高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_417
高中数学 第3章《导数及其应用》复习 精品导学案2 苏教版选修1-1
江苏省响水中学高中数学 第3章《导数及其应用》复习2导学案 苏教版选修1-1复习要求:1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求函数的单调区间.2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值;会求闭区间上函数的最大值、最小值.课前预习:1.知识要点回顾:(1)函数的导数与单调性的关系:(2)函数的极值与导数:(3)函数的最值与导数①函数f(x)在[a ,b]上有最值的条件:如果在区间[a ,b]上函数y =f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.②求y =f(x )在[a ,b]上的最大(小)值的步骤:(4)若函数f(x)在定义域A 上存在最大值与最小值,则①对任意x ∈A ,f(x)>0⇔ >0;②存在x ∈A ,f(x)>0⇔ >0.2.判断: (1)函数f(x)在区间(a ,b)内单调递增,则f′(x)>0;( )(2)函数的极大值一定比极小值大;( )(3)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件;( )(4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值。
( )3.函数f(x)=x +4x的单调减区间是 4.函数f(x)=xex 的极小值点是5.已知f(x)=x3-ax 在[1,+∞)上是增函数,则a 的最大值是课堂探究:2.已知函数f(x)=x-alnx.(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.3.已知函数f(x)=2x3-3(a+1)x2+6a x.(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.变式:已知函数f(x)=(x-k)ex(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.3.设函数f(x)=x3-3ax+b (a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.4. 设L为曲线C:y=ln xx在点(1,0)处的切线.(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
[K12学习]2018版高中数学 第三章 导数及其应用 3.4 导数在实际生活中的应用学案 苏教版选修1-1
3.4 导数在实际生活中的应用学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为________________.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的______________过程.类型一几何中的最值问题命题角度1 平面几何中的最值问题例1 某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100 m,并与北京路一边所在直线l相切于点M.点A为上半圆弧上一点,过点A作l的垂线,垂足为点B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:m2),∠AON=θ(单位:弧度).(1)将S表示为θ的函数;(2)当绿化面积S最大时,试确定点A的位置,并求最大面积.反思与感悟平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从而求最值.跟踪训练1 如图所示,在二次函数f(x)=4x-x2的图象与x轴所围成图形中有一个内接矩形ABCD,求这个矩形面积的最大值.命题角度2 立体几何中的最值问题例2 请你设计一个包装盒如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S最大,则x应取何值?(2)若广告商要求包装盒容积V最大,则x应取何值?并求出此时包装盒的高与底面边长的比值.反思与感悟(1)立体几何中的最值问题往往涉及空间图形的表面积、体积,并在此基础上解决与实际相关的问题.(2)解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.跟踪训练 2 周长为20 cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________ cm3.类型二 实际生活中的最值问题 命题角度1 利润最大问题例3 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有: (1)利润=收入-成本;(2)利润=每件产品的利润×销售件数.跟踪训练3 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.命题角度2 费用(用料)最省问题例4 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.(2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练4 某单位用2 160万元购得一块空地,计划在该块空地上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建x (x ≥10)层,则每平方米的平均建筑费用为(560+48x )元.为了使楼房每平方米的平均综合费用最少,该楼房应建多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)1.在某城市的发展过程中,交通状况逐渐受到更多的关注,据有关统计数据显示,从上午6时到9时,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用函数表示为y =-18t 3-34t 2+36t -6294,则在这段时间内,通过该路段用时最多的时刻是________时.2.用长为24 m 的钢筋做成一个长方体框架,若这个长方体框架的底面为正方形,则这个长方体体积的最大值为________ m 3.3.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是________.4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.提醒:完成作业第3章§3.4答案精析知识梳理 知识点 1.优化问题 3.数学建模 题型探究例1 解 (1)BM =AO sin θ=100sin θ,AB =MO +AO cos θ=100+100cos θ,θ∈(0,π).则S =12MB ·AB =12×100sin θ×(100+100cos θ)=5 000(sin θ+sin θcos θ),θ∈(0,π). (2)S ′=5 000(2cos 2θ+cos θ-1) =5 000(2cos θ-1)(cos θ+1). 令S ′=0,得cos θ=12或cos θ=-1(舍去),此时θ=π3.当θ变化时,S ′,S 的变化情况如下表:所以,当θ=π3时,S 取得最大值为S max =3 750 3 m 2,此时AB =150 m ,即点A 到北京路一边l 的距离为150 m. 跟踪训练1 解 设点B 的坐标为(x,0),且0<x <2, ∵f (x )=4x -x 2图象的对称轴为x =2, ∴点C 的坐标为(4-x,0), ∴BC =4-2x ,BA =f (x )=4x -x 2.∴矩形面积为y =(4-2x )(4x -x 2)=16x -12x 2+2x 3,y ′=16-24x +6x 2=2(3x 2-12x +8),令y ′=0,解得x =2±233,∵0<x <2,∴x =2-233.∵当0<x <2-233时,y ′>0,函数单调递增;当2-233<x <2时,y ′<0,函数单调递减,∴当x =2-233时,矩形的面积有最大值329 3.例2 解 (1)由题意知,包装盒的底面边长为2x cm , 高为2(30-x )cm ,所以包装盒侧面积为S =42x ×2(30-x ) =8x (30-x )≤8×(x +30-x2)2=8×225,当且仅当x =30-x ,即x =15时,等号成立, 所以若广告商要求包装盒侧面积S 最大,则x =15. (2)包装盒容积V =2x 2·2(30-x ) =-22x 3+602x 2(0<x <30),所以V ′=-62x 2+1202x =-62x (x -20). 令V ′>0,得0<x <20; 令V ′<0,得20<x <30.所以当x =20时,包装盒容积V 取得最大值,此时包装盒的底面边长为20 2 cm ,高为10 2 cm ,包装盒的高与底面边长的比值为1∶2. 跟踪训练24 00027π 例3 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10,当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x ,所以W =⎩⎪⎨⎪⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)①当0<x ≤10时, 由W ′=8.1-x 210=0,得x =9.当x ∈(0,9)时,W ′>0;当x ∈(9,10]时,W ′<0. 所以当x =9时,W 取得最大值, 即W max =8.1×9-130×93-10=38.6.②当x >10时,W =98-(1 0003x +2.7x )≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7x ,即x =1009时,W 取得最大值38.综合①②知,当x =9(千件)时,W 取得最大值为38.6万元.答 当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.跟踪训练3 解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值为42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 例4 解 (1)由题设知,每年能源消耗费用为C (x )=k3x +5, 再由C (0)=8,得k =40, 因此C (x )=403x +5,而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6- 2 400x +2. 令f ′(x )=0,即2 400x +2=6,解得x =5(x =-253舍去),当0<x <5时,f ′(x )<0; 当5<x <10时,f ′(x )>0,故x =5为f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元. 跟踪训练4 解 设该楼房每平方米的平均综合费用为f (x )元, 则f (x )=560+48x +2 160×10 0002 000x =560+48x +10 800x,x ≥10,f ′(x )=48-10 800x2, 令f ′(x )=0,得x =15.当x >15时,f ′(x )>0;当10≤x <15时,f ′(x )<0. 所以当x =15时,f (x )取得最小值, 即f (15)=2 000.答 为了使楼房每平方米的平均综合费用最少,该楼房应建15层.K12学习教育资源当堂训练1.8 2.8 3.300 4.1605.解(1)设商品降价x元,则多卖的商品数为kx2.若记商品在一个星期的获利为f(x),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9 072,x∈[0,21].(2)根据(1),f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:故当x=12时,f(x)取得极大值.因为f(0)=9 072,f(12)=11 664.所以当定价为30-12=18(元)时,才能使一个星期的商品销售利润最大.K12学习教育资源。
高中数学第三章导数及其应用3.4导数在实际生活中的应用学案苏教版选修1-1(2021年整理)
(江苏专用)2018-2019学年高中数学第三章导数及其应用3.4 导数在实际生活中的应用学案苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018-2019学年高中数学第三章导数及其应用3.4 导数在实际生活中的应用学案苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018-2019学年高中数学第三章导数及其应用3.4 导数在实际生活中的应用学案苏教版选修1-1的全部内容。
3。
4 导数在实际生活中的应用学习目标:1.掌握利用导数解决简单的实际生活中的优化问题的方法.(重点) 2。
通过对实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高.(难点)[自主预习·探新知]1.导数的实际应用导数在实际生活中有着广泛的应用,如用料最省、利润最大、效率最高等问题一般可以归结为函数的最值问题,从而可用导数来解决.2.用导数解决实际生活问题的基本思路[基础自测]1.判断正误:(1)应用导数可以解决所有实际问题中的最值问题.()(2)应用导数解决实际应用问题,首先应建立函数模型,写出函数关系式.()(3)应用导数解决实际问题需明确实际背景.( )【解析】(1)×.如果实际问题中所涉及的函数不可导、就不能应用导数求解.(2)√。
求解实际问题一般要建立函数模型,然后利用函数的性质解决实际问题.(3)√。
要根据实际问题的意义确定自变量的取值.【答案】(1)×(2)√(3)√2.生产某种商品x单位的利润L(x)=500+x-0.001x2,生产________单位这种商品时利润最大,最大利润是________.【解析】L′(x)=1-0.002x,令L′(x)=0,得x=500,∴当x=500时,最大利润为750.【答案】500 750[合作探究·攻重难]面积容积的最值问题r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上.设CD=2x,梯形的面积为S。
高中数学第3章导数及其应用第4课时导数教案苏教版选修1_1
