1探2二5,2探1二3,则 2探3二 _______ .24. 如图,小强和小红一起搭枳木,小强所搭的"小塔"的高度为23 cm,小红所搭的“小树"的高度为22 cm,设每块4型积木的高为Xcm,每块B 型积木的高为ycm,贝IJ≡>解答题25・[阅读材料] 2x+5y = 3(1)Zl ι; 一;、时,采用了一种“整体代换”的解法: 4x+lly = 5(2) 解:将方程(2)变形:4x+10y+y = 5, 即 2(2x+5y)+y = 5(3),把方程(1)代入⑶得:2χ3+y = 5, 所以y = -i,Wy = -I 代入⑴得*4,[解决问题]3x-2y = 59Λ-4>,= 19* 3x 2 -2xy + 12y 2 =50 丁 =J ,求2 + 4厂的值.JT + 与 + 4)广=25 26.我国古代的“河图”是由3x3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图X 根据给岀的“河 图”的部分点图,可以得到:{善于思考的小明在解方程组<所以原方程组的解为X = 4y=-ι(I)模仿小明的“整体代换”法解方程组< (2)己知儿y 满足方程组<■•• • ■ • •• • • • • • • •■P图12x 32yy圉3图如图2,己知3x3框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求 上y 的值并在图3中填出剩余的数字.27•阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的〃好解〃例如:(1) 请直接写出方程x÷2y=7的所有〃好解々x+ y + k = 15(2) 关于x, y, k 的方程组{W ”有"好解"吗?若有,请求出对应的"好x+by + lθk = 70解";若没有,请说明理由;(3) 已知X, y 为方程33x+23y=2O19的"好解",且x+y=m,求所有m 的值.28. 规定:二元一次方程ax+by = C 有无数组解,每组解记为P(x,y),称P(x,y)为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1) 已知4(—1,2),3(4,—3),C(—3,1),则是隐线3x+2y = 6的亮点的是] λτΓ + 4 χ-(r + ∕ι + 4)y = 26中兀y 的最小的正整数解;⑶已知"〃是实数,且丽+2”| = 7,若P(√^訓)是隐线2x-3y = s 的一个亮点,求 隐线S 中的最大值和最小值的和.29. 某公园的门票价格如下表所示:购票人数1 ~50 人 51 ~100 人100人以上每人门票价13元11元9元某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人:(2)班 人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两 个班联合起来,作为一个团体购票,则需付1078元.⑴列方程求出两个班各有多少学生;(2) 如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们 买票呢?请给出最省钱的方案.30. 为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如卞:每户每 月用水量不超过6x = lO就是方程3x÷y=ll 的一组“好解 y= s蔦;是方程组Z = 3J3x+2y + z = θ I x+y+z = β的一组“好解〃.是隐线Γx+hy = 6的两个亮点,求方程米M时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按C元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:(1)求a、C的值,并写出每月用水量不超过6米3和超过6米M时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.31.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)32.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?33.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入二基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为X元,销售每件服装奖励y元:(1)求x、y的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?34.已知("一[是二元一次方程2x + y = a的一个解.Iy = 2(1)θ=________ ;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x,y),如果过其中任意两点作直线,你有什么发现?5 -4 -3 -2 -1IllllA-4 -3 -2 -1012345"-2 --3 --4 -35.“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。

