六年级奥数比例应用题

合集下载

六年级奥数按比例分配经典题

六年级奥数按比例分配经典题

六年级奥数 按比例分配

知识要点及解题基本方法:

解答按比例分配的应用题,先要将各部分的比转化为各部分量占总量的几分之几,然后按求一个数的几分之几是多少的方法,分别求出各部分量。解题步骤是:

1、 先求出按比例分配的总数量;

2、 再求出分配的比,并求出各个部分占总数量的几分之几;

3、 用总数量乘以部分量占总数量的几分之几得到各部分量。

例1:某家场有耕地108公顷,其中粮田、棉田和其它作物的比是3:4:5,每种耕地各有多少公顷?

练习:1、一个长方形与一个正方形的周长之比为6:5,长方形的长是宽的5

7,求长方形与正方形的面积之比。

2、第一队与第二队的人数比是3:2,第二队与第三队的为数之比是5:4,第一队与第三队的人数之比是多少?

4、 六年级有男生150人,男生与女生的人数之比为5:4,六年级一共有多少人?

例2、一块合金内铜和锌的比是2:3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比。(正确求出按比例分配的总数量是解决此题的关键)

练习:1、小兰与小红所有的图书本数的比是5:3,小兰给小红15本后,两人的图书数一样多,原来两从共有图书多少本?

2、数学小组和美术小组人数的比是5:3,数学小组比美术小组多24人,两组各多少人?

例3:甲、乙两列火车同时从相距672千米的A 、B 两城相对开出,2

7小时两列火车相遇,已知甲、乙两列火车的速度比是7:9,求相遇时甲比乙少行多少千米?

例4:小明与小红所有的图书的本数比5:3,小明给小红7本后,两人图书的本数同样多,原来两人共有图书多少本?

例5、实验小学六年级学生分三组参加义务劳动。第一组和第二组的人数之比是5:4,第二级和第三组的人数比是3:2.已知第一组人数比二、三组人数总和少15人。问实验小学六年级共有多少人?(将两个比转化为三个量的连比是解比题的关键)

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)

例1 淘淘和笑笑原有邮票张数的比是5:4,如果淘淘给笑笑48张后,淘淘和笑笑的张数比是3:4,淘淘原来有多少张?

解析如下:

练习1:甲,乙两个建筑队原有水泥的重量之比是4:3,当甲队给乙队54吨水泥后,甲乙两队水泥重量之比是3:4,原来甲队有多少水泥?(答案:216吨)

例2 某学校有若干名学生参加电视邀请赛,其中男生人数与女生人数的比为8:5,后来又有20名女生报名参赛,这时女生人数占参赛总人数的 5/11 。现在参赛的学生共有多少人?

解析如下:

练习2 某校图书室有图书210本,其中新书占5/7,又买进一些新书后,新书本数与现在图书本数的比是4:5,现在图书室一共有多少新书?(答案:240本)

例3 有一袋糖分配给甲,乙,丙三人,三人依次所得数目之比是5:4:3,如果把糖重新分配给甲,乙,丙三人,使其比依次为7:6:5,则其中一人会比原来所得的数目多10颗,求此人原来所得的数目。

解析如下:

练习3 马小跳和刘超,唐飞三人斗地主,游戏前,三人游戏币之比是6:5:4,游戏结束后,游戏币之比是5:4:3,其中一个人赢了200枚,那么这个人是?他开始有多少游戏币?(答案:马小跳,4800枚)例4 车过河需要交渡费3元,马过河需要交渡费2元,人过河需要交渡费1元。某天过河的车与马数目比是2:9,马和人数

目比是3:7,共收渡费945元,则这天车,马,人数目各是?