第三章 导数及其应用第4课时 导数教学目标:1.理解导数的概念、掌握简单函数导数符号表示和求解方法;2.理解导数的几何意义;3.理解导函数的概念和意义.教学重点:导数的求解方法和过程, 导数的灵活运用教学难点:导数概念的理解教学过程:Ⅰ.问题情境1.求函数2)(x x f =在点(2,4)处的切线斜率.2.直线运动的汽车速度V 与时间t 的关系是12-=t V ,求o t t =时的瞬时速度.Ⅱ.建构数学1.导数的概念:2.导数的几何意义:Ⅲ.数学应用例1:求下列函数在相应位置的导数(1)1)(2+=x x f ,2=x (2)12)(-=x x f ,2=x(3)3)(=x f ,2=x练习:求1)(2+=x x f 在a x =处的导数.例2:函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)→-+x f x f 2)1()1((2)→-+x f x f )1()21(练习:设f(x)在x=x 0处可导,(1)x x f x x f ∆-∆+)()4(00无限趋近于1,则)(0x f '=___________(2)x x f x x f ∆-∆-)()4(00无限趋近于1,则)(0x f '=________________(3)当△x 无限趋近于0,x x x f x x f ∆∆--∆+)2()2(00所对应的常数与)(0x f '的关系为_______________例3:若2)1()(-=x x f ,求:(1))2('f 和((2))'f ; (2)()x f '.练习:已知函数x x f =)(,求)(x f 在2=x 处的切线.Ⅳ.课时小结:Ⅴ.课堂检测Ⅵ.课后作业书本P 67 习题2,41.求下列函数在已知点处的导数(1)31y x =+在3x =处的导数;(2)2y x =在x a =处的导数;(3)1y x=在2x =处的导数2.质点运动方程为31S t =+(位移单位:m,时间单位:s),分别求1,2t s t s ==时的速度 精美句子1、善思则能“从无字句处读书”。
高中数学第三章导数及其应用3.1导数的概念3.1.2瞬时变化率—导数学案苏教版选修1-1(2021
(江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1的全部内容。
3.1。
2 瞬时变化率—导数学习目标:1。
理解导数的概念和定义及导数的几何意义.(重点) 2.理解运动在某时刻的瞬时变化率(瞬时速度).(难点)[自主预习·探新知]1.曲线上一点处的切线设曲线C上的一点P,Q是曲线C上的另一点,则直线PQ称为曲线C的割线;随着点Q沿曲线C向点P运动,割线PQ在点P附近越来越逼近曲线C。
当点Q无限逼近点P时,直线PQ 最终就成为在点P处最逼近曲线的直线l,这条直线l称为曲线在点P处的切线.2.瞬时速度运动物体的位移S(t)对于时间t的导数,即v(t)=S′(t).3.瞬时加速度运动物体的速度v(t)对于时间t的导数,即a(t)=v′(t).4.导数设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),当Δx无限趋近于0时,比值错误!=错误!无限趋近于一个常数A,则称f(x)在点x=x0处可导,并称常数A为函数f(x)在点x=x处的导数,记作f′(x0).5.导函数若函数y=f(x)对于区间(a,b)内任一点都可导,则f(x)在各点的导数也随自变量x的变化而变化,因而也是自变量x的函数,该函数称为f(x)的导函数,记作f′(x).6.函数y=f(x)在点x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.[基础自测]1.判断正误:(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.()(2)在导数的定义中,Δx,Δy都不可能为零.( )(3)在导数的定义中,错误!>0.( )【解析】(1)√。
高中数学第三章导数及其应用3_4导数在实际生活中的应用学案苏教版选修1_1
3.4导数在实际生活中的应用1.导数在实际生活中有着广泛的应用.如用料最省、利润最大、效率最高等问题一般可以归结为函数的最值问题,从而可以用导数来解决.2.利用导数解决优化问题的流程:解决生活中的优化问题的思路:(1)审题:阅读理解文字表达的题意、分清条件和结论.(2)建模:利用数学知识建立相应的数学模型.(3)解模:把数学问题转化为函数求解.(4)检验.[对应学生用书P56][例1] 用长为90 cm,宽为48 cm的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图所示),问该容器的高为多少时,容器的容积最大?最大容积是多少?[思路点拨] 设出所截正方形的边长为x,则该容器的底面边长和高均可用x表示,得到容积关于x的函数,用导数法求解.[精解详析] 设容器的高为x cm,容器的体积为V(x) cm3.则V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).V ′(x )=12x 2-552x +4 320=12(x 2-46x +360)=12(x -10)(x -36)(0<x <24).令V ′(x )=0,得x 1=10,x 2=36(舍去). 当0<x <10时,V ′(x )>0,V (x )是增函数; 当10<x <24时,V ′(x )<0,V (x )是减函数.因此,在定义域(0,24)内函数V (x )只有当x =10时取得最大值,其最大值为V (10)=10×(90-20)×(48-20)=19 600(cm 3).即当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3.[一点通] 解决面积、容积的最值问题,要正确引入变量,将面积、容积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值.如果在区间内只有一个极值点,那么根据实际意义,该极值点也是最值点.1.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________cm. 解析:设该漏斗的高为x cm , 则底面半径为202-x 2cm ,其体积为V =13πx (202-x 2)=13π(400x -x 3)(0<x <20),则V ′=13π(400-3x 2).令V ′=0,解得x 1=2033,x 2=-2033(舍去).当0<x <2033时,V ′>0;当2033<x <20时,V ′<0, 所以当x =2033时,V 取得最大值.答案:20332.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解:设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)·y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x (18 000x -20+25)=18 000xx -20+25x ,∴S ′=x --x ]x -2+25=-36 0000x -2+25.令S ′>0,得x >140, 令S ′<0,得20<x <140.∴函数在(140,+∞)上单调递增,在(20,140)上单调递减, ∴S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.[例2] 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?[思路点拨] 解答本题可先根据题目条件写出函数关系式,再利用导数方法求最值. [精解详析] (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数. 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.[一点通] 用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际问题做答.3.做一个无盖的圆柱形水桶,若要使体积是27π,且用料最省,则圆柱的底面半径为________.解析:设圆柱的底面半径为r ,高为h ,则V =27π=πr 2h ,∴h =27r2,若用料最省,则表面积最小,设表面积为S ,则S =πr 2+2πr ·h =πr 2+2π27r=πr 2+54πr,S ′=2πr -54πr2=2πr 3-r 2,令S ′=0,得r =3.∵当0<r <3时,S ′<0,S (r )为减函数,r >3时,S ′>0,S (r )为增函数.∴当r =3时,S 取最小值,即用料最省. 答案:34.某工厂要围建一个面积为512 m 2的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,若使砌壁所用的材料最省,堆料场的长和宽应分别为(单位:m)________.解析:要使材料最省,则要求新砌的墙壁的总长最短. 设场地宽为x 米,则长为512xm ,因此新墙总长L =2x +512x (x >0),则L ′=2-512x2.令L ′=0,得x =16或x =-16(舍去). 此时长为51216=32(m),可使L 最短.答案:32,16[例3] 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:kg)与销售价格x (单位:元/kg)满足关系式y =a x -3+10(x -6)2.其中3<x <6,a 为常数.已知销售价格为5元/kg 时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/kg ,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.[思路点拨] (1)根据“销售价格为5元/kg 时,每日可售出该商品11 kg”可知销售函数图像过点(5,11)将其代入可求得a 的值;(2)利润为y =(每件产品的售价-每件产品的成本)×销量,表示出函数解析式后,可借助导数求最值.[精解详析] (1)因为x =5时,y =11, 所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+x -2=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/kg 时,商场每日销售该商品所获得的利润最大. [一点通](1)利润(收益)=销售额-成本,在有关利润(收益)的问题中,注意应用此公式列出函数关系式,然后利用导数的知识并结合实际问题求出相应最值.(2)在实际问题中,若某函数在所给区间上只有一个极值,则该极值即为相应的最值.这是实际问题中求最值的常用方法.5.已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为________万件.解析:因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值.答案:96.已知某工厂生产x 件产品的成本为c =25 000+200x +140x 2(元).问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品? 解:(1)设平均成本为y 元,则y =25 000+200x +140x2x =25 000x +200+x40(x >0),y ′=-25 000x 2+140, 令y ′=0,得x =1 000或x =-1 000(舍去). 当0<x <1 000时,y ′<0; 当x >1 000时,y ′>0,故当x =1 000时,y 取极小值,而只有一个点使y ′=0,故函数在该点处取得最小值,因此要使平均成本最低,应生产1 000件产品.(2)利润函数为S (x )=500x -⎝ ⎛⎭⎪⎫25 000+200x +x 240=300x -25 000-x 240,S ′(x )=300-x20,令S ′(x )=0,得x =6 000,当0<x <6 000时,S ′(x )>0,当x >6 000时,S ′(x )<0, 故当x =6 000时,S (x )取极大值, 而只有一个点使S ′(x )=0, 故函数在该点取得最大值,因此,要使利润最大,应生产6 000件产品.用导数解应用题求最值的方法与步骤:[对应课时跟踪训练(二十二)]1.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________.解析:设该公司在甲地销x 辆,那么乙地销15-x 辆,利润L (x )=5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30.由L ′(x )=-0.3x +3.06=0,得x =10.2.且当x <10.2时,L ′(x )>0,x >10.2时,L ′(x )<0, ∴x =10时,L (x )取到最大值,这时最大利润为45.6万元. 答案:45.6万元2.如图,将直径为d 的圆木锯成长方体横梁,横截面为矩形,横梁的强度同它的断面高的平方与宽x 的积成正比(强度系数为k ,k >0).要将直径为d 的圆木锯成强度最大的横梁,断面的宽x 应为________.解析:设断面高为h ,则h 2=d 2-x 2.设横梁的强度函数为f (x ),则f (x )=kxh 2=kx (d 2-x 2),0<x <d .令f ′(x )=k (d 2-3x 2)=0,解得x =±33d (舍去负值).当0<x <33d 时,f ′(x )>0,f (x )单调递增;当33d <x <d 时,f ′(x )<0,f (x )单调递减.所以函数f (x )在定义域(0,d )内只有一个极大值点x =33d .所以x =33d 时,f (x )有最大值. 答案:33d 3.将长为l 的铁丝剪成2段,各围成长与宽之比为2∶1及3∶2的矩形,则两矩形面积之和的最小值为________.解析:如图所示,设边长之比为2∶1的矩形周长为x ,则边长之比为3∶2的矩形周长为l -x ,两矩形面积之和为S =2x 6·x 6+l -x10·l -x10=x 218+350(l -x )2,0<x <l .由S ′=x 9+325(x -l )=0,得x =2752l .当x 变化时,S ′,S 的变化情况如下表:由上表可知,当x =2752l 时,S 的最小值为3104l 2.答案:3l21044.如图,已知一罐圆柱形红牛饮料的容积为250 mL ,则它的底面半径等于________时(用含有π的式子表示),可使所用的材料最省.解析:设圆柱的高为h ,表面积为S ,容积为V ,底面半径为r ,则表面积S =2πrh +2πr 2,而V =250=πr 2h ,得h =250πr 2,则S =2πr ·250πr2+2πr2=500r +2πr 2,S ′=-500r 2+4πr ,令S ′=0得r =53π2π,因为S 只有一个极值,所以当r =53π2π时,S 取得最小值,即此时所用的材料最省.