初一数学下册 二元一次方程组测试题及答案(共五套) word版

初一数学下册 二元一次方程组测试题及答案(共五套) word版

初一数学下册 二元一次方程组测试题及答案(共五套) word 版一、选择题1.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是( ).A .35a b =⎧⎨=⎩B .35a b =⎧⎨=-⎩C .41a b =⎧⎨=-⎩D .41a b =⎧⎨=⎩2.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( )A .=202a b -⎧⎨=⎩B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩3.同时适合方程2x+y=5和3x+2y=8的解是( ) A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .31x y =⎧⎨=⎩ D .31x y ==-⎧⎨⎩4.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个 5.已知10a b +=,6a b -=,则22a b -的值是( ) A .12 B .60 C .60- D .12- 6.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( ) A .4种B .5种C .6种D .7种7.在平面直角坐标系中有三个点()1,1A -()1,1B --()0,1C ,点()0,2P 关于A 的对称点为1P ,1P 关于B 的对称点2P ,2P 关于C 的对称点为3P ,按此规律继续以A ,B ,C为对称中心重复前面操作,依次得到4P ,5P ,6P ……则点2022P 的坐标为( ) A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)8.规定”△”为有序实数对的运算,如果(a ,b)△(c ,d)=(ac+bd ,ad+bc).如果对任意实数a ,b 都有(a ,b)△(x ,y)=(a ,b),则(x ,y)为( ) A .(0,1) B .(1,0) C .(﹣1,0) D .(0,﹣1) 9.解方程组时,第一次消去未知数的最佳方法是( )A .加减法消去x ,将①-③×3与②-③×2B .加减法消去y ,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代入法消去x,y,z中的任何一个10.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.; B.; C.; D.11.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有()A.4种B.5种C.6种D.7种12.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A.9 B.6 C.3 D.1二、填空题13.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生C购买的商品数量是________.14.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.15.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.16.若m1,m2,…,m2019是从0,1,2,这三个数中取值的一列数,m1+m2+…+m2019=1525,( m1-1)2+(m2-1)2+…+(m2019-1)2=1510,则在m1,m2,…,m2019中,取值为2的个数为___________.17.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个.18.已知点 C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ .19.方程组1111121132x yx zy z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.20.已知关于x、y的方程组135x y ax y a+=-⎧⎨-=+⎩,给出下列结论:①当1a=时,方程组的解也是方程3x y-=的解;②当x与y互为相反数时,1a=③不论a取什么实数,2x y+的值始终不变;④若12z xy=,则z的最大值为1.正确的是________(把正确答案的序号全部都填上)21.已知三个方程构成的方程组230xy y x--=,350yz z y--=,520xz x z--=,恰有一组非零解x a=,y b=,z c=,则222a b c++=________.22.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 23.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b=__________.24.若方程组2313{3530.9a ba b-=+=的解是8.3{1.2,ab==则方程组的解为________三、解答题25.如图,在四边形ABCD中,已知AB CD∥,AD BC∥,且AB BC⊥.(1)填空:A∠=_____,C∠=______,D∠=_______;(2)点E为射线BC上一任意一点,连接AE,作DAE∠的平分线AF,交射线BC于点F,作AEC∠的平分线EG,交直线AD于点G,请探究射线AF与EG之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.26.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?27.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.28.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n . (3)若AM =BN ,MN =43BM ,求m 和n 值.29.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由. 30.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 31.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.32.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器 乙型机器 价格(万元/台) a b 产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.33.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A种魔方多少个时,两种活动费用相同?34.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)35.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.36.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先将35x y =⎧⎨=⎩代入到3526x my x ny -=⎧⎨+=⎩,可求得m 和n ;将m 和n 代入到()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩,可求得a+b ,a-b 的值;再通过求解二元一次方程组,即可求得答案. 【详解】∵二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩∴955656m n -=⎧⎨+=⎩∴450m n ⎧=⎪⎨⎪=⎩ 将450m n ⎧=⎪⎨⎪=⎩代入()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩得()()()435526a b a b a b ⎧+--=⎪⎨⎪+=⎩∴35a b a b +=⎧⎨-=⎩∴41a b =⎧⎨=-⎩故选:C . 【点睛】本题考查了二元一次方程方程组的知识;解题的关键是熟练掌握二元一次方程方程组的性质,从而完成求解.2.C解析:C 【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,代入剩下的方程计算即可求出a 与b 的值. 【详解】联立得:312516x y x y +=⎧⎨+=⎩,解得:26x y =⎧⎨=⎩,将26x y =⎧⎨=⎩代入得:124530a b a b -=-⎧⎨+=⎩,解得:202a b =⎧⎨=⎩,故选:C . 【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.3.B解析:B 【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择.【详解】解:方法一:把各个选项的答案依次代入,只有B答案适合方程组;方法二:由题意,得25, 328x yx y+=⎧⎨+⎩①=,②①×2-②得,x=2,代入①得,2×2+y=5,y=1故原方程组的解为2,1. xy=⎧⎨=⎩故选:B.【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.4.B解析:B【详解】解:把①22xy==⎧⎨⎩代入得左边=10=右边;把②2{1xy==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6xy==代入得左边=10=右边;所以方程4x+y=10的解有①④2个.故选B.5.B解析:B【分析】先利用加减消元法解方程组106a ba b+=⎧⎨-=⎩可得a、b的值,再代入求值即可得.【详解】由题意得:106a ba b+=⎧⎨-=⎩,解得82 ab=⎧⎨=⎩,则22222864460a b -==-=-,故选:B .【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.6.C解析:C【分析】设可以兑换m 张5元的零钱,n 张2元的零钱,根据零钱的总和为50元,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出结论.【详解】设可以兑换m 张5元的零钱,n 张2元的零钱,依题意,得:5m+2n =50,∴m =10﹣25n . ∵m ,n 均为非负整数,∴当n =0时,m =10;当n =5时,m =8;当n =10时,m =6;当n =15时,m =4;当n =20时,m =2;当n =25时,m =0.∴共有6种兑换方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.7.B解析:B【分析】设1(,)P x y ,再根据中点的坐标特点求出x 、y 的值,找出循环的规律即可得出点2022P 的坐标.【详解】解:设1(,)P x y ,点(1,1)A -、(1,1)B --、(0,1)C ,点(0,2)P 关于A 的对称点为1P ,1P 关于B 的对称点2P , ∴12x =,212y +=-,解得2x =,4y =-,1(2,4)P .同理可得,2(4,2)P ,3(4,0)P ,4(2,2)P ,5(0,0)P ,6(0,2)P ,7(2,4)P ,⋯, ∴每6个操作循环一次.20226337,∴点2022P 的坐标与6P 相同,即:(0,2).故选:B .【点睛】题考查的是点的坐标,根据题意找出规律是解答此题的关键.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.8.B解析:B【解析】【分析】根据新定义运算法则列出方程ax +by =a ①,ay +bx =b ②,由①②解得关于x 、y 的方程组,解方程组即可.【详解】由定义,知:(a ,b )△(x ,y )=(ax +by ,ay +bx )=(a ,b ),则ax +by =a ①,ay +bx =b ②由①+②,得:(a +b )x +(a +b )y =a +b .∵a ,b 是任意实数,∴x +y =1③由①﹣②,得:(a ﹣b )x ﹣(a ﹣b )y =a ﹣b ,∴x ﹣y =1④由③④解得:x =1,y =0,∴(x ,y )为(1,0).故选B .【点睛】本题考查了二元一次方程组的解法.解答此题的关键是弄懂新定义运算的法则,根据法则列出方程组.9.C解析:C【解析】【分析】根据加减消元的方法,当未知数的系数相等或互为相反数时即可进行加减消元.据此即可解题.【详解】解:∵三个方程中z 的系数已经相等或互为相反数,∴第一次消去未知数的最佳方法是加减法消去z ,将①+②与③+②故选C.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元法的应用条件是解题关键.10.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= . 故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 11.A解析:A【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解.【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔,根据题意得:2330x y,且,x y 为正整数, 变形为:3023x y ,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x,即2y =时,12x =是整数,符合题意; 当3029x ,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去;当30218x ,即6y =时,6x =是整数,符合题意;当30221x,即7y =时, 4.5x =不是整数,舍去; 当30224x,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去; 故共有4种购买方案,故选:A .【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可. 12.C解析:C【分析】根据二元一次方程组的解及解二元一次方程组即可解答.【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩解得:1 2a b =⎧⎨=⎩∴a +b =1+2=3.故选:C .【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.二、填空题13.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.14.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩, 即25217251942a b c b c ++=⎧⎨+=⎩, 其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩. ∴150a +60b +40c =150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.15.12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意列出方程组,用x 表示a 、b 、c ,再根据“礼盒A 和C 的总数不超过200解析:12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意列出方程组,用x 表示a 、b 、c ,再根据“礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒,列出x 的不等式组,求得x 的取值范围,再根据礼盒数与粽子数量为整数,求得x 的值,进而便可求得结果.【详解】解:设超市去年销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x 个,5x 个,2x 个,则今年该超市销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x 个,(1+20%)×5x =6x 个,(1﹣10%)×2x =1.8x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意得,2323435622 1.8a b c x a b c x a b c x ++=⎧⎪++=⎨⎪++=⎩,解得,0.150.30.9a x b x c x =⎧⎪=⎨⎪=⎩,∵礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒,∴0.150.92000.30.9210x x x x +≤⎧⎨+>⎩, ∴1017519021x <≤, ∵a =0.15x 、b =0.3x 、c =0.9x 、1.8x 都为整数,∴x 必为20的倍数,∴x =180,∴a =27,b =54,c =162,∴这些礼盒全部售出的销售额为:(2×6+4×5+2×4+10)a+(3×6+3×5+2×4+12)b+(2×6+5×5+1×4)c =50a+53b+50c =50×27+53×54+50×162=12312,故答案为:12312.【点睛】本题主要考查了三元一次方程组的应用,不等式组的应用,列代数式,关键是根据题意正确列出方程组与不等式组.16.508【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.【详解】解:设0有a 个,1有b 个,2有c 个,由题意得:解得:故取值为2的个数为508个,故答案为:508解析:508【分析】先设0有a个,1有b个,2有c个,根据据题意列出方程组2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.17.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.18.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.19.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴=综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.20.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤,即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④. 【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.21.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.22.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.23.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合 解析:613【解析】由题意得:227{3393a b a b ++=-+-=,解得:a=13,b=133, 则13※b=13a+b²+13=116913619993++=, 故答案为613. 点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a 、b 的值.24.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .三、解答题25.(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭ 【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论.【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG证明: ∵AF 平分DAE ∠,EG 平分BEA ∠。