解析如下:

练习4 某商贩按大个桃子每个3角,小个桃子每个2角的价格卖出了一批桃子,共收51元。已知他卖出的桃子大小个数比是8:5,则

小学六年级奥数应用题(比例问题、相遇问题)

小学六年级奥数应用题(比例问题、相遇问题)

小学六年级奥数应用题(比率问题、相遇问题)

【相遇问题二】

1、甲乙两站相距 980 千米,两列火车由两站相对开出,快车每小时行 60 千米, 10 小时后两车相遇,慢车每小时行多少千米?

2、两镇相距 240 千米,一辆客车从上午8 时从东镇开往西镇,一辆货车在上午9 时从西镇开往东镇,到中午12 点,两车恰幸亏两镇间的中点相遇,假如两车都从上午8 时由两地相向开出,速度不变,到上午 10 时,两车还相距多少千米?

3、甲乙二人从相距21 千米的两地同时相背而行,经过 4 小时后两人相距 85 千米,甲每小时行7 千米,乙每小时行多少千米?

4、甲乙两船同时从相距984 千米的两个码头相对出发,18 小时后两船还相距390 千米,甲船每小时行15 千米,乙船每小时行多少千米?

5、两列火车同时相对开出,经过18 小时两车相遇,已知甲车每小时行 78 千米,比乙车快18 千米,求两地间的铁路长多少千米?

6、甲乙两港相距 654 千米,客、货两轮同时从甲乙两港相对开出,客轮每小时航行18 千米,货轮每小时行 15 千米,经过几小时后两车还相距 390 千米?

7、一辆快车从甲镇开往乙镇,每小时行80 千米,一辆慢车同时从乙镇开往甲镇,每小时行64 千米,它们在离甲、乙两镇中点16 千米处相遇,求甲乙两镇间的行程是多少千米?

8、小芳和小红同时从相距600 米的两地相对走来,小芳每分钟走

45 米,经过 7 分钟后二人擦肩而过又相距100 米,小红每分钟走多少米?

9、甲乙两城相距 600 千米,货车以每小时 40 千米的速度从甲城开往乙城, 5 小时后客车从乙城开住甲城,又经过 4 小时两车相遇,客车每小时行多少千米?

六年级奥数思维训练 比例应用题

六年级奥数思维训练  比例应用题

六年级奥数思维训练比例应用题

一、尝试练习

1、甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?

2、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?

二、训练营地

1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?

2、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?

3、光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生多少人?

4、五年级举行数学竞赛,一班占参加比赛总人数的1/3,二班与三班参加比赛人数的比是11:13,二班比三班少8人,则三班有多少人参加比赛?

按比例分配应用题

按比例分配应用题

六年级奥数比例分配的应用题(一)

1.一个直角三角形,两个锐角度数的比是1:4,这两个锐角各多少度?

2.三条绳长的和是84米,三条绳的比是3:4:5.三条绳各长多少米?

3.一个三角形铁框,三个内角度数的比是1:2:3,这个铁框的三个角分别是多少度?

4.42名同学到面积分别是60和80平方米的菜园去帮忙种菜。如果按面积大小分配人员,这两处菜园各应去多少名同学种菜?

5.学校把栽480棵树的任务按六年级三班的人数分配给各组,一组有47人,二组有38人,三组有35人,三个组各应栽树多少棵?

6.粮食公司有三个汽车队,甲队有6辆货车,乙队有7辆货车,丙队有8辆货车,每辆载重量相等,有378吨粮食运往外地,按运输能力分配,各队应运粮食多少吨?

7.学校把864本图书按人数借给三个年级。一年级有49人,二年级有50人,三年级有45人,三个年级各分得图书多少本?

8.分别以1:2:10的石灰、硫磺和水配农药,现在要配制农药650千克。石灰、硫磺和水各需要多少千克?

9,一个等腰三角形的铁片,顶角和一个底角的度数的比是4:3,求这个等腰三角形的顶角和底角各是多少度?

10.一个长方形的周长是40为米,长与宽的比是3:2,这个长方形的面积多少平方米?