答案:53π2π5.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________km 处.解析:依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.于是由2=k 110得k 1=20;由8=10k 2得k 2=45.因此,两项费用之和为y =20x +4x 5(x >0),y ′=-20x 2+45,令y ′=0,得x =5,或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得极小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小. 答案:56.某品牌电视生产厂家有A ,B 两种型号的电视机参加了家电下乡活动,若厂家对A ,B 两种型号的电视机的投放金额分别为p ,q 万元,农民购买电视机获得的补贴分别为110p ,25lnq 万元,已知A ,B 两种型号的电视机的投放总额为10万元,且A ,B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值.(精确到0.1,参考数据:ln 4≈1.4)解:设B 型号电视机的投放金额为x 万元(1≤x ≤9),农民得到的补贴为y 万元, 则A 型号的电视机的投放金额为(10-x )万元, 由题意得y =110(10-x )+25ln x =25ln x -110x +1,1≤x ≤9,∴y ′=25x -110,令y ′=0得x =4,由y ′>0得1≤x <4,由y ′<0得4<x ≤9, 故y 在[1,4)上单调递增,在(4,9]上单调递减,∴当x =4时,y 取得最大值,且y max =25 ln 4-110×4+1≈1.2,这时,10-x =6.故厂家对A ,B 两种型号的电视机的投放金额分别为6万元和4万元时,农民得到的补贴最多,最多补贴约1.2万元.7.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h (cm),底面边长为a (cm). 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800,所以当x =15时,S 取得最大值. (2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.8.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (L)关于行驶速度x (km/h)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100 km.(1)当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地要耗油多少L? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少L? 解:(1)当x =40 km/h 时,汽车从甲地到乙地行驶了10040=2.5 h ,要耗油⎝⎛⎭⎪⎫1128 000×403-380×40+8×2.5=17.5(L).∴当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地耗油17.5 L.(2)当速度为x km/h 时,汽车从甲地到乙地行驶了100xh ,设耗油量为h (x )升,依题意得h (x )=⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=11 280x 2+800x -154(0<x ≤120), 则h ′(x )=x640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80,当x ∈(0,80)时,h ′(x )<0,h (x )是单调递减函数; 当x ∈(80,120)时,h ′(x )>0,h (x )是单调递增函数. ∴当x =80时,h (x )取到极小值,h (80)=11.25. ∵h (x )在(0,120]上只有一个极值, 且h (120)=856>h (80).∴当x =80时函数取得最小值.∴当汽车以80 km/h 的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25 L.[对应学生用书P58]一、导数的概念 1.导数函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近于0时,比值ΔyΔx=f x 0+Δx -f x 0Δx 无限趋近于一个常数A ,则称f (x )在点x =x 0处可导,称常数A 为函数f (x )在点x =x 0处的导数,记作f ′(x 0).2.导函数若f (x )对于区间(a ,b )内任一点都可导,则f ′(x )在各点的导数中随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数.记作f ′(x ).二、导数的几何意义1.f ′(x 0)是函数y =f (x )在x 0处切线的斜率,这是导数的几何意义. 2.求切线方程: 常见的类型有两种:一是函数y =f (x )“在点x =x 0处的切线方程”,这种类型中(x 0,f (x 0))是曲线上的点,其切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二是函数y =f (x )“过某点的切线方程”,这种类型中,该点不一定为切点,可先设切点为Q (x 1,y 1),则切线方程为y -y 1=f ′(x 1)(x -x 1),再由切线过点P (x 0,y 0)得y 0-y 1=f ′(x 1)(x 0-x 1),又y 1=f (x 1),由上面两个方程可解得x 1,y 1的值,即求出了过点P (x 0,y 0)的切线方程.三、导数的运算 1.基本初等函数的导数 (1)f (x )=c ,则f ′(x )=0; (2)f (x )=x α,则f ′(x )=α·xα-1;(3)f (x )=a x (a >0且a ≠1),则f ′(x )=a xln a .(4)f (x )=log a x ,则f ′(x )=1x ln a; (5)f (x )=sin x ,则f ′(x )=cos x ; (6)f (x )=cos x ,则f ′(x )=-sin x ; 2.导数四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f xg x ]′=fx g x -f x gxg 2x.四、导数与函数的单调性 利用导数求函数单调区间的步骤: (1)求导数f ′(x );(2)解不等式f ′(x )>0或f ′(x )<0; (3)写出单调增区间或减区间.特别注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接. 五、导数与函数的极值 利用导数求函数极值的步骤: (1)确定函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧的f ′(x )的符号,若左正右负,则f (x )在此根处取得极大值.若左负右正,则f (x )在此根处取得极小值,否则此根不是f (x )的极值点. 六、求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以判断f (x )在该点处取得最大(或最小)值,这里(a ,b )也可以是(-∞,+∞).七、导数的实际应用利用导数求实际问题的最大(小)值时,应注意的问题:(1)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的值应舍去.(2)在实际问题中,由f ′(x )=0常常仅解到一个根,若能判断函数的最大(小)值在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值.⎣⎢⎡⎦⎥⎤对应阶段质量检测三 见8开试卷 (时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.在Δx 无限趋近于0时,f x 0-f x 0+ΔxΔx无限趋近于1,则f ′(x 0)=________.解析:由已知得Δx 无限趋近于0时,f x 0+Δx -f x 0Δx无限趋近于-1,则f ′(x 0)=-1.答案:-12.若函数f (x )=x sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π2=________. 解析:∵f (x )=x sin x +cos x , ∴f ′(x )=(x sin x +cos x )′ =(x sin x )′+(cos x )′ =sin x +x cos x -sin x =x cos x .∴f ′⎝ ⎛⎭⎪⎫π2=π2cos π2=0.答案:03.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=________. 解析:f ′(x )=ln x +x ·1x=ln x +1,由f ′(x 0)=2,得ln x 0+1=2. ∴x 0=e. 答案:e4.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则a =________,b =________.解析:∵y ′=2x +a ,∴y ′|x =0=a =1.又(0,b )在x -y +1=0上,故0-b +1=0,得b =1. 答案:1 15.已知函数f (x )=-x 3+ax 2-x +18在(-∞,+∞)上是单调函数,则实数a 的取值范围是________.解析:由题意得f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)上恒成立,因此Δ=4a 2-12≤0⇒-3≤a ≤3,所以实数a 的取值范围是[-3,3].答案:[-3,3]6.用长14.8 m 的钢条制作一个长方体容器的框架,如果所制的底面的一边比另一边长0.5 m ,那么容器的最大容积为________m 3.解析:设容器底面短边长为x m ,则另一边长为 (x +0.5)m ,高为(3.2-2x )m. 由3.2-2x >0,x >0,得0<x <1.6. 设容器的容积为y m 3,则有y =x (x +0.5)(3.2-2x )(0<x <1.6), 整理得y =-2x 3+2.2x 2+1.6x ,y ′=-6x 2+4.4x +1.6,令y ′=0,解得x 1=1,x 2=-415(舍去).从而,定义域(0,1.6)内只有在x =1处有y ′=0,由题意,若x 过小(接近0)或x 过大(接近1.6)时,y 值很小,因此,当x =1时,y max =1.8,此时高1.2 m ,所以当容器的高为1.2 m 时,容积最大,最大容积为1.8 m 3. 答案:1.87.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为________.解析:∵y ′=3x 2+2ax ,由3x 2+2ax =0,得x =0或x =-2a 3.又当x =0时,y =0,∴-4a3=0.∴a =0.经验证a =0符合题意. 答案:08.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x -2)(x +2),∴f (x )在[-3,-2],[2,3]上单调递增,在[-2,2]上单调递减.f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,故M =24,m =-8,则M -m =32.答案:329.已知函数f (x )=x 3-3x 2+3+a 的极大值为5,则实数a =________.解析:∵f ′(x )=3x 2-6x ;由f ′(x )=0得x =0或x =2;由f ′(x )>0得x <0或x >2,则f (x )的单调递增区间为(-∞,0)和(2,+∞);由f ′(x )<0得0<x <2,则f (x )的单调递减区间为(0,2).当x =0时函数取得极大值,∴f (0)=3+a =5,∴a =2.答案:210.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是________.解析:设F (x )=f (x )g (x ),则F (x )为奇函数,F (0)=0. ∵x <0时,F ′(x )>0, 且F (-3)=-F (3) =-f (3)g (3)=0, ∴F (x )示意图如图:当x ∈(-∞,-3)或(0,3)时,F (x )<0. 答案:(-∞,-3)∪(0,3)11.函数y =1+ln xx的单调递增区间是________.解析:y ′=xx -ln x x 2=1-ln xx 2.令y ′>0,得1-ln x >0,∴0<x <e. 故增区间为(0,e) 答案:(0,e)12.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x (e 为自然对数的底数),则f ′(e)=________.解析:由f (x )=2xf ′(e)+ln x ,得f ′(x )=2f ′(e)+1x ,则f ′(e)=2f ′(e)+1e ⇒f ′(e)=-1e.答案:-1e13.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=________.解析:由于y ′| x =1=n +1,∴曲线在点(1,1)处的切线为y -1=(n +1)(x -1),令y=0,得x =x n =nn +1,∴a n =lg n n +1,∴原式=lg 12+lg 23+…+lg 99100=lg ⎝ ⎛⎭⎪⎫12×23× (99100)lg1100=-2. 答案:-214.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.解析:∵f ′(x )=4x -1x =4x 2-1x ,x >0,∴当0<x <12时,f ′(x )<0,f (x )为减函数,当x >12时,f ′(x )>0,f (x )为增函数,依题意得⎩⎪⎨⎪⎧0≤k -1<12,12<k +1,k -1<k +1.∴1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1;(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程. 