初一下册二元一次方程组练习题含答案)

初一下册二元一次方程组练习题含答案)

二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考解二元一次方程组.点:分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.评:2.解下列方程组(1)(2)(3)(4).考解二元一次方程组.点:分(1)(2)用代入消元法或加减消元法均可;析:(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解解:(1)①﹣②得,﹣x=﹣2,答:解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:评:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加评:减法.4.解方程组:考解二元一次方程组.点:专计算题.题:分把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.析:解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能评:消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考解二元一次方程组.点:专计算题;换元法.题:分本题用加减消元法即可或运用换元法求解.析:解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.评:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考解二元一次方程组.点:专计算题.题:分(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减析:消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解解:答:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要评:求的数.7.解方程组:(1);(2).考解二元一次方程组.点:分根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去析:括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法评:有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考解二元一次方程组.点:专计算题.题:分本题应把方程组化简后,观察方程的形式,选用合适的方法求解.析:解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入评:法或加减消元法解方程组.9.解方程组:考解二元一次方程组.点:专计算题.题:分本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.析:解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程评:进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考解二元一次方程组.点:专计算题.题:分此题根据观察可知:析:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训评:练达到对知识的强化和运用.11.解方程组:(1)(2)考解二元一次方程组.点:专计算题;换元法.题:分方程组(1)需要先化简,再根据方程组的特点选择解法;析:方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:(1);(2).考解二元一次方程组.点:专计算题.题:分(1)运用加减消元的方法,可求出x、y的值;析:(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解解:(1)将①×2﹣②,得答:15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对评:知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考解二元一次方程组.点:专计算题.题:分(1)把甲乙求得方程组的解分别代入原方程组即可;析:(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点此题难度较大,需同学们仔细阅读,弄清题意再解答.评:14.考解二元一次方程组.点:分先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.析:解解:由原方程组,得答:,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点用加减法解二元一次方程组的一般步骤:评:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考解二元一次方程组.点:分将两个方程先化简,再选择正确的方法进行消元.析:解解:(1)化简整理为,答:①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.评:16.解下列方程组:(1)(2)考解二元一次方程组.点:分观察方程组中各方程的特点,用相应的方法求解.析:解解:(1)①×2﹣②得:x=1,答:将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.评:。

新七年级初一数学下册 二元一次方程组测试题及答案(共五套)

新七年级初一数学下册 二元一次方程组测试题及答案(共五套)