六年级奥数比例分配的应用题(二)

11.有840吨粮食,分给两个运输队运出去。甲运输队有载重5吨的汽车12辆,乙运输队有载重3吨的汽车15辆,按两个队的运输能力分配。甲、乙两运输队各应运粮食多少吨?

12.甲、乙、丙三个班人数的和是420人,甲班和乙班人数的比是2:3,乙班和丙班人数的比是4:5。甲、乙、丙三个班各有多少人?

六年级奥数比例应用题(供参考)

六年级奥数比例应用题(供参考)

六年级奥数 比例应用题

【指点迷津】

比例解题是小学数学综合能力的一个重要方面,这里的比例题主要包括正比例和反比例的应用 。 它常常同分数应用题、工程问题、行程问题等交织在一起,使数量关系变得复杂。 解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系。

【经典例题】1、

小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18

,小明和小方的速度之比是多少?

【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之

比。 解: 68 : 59

=27:20 答:小明和小方的速度之比是27: 20。

【举一反三】1、

1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16

,李师傅用的时间比张师傅多18

; ,张师傅和李师傅每小时加工的个数之比是多少? 2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38

,李刚和张亮的速度之比是多少?

【经典例题】2、

甲、乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲、乙两仓

库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨?

【思路导航】甲库中原来存货占甲、乙两库总数的44+3 =47

,取出8吨后,那么甲库余下的吨数是甲、乙两库总吨数的 49 ,所以取出的8 吨是占甲、乙两库总数的47 — 49

解:8÷(47 — 49

)= 63(吨) 答:两仓库原存货总吨数是63吨。

【举一反三】2、

小学六年级奥数题-专题训练之比和比例应用题

小学六年级奥数题-专题训练之比和比例应用题

比和比例应用题

1、乘坐某路汽车成人票价3元,学生票价2元,军人票价1元,某天乘车的成年人、学生和军人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、学生和军人各有多少人?

2.甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?

4.]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?

5.、A、B、C是三个顺次咬合的齿轮。当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?

6、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?

7、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?

8、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?

9、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?

六年级奥数比例应用题

六年级奥数比例应用题

六年级奥数 比例应用题

【指点迷津】

比例解题是小学数学综合能力的一个重要方面,这里的比例题主要包括正比例和反比例的应用 。 它常常同分数应用题、工程问题、行程问题等交织在一起,使数量关系变得复杂。 解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系。

【经典例题】1、

小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18

,小明和小方的速度之比是多少?

【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之

比。 解: 68 : 59

=27:20 答:小明和小方的速度之比是27: 20。

【举一反三】1、

1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16

,李师傅用的时间比张师傅多18

; ,张师傅和李师傅每小时加工的个数之比是多少?

2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38

,李刚

和张亮的速度之比是多少?

【经典例题】2、

甲、乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲、乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨?

【思路导航】甲库中原来存货占甲、乙两库总数的44+3 =47

,取出8吨后,那么甲库余下的吨数是甲、乙两库总吨数的 49 ,所以取出的8 吨是占甲、乙两库总数的47 — 49

解:8÷(47 — 49

)= 63(吨) 答:两仓库原存货总吨数是63吨。

【举一反三】2、

奥数题专题训练之比和比例应用题

奥数题专题训练之比和比例应用题

比和比例应用题

例1、生产队饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3;求鸡、猪、马和羊的只数比;

分析该题给出了三个单比,要求写出它们的连比;将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值;

解由题设,

鸡∶猪=26∶5,羊∶马=25∶9,

猪∶马=10∶3,

由比的基本性质可得:

猪∶马=10∶3=30∶9,

羊:马=25∶9,

鸡:猪=26∶5=156∶30,

从而鸡∶猪∶马∶羊=156:30∶9∶25;

答:鸡、猪、马、羊的只数比为156∶30∶9∶25;