解:(1)f ′(x )=2ax -43a .由已知得⎩⎪⎨⎪⎧f=2a -43a =1,f=a -43a +b =2.解得⎩⎪⎨⎪⎧a =32,b =52.∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为y -2=x -1,即x -y +1=0.16.(本小题满分14分)设函数f (x )=-13x 3+x 2+(m 2-1)x (x ∈R ),其中m >0.(1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线斜率; (2)求函数的单调区间与极值. 解:(1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故f ′(1)=1.所以曲线y =f (x )在点(1,f (1))处的切线斜率为1.(2)f ′(x )=-x 2+2x +m 2-1,令f ′(x )=0,得到x =1-m ,x =1+m ,因为m >0,所以1+m >1-m .当x 变化时,f (x ),f ′(x )的变化情况如下表:f (x )在(-∞,1-m )和(1+m ,+∞)内为减函数,在(1-m,1+m )内为增函数.函数f (x )在x =1+m 处取得极大值f (1+m ), 且f (1+m )=23m 3+m 2-13,函数f (x )在x =1-m 处取得极小值f (1-m ), 且f (1-m )=-23m 3+m 2-13.17.(本小题满分14分)某造船公司年造船量是20艘,已知造船x 艘的产值函数为R (x )=3 700x +45x 2-10x 3(单位:万元),成本函数为C (x )=460x -5 000(单位:万元).(1)求利润函数P (x );(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大? 解:(1)P (x )=R (x )-C (x )=-10x 3+45x 2+3 700x -(460x -5 000) =-10x 3+45x 2+3 240x +5 000 (x ∈N *,且1≤x ≤20). (2)P ′(x )=-30x 2+90x +3 240 =-30(x -12)(x +9),由P ′(x )=0,得x =12,x =-9(舍去). 当0<x <12时,P ′(x )>0,P (x )单调递增; 当x >12时,P ′(x )<0,P (x )单调递减. ∴当x =12时,P (x )取得极大值,也为最大值.∴当年造船量安排12艘时,可使公司造船的年利润最大.18.(本小题满分16分)已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围. 解:(1)依题意f ′(x )=ax 2-3x +a +1, 由f ′(1)=0得a =1,∴函数f (x )的解析式为f (x )=13x 3-32x 2+2x +5.(2)曲线y =f (x )与直线y =2x +m 有三个交点, 即13x 3-32x 2+2x +5-2x -m =0有三个实数根, 令g (x )=13x 3-32x 2+2x +5-2x -m =13x 3-32x 2+5-m ,则g (x )有三个零点.由g ′(x )=x 2-3x =0得x =0或x =3.令g ′(x )>0得x <0或x >3;令g ′(x )<0得0<x <3.∴函数g (x )在(-∞,0)上为增函数,在(0,3)上为减函数,在(3,+∞)上为增函数. ∴函数在x =0处取得极大值,在x =3处取得极小值. 要使g (x )有三个零点,只需⎩⎪⎨⎪⎧g ,g,解得12<m <5.∴实数m 的取值范围为⎝ ⎛⎭⎪⎫12,5. 19.(本小题满分16分)已知函数f (x )=(x -k )e x, (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.当x 变化时,f (x )与f ′(x )的变化情况如下:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞). (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k . 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.20.(本小题满分16分)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为28,求k 的取值范围.解:(1)f′(x)=2ax,g′(x)=3x2+b.因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1),且f′(1)=g′(1),即a+1=1+b,且2a=3+b,解得a=3,b=3.(2)记h(x)=f(x)+g(x),当a=3,b=-9时,h(x)=x3+3x2-9x+1,h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1.h(x)与h′(x)在(-∞,2]上的变化情况如下:由此可知:当k≤-3时,函数h(x)在区间[k,2]上的最大值为h(-3)=28;当-3<k<2时,函数h(x)在区间[k,2]上的最大值小于28.因此,k的取值范围是(-∞,-3].。
选修1-1-第三章-《导数及其应用》教案
第三章 导数及其应用备课人 周志英3.1 导数的概念教学目的1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义;2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。
教学重点和难点导数的概念是本节的重点和难点 教学过程一、前置检测(导数定义的引入)1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度) 2.怎样求非匀速直线运动在某一时刻t0的速度?在高台跳水运动中,如果我们知道运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系()105.69.42++-=t t t h ,那么我们就会计算任意一段的平均速度v ,通过平均速度v 来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少?我们现在会算任意一段的平均速度,先来观察一下2秒附近的情况。
先计算2秒之前的t ∆时间段内的平均速度v ,请同学们完成表格1左边部分,(事先准备好的),再完成表格的右边部分〉表格1 格 20<∆t 时,在[]2,2t ∆+这段时间内0>∆t 时,在[]t ∆+2,2这段时间内()()()1.139.41.139.422222-∆-=∆-∆+∆=∆+-∆+-=t tt t t t h h v ()()()1.139.41.139.422222-∆-=∆∆-∆-=-∆+-∆+=t tt t t h t h v 当-=∆t 0.01时,-=v 13.051; 当=∆t 0.01时,-=v 13.149; 当-=∆t 0.001时,-=v 13.095 1; 当=∆t 0.001时,-=v 13.104 9; 当-=∆t 0.000 1时,-=v 13.099 51;当=∆t 0.000 1时,-=v 13.100 49;当-=∆t 0.000 01时,-=v 1 3.099 951;当=∆t 0.000 01时,-=v 13.100 049; 当-=∆t 0.000 001时,-=v 13.099 995 1;当=∆t 0.000 001时,-=v 13.100 004 9;。
(江苏专用)2018_2019学年高中数学第三章导数及其应用阶段复习课学案苏教版选修1_1
第三课 导数及其应用[体系构建][题型探究]运用导数的几何意义,可以求过曲线上任一点的切线的斜率,从而进一步求出过此点的切线方程.还可以结合几何的有关知识,求解某些点的坐标、三角形面积等.导数的几何意义是近几年高考的要点和热点之一,常结合导数的运算进行考查,常以选择题、填空题的形式出现.对于较为复杂的此类问题,一般要利用k =f ′(x 0)((x 0,f (x 0))为切点)及切点的坐标满足切线方程和曲线方程列方程组求解.求过曲线y =x 3-2x 上的点(1,-1)的切线方程.[思路探究] 切线过曲线上一点(1,-1),并不代表(1,-1)就是切点,故需先设出切点,再求解.【规范解答】 设切点为P (x 0,y 0),则y 0=x 30-2x 0.∵y ′=3x 2-2,则切线的斜率k =f ′(x 0)=3x 20-2,∴切线方程为y -(x 30-2x 0)=(3x 20-2)(x -x 0).又∵切线过点(1,-1),∴-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.∴切点为(1,-1)或⎝ ⎛⎭⎪⎫-12,78,相应的切线斜率为k =1或k =-54.故所求切线方程为y -(-1)=x -1或y -78=-54·⎝ ⎛⎭⎪⎫x +12,即x -y -2=0或5x +4y-1=0.[跟踪训练]1.已知函数f (x )=x 3+ax 2+bx +c 在x =2处取得极值,并且它的图象与直线y =-3x +3在点(1,0)处相切,则函数f (x )的表达式为________.【导学号:95902257】【解析】 f ′(x )=3x 2+2ax +b .∵f (x )与直线y =-3x +3在点(1,0)处相切,∴⎩⎪⎨⎪⎧f =-3,f =0.即⎩⎪⎨⎪⎧3+2a +b =-3,①1+a +b +c =0.②∵f (x )在x =2处取得极值,∴f ′(2)=12+4a +b =0.③由①②③解得⎩⎪⎨⎪⎧a =-3,b =0,c =2.∴f (x )=x 3-3x 2+2.【答案】 f (x )=x 3-3x 2+21x )>0,f ′(x )<0的解集确定单调区间,这是函数中常见问题,是考查的重点.2.求含参数的函数的单调区间讨论时要注意的三个方面:(1)f ′(x )=0有无根,(2)f ′(x )=0根的大小,(3)f ′(x )=0的根是否在定义域内.另外当f ′(x )=0的最高次项系数含有字母时,则要讨论系数是否为0.3.已知函数的单调性求参数的取值范围有两种思路:①转化为不等式在某区间上恒成立问题,即f ′(x )≥0(或≤0)恒成立,用分离参数求最值或函数的性质求解,注意验证使f ′(x )=0的参数是否符合题意,②构造关于参数的不等式求解,即令f ′(x )>0(或<0)求得用参数表示的单调区间,结合所给区间,利用区间端点列不等式求参数的范围.已知函数f (x )=x 3-ax -1. (1)讨论f (x )的单调性;(2)若f (x )在R 上为增函数,求实数a 的取值范围.[思路探究] (1)求出f ′(x ),讨论f ′(x )=0的根是否存在,求函数的单调区间; (2)根据题意有f ′(x )≥0在(-∞,+∞)上恒成立,分离参数后可求实数a 的取值范围.【规范解答】 (1)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0得x =±3a 3;当x >3a 3或x <-3a3时,f ′(x )>0;当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.综上可知,当a ≤0时,f (x )在R 上为增函数; 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.(2)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数, 所以a ≤0,即a 的取值范围为(-∞,0].[跟踪训练]2.设函数f (x )=12x 2+e x -x e x.(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.【导学号:95902258】【解】 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x). 若x <0,则1-e x>0,所以f ′(x )<0; 若x >0,则1-e x<0,所以f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴f (x )min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立.即实数m 的取值范围是(-∞,2-e 2).1.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.3.注意事项:(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论. (2)解题时要注意区分求单调性和已知单调性的问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y+1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.[思路探究] (1)利用f ′(1)=3、f ′⎝ ⎛⎭⎪⎫23=0、f (1)=4构建方程组求解; (2)令fx =0→列表→求极值和区间端点的函数值→比较大小→得最大值和最小值【规范解答】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝ ⎛⎭⎪⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4. 所以1+a +b +c =4,得c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:由表可知,函数y =f (x )在[-3,1]上的最大值为13,最小值为27.[跟踪训练]3.已知函数f (x )=13x 3-12x 2+cx +d 有极值.(1)求c 的取值范围;(2)若f (x )在x =2处取得极值,且当x <0时,f (x )<16d 2+2d 恒成立,求d 的取值范围.【导学号:95902259】【解】 (1)∵f (x )=13x 3-12x 2+cx +d ,∴f ′(x )=x 2-x +c ,要使f (x )有极值,则方程f ′(x )=x 2-x +c =0有两个实数解,从而Δ=1-4c >0,∴c <14.(2)∵f (x )在x =2处取得极值,∴f ′(2)=4-2+c =0,∴c =-2.∴ f (x )=13x 3-12x2-2x +d .∵f ′(x )=x 2-x -2=(x -2)(x +1),∴当x ∈(-∞,-1)时,f ′(x )>0,函数单调递增,当x ∈(-1,2]时,f ′(x )<0,函数单调递减.