新七年级初一数学下册 二元一次方程组测试题及答案(共五套)一、选择题1.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-2.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩3.小明要用40元钱买A 、B 两种型号的口罩,两种型号的口罩必须都买....,40元钱全部用尽,A 型每个6元,B 型口罩每个4元,则小明的购买方案有( )种. A .2种B .3种C .4种D .5种4.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩D .20y D =-5.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( )A .4种B .5种C .6种D .7种6.若关于x 、y 的二元一次方程组3234x y ax y a +=+⎧⎨+=-⎩的解满足x +y >2,则a 的取值范围为( ) A .a <−2B .a >−2C .a <2D .a >27.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( )A .1a =-B .1a =C .23a =D .32a =8.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(2,-506)9.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元10.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③B .①②④C .①③④D .②③④11.规定”△”为有序实数对的运算,如果(a ,b)△(c ,d)=(ac+bd ,ad+bc).如果对任意实数a ,b 都有(a ,b)△(x ,y)=(a ,b),则(x ,y)为( ) A .(0,1) B .(1,0) C .(﹣1,0) D .(0,﹣1) 12.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是( )A .21732D ==-- B .14x D =- C .27y D =D .方程组的解为23x y =⎧⎨=-⎩二、填空题13.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.14.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.15.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.16.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.17.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 18.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____.19.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.20.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.21.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.22.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.23.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人.24.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)三、解答题25.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.26.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.27.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?28.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理. 你认为哪种方案既省时又省钱?试比较说明.29.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 30.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.31.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元? 32.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.33.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? 34.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?35.某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).()1A 、B 两种花草每棵的价格分别是多少元?()2若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.36.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x a y b== ,用数表可表示为10)01ab (.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.2.A解析:A 【分析】利用代入消元法即可求解. 【详解】解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.3.B解析:B 【分析】根据题意得出方程,进而得出方程的整数解解答即可. 【详解】解:设A 型x 个,B 型口罩y 个,由题意得 6x+4y=40, 因为x ,y 取正整数,解得:44x y =⎧⎨=⎩,61x y =⎧⎨=⎩,27x y =⎧⎨=⎩,所以小明的购买方案有三种, 故选:B . 【点睛】此题考查二元一次方程的应用,关键是根据题意列出二元一次方程解答.4.D解析:D 【分析】分别根据行列式的定义计算可得结论. 【详解】 A 、3113D -==3×3-(-1)×1=10,计算正确,不符合题意;B 、D x =1×3-(-1)×7=10,计算正确,不符合题意;C 、方程组的解:x=102011010y ==,=2,计算正确,不符合题意. D 、D y =3×7-1×1=20,计算错误,符合题意; 故选:D . 【点睛】此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.5.C解析:C【分析】设可以兑换m 张5元的零钱,n 张2元的零钱,根据零钱的总和为50元,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出结论. 【详解】设可以兑换m 张5元的零钱,n 张2元的零钱, 依题意,得:5m+2n =50, ∴m =10﹣25n . ∵m ,n 均为非负整数, ∴当n =0时,m =10; 当n =5时,m =8; 当n =10时,m =6; 当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.A解析:A 【分析】先解根据关于x ,y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩①②①+②得4x+4y=2-3a ,234ax y -+=;然后将其代入x +y >2,再来解关于a 的不等式即可. 【详解】 解:3234x y a x y a +=+⎧⎨+=-⎩①②①+②得 4x+4y=2-3a234ax y -+=∴由x+y>2,得2324a-> 即a<-2 故选A【点睛】本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.7.B解析:B【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值. 【详解】解:根据题意,∵2x y a =⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=,∴1a =;故选:B .【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.8.A解析:A【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题.【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n 2,横坐标1;当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n ,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A .【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.9.D解析:D【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解.【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得:25x+30y-30=15x+40y+30整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D .【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.10.B解析:B【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可.【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩,代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确;②由x+y=0,得到y=-x ,代入方程组得:31x k x k -=⎧⎨-=-⎩,即k=3k-1, 解得:12k =, 则存在实数12k =,使x+y=0,本选项正确; ③22331x y k x y k +=⎧⎨+=-⎩, 解不等式组得:321x k y k =-⎧⎨=-⎩, ∵1y x ->-,∴1(32)1k k --->-,解得:1k <,此选项错误;④x+3y=3k-2+3-3k=1,本选项正确;∴正确的选项是①②④;故选:B.【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.11.B解析:B【解析】【分析】根据新定义运算法则列出方程ax +by =a ①,ay +bx =b ②,由①②解得关于x 、y 的方程组,解方程组即可.【详解】由定义,知:(a ,b )△(x ,y )=(ax +by ,ay +bx )=(a ,b ),则ax +by =a ①,ay +bx =b ②由①+②,得:(a +b )x +(a +b )y =a +b .∵a ,b 是任意实数,∴x +y =1③由①﹣②,得:(a ﹣b )x ﹣(a ﹣b )y =a ﹣b ,∴x ﹣y =1④由③④解得:x =1,y =0,∴(x ,y )为(1,0).故选B .【点睛】本题考查了二元一次方程组的解法.解答此题的关键是弄懂新定义运算的法则,根据法则列出方程组.12.C解析:C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D=2132-=2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x=11122-=﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y=21312=2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x=147xDD-=-=2,y=217yDD=-=﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.二、填空题13.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208a x a a a a ==++, 故答案为:18. 【点睛】 本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.14.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.15.13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解解析:13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解】解:设1克巴旦木成本价m 元,和1克黑加仑成本价n 元,根据题意得10(0.04 +m+n) ×(1+30%)=5.2解得:m+n=0.36甲种干果的成本价:10×(0.04+0.36)=4乙种干果的成本价:20×0.04+5×0.36=2.6乙种干果的售价为:2.6×(1+20 %)=3.12设甲种干果有x 袋,乙种干果有y 袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y 解得:1330x y = 故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.【点睛】本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.16.777【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a 的值.【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键. 17.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB ,AD=AC+CD ,BC=CD+DB ,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.18.536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1解析:536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,分三种情况讨论:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c ﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.【详解】∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.∴要使三位数最大,首先要保证a尽可能大.当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;∴a=5.当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.解得:0≤b≤3,1≤c≤6,∴由a、b、c组成的最大三位数为536.故答案为:536.【点睛】本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.19.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.20.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。