注将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比;如,鸡∶猪=26∶5,猪∶马=10∶3,由此可得,鸡∶猪∶马=52∶10∶3;再注意到羊∶马=25∶9可得,鸡∶猪∶马∶羊=156∶30∶9∶25;

例2.下列各题中的两个量是否成比例若成比例,请说明成正比例还是成反比例;

1路程一定时,速度与时间;

2速度一定时,路程与时间;

3播种面积一定时,总产量与单位面积的产量;

4圆的面积与该圆的半径;

5两个相互啮合的大小齿轮,它们的转速与齿数;

分析利用正比例、反比例的概念进行判定与说明;

解 1由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例;

2由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例;

3由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例; 4设圆的半径为R,则圆的面积为∏R2,所以圆的面积与半径的积为∏R3,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为∏R,也随半径的变化而变化,即圆的面积与半径不成正比例;综上,圆的面积与半径不成比例;

六年级奥数专项复习 比例应用题

六年级奥数专项复习  比例应用题

六年级奥数专项复习:比例应用题

1、老赵、老钱、老孙三人凑钱买来一张彩票,没想到竟中了奖,领来奖金后,他们三人按照3:5:4的比例来分,结果老钱比老赵多分到了2000元,那么老孙分到了( )元。

2、中国古代的黑火药配制中的硝酸钾、硫磺、木炭的比例为15:2:3,今有木炭50千克,要配制黑火药1000千克,还需要木炭( )千克。

3、根据美学的观点及经验法则,一副彩色的作品其红、黄、蓝三原色之配色比例为5:3:8时,其色彩强度达到平衡,可使作品看起来比较柔和,不会有某种颜色特别突兀的感觉,我们都知道,橘色是由红色加黄色而成;紫色是有红色加蓝色而成;绿色是由黄色加蓝色而成。请问一次法则,橘、紫、绿这三种中间色之配色比例为( )时,其色彩强度可达到平衡。

4、有三批货物共值152万元,第一,第二,第三批货物按重量比为2:4:3,按单价比为6:5:2,这三批货物分别价值( 、 、 )万元。

5、一个容器内注满了水,将大、中、小三个铁球这样操作:第一次次,沉入小球;第二次,取出小球,沉入中球:第三次,取出中球,沉入大球。已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍,那么大、中、小三种球的体积比为( )。

6、今年儿子的年龄是父亲年龄的四分之一,15年后,儿子的年龄是父亲年龄的十一分之五。今年儿子( )岁。

7、某校若干名学生参加某电视邀请赛,其中男生人数与女生人数的比为8:5.后来又有20名女生报名赛,这时女生人数占参赛总人数的十一分之五,现在参赛的学生共有( )人。

8、甲、乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有( )。

小学六年级奥数题-专题训练之比和比例应用题

小学六年级奥数题-专题训练之比和比例应用题

比和比例应用题

例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?

提示:单价比:成年人:儿童:残疾人=3:2:1

人数比:50:20:1

[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?

例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。

提示:根据已知条件可先求三种商品的数量比。

[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?

例3、A、B、C是三个顺次咬合的齿轮。当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?

提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。

习题:

1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?

2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?

小学六年级奥数题-专题训练之比和比例应用题

小学六年级奥数题-专题训练之比和比例应用题

小学六年级奥数题:专题训练之比和比例应用题

例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?

提示:单价比:成年人:儿童:残疾人=3:2:1

人数比:50:20:1

[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?

例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。

提示:根据已知条件可先求三种商品的数量比。

[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?

例3、A、B、C是三个顺次咬合的齿轮。当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?

提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。

习题:

1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?

2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?

六年级奥数易错专题一比和比例应用题

六年级奥数易错专题一比和比例应用题

比和比例应用题

典型例题

例1:幼儿园大班和中班共有32个男生,18个女生。已知大班男生人数与女生人数的比为5:3,中班男生与女生人数的比为2:1。那么大班女生有多少人?