∴x <0时,f (x )在x =-1处取得最大值76+d , ∵x <0时,f (x )<16d 2+2d 恒成立,∴ 76+d <16d 2+2d ,即(d +7)(d -1)>0,∴d <-7或d >1,即d 的取值范围是(-∞,-7)∪(1,+∞).在含参数的问题中,无论是研究单调性,还是极值、最值,一般都需要分类讨论.已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0.(1)求a 的值;(2)若对任意的x ∈[0,+∞),有f (x )≤kx 2成立,求实数k 的最小值. [思路探究] (1)求出函数f (x )的最小值用a 表示解方程可得a 的值;(2)构造函数g (x )=f (x )-kx 2,分类讨论求其在[0,+∞)的最大值,使其最大值≤0可得k 的取值范围,即得其最小值.【规范解答】 (1)f (x )的定义域为(-a ,+∞).f ′(x )=1-1x +a =x +a -1x +a. 由f ′(x )=0,得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,f (x )a =1. (2)当k ≤0时,取x =1,有f (1)=1-ln 2>0,故k ≤0不合题意. 当k >0时,令g (x )=f (x )-kx 2,即g (x )=x -ln(x +1)-kx 2.g ′(x )=x x +1-2kx =-x [2kx --2kx +1.令g ′(x )=0,得x 1=0,x 2=1-2k2k>-1.①当k ≥12时,1-2k2k≤0,g ′(x )<0在(0,+∞)上恒成立,因此g (x )在[0,+∞)上单调递减.从而对于任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即f (x )≤kx 2在[0,+∞)上恒成立.故k ≥12符合题意.②当0<k <12时,1-2k 2k >0,对于x ∈⎝⎛⎭⎪⎫0,1-2k 2k ,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1-2k 2k 内单调递增,因此当取x 0∈⎝⎛⎭⎪⎫0,1-2k 2k 时, g (x 0)>g (0)=0,即f (x 0)≤kx 20不成立.故0<k <12不合题意.综上,k 的最小值为12.[跟踪训练]4.设函数f (x )=a e x+1a e x+b (a >0). (1)求f (x )在[0,+∞)内的最小值;(2)设曲线y = f (x )在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值.【解】 (1)f ′(x )=a e x-1a e x, 当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上单调递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上单调递减.①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上单调递减,在(-ln a ,+∞)上单调递增,从而f (x )在[0,+∞)上的最小值为f (-ln a )=2+b;②当a ≥1时,-ln a ≤0,f (x )在[0,+∞)上单调递增, 从而f (x )在[0,+∞)上的最小值为f (0)=a +1a+b .(2)依题意f ′(2)=a e 2-1a e 2=32,解得a e 2=2或a e 2=-12(舍去),所以a =2e2,代入原函数可得2+12+b =3,即b =12,故a =2e 2,b =12.[链接高考]1.曲线y =x 2+1x在点(1,2)处的切线方程是__________.【导学号:95902260】【解析】 因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率k =2×1-112=1,所以切线方程为y -2=x -1,即y =x +1.【答案】 y =x +12.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.【解析】 ∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1. 【答案】 1 3.函数f (x )=xx -1(x ≥2)的最大值为________.【解析】 f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数,故f (x )max =f (2)=22-1=2.【答案】 24.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.【导学号:95902261】【解析】 因为f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1e x =-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0, 所以f (x )在R 上单调递增, 所以2a 2≤1-a ,即2a 2+a -1≤0, 所以-1≤a ≤12.【答案】 ⎣⎢⎡⎦⎥⎤-1,12 5.已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a .【解】 (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1), 故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .。
数学选修1-1 第三章__导数及其应用 练习
3.1 导数的定义基础训练(1):1. 在求平均变化率中,自变量的增量x ∆( )A.0>∆x B.0<∆x C.0=∆x D.0≠∆x 2. 一质点的运动方程是,则在一段时间[]t ∆+1,1内相应得平均速度为:( ) A.63+∆t B.63+∆-t C.63-∆t D.63-∆-t3.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx ∆∆为( )A.Δx +x ∆1+2 B.Δx -x ∆1-2 C.Δx +2 D.2+Δx -x∆1 4.一物体位移s 和时间t 的关系是s=2t-32t ,则物体的初速度是5.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 巩固训练(1):1.若质点M 按规律3s t =运动,则3t =秒时的瞬时速度为( )A .2 B .9 C .27 D .812.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( ) A 0 B 3 C -2 D t 23-3.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( )A ()x x f ∆+0B ()x x f ∆+0C ()x x f ∆⋅0D ()()00x f x x f -∆+ 4.物体的运动方程是=s t t 1642+-,在某一时刻的速度为零,则相应时刻为( ) A .=t 1 B .=t 2 C .=t 3 D . =t 45.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在1秒末的瞬时速度是( ) A .3米/秒 B .2米/秒 C .1米/秒 D .4米/秒6.在曲线223x y =的图象上取一点(1,23)及附近一点⎪⎭⎫⎝⎛∆+∆+y x 23,1,则x y ∆∆为( ) A x x ∆++∆1323 B x x ∆--∆1323 C 323+∆x D x x ∆-+∆1323 7.物体的运动规律是)(t s s =,物体在[]t t t ∆+,时间内的平均速度是( )A.t t s t s v ∆∆=∆∆=)( B.t t s t t s v ∆-∆+=)()(C.t t s v )(= D.当0→∆t 时,0)()(→∆-∆+=tt s t t s v8.将边长为8的正方形的边长增加∆a,则面积的增量∆S 为( )A .16∆a 2 B.64 C.2a +8 D.16∆a+∆a 29.已知一物体的运动方程是=s 7562+-t t ,则其在=t ________时刻的速度为7。
推荐高中数学第三章导数及其应用章末复习课学案苏教版选修1_1
第三章 导数及其应用学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数的求导公式,并能够综合运用求导法则求函数的导数.3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题.知识点一 在x =x 0处的导数1.定义:函数y =f (x )在x =x 0处的瞬时变化率,若Δx 无限趋于0时,比值ΔyΔx =_______________无限趋近于一个常数A ,称函数y =f (x )在x =x 0处可导.________为f (x )在x =x 0处的导数. 2.几何意义:函数y =f (x )在x =x 0处的导数是函数图象在点(x 0,f (x 0))处的切线________. 3.物理意义:瞬时速度、瞬时加速度.知识点二 基本初等函数的求导公式函数导数y =C y ′=________ y =x α(α为常数)y ′=________ y =sin x y ′=________ y =cos x y ′=________ y =a x (a >0且a ≠1)y ′=________ y =e xy ′=________ y =log a x (a >0且a ≠1)y ′=________ y =ln xy ′=________知识点三 导数的运算法则和差的导数 [f (x )±g (x )]′=____________ 积的导数 [f (x )·g (x )]′=____________商的导数⎣⎢⎡⎦⎥⎤f x g x ′=________________(g (x )≠0)知识点四 函数的单调性、极值与导数 1.函数的单调性与导数在某个区间(a ,b )内,如果________,那么函数y =f (x )在这个区间内单调递增;如果________,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值与导数(1)极大值:在x =a 附近,满足f (a )≥f (x ),当x <a 时,________;当x >a 时,________,则点a 叫做函数的极大值点,f (a )叫做函数的极大值;(2)极小值:在x =a 附近,满足f (a )≤f (x ),当x <a 时,________;当x >a 时,________,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.知识点五 求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 1.求函数y =f (x )在(a ,b )内的________.2.将函数y =f (x )的各极值与________________________比较,其中最大的一个为最大值,最小的一个为最小值.特别提醒 (1)关注导数的概念、几何意义利用导数的概念、几何意义时要特别注意切点是否已知,若切点未知,则设出切点,用切点坐标表示切线斜率.(2)正确理解单调性与导数、极值与导数的关系 ①当函数在区间(a ,b )上为增函数时,f (x )≥0; ②f ′(x 0)=0是函数y =f (x )在x 0处取极值的必要条件.类型一 导数几何意义的应用例1 设函数f (x )=13x 3+ax 2-9x -1(a >0),直线l 是曲线y =f (x )的一条切线,当l 的斜率最小时,直线l 与直线10x +y =6平行. (1)求a 的值;。
2018-2019学年高中数学 第三章 导数及其应用 阶段复习课学案 苏教版选修1-1
第三课 导数及其应用[体系构建][题型探究]运用导数的几何意义,可以求过曲线上任一点的切线的斜率,从而进一步求出过此点的切线方程.还可以结合几何的有关知识,求解某些点的坐标、三角形面积等.导数的几何意义是近几年高考的要点和热点之一,常结合导数的运算进行考查,常以选择题、填空题的形式出现.对于较为复杂的此类问题,一般要利用k =f ′(x 0)((x 0,f (x 0))为切点)及切点的坐标满足切线方程和曲线方程列方程组求解.求过曲线y =x 3-2x 上的点(1,-1)的切线方程.[思路探究] 切线过曲线上一点(1,-1),并不代表(1,-1)就是切点,故需先设出切点,再求解.【规范解答】 设切点为P (x 0,y 0),则y 0=x 30-2x 0.∵y ′=3x 2-2,则切线的斜率k =f ′(x 0)=3x 20-2,∴切线方程为y -(x 30-2x 0)=(3x 20-2)(x -x 0).又∵切线过点(1,-1),∴-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.∴切点为(1,-1)或⎝ ⎛⎭⎪⎫-12,78,相应的切线斜率为k =1或k =-54.故所求切线方程为y -(-1)=x -1或y -78=-54·⎝ ⎛⎭⎪⎫x +12,即x -y -2=0或5x +4y-1=0.[跟踪训练]1.已知函数f (x )=x 3+ax 2+bx +c 在x =2处取得极值,并且它的图象与直线y =-3x +3在点(1,0)处相切,则函数f (x )的表达式为________.【导学号:95902257】【解析】 f ′(x )=3x 2+2ax +b .∵f (x )与直线y =-3x +3在点(1,0)处相切,∴⎩⎪⎨⎪⎧f =-3,f =0.即⎩⎪⎨⎪⎧3+2a +b =-3,①1+a +b +c =0.②∵f (x )在x =2处取得极值,∴f ′(2)=12+4a +b =0.③由①②③解得⎩⎪⎨⎪⎧a =-3,b =0,c =2.∴f (x )=x 3-3x 2+2.【答案】 f (x )=x 3-3x 2+21x )>0,f ′(x )<0的解集确定单调区间,这是函数中常见问题,是考查的重点.2.求含参数的函数的单调区间讨论时要注意的三个方面:(1)f ′(x )=0有无根,(2)f ′(x )=0根的大小,(3)f ′(x )=0的根是否在定义域内.另外当f ′(x )=0的最高次项系数含有字母时,则要讨论系数是否为0.3.已知函数的单调性求参数的取值范围有两种思路:①转化为不等式在某区间上恒成立问题,即f ′(x )≥0(或≤0)恒成立,用分离参数求最值或函数的性质求解,注意验证使f ′(x )=0的参数是否符合题意,②构造关于参数的不等式求解,即令f ′(x )>0(或<0)求得用参数表示的单调区间,结合所给区间,利用区间端点列不等式求参数的范围.