初一下学期数学《 二元一次方程组考试试题》含答案.百度文库

初一下学期数学《 二元一次方程组考试试题》含答案.百度文库

初一下学期数学《 二元一次方程组考试试题》含答案.百度文库一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是() A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩3.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=4.已知关于x 、y 的二元一次方程组434ax y x by -=⎧⎨+=⎩的解是22x y =⎧⎨=-⎩,则+a b 的值是( )A .1B .2C .﹣1D .05.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元7.若二元一次方程组的解为x=a ,y=b ,则a+b 的值 ( )A .B .C .D .8.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x和分成的组数y,可列方程组为( )A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨+=⎩C.7385x yx y+=⎧⎨-=⎩D.7385y xy x=+⎧⎨=+⎩9.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣310.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为( )A.56156x yx y y x+=⎧⎨-=-⎩B.65156x yx y y x+=⎧⎨+=+⎩C.56145x yx y y x+=⎧⎨+=+⎩D.65145x yx y y x+=⎧⎨-=-⎩11.已知关于x,y的方程组232x y ax y a-=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②2xy=⎧⎨=⎩是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③12.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4,若x⊗(﹣y)=2018,且2y⊗x=﹣2019,则x+y的值是()A.﹣1 B.1 C.13D.﹣13二、填空题13.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.14.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生C购买的商品数量是________.15.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.16.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.17.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.18.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a cbc ⎧++-=⎪⎨-=-⎪⎩(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.19.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.20.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 21.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)22.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.23.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.24.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .三、解答题25.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路: 甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值; 丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.26.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.27.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值. 28.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.29.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案).30.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.31.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由. 32.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.33.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.34.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A型电脑的进货量不少于14台,B 型电的进货量不少于A型电脑的2倍,那么该商店有几种进货方案?该商场购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m (0<m<100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.35.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x yx y+=+=的过程.36.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:方程组利用加减消元法求出解即可.详解:22x yx y+⎧⎨--⎩=①=②,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为2 xy⎧⎨⎩==,故选B.点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.B解析:B【分析】设该物品的价格是x钱,共同购买该商品的由y人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组.【详解】设该物品的价格是x钱,共同购买该商品的由y人,依题意可得83 74y xy x-=⎧⎨-=-⎩故选:B【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.3.D解析:D【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.B解析:B【分析】将22xy=⎧⎨=-⎩代入434ax yx by-=⎧⎨+=⎩即可求出a与b的值;【详解】解:将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩得:11a b =⎧⎨=⎩, ∴2a b +=; 故选B . 【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.5.A解析:A 【分析】设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可. 【详解】解:设安排x 个工人加工桌子,y 个工人加工椅子,由题意得:2212100x y x y +=⎧⎨-=⎩故选A . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子.6.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.7.A解析:A【分析】首先解方程组求得x、y的值,即可得到a、b的值,进而求得a+b的值.【详解】解:解方程组得:则则故选:A.【点睛】此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.8.A解析:A【解析】分析:根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可.详解:根据题意可得:73 85y xy x=-⎧⎨=+⎩.故选:A.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是确定问题的等量关系. 9.B解析:B【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B. 10.C 解析:C根据题意,可以列出相应的方程组,从而可以解答本题.【详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y=5y+x,故选C.【点睛】此题考查二元一次方程组应用,解题关键在于列出方程组11.B解析:B【分析】把a=0代入方程组,可求得方程组的解,把2xy=⎧⎨=⎩代入方程组,可得a=1,可判断②;把a=﹣1代入方程可求得a的值为2,可判断③;可得出答案.【详解】解:①当a=0时,原方程组为23x yx y-=⎧⎨+=⎩,解得11xy=-⎧⎨=⎩,②把2xy=⎧⎨=⎩代入方程组得到a=1,不符合题意.③当a=﹣1时,原方程组为242x yx y-=⎧⎨+=-⎩,解得2xy=⎧⎨=-⎩,当2xy=⎧⎨=-⎩时,代入方程组可求得a=﹣1,把2xy=⎧⎨=-⎩与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①③.故选:B.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.12.D解析:D【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求.【详解】解:根据题中的新定义得:2201842019x y y x -=⎧⎨+=-⎩①②, ①+②得:3x+3y =﹣1,则x+y =﹣13. 故选:D .【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.二、填空题13.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c .【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.14.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.15.15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a ,∴x =15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.16.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.17.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键18.()【解析】【分析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标.【详解】解:∵方程组(c 为常数),∴,∵,,∴,∴c=4,∴解析:(1,33-)【解析】【分析】由方程组变形可得3=-(4)4(4)a c c ⎧+-⎪=-,由非负数性质可求c =4,a =-3,b =1,再依据影子点定义即可求出点P /的坐标.【详解】解:∵方程组340416a c c ⎧++-=⎪=-(c 为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-, ∵30a +≥0,∴-(4)04(4)0c c -≥⎧⎨-≥⎩, ∴c =4,∴31a b =-⎧⎨=⎩, ∴P 坐标为(-3,1), 根据定义可知点P 的影子点P /为(13(,)31--- ,即为P /(1,33-). 故答案为(1,33-).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c -4=0. 19.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.20.【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x ,∴符合要求的方程组为.解析:28y x xy =⎧⎨=⎩【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为28 y x xy=⎧⎨=⎩.【点睛】根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.21.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程解析:8 9【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%+=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.。