分析:题目中涉及到两个比例关系,看起来是无从下手。注意到两个班的男、女总数都已知,于是我们可以设大班女生人数为X,则中班女生人数为(18-X),再利用比例关系表示出两个班男生的人数,列方程即可求出。

解:设大班女生人数为X,则中班女生人数为(18-X),根据题意列方程,得

(5/3)X+2(18-X)=32

X=12

即大班女人有12人。

说明:这是1998年全国小学生奥林匹克数学竞赛预赛试题,属按比例分配类型应用题,利用方程解比和比例应用题是十分有效易懂的方法。

例2:甲、乙两厂人数的比是7:6,从甲厂调360人到乙厂后,甲、乙两厂比为2:3。甲、乙两厂原有多少人?

分析:从甲厂调360人到乙厂,甲、乙两厂人数的总数不变,因此,可将这个不变量看作是单位“1”。

甲厂原有人数占总人数的7/13,甲厂现有人数占总人数的2/5,360人就是总人数的7/13-2/5=9/65,总人数=360/(9/65)=2600人。又因为甲、乙两厂原有人数之比为7:6,所以甲厂原有2600×7/13=1400人,乙厂原有2600×6/13=1200人。

说明:解这类应用题时,可抓住题目中的不变量,把它看作单位“1”,然后找已知数量的对应分率,逐步推出所求的量。

例3:王师傅原定在若干小时内加工完一批零件,他估算了一下,如果按原速度加工120个零件后工作效率提高25%,可提前40分钟完成;如一开始工

小学六年级奥数应用题(比例问题、相遇问题)

小学六年级奥数应用题(比例问题、相遇问题)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。以下是整理的《⼩学六年级奥数应⽤题(⽐例问题、相遇问题)》,希望帮助到您。

【⽐例问题】

1、在3:5⾥,如果前项加上6,要使⽐值不变,后项应加多少?

2、12:1的图纸上,精密零件的长度为6公分,则他的实际长度是多少公厘?

3、⼩明、⼩青和⼩华做红花,⼩明⽐⼩青多做16朵,⼩华与⼩青做的朵数的⽐是5:6,⼩青和⼩华做的总朵数与⼩明做的朵数的⽐是11:8,⼩明做多少朵?

4、五年级举⾏数学竞赛,⼀班占参加⽐赛总⼈数的1/3,⼆班与三班参加⽐赛⼈数的⽐是11:13,⼆班⽐三班少8⼈,则三班有多少⼈参加⽐赛?

5、买甲、⼄两种铅笔共210⽀,甲种铅笔每⽀价值3元,⼄种铅笔每⽀价值4元,两种铅笔⽤去的钱相同,甲种铅笔买多少⽀?

6、⾃然数A、B满⾜1/A-1/B=1/182,且A:B=7:13,那么A+B得多少?

7、光明⼩学有三个年级,⼀年级学⽣占全校学⽣⼈数的25%,⼆年级与三年级学⽣⼈数的⽐是3:4,已知⼀年级⽐三年级学⽣少40⼈,⼀年级有学⽣多少⼈?

8、甲、⼄两⼈步⾏的速度⽐是13:11,如果甲、⼄由A、B两地同时出发相向⽽⾏,05⼩时后相遇,如果它们同向⽽⾏,那么甲追上⼄需要多少⼩时?

9、鸡、鸭、鹅的只数⽐是3:2:1,画成扇形统计图,表⽰鸡的只数的扇形的圆⼼⾓是多少度?

10、已知甲、⼄两数的⽐为5:3,并且他们公约数与最⼩公倍数的和是1040,那么甲数是多少?

小学奥数系列6-2-4比例应用题专练2及参考答案

小学奥数系列6-2-4比例应用题专练2及参考答案

小学奥数系列6-2-4比例应用题专练2一、比例应用题专练1. 、 、 三个水桶的总容积是 公升,如果 、 两桶装满水, 桶是空的;若将 桶水的全部和 桶水

的 ,或将 桶水的全部和 桶水的 倒入 桶, 桶都恰好装满.求 、 、 三个水桶容积各是多少公升?