已知函数f (x )=x 3-ax -1. (1)讨论f (x )的单调性;(2)若f (x )在R 上为增函数,求实数a 的取值范围.[思路探究] (1)求出f ′(x ),讨论f ′(x )=0的根是否存在,求函数的单调区间; (2)根据题意有f ′(x )≥0在(-∞,+∞)上恒成立,分离参数后可求实数a 的取值范围.【规范解答】 (1)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0得x =±3a 3;当x >3a 3或x <-3a3时,f ′(x )>0;当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.综上可知,当a ≤0时,f (x )在R 上为增函数; 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.(2)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数, 所以a ≤0,即a 的取值范围为(-∞,0].[跟踪训练]2.设函数f (x )=12x 2+e x -x e x.(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.【导学号:95902258】【解】 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x). 若x <0,则1-e x>0,所以f ′(x )<0; 若x >0,则1-e x<0,所以f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴f (x )min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立.即实数m 的取值范围是(-∞,2-e 2).1.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.3.注意事项:(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论. (2)解题时要注意区分求单调性和已知单调性的问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y+1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.[思路探究] (1)利用f ′(1)=3、f ′⎝ ⎛⎭⎪⎫23=0、f (1)=4构建方程组求解; (2)令fx =0→列表→求极值和区间端点的函数值→比较大小→得最大值和最小值【规范解答】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝ ⎛⎭⎪⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4. 所以1+a +b +c =4,得c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:由表可知,函数y =f (x )在[-3,1]上的最大值为13,最小值为27.[跟踪训练]3.已知函数f (x )=13x 3-12x 2+cx +d 有极值.(1)求c 的取值范围;(2)若f (x )在x =2处取得极值,且当x <0时,f (x )<16d 2+2d 恒成立,求d 的取值范围.【导学号:95902259】【解】 (1)∵f (x )=13x 3-12x 2+cx +d ,∴f ′(x )=x 2-x +c ,要使f (x )有极值,则方程f ′(x )=x 2-x +c =0有两个实数解,从而Δ=1-4c >0,∴c <14.(2)∵f (x )在x =2处取得极值,∴f ′(2)=4-2+c =0,∴c =-2.∴ f (x )=13x 3-12x2-2x +d .∵f ′(x )=x 2-x -2=(x -2)(x +1),∴当x ∈(-∞,-1)时,f ′(x )>0,函数单调递增,当x ∈(-1,2]时,f ′(x )<0,函数单调递减.∴x <0时,f (x )在x =-1处取得最大值76+d , ∵x <0时,f (x )<16d 2+2d 恒成立,∴ 76+d <16d 2+2d ,即(d +7)(d -1)>0,∴d <-7或d >1,即d 的取值范围是(-∞,-7)∪(1,+∞).在含参数的问题中,无论是研究单调性,还是极值、最值,一般都需要分类讨论.已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0.(1)求a 的值;(2)若对任意的x ∈[0,+∞),有f (x )≤kx 2成立,求实数k 的最小值. [思路探究] (1)求出函数f (x )的最小值用a 表示解方程可得a 的值;(2)构造函数g (x )=f (x )-kx 2,分类讨论求其在[0,+∞)的最大值,使其最大值≤0可得k 的取值范围,即得其最小值.【规范解答】 (1)f (x )的定义域为(-a ,+∞).f ′(x )=1-1x +a =x +a -1x +a. 由f ′(x )=0,得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,f (x )a =1. (2)当k ≤0时,取x =1,有f (1)=1-ln 2>0,故k ≤0不合题意. 当k >0时,令g (x )=f (x )-kx 2,即g (x )=x -ln(x +1)-kx 2.g ′(x )=x x +1-2kx =-x [2kx --2kx +1.令g ′(x )=0,得x 1=0,x 2=1-2k2k>-1.①当k ≥12时,1-2k2k≤0,g ′(x )<0在(0,+∞)上恒成立,因此g (x )在[0,+∞)上单调递减.从而对于任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即f (x )≤kx 2在[0,+∞)上恒成立.故k ≥12符合题意.②当0<k <12时,1-2k 2k >0,对于x ∈⎝⎛⎭⎪⎫0,1-2k 2k ,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1-2k 2k 内单调递增,因此当取x 0∈⎝⎛⎭⎪⎫0,1-2k 2k 时, g (x 0)>g (0)=0,即f (x 0)≤kx 20不成立.故0<k <12不合题意.综上,k 的最小值为12.[跟踪训练]4.设函数f (x )=a e x+1a e x+b (a >0). (1)求f (x )在[0,+∞)内的最小值;(2)设曲线y = f (x )在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值.【解】 (1)f ′(x )=a e x-1a e x, 当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上单调递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上单调递减.①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上单调递减,在(-ln a ,+∞)上单调递增,从而f (x )在[0,+∞)上的最小值为f (-ln a )=2+b;②当a ≥1时,-ln a ≤0,f (x )在[0,+∞)上单调递增, 从而f (x )在[0,+∞)上的最小值为f (0)=a +1a+b .(2)依题意f ′(2)=a e 2-1a e 2=32,解得a e 2=2或a e 2=-12(舍去),所以a =2e2,代入原函数可得2+12+b =3,即b =12,故a =2e 2,b =12.[链接高考]1.曲线y =x 2+1x在点(1,2)处的切线方程是__________.【导学号:95902260】【解析】 因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率k =2×1-112=1,所以切线方程为y -2=x -1,即y =x +1.【答案】 y =x +12.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.【解析】 ∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1. 【答案】 1 3.函数f (x )=xx -1(x ≥2)的最大值为________.【解析】 f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数,故f (x )max =f (2)=22-1=2.【答案】 24.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.【导学号:95902261】【解析】 因为f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1e x =-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0, 所以f (x )在R 上单调递增, 所以2a 2≤1-a ,即2a 2+a -1≤0, 所以-1≤a ≤12.【答案】 ⎣⎢⎡⎦⎥⎤-1,12 5.已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a .【解】 (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1), 故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .。
「精品」高中数学第三章导数及其应用3.3.1单调性学案苏教版选修1_1
3.3.1 单调性学习目标 1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间.知识点函数的单调性与导函数正负的关系思考1 观察下列各图,完成表格内容思考2 依据上述分析,可得出什么结论?梳理(1)(2)在区间(a,b)内函数的单调性与导数有如下关系:类型一求函数的单调区间命题角度1 求不含参数的函数的单调区间例1 求f(x)=3x2-2ln x的单调区间.反思与感悟求函数y=f(x)的单调区间的步骤(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,函数在定义域内的解集上为增函数;(4)解不等式f ′(x )<0,函数在定义域内的解集上为减函数. 跟踪训练1 求函数f (x )=exx -2的单调区间.命题角度2 求含参数的函数的单调区间例2 讨论函数f (x )=x 2-a ln x (a ≥0)的单调性. 引申探究若将本例改为f (x )=ax 2-ln x (a ∈R )呢?反思与感悟 (1)在判断含有参数的函数的单调性时,不仅要考虑到参数的取值范围,而且要结合函数的定义域来确定f ′(x )的符号,否则会产生错误.(2)分类讨论是把整个问题划分为若干个局部问题,在每一个局部问题中,原先的不确定因素就变成了确定性因素,当这些局部问题都解决了,整个问题就解决了.跟踪训练2 已知函数f (x )=4x 3+3tx 2-6t 2x +t -1,其中x ∈R ,t ∈R .当t ≠0时,求f (x )的单调区间.类型二 证明函数的单调性问题例3 证明:函数f (x )=sin x x 在区间⎝ ⎛⎭⎪⎫π2,π上单调递减.反思与感悟 关于利用导数证明函数单调性的问题:(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f ′(x )>(或<)0,则f (x )为单调递增(或递减)函数;但要特别注意,f (x )为单调递增(或递减)函数,则f ′(x )≥(或≤)0.跟踪训练3 证明:函数f (x )=ln xx在区间(0,e)上是增函数.类型三 已知函数的单调性求参数范围例4 已知函数f (x )=x 2+a x(x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上单调递增,求a 的取值范围.反思与感悟 已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f (x )在区间I 上单调递增(或减),转化为不等式f ′(x )≥0(f ′(x )≤0)在区间I 上恒成立,再用有关方法可求出参数的取值范围.跟踪训练4 已知函数f (x )=13x 3-12ax 2-(a +1)x +2在区间[1,2]上为减函数,求实数a 的取值范围.1.关于函数f(x)=1-x-sin x,下列说法正确的是________.(填序号)①在(0,2π)上是增函数;②在(0,2π)上是减函数;③在(0,π)上是增函数,在(π,2π)上是减函数;④在(0,π)上是减函数,在(π,2π)上是增函数.2.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数f′(x)的图象可能是________.3.函数f(x)=ln x-ax(a>0)的单调增区间为________.4.若函数y=x3-ax2+4在(0,2)上单调递减,则实数a的取值范围为________.5.求函数f(x)=(x-k)e x的单调区间.1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f(x)的单调区间的一般步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间.提醒:完成作业第3章§3.3 3.3.1答案精析问题导学 知识点思考1 正 递增 正 正 递增 负 递减 负 负 递减 负 负 递减 思考2 一般地,设函数y =f (x ),在区间(a ,b )上, ①如果f ′(x )>0,则f (x )在该区间上单调递增; ②如果f ′(x )<0,则f (x )在该区间上单调递减. 梳理 (1)> 锐 上升 递增 < 钝 下降 递减 (2)增 减 题型探究例1 解 f (x )=3x 2-2ln x 的定义域为(0,+∞). f ′(x )=6x -2x=x 2-x=3x -3x +x, 由x >0,解f ′(x )>0,得x >33; 由x <0,解f ′(x )<0,得0<x <33. 所以函数f (x )=3x 2-2ln x 的单调递增区间为(33,+∞), 单调递减区间为(0,33). 