七年级下册二元一次方程计算题含答案

七年级下册二元一次方程计算题含答案

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………( )12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是() (A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于()(A )a =-3,b =-14 (B )a =3,b =-7(C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32(B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4□x +5y =13 ①4x -□y =-2 ②25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题100道(卷一)之迟辟智美创作(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5…………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为ba ………()12、在方程4x -3y =7里,如果用x 的代数式暗示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解;(D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个(C )7个(D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a <2;(B )34->a ;(C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( ) (A )2;(B )-1;(C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7(C )10x +2y =4(D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xy y x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值即是( )(A )a =-3,b =-14 (B )a =3,b =-7(C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则yx yx 3545--的值即是( ) (A )32 (B )23(C )1(D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解(B )有唯一一个解(C )有无数多个解(D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) (A )14(B )-4(C )-12(D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4(D )21-=k ,b =-4三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________; 27、如果xy ,那么用含有y 的代数式暗示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值即是_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________; 四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;□x +5y =13 ①4x -□y =-2 ②43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式; 50、要使下列三个方程组成的方程组有解,求常数a 的值.2x +3y =6-6a ,3x +7y =6-15a ,4x +4y =9a +951、当a 、b 满足什么条件时,方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;52、a 、b 、c 取什么数值时,x 3-ax 2+bx +c 程(x -1)(x -2)(x -3)恒等?53、m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解. 54、试求方程组⎩⎨⎧-=---=-6|2||5|7|2|y x y x 的解.六、列方程(组)解应用题55、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟达到;若每小时行驶50千米,那就可以提前30分钟达到,求甲、乙两地之间的距离及原计划行驶的时间?56、某班学生到农村劳动,一名男生因病不能介入,另有三名男生体质较弱,教师安插他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安插劳动时恰需筐68个,扁担40根,问这个班的男女生各有几多人?57、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑几多米? 58、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31,求这两个水桶的容量.59、甲、乙两人在A 地,丙在B 地,他们三人同时动身,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A 、B 两地之间的距离. 60、有两个比50年夜的两位数,它们的差是10,年夜数的10倍与小数的5倍的和的201是11的倍数,且也是一个两位数,求原来的这两个两位数. 【参考谜底】 一、1、√; 2、√; 3、×; 4、×; 5、×;6、×;7、√; 8、√; 9、×;10、×; 11、×;12、×;二、13、D ; 14、B ; 15、C ; 16、A ; 17、C ;18、A ;19、C ; 20、A ;21、A ; 22、B ; 23、B ;24、A ;三、25、47,8,⎩⎨⎧==14y x ; 26、2; 27、4125+=y x ;28、a =3,b =1;29、⎩⎨⎧==20b a ⎩⎨⎧==11b a ⎩⎨⎧==02b a 30、21; 31、3,-4 32、1;33、20;34、a 为年夜于或即是3的奇数;35、4:3,7:936、0;四、37、⎩⎨⎧==204162n m ;38、⎪⎩⎪⎨⎧==22a y a x ; 39、⎩⎨⎧-==13y x ;40、⎩⎨⎧==11y x ;41、⎩⎨⎧==11y x ; 42、⎪⎩⎪⎨⎧==225y x ; 43、⎪⎩⎪⎨⎧===168z y x ; 44、⎪⎩⎪⎨⎧===397z y x ;45、⎪⎩⎪⎨⎧-=-==212z y x ; 46、⎪⎩⎪⎨⎧===202112z y x ;五、47、⎩⎨⎧-=-=+2941358y x y x ,⎪⎪⎩⎪⎪⎨⎧==231792107y x ; 48、a =-149、11x 2-30x +19; 50、31=a ;51、23=a ,b =±352、a =6,b =11,c =-6;53、(1)m 是年夜于-4的整数,(2)m =-3,-2,0,⎩⎨⎧==48y x ,⎩⎨⎧==24y x ,⎩⎨⎧==12y x ;54、⎩⎨⎧=-=91y x 或⎩⎨⎧==95y x ;六、55、A 、B 距离为450千米,原计划行驶小时;56、设女生x 人,男生y人,⎪⎪⎩⎪⎪⎨⎧=⨯-++=-++682)4(2340423y x y x ⎩⎨⎧==)(32)(21人人y x57、设甲速x 米/秒,乙速y 米/秒⎩⎨⎧==-yx y x 641055⎩⎨⎧==)/(4)/(6秒米秒米y x58、甲的容量为63升,乙水桶的容量为84升; 59、A 、B 两地之间的距离为52875米; 60、所求的两位数为52和62.二元一次方程组练习题100道(卷二)一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6D.4x=2 4 y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k即是()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式暗示y为:y=_______;用含y的代数式暗示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是几多?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了几多枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有几多只鸡,几多个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?谜底:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的界说来判定,•含有两个未知数且未知数的次数不超越1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题谜底不惟一.16.1 4 解析:将2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-11 9.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k -1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式取代,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x │-1)2+(2y+1)2=0,可得│x │-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x -y=1+12=32;当x=-1,y=-12时,x -y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x │-1)2与(2y+1)2都即是0,从而获得│x │-1=0,2y+1=0.21.解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x -y=3.22.(1)解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)解:设有x 只鸡,y 个笼,根据题意得415(1)y x y x +=⎧⎨-=⎩.23.解:满足,纷歧定.解析:∵2528x y x y +=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x -y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组2528x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。

七年级下册二元一次方程计算题含答案

七年级下册二元一次方程计算题含答案

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=37.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

七年级下册数学二元一次方程组习题及答案

七年级下册数学二元一次方程组习题及答案

七年级下册数学二元一次方程组习题及答案8.1 二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y的值分别为-4,1,6,11.2、在x+3y=3中,用x表示y,则y=(3-x)/3;用y表示x,则x=3-3y。

3、已知方程(k^2-1)x^2+(k+1)x+(k-7)y=k+2,当k=2或k=-2时,方程为一元一次方程;当k不等于2或-2时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=16;当y=0时,则x=20/3.5、方程2x+y=5的正整数解是(1,3)。

6、若(4x-3)^2+|2y+1|=0,则x+2=-1/2.7、方程组x+y=ax=2的一个解为(2,a-2),那么这个方程组的另一个解是(0,a)。

8、若x=1/2时,关于x、y的二元一次方程组ax-2y=1x-by=2的解互为倒数,则a-2b=-1/2.二、选择题1、方程2x-3y=5,xy=3,二元一次方程的有(B)个。

2、方程2x+y=9在正整数范围内的解有(C)个。

3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是(C)20x-4y=3.4、若是5x^2 ym与4xn+m+1y^2n-2同类项,则m-2n的值为(B)-1.5、在方程(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(B)-2.6、若x=2y=-1是二元一次方程组的解,则这个方程组是(A)x-3y=5y=x-32x-y=5x=2y7、在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则(A)y=5x-3.8、已知x=3-k,y=k+2,则y与x的关系是(A)x+y=5.9、下列说法正确的是(B)二元一次方程组有无数个解。

8.1 二元一次方程组一、填空题1.已知二元一次方程 4x-3y=12,当 x=0、1、2、3 时,分别解得 y=-4、1、6、11.2.对方程 x+3y=3,用 x 表示 y,则 y=(3-x)/3;用 y 表示 x,则 x=3-3y。

最新初一数学下学期 二元一次方程组测试题及答案(共五套)

最新初一数学下学期 二元一次方程组测试题及答案(共五套)