2. 加工某种零件,甲 分钟加工 个,乙 分钟加工 个,丙 分钟加工 个.现在三人在同样的时间内一共加工

个零件.问:甲、乙、丙三人各加工多少个零件?

3. 某学校四五六年级共有615名学生,已知六年级学生的 ,等于五年级学生的 ,等于四年级学生的 。这三个年级各有多少名学生学生?

4.

一块长方形铁板,宽是长的 .从宽边截去 厘米,长边截去 以后,得到一块正方形铁板.问原来长方形铁

板的长是多少厘米?5. 一个正方形的一边减少 ,另一边增加 米,得到一个长方形,这个长方形的面积与原正方形面积相等.原正方

形的边长是多少米?

6. 一把小刀售价 元.如果小明买了这把小刀,那么小明与小强剩余的钱数之比是 ;如果小强买了这把小刀,那

么两人剩余的钱数之比变为 .小明原来有多少钱?

7. 甲、乙两人原有的钱数之比为 ,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为 ,求原来

两人的钱数之和为多少?

8. 甲本月收入的钱数是乙收入的 ,甲本月支出的钱数是乙支出的 ,甲节余240元,乙节余480元.甲本月收入多少元?9. 一项机械加工作业,用4台A 型机床,5天可以完成;用4台A 型机床和2台B 型机床3天可以完成;用3台B 型机床和9台C 型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A 、C 型机床继续工作,还需要________天可以完成作业.10. 动物园门票大人 元,小孩 元.六一儿童节那天,儿童免票,结果与前一天相比,大人增加了 ,儿童增

六年级奥数比例应用题

六年级奥数比例应用题

六年级奥数比例应用题

【指点迷津】

六年级奥数比例应用题. 它常常同分数应用题.工程问题.行程问题等交织在一起,使数量关系变得复杂. 解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系.

【经典例题】1.

小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18

,小明和小方的速度之比是多少?

【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之

比. 解: 68 : 59

=27:20 答:小明和小方的速度之比是27: 20.

【举一反三】1.

1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16

,李师傅用的时间比张师傅多18

; ,张师傅和李师傅每小时加工的个数之比是多少?

2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38

,李刚和张亮的速度之比是多少?

【经典例题】2.

甲.乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲.乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨?

【思路导航】甲库中原来存货占甲.乙两库总数的44+3 =47

,取出8吨后,那么甲库余下的吨数是甲.乙两库总吨数的 49 ,所以取出的8 吨是占甲.乙两库总数的47 — 49

解:8÷(47 — 49

)= 63(吨) 答:两仓库原存货总吨数是63吨.

【举一反三】2.

1.甲.乙两厂的人数比是7: 6,从甲厂调360人到乙厂后,甲.乙两厂人数的比是2:3, 甲.乙两厂原来一共有多少人?

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数 比例应用题

【指点迷津】

比例解题是小学数学综合能力的一个重要方面,这里的比例题主要包括正比例和反比例的应用 。 它常常同分数应用题、工程问题、行程问题等交织在一起,使数量关系变得复杂。 解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系。

【经典例题】1、

小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18

,小明和小方的速度之比是多少

【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之

比。 解: 68 : 59

=27:20 答:小明和小方的速度之比是27: 20。

【举一反三】1、

1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16

,李师傅用的时间比张师傅多18

; ,张师傅和李师傅每小时加工的个数之比是多少 2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38

,李刚和张亮的速度之比是多少

【经典例题】2、

甲、乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲、乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨

【思路导航】甲库中原来存货占甲、乙两库总数的44+3 =47

,取出8吨后,那么甲库余下的吨数是甲、乙两库总吨数的 49 ,所以取出的8 吨是占甲、乙两库总数的47 — 49

解:8÷(47 — 49

)= 63(吨) 答:两仓库原存货总吨数是63吨。

【举一反三】2、

1、甲、乙两厂的人数比是7: 6,从甲厂调360人到乙厂后,甲、乙两厂人数的比是2:3, 甲、乙两厂原来一共有多少人

2 甲、乙两工程队的人数比是6: 5,从甲队调50人到乙队后,甲、乙两队人数的比是4 5,甲、乙两队原来一共有 多少人

【经典例题】3、

A 、

B 两地相距360 米,前一半时间小华用速度A 行走,后一半时间用速度B 走完全程,又知A: B =5:4,前 一半路程所用时间与后一半路程所用时间的比是多少

【思路导航】全程的一半是360 ÷ 2 = 180(米)

第一种速度行:360× 55+4

=200(米) ,多于一半20米 第二种速度行:360× 45+4

= 160(米) ,少于一半20米 第一种速度行的后20米应属于后一半的路程了。 所以

200-205 :( 205 + 160 4

)= 9:11 答:前一半路程所用时间与后一半路程所用时间的比是9 :1l 。

【举一反三】3、

l. 一段路320米,前一半时间小明用速度A行走,后一半时间用速度B走,又知A:B=3: 5 ,前一半路程所用时间与后一半路程所用时间的比是多少

2、甲、乙两地的距离为240千米,小明前一半时间用速度 A行定,后一半时间用速度B 走,又知 A: B = l:3,前一半路程所用时间与后一半路程所用时间的比是多少

【经典例题】4、

某船第一次顺流航行21千米又逆流航行4千米,第二次在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。顺水船速与逆水船速之比是多少 (设船本身的速度及水流的速度都是不变的)

【思路导航】根据题意,船第一次顺流航行21千米,第二次顺流航行12千米,21 -12 =9(千米),也就是第一次顺流多用了航行9千米所用的时间,第二次逆流航行比第一次多用时间于(7 -4) =3千米的航行上,总的时间两次都相等,就是顺流9千米用的时间等于逆流3千米所用的时间。

所以顺流船速:逆流船速 = (2l - l2): (7 -4) =3:1。

【举一反三】4、

1 、“长江”号轮船第一次顺流航行 15千米又逆流航行6千米,第二次在同一河流中顺流航行l0千米,逆流航行8千米, 结果两次所用的时间相等。求顺水船速与逆水船速的比。 (设船本身的速度及水流的速度都是不变的)

2、某轮船第一次顺流航行28千米又逆流航行6千米,第二次在同一河流中顺流航行18千米,逆流航行l2千米,结果两次所用的时间相等。求顺水船速与逆水船速的比。 (设船本身的速度及水流的速度都是不变的)

【经典例题】5、

洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25% ,完成计划还要多少天

【思路导航1】这是一道比例应用题,工效和工时是变量,不交量是计划生产5天后剩下的台数。从工效看,有原来的效率1600 ÷20=80台/天,又有提高后的效率80×(1+25%) =100台/天。从时间看,有原来计划的天数,要求效率提高后还需要的天数。

根据工效和工时成反比例的关系,得:

提高后的效率×所需天数 = 剩下的台数。

设完成计划还需X 天。

1600÷20×X = 1600—1600÷20 ×5

80×= l600 —400

100X = 1200

X = 12

答:完成计划还要12天。

【举一反三】5、

1、化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25% , 照这样计算,剩下的任务还需多少天完成

2、轴承厂计划20天生产轴承2400件,生产2天后由于改进技术,效率提高20% ,完成计划还要多少天

【经典例题】6、

学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能多的平均分给每位小朋友,余下的苹果、饼干、糖的数量之比是1: 2: 3。问:学前班有多少位小朋友

【思路导航】因为1 +2 =3,176+2l6-324=68,所以全班的人数应是68的约数。68的大于10的约数是17、34和68。

如果全班人数为17,

相关文档
最新文档