跟踪训练1 解 函数f (x )的定义域为(-∞,2)∪(2,+∞). f ′(x )=exx --exx -2=exx -x -2.因为x ∈(-∞,2)∪(2,+∞), 所以e x>0,(x -2)2>0. 由f ′(x )>0,得x >3,所以函数f (x )的单调递增区间为(3,+∞); 由f ′(x )<0,得x <3.又函数f (x )的定义域为(-∞,2)∪(2,+∞), 所以函数f (x )的单调递减区间为(-∞,2)和(2,3). 例2 解 函数f (x )的定义域是(0,+∞),f ′(x )=2x -a x =2x 2-ax.设g (x )=2x 2-a ,由g (x )=0,得2x 2=a .当a =0时,f ′(x )=2x >0,函数f (x )在区间(0,+∞)上为增函数; 当a >0时,由g (x )=0,得x =2a 2或x =-2a 2(舍去). 当x ∈(0,2a2)时,g (x )<0, 即f ′(x )<0; 当x ∈(2a2,+∞)时,g (x )>0, 即f ′(x )>0.所以当a >0时,函数f (x )在区间(0,2a 2)上为减函数,在区间(2a 2,+∞)上为增函数. 综上,当a =0时,函数f (x )的单调增区间是(0,+∞); 当a >0时,函数f (x )的单调增区间是(2a 2,+∞),单调减区间是(0,2a2). 引申探究解 f ′(x )=2ax -1x =2ax 2-1x,当a ≤0时,且x ∈(0,+∞),f ′(x )<0, ∴函数f (x )在(0,+∞)上为减函数; 当a >0时,令f ′(x )=0, 解得x =2a 2a 或-2a2a (舍去). 当x ∈(0,2a2a)时,f ′(x )<0, ∴f (x )为减函数; 当x ∈(2a2a,+∞)时,f ′(x )>0, ∴f (x )为增函数.综上所述,当a ≤0时,函数f (x )在(0,+∞)上为减函数; 当a >0时,f (x )在(0,2a 2a )上为减函数,在(2a 2a,+∞)上为增函数. 跟踪训练2 解 f ′(x )=12x 2+6tx -6t 2=6(x +t )(2x -t ),令f ′(x )=0,得x 1=-t ,x 2=t2.当t <0,x ∈(t2,-t )时,f ′(x )<0,此时f (x )为减函数;当x ∈(-∞,t2)时,f ′(x )>0,此时f (x )为增函数,同理当x ∈(-t ,+∞)时,f (x )也为增函数.∴当t <0时,f (x )的增区间为(-∞,t2)和(-t ,+∞),f (x )的减区间为(t2,-t );当t >0,x ∈(-t ,t2)时,f ′(x )<0,此时f (x )为减函数,当x ∈(-∞,-t )和x ∈(t2,+∞)时,f ′(x )>0,此时f (x )为增函数,∴当t >0时,f (x )的增区间为(-∞,-t ),(t2,+∞),f (x )的减区间为(-t ,t2).综上所述,①当t <0时,f (x )的单调增区间是(-∞,t 2),(-t ,+∞),单调减区间是(t2,-t ).②当t >0时,f (x )的单调增区间是(-∞,-t ),(t 2,+∞),单调减区间是(-t ,t2). 例3 证明 f ′(x )=x cos x -sin xx 2,又x ∈⎝⎛⎭⎪⎫π2,π,则cos x <0,sin x >0, ∴x cos x -sin x <0,∴f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫π2,π上是减函数.跟踪训练3 证明 ∵f (x )=ln xx,∴f ′(x )=x ·1x -ln xx 2=1-ln xx 2. 又0<x <e ,∴ln x <ln e =1.∴f ′(x )=1-ln xx2>0,故f (x )在区间(0,e)上是增函数. 例4 解 f ′(x )=2x -a x 2=2x 3-a x 2.要使f (x )在[2,+∞)上单调递增, 则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax2≥0在x ∈[2,+∞)时恒成立.∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)时恒成立. ∴a ≤(2x 3)min .∵当x ∈[2,+∞)时,y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.当a =16时,f ′(x )=2x 3-16x2≥0(x ∈[2,+∞)),有且只有f ′(2)=0, ∴a 的取值范围是(-∞,16].跟踪训练4 解 方法一 f ′(x )=x 2-ax -(a +1), 因为函数f (x )在区间[1,2]上为减函数,所以f ′(x )≤0,即x 2-ax -(a +1)≤0,解得a ≥x -1. 因为在[1,2]上,a ≥x -1恒成立, 所以a ≥(x -1)max =1.所以a 的取值范围是[1,+∞). 方法二 f ′(x )=(x +1)[x -(a +1)], 由于函数f (x )在区间[1,2]上为减函数,所以f ′(x )≤0,当a >-2时,解得-1≤x ≤a +1, 即减区间为[-1,a +1],则[1,2]⊆[-1,a +1],得a ≥1. 当a ≤-2时,解得减区间为[a +1,-1], 则函数f (x )不可能在[1,2]上为减函数,故a ≥1. 所以实数a 的取值范围是[1,+∞). 当堂训练1.② 2.④ 3.⎝⎛⎭⎪⎫0,1a 4.[3,+∞)5.解 f ′(x )=e x+(x -k )e x=(x -k +1)e x,当x <k -1时,f ′(x )<0; 当x >k -1时,f ′(x )>0,精品资料值得拥有所以f(x)的单调递减区间是(-∞,k-1),单调递增区间为(k-1,+∞).11。
高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_417
习题课导数的应用学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用.知识点一函数的单调性与其导数的关系定义在区间(a,b)内的函数y=f(x)f′(x)的正负f(x)的单调性f′(x)>0单调递________f′(x)<0单调递________知识点二求函数y f x解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值.(2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值.知识点三函数y=f(x)在[a,b]上最大值与最小值的求法1.求函数y=f(x)在(a,b)内的极值.2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值.类型一数形结合思想的应用例1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________.反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪个区间上为负,在哪个点处与x轴相交,在交点附近导函数值是怎样变化的.(2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点.跟踪训练1 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y =xf ′(x )的图象可能是________.类型二 构造函数求解 命题角度1 比较函数值的大小例2 已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f xx<0,若a =12f (12),b =-2f (-2),c =(ln 12)f (ln 12),则a ,b ,c 的大小关系是________.反思与感悟 本例中根据条件构造函数g (x )=xf (x ),通过g ′(x )确定g (x )的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数.跟踪训练2 设a =ln 33,b =ln 44,c =ln 55,则a ,b ,c 的大小关系是________.命题角度2 求解不等式例3 定义域为R 的可导函数y =f (x )的导函数f ′(x ),满足f (x )<f ′(x ),且f (0)=2,则不等式f (x )>2e x 的解集为________.反思与感悟 根据所求结论与已知条件,构造函数g (x )=f xe x,通过导函数判断g (x )的单调性,利用单调性得到x 的取值范围.跟踪训练3 设函数f (x )是定义在R 上的偶函数,f ′(x )为其导函数.当x >0时,f (x )+x ·f ′(x )>0,且f (1)=0,则不等式x ·f (x )>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x >1,证明不等式x -1>ln x .反思与感悟 利用函数的最值证明不等式的基本步骤 (1)将不等式构造成f (x )>0(或<0)的形式;(2)利用导数将函数y =f (x )在所给区间上的最小值(或最大值)求出;(3)证明函数y =f (x )的最小值(或最大值)大于零(或小于零)即可证得原不等式成立.跟踪训练4 证明:当x >0时,2+2x <2e x . 类型三 利用导数研究函数的极值与最值例5 已知函数f (x )=x 3+ax 2+b 的图象上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值;(3)在(1)的结论下,关于x 的方程f (x )=c 在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.反思与感悟 (1)求极值时一般需确定f ′(x )=0的点和单调性,对于常见连续函数,先确定单调性即可得极值点,当连续函数的极值点只有一个时,相应的极值点必为函数的最值点. (2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值可不再作判断,只需要直接与端点的函数值比较即可获得.跟踪训练5 已知函数f (x )=ax 3+(a -1)x 2+48(a -2)x +b 的图象关于原点成中心对称. (1)求a ,b 的值;(2)求f (x )的单调区间及极值; (3)当x ∈[1,5]时,求函数的最值.1.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎪⎫-3,-12内单调递增;②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是________.(填序号)2.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为________. 3.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. 4.设f (x )、g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,下列式子判断正确的是________. ①f (x )g (x )>f (b )g (b );②f (x )g (a )>f (a )g (x ); ③f (x )g (b )>f (b )g (x );④f (x )g (x )>f (a )g (a ). 5.已知x >0,求证:x >sin x .导数作为一种重要的工具,在研究函数中具有重要的作用,例如函数的单调性、极值与最值等问题,都可以通过导数得以解决.不但如此,利用导数研究得到函数的性质后,还可以进一步研究方程、不等式等诸多代数问题,所以一定要熟练掌握利用导数来研究函数的各种方法.提醒:完成作业 第3章 习课题答案精析知识梳理 知识点一 增 减 知识点二(1)f ′(x )>0 f ′(x )<0 (2)f ′(x )<0 f ′(x )>0 知识点三2.极值 f (a ),f (b ) 最大 最小 题型探究例1 ④ 跟踪训练1 ① 例2 b <c <a 跟踪训练2 a >b >c 例3 (0,+∞) 跟踪训练3 (1,+∞) 例4 证明 设f (x )=x -1-ln x ,x ∈(1,+∞), 则f ′(x )=1-1x =x -1x,因为x ∈(1,+∞),所以f ′(x )=x -1x>0,即函数f (x )在(1,+∞)上是增函数, 又x >1,所以f (x )>f (1)=1-1-ln 1=0, 即x -1-ln x >0,所以x -1>ln x . 跟踪训练4 证明 设f (x )=2+2x -2e x , 则f ′(x )=2-2e x =2(1-e x ). 当x >0时,e x >e 0=1, ∴f ′(x )=2(1-e x )<0.∴函数f (x )=2+2x -2e x 在(0,+∞)上是减函数, ∴f (x )<f (0)=0,x ∈(0,+∞). 即当x >0时,2+2x -2e x <0, ∴2+2x <2e x .例5 解 (1)因为f ′(x )=3x 2+2ax ,曲线在P (1,0)处的切线斜率为f ′(1)=3+2a ,即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2. 所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2, 得f ′(x )=3x 2-6x .由f ′(x )=0,得x =0或x =2.①当0<t ≤2时,在区间(0,t )上,f ′(x )<0,f (x )在[0,t ]上是减函数,所以f (x )max =f (0)=2,f (x )min =f (t )=t 3-3t 2+2.②当2<t <3时,当x 变化时,f ′(x )、f (x )的变化情况如下表:x 0 (0,2) 2 (2,t ) tf ′(x ) 0 - 0 + +f (x )2↘-2↗t 3-3t 2+2f (x )min =f (2)=-2,f (x )max 为f (0)与f (t )中较大的一个.因为f (t )-f (0)=t 3-3t 2=t 2(t -3)<0, 所以f (x )max =f (0)=2.(3)令g (x )=f (x )-c =x 3-3x 2+2-c , 则g ′(x )=3x 2-6x =3x (x -2).当x ∈[1,2)时,g ′(x )<0;当x ∈(2,3]时,g ′(x )>0. 要使g (x )=0在[1,3]上恰有两个相异的实根,则⎩⎨⎧g1≥0,g 2<0,g3≥0,解得-2<c ≤0.即实数c 的取值范围为(-2,0].跟踪训练5 解 (1)∵函数f (x )的图象关于原点成中心对称, 则f (x )是奇函数, ∴f (-x )=-f (x ),即-ax 3+(a -1)x 2-48(a -2)x +b =-ax 3-(a -1)x 2-48(a -2)x -b ,于是2(a -1)x 2+2b =0恒成立,∴⎩⎨⎧a -1=0,b =0,解得a =1,b =0.(2)由(1)得f (x )=x 3-48x ,∴f ′(x )=3x 2-48=3(x +4)(x -4), 令f ′(x )=0,得x 1=-4,x 2=4; 令f ′(x )<0,得-4<x <4; 令f ′(x )>0,得x <-4或x >4.∴f (x )的递减区间为(-4,4),递增区间为(-∞,-4)和(4,+∞), ∴f (x )极大值=f (-4)=128,f (x )极小值=f (4)=-128.(3)由(2)知,函数在[1,4]上单调递减,在[4,5]上单调递增,则f (4)=-128,f (1)=-47,f (5)=-115,∴函数的最大值为-47,最小值为-128. 当堂训练1.③ 2.-37 3.(-∞,12) 4.③5.证明 设f (x )=x -sin x (x >0),则f ′(x )=1-cos x ≥0对x ∈(0,+∞)恒成立, ∴函数f (x )=x -sin x 在(0,+∞)上是单调增函数, 又f (0)=0,∴f (x )>0对x ∈(0,+∞)恒成立, ∴x >sin x (x >0).。