最新初一数学下学期 二元一次方程组测试题及答案(共五套)一、选择题1.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是( ).A .35a b =⎧⎨=⎩ B .35a b =⎧⎨=-⎩C .41a b =⎧⎨=-⎩D .41a b =⎧⎨=⎩3.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩4.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( )A .12x y =⎧⎨=⎩B .01x y =⎧⎨=⎩C .70x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩5.下列方程组是三元一次方程组的是( ) A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩6.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( )A .1a =-B .1a =C .23a =D .32a =7.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁8.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有( ) A .2种 B .3种C .4种D .5种9.已知且x +y =3,则z 的值为( ) A .9B .-3C .12D .不确定10.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173B .888C .957D .6911.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩ C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩12.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩二、填空题13.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.14.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..15.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.16.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天. 17.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 18.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.19.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________ 20.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.21.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本. 22.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______. 23.若方程组2232x y k x y k +=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.24.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题25.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 26.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.27.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ; (2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.28.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器 乙型机器 价格(万元/台) a b 产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元. (1) 求a 、b 的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.29.a取何值时(a为整数),方程组2420x ayx y+=⎧⎨-=⎩的解是正整数,并求这个方程组的解.30.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】方程组利用加减消元法求出解即可.【详解】解:7317x yx y+=⎧⎨+=⎩①②,②﹣①得:2x=10,解得:x=5,把x=5代入①得:y=2,则方程组的解为52 xy=⎧⎨=⎩.故选:A.【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.2.C解析:C【分析】首先将35x y =⎧⎨=⎩代入到3526x my x ny -=⎧⎨+=⎩,可求得m 和n ;将m 和n 代入到()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩,可求得a+b ,a-b 的值;再通过求解二元一次方程组,即可求得答案. 【详解】 ∵二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩∴955656m n -=⎧⎨+=⎩∴450m n ⎧=⎪⎨⎪=⎩ 将450m n ⎧=⎪⎨⎪=⎩代入()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩ 得()()()435526a b a b a b ⎧+--=⎪⎨⎪+=⎩∴35a b a b +=⎧⎨-=⎩∴41a b =⎧⎨=-⎩故选:C . 【点睛】本题考查了二元一次方程方程组的知识;解题的关键是熟练掌握二元一次方程方程组的性质,从而完成求解.3.B解析:B 【分析】设该物品的价格是x 钱,共同购买该商品的由y 人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组. 【详解】设该物品的价格是x 钱,共同购买该商品的由y 人, 依题意可得8374y x y x -=⎧⎨-=-⎩故选:B【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.4.A解析:A【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.详解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得:x+3(1+x)=7,即4x=4,∴x=1,∴y=1+x=1+1=2.∴解为12 xy=⎧⎨=⎩.故选A.点睛:本题要注意方程组的解的定义.5.A解析:A【分析】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【详解】A、满足三元一次方程组的定义,故A选项正确;B、含未知数项的次数为2次,∴不是三元一次方程,故B选项错误;C、未知数的次数为2次,∴不是三元一次方程,故C选项错误;D、含有四个未知数,不满足三元一次方程组的定义,故D选项错误;故选:A.【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.6.B解析:B【分析】直接把2xy a=⎧⎨=⎩代入方程,即可求出a的值.【详解】解:根据题意,∵2xy a=⎧⎨=⎩是方程25x y+=的一个解,∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.7.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=, ∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.8.A解析:A 【解析】 【分析】设购买甲种笔记本x 个,则乙种笔记本y 个,利用购甲、乙两种笔记本共用70元得到x=14-3y ,利用143y y-=14y –3为整数可判断y=1,2,7,14,然后求出对应x 的值从而得到购笔记本的方案. 【详解】设购买甲种笔记本x 个,购买乙种笔记本y 个, 根据题意得5x +15y =70,则x =14–3y ,因为143y y -为整数,而143y y-=14y –3, 所以y =1,2,7,14,当y =1时,x =11;当y =2时,x =4;y =7和y =14舍去,所以购笔记本的方案有2种. 故选A . 【点睛】本题考查了二元一次方程的解,分析题意,找到关键描述语,找到合适的等量关系,特别是确定甲种笔记本数量和乙种笔记本数量关系,然后利用整除性确定方案.9.B解析:B 【解析】 【分析】先利用x +y =3,得2x+2y=6,3x+3y=9,进而将方程组进行化简整理,再用代入消元法即可求解. 【详解】解:∵x +y =3,将其代入方程组得,由(1)得y=z-6,将其代入(2)得z=-3, 故选B. 【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入消元的方法和对原方程组进行化简是解题关键.10.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845, 解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.11.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 12.D解析:D 【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可.【详解】A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B 、把12x y =⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误; C 、把12x y =⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误; D 、把12x y =⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12x y =⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确. 故选D . 【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.二、填空题 13.6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】 解:设8解析:6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张,0.8x+1.2y=16, 解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 14.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯,∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.15.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.16.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x+⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.17.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可.【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.18.508【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.【详解】解:设0有a 个,1有b 个,2有c 个,由题意得:解得:故取值为2的个数为508个,故答案为:508解析:508【分析】先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组2019215251510a b c b c a c ++=⎧⎪+=⎨⎪+=⎩求解即可.【详解】解:设0有a 个,1有b 个,2有c 个,由题意得:2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.19.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:45561 x y y xx y+=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.20.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键21.311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本解析:311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,依题意得:①-②得:7a-7b=2177,∴a-b=311,即甲种书籍比乙种书籍多买了311本.【点睛】 本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 22.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】 本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 23.3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.24.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.三、解答题25.(1)2(a+b);(2)(2+21ba+);(2+21ab+);(3)36.【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论;(2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB两地的距离为S千米,根据路程=速度×时间,即可得出关于(a+b),S的二元一次方程组(此处将a+b当成一个整体),解之即可得出结论.【详解】(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲乙相遇时,甲已经走了2a千米,乙已经走了2b千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需21ba+小时到达B地,乙还需21ab+小时到达A地,所以甲从A到B所用的时间为(2+21ba+)小时,乙从B到A所用的时间为(2+21ab+)小时.故答案为:(2+21ba+);(2+21ab+).(3)设AB两地的距离为S千米,3小时36分钟=185小时.依题意,得:2()182(11)5S a bS a b=+⎧⎪⎨=+++⎪⎩,令x=a+b,则原方程变形为2182(2)5S xS x=⎧⎪⎨=+⎪⎩,解得:1836 xS=⎧⎨=⎩.答:AB两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.(1)B;(2),x y的最小整数解为104xy=⎧⎨=⎩;(3)隐线中s的最大值和最小值的和为7 2【分析】(1)将A,B,C三点坐标代入方程,方程成立的点即为所求,(2)将P,Q代入方程,组成方程组求解即可,(3)将P代入隐线方程,27n+=组成方程组,求解方程组的解,再由()2723147s n n n=--=-即可求解.【详解】解:(1)将A,B,C 三点坐标代入方程,只有B 点符合,∴隐线326x y +=的亮点的是B.(2)将()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭代入隐线方程 得:226163h t h -=⎧⎪⎨-=⎪⎩解得253t h ⎧=⎨=-⎩代入方程得:5626x y -=,x y ∴的最小整数解为104x y =⎧⎨=⎩(3)由题意可得273n n s ==⎪⎩72n =-n ∴= ()2723147s n n n ∴=--=-212s ∴=- s ∴的最大值为14,最小值为212- 隐线中s 的最大值和最小值的和为2171422-= 【点睛】本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.27.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个,则51311104x y x y +++=⎧⎨+=⎩, 解得1216x y =⎧⎨=⎩, 所以正方形有16个,六边形有12个;(3)据题意,350t s +=,据题意,t s ≥,且,s t 均为整数,因此,s t 可能的取值为:216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.28.(1)3018a b =⎧⎨=⎩;(2)有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x 台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x 的取值范围,再分别求出对应的成本即可解题.【详解】。

