可控硅电路选型分析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、可控硅半导体结构及其工作原理:以单向可控硅为例

晶闸管(Thyristor)又叫可控硅T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。

晶闸管的工作条件:

1. 晶闸管承受反向阳极电压时,不管门极承受和种电压,晶闸管都处于关短状态。

2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。

3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。

4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2

当晶闸管承受正向阳极电压时,为使晶闸管导铜,必须使承受反向电压的PN结J2失去阻挡作用。图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。

设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,

晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:

Ia=Ic1+Ic2+Ic0 或Ia=a1Ia+a2Ik+Ic0

若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig

从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式

硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。

当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN 管的发射结。这样强烈的正反馈过程迅速进行。从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。

式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。晶闸管在导通后,门极已失去作用。

在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH 以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。

二、可控硅种类

按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。

1、单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器)

图2-1

2、双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用Bi-directional Controlled Rectifier(BCR)来表示双向可控硅。

图2-2

本文中蓝色箭头指向的是高电位方向(与国内表示方法相反);粉色箭头方向表示工作象限的切换。

三、可控硅的工作模式:

1、On/Off 控制:

图3-1

对于这样的一个电路,当通过控制信号来开关Triac时,我们可以看到如下的电流波形:

图3-2

通常对于一个典型的阻性的负载使用该控制方法时,可以看到控制信号、电流、相电压的关联。

图3-3

2、相角控制:

也叫导通角控制,其目的是通过触发可控硅的导通时间来实现对电流的控制,在简单的马达与调光系统中多可以看到这种控制方法

图3-4

在典型的阻性负载中,通过控制触发导通角a在0~180之间变化,从而实现控制电流的大小:

图3-5

四、可控硅关键参数及选型: 1、 ST 公司产品型号信息:

图4-1 2、主要特性:

图4-2

IT(RMS)平均电流: 指的是BAT16完全导通的情况下,流经A1A2的电流平均值可以达到16A 。请注意在数据手册之后的表3提到,该值是在正弦波触发,温度在105度或110度下测得。

VDRM/VRRM: 关断状态正向可重复峰值电压/关断状态反向可重复峰值电压。这个参数指的值可以认为是可控硅的正反向耐压(不知道这样解释对不对),请注意这个值与VDSM/VRSM 的差异,后者要比前者高100V 左右,但这个电压是绝对不能被逾越的,否者造成不可恢复的损坏。

IGT(Q1)触发电流:注意后面的Q1指的是工作在第一象限,这个与可控硅的工作原理是有关系的,后面会再说明。

BT 系列包含A 绝缘型和B 非绝缘两类

正反向可重复峰值电压

最小触发电流

3、选型重点关注参数:

我们知道,一个可控硅在触发前到触发后到触发关断的一个完整触发过程一共需要经历四个状态,分别是:关断、关断到触发、触发、触发到关断。

①、首先在触发前,也就是关断状态,我们需要考虑系列参数:

1)、VDRM/VRRM、VDSM/VRSM

2)、dV/dt

3)、Vgd

通俗的讲在这个状态下我们需要考虑可控硅的耐压不要被击穿、可控硅不要被误触发。

1)、VDRM/VRRM

英文全称:Repetitive peak off-state voltage (50-60Hz).

英文解释:This is the maximum peak voltage allowed across the device. This parameter is specified up to the maximum junction temperature and leakage currents IDRM /

IRRM are specified under this value.

中文名称:关断状态正向可重复峰值电压/关断状态反向可重复峰值电压。

VDSM/VRSM

英文全称:Non-repetitive peak off-state voltage.

英文解释:This is the maximum peak voltage allowed under pulse conditions across the device.

It is specified for pulse duration lower or equal to 10ms.This parameter guarantees

the ruggedness of the Triac in case of fast line transients exceeding the specified

VDRM / VRRM value.

图4-3

上图介绍了可控硅在控制过程中会出现的不同电压参数的关系,一共出现了三个电压值(在同一个电压方向上):VDRM、VDSM、Dreakdown V oltage。通常VDSM会比VDRM大100V左右,但是前提条件是这多出100V的电压加在A1A2两端的时间不能超过10mS,超过的结果当然是over!并且是不可逆的过程!阴影部分是绝对禁止越过的!

相关文档
最新文档