七年级下册二元一次方程计算题含答案

七年级下册二元一次方程计算题含答案

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1);(2)(3)(4).^3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3、7.解方程组:(1);'(2).8.解方程组:9.解方程组:)10.解下列方程组:(1)(2)11.解方程组:(1)(2)<12.解二元一次方程组:(1);(2)》13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么(2)求出原方程组的正确解.%14.15.解下列方程组:(1)-(2).16.解下列方程组:(1)(2)`?二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题))1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),\(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)~(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,)解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.;(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,\把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:解二元一次方程组.[考点:专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,】解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组. ( 专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单. 解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=. 所以原方程组的解为. ¥点评: 要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组. 专题:计算题;换元法. 分析: .本题用加减消元法即可或运用换元法求解.解答: 解:,①﹣②,得s+t=4,①+②,得s ﹣t=6, 即, 解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.'6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3考点:解二元一次方程组.专题:计算题.,(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用分析:加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.~(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:.(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:^y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:¥y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.计算题.*专题:分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.~则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.…分析:解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.)解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.计算题.*专题:分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,、所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.^11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:<方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴;∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.计算题.$专题:分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得?y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.—13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:【(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;`(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.解二元一次方程组.》考点:分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得#y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:{(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

七年级下册二元一次方程计算题含答案

七年级下册二元一次方程计算题含答案

二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2)13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

初一下册二元一次方程练习题含答案)

初一下册二元一次方程练习题含答案)

二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于 x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.b看成了什么?(1)甲把a看成了什么,乙把(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考解二元一次方程组.点:分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x= ,∴.点本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.评:2.解下列方程组(1)(2)(3)(4).考解二元一次方程组.点:分(1)(2)用代入消元法或加减消元法均可;析:(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解解:(1)①﹣②得,﹣x=﹣2,答:解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x= ,把x= 代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:评:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加评:减法.4.解方程组:考解二元一次方程组.点:专计算题.题:分把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.析:解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y= .所以原方程组的解为.点要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能评:消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考解二元一次方程组.点:专计算题;换元法.题:分本题用加减消元法即可或运用换元法求解.析:解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.评:6.已知关于 x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考解二元一次方程组.点:专计算题.题:分(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减析:消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解解:答:(1)依题意得:①﹣②得:2=4k,所以k= ,所以b= .(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要评:求的数.7.解方程组:(1);(2).考解二元一次方程组.点:分根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去析:括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法评:有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:专题:分解二元一次方程组.计算题.本题应把方程组化简后,观察方程的形式,选用合适的方法求解.析:解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入评:法或加减消元法解方程组.9.解方程组:考解二元一次方程组.点:专计算题.题:分本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.析:解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程评:进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考解二元一次方程组.点:专计算题.题:分析:解答:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣= .所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训评:练达到对知识的强化和运用.11.解方程组:(1)(2)考解二元一次方程组.点:专计算题;换元法.题:分方程组(1)需要先化简,再根据方程组的特点选择解法;析:方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点此题考查了学生的计算能力,解题时要细心.评:12.解二元一次方程组:(1);(2).考解二元一次方程组.点:专计算题.题:分(1)运用加减消元的方法,可求出x、y的值;x、y 的值.析:(2)先将方程组化简,然后运用加减消元的方法可求出解解:(1)将①×2﹣②,得答:15x=30,x=2,把x=2 代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对评:知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考解二元一次方程组.点:专计算题.题:分(1)把甲乙求得方程组的解分别代入原方程组即可;析:(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的 a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点此题难度较大,需同学们仔细阅读,弄清题意再解答.评:14.考解二元一次方程组.点:分先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.析:解解:由原方程组,得答:,由(1)+(2),并解得x= (3),把(3)代入(1),解得y= ,∴原方程组的解为.点用加减法解二元一次方程组的一般步骤:评:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考解二元一次方程组.点:分将两个方程先化简,再选择正确的方法进行消元.析:解解:(1)化简整理为,答:①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.评:16.解下列方程组:(1)(2)考解二元一次方程组.点:分观察方程组中各方程的特点,用相应的方法求解.析:解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;WORD格式(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.评:专业资料整理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组解法练习题精选(含答案)一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.解二元一次方程组.考点:分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.评:2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解解:(1)①﹣②得,﹣x=﹣2,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:析:解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).解二元一次方程组.考点:将两个方程先化简,再选择正确的方法进行消元.分析:解解:(1)化简整理为,答:①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.点评:16.解下列方程组:(1)(2)解二元一次方程组.考点:分观察方程组中各方程的特点,用相应的方法求解.析:解解:(1)①×2﹣②得:x=1,。

相关文档
最新文档