高中数学 第3章《导数及其应用》复习导学案1 苏教版选修1-1
江苏省响水中学高中数学 第3章《导数及其应用》复习1导学案 苏教版选修1-1复习要求:1.了解导数概念的实际背景.2.理解导数的几何意义.3.能根据导数的定义求简单的多项式、分式函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.课前预习:1.知识要点回顾:(1)导数的概念:(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y =f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为(3)基本初等函数的导数公式:(4)导数的运算法则(5)曲线y =f(x)“在点P(x 0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:2.判断:(1)f′(x0)与(f(x0))′表示的意义相同;( )(2)求f′(x0)时,可先求f(x0)再求f′(x0);( )(3)曲线的切线与曲线不一定只有一个交点;( )(4)若f(a)=a3+2ax -x2,则f′(a)=3a2+2x 。
( )3.某汽车的路程函数是s(t)=2t3-12gt2,g =10 m/s2,则当t =2 s 时,汽车的加速度= 4.下列函数求导运算正确的个数为( )①(3x)′=3xlog3e ;②(log2x)′=1x·ln 2;③⎝⎛⎭⎫sin π3′=cos π3;④⎝⎛⎭⎫1ln x ′=x.2.已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.3.(1)若曲线y=x2+ax+b在点P(0,b)处的切线方程为x-y+1=0,求a,b的值.(2)直线y=12x+b与曲线y=-12x+ln x相切,求b的值。
高中数学第三章导数及其应用3-4导数在实际生活中的应用学案苏教版选修1_1
高中数学第三章导数及其应用3-4导数在实际生活中的应用学案苏教版选修1_1学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为________________.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的______________过程.类型一几何中的最值问题命题角度1 平面几何中的最值问题例1 某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100 m,并与北京路一边所在直线l相切于点M.点A为上半圆弧上一点,过点A作l的垂线,垂足为点B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:m2),∠AON=θ(单位:弧度).(1)将S表示为θ的函数;(2)当绿化面积S最大时,试确定点A的位置,并求最大面积.反思与感悟平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从而求最值.跟踪训练1 如图所示,在二次函数f(x)=4x-x2的图象与x轴所围成图形中有一个内接矩形ABCD ,求这个矩形面积的最大值.命题角度2 立体几何中的最值问题例2 请你设计一个包装盒如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x cm.(1)若广告商要求包装盒侧面积S 最大,则x 应取何值?(2)若广告商要求包装盒容积V 最大,则x 应取何值?并求出此时包装盒的高与底面边长的比值.反思与感悟 (1)立体几何中的最值问题往往涉及空间图形的表面积、体积,并在此基础上解决与实际相关的问题.(2)解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.跟踪训练2 周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________ cm3.类型二 实际生活中的最值问题命题角度1 利润最大问题例3 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=⎩⎪⎨⎪⎧10.8-130x2,0<x≤10,108x -1 0003x2,x>10. (1)求年利润W(万元)关于年产量x(千件)的函数解析式;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课导数的应用学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用.知识点一函数的单调性与其导数的关系定义在区间(a,b)内的函数y=f(x)f′(x)的正负f(x)的单调性f′(x)>0单调递________f′(x)<0单调递________知识点二求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值.(2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值.知识点三函数y=f(x)在[a,b]上最大值与最小值的求法1.求函数y=f(x)在(a,b)内的极值.2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值.类型一数形结合思想的应用例 1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________.反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪个区间上为负,在哪个点处与x 轴相交,在交点附近导函数值是怎样变化的.(2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点.跟踪训练1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是________.类型二 构造函数求解命题角度1 比较函数值的大小例2 已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f xx<0,若a =12f (12),b =-2f (-2),c =(ln 12)f (ln 12),则a ,b ,c 的大小关系是________.反思与感悟 本例中根据条件构造函数g (x )=xf (x ),通过g ′(x )确定g (x )的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数.跟踪训练2 设a =ln 33,b =ln 44,c =ln 55,则a ,b ,c 的大小关系是________.命题角度2 求解不等式例3 定义域为R 的可导函数y =f (x )的导函数f ′(x ),满足f (x )<f ′(x ),且f (0)=2,则不等式f (x )>2e x的解集为________.反思与感悟 根据所求结论与已知条件,构造函数g (x )=f xex,通过导函数判断g (x )的单调性,利用单调性得到x 的取值范围.跟踪训练3 设函数f (x )是定义在R 上的偶函数,f ′(x )为其导函数.当x >0时,f (x )+x ·f ′(x )>0,且f (1)=0,则不等式x ·f (x )>0的解集为________.命题角度3 利用导数证明不等式 例4 已知x >1,证明不等式x -1>ln x .反思与感悟利用函数的最值证明不等式的基本步骤(1)将不等式构造成f(x)>0(或<0)的形式;(2)利用导数将函数y=f(x)在所给区间上的最小值(或最大值)求出;(3)证明函数y=f(x)的最小值(或最大值)大于零(或小于零)即可证得原不等式成立.跟踪训练4 证明:当x>0时,2+2x<2e x.类型三利用导数研究函数的极值与最值例5 已知函数f(x)=x3+ax2+b的图象上一点P(1,0),且在点P处的切线与直线3x+y=0平行.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[0,t](0<t<3)上的最大值和最小值;(3)在(1)的结论下,关于x的方程f(x)=c在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.反思与感悟(1)求极值时一般需确定f′(x)=0的点和单调性,对于常见连续函数,先确定单调性即可得极值点,当连续函数的极值点只有一个时,相应的极值点必为函数的最值点.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值可不再作判断,只需要直接与端点的函数值比较即可获得.跟踪训练5 已知函数f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点成中心对称.(1)求a,b的值;(2)求f(x)的单调区间及极值;(3)当x∈[1,5]时,求函数的最值.1.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎪⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是________.(填序号)2.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为________. 3.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. 4.设f (x )、g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,下列式子判断正确的是________. ①f (x )g (x )>f (b )g (b );②f (x )g (a )>f (a )g (x ); ③f (x )g (b )>f (b )g (x );④f (x )g (x )>f (a )g (a ). 5.已知x >0,求证:x >sin x .导数作为一种重要的工具,在研究函数中具有重要的作用,例如函数的单调性、极值与最值等问题,都可以通过导数得以解决.不但如此,利用导数研究得到函数的性质后,还可以进一步研究方程、不等式等诸多代数问题,所以一定要熟练掌握利用导数来研究函数的各种方法.提醒:完成作业第3章习课题答案精析知识梳理 知识点一 增 减 知识点二(1)f ′(x )>0 f ′(x )<0 (2)f ′(x )<0 f ′(x )>0 知识点三2.极值 f (a ),f (b ) 最大 最小 题型探究例1 ④ 跟踪训练1 ① 例2 b <c <a 跟踪训练2 a >b >c 例3 (0,+∞) 跟踪训练3 (1,+∞)例4 证明 设f (x )=x -1-ln x ,x ∈(1,+∞), 则f ′(x )=1-1x =x -1x,因为x ∈(1,+∞), 所以f ′(x )=x -1x>0, 即函数f (x )在(1,+∞)上是增函数, 又x >1,所以f (x )>f (1)=1-1-ln 1=0, 即x -1-ln x >0,所以x -1>ln x . 跟踪训练4 证明 设f (x )=2+2x -2e x, 则f ′(x )=2-2e x =2(1-e x). 当x >0时,e x >e 0=1, ∴f ′(x )=2(1-e x)<0.∴函数f (x )=2+2x -2e x在(0,+∞)上是减函数, ∴f (x )<f (0)=0,x ∈(0,+∞). 即当x >0时,2+2x -2e x<0, ∴2+2x <2e x.例5 解 (1)因为f ′(x )=3x 2+2ax ,曲线在P (1,0)处的切线斜率为f ′(1)=3+2a ,即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2.所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2, 得f ′(x )=3x 2-6x .由f ′(x )=0,得x =0或x =2.①当0<t ≤2时,在区间(0,t )上,f ′(x )<0,f (x )在[0,t ]上是减函数,所以f (x )max =f (0)=2,f (x )min =f (t )=t 3-3t 2+2.②当2<t <3时,当x 变化时,f ′(x )、f (x )的变化情况如下表:x 0 (0,2) 2 (2,t ) tf ′(x ) 0 - 0 + +f (x )2↘-2↗t 3-3t 2+2f (x )min =f (2)f (x )max 为f (0)与f (t )中较大的一个.因为f (t )-f (0)=t 3-3t 2=t 2(t -3)<0, 所以f (x )max =f (0)=2.(3)令g (x )=f (x )-c =x 3-3x 2+2-c , 则g ′(x )=3x 2-6x =3x (x -2).当x ∈[1,2)时,g ′(x )<0;当x ∈(2,3]时,g ′(x )>0. 要使g (x )=0在[1,3]上恰有两个相异的实根,则⎩⎪⎨⎪⎧g 1≥0,g 2<0,g 3≥0,解得-2<c ≤0.即实数c 的取值范围为(-2,0].跟踪训练5 解 (1)∵函数f (x )的图象关于原点成中心对称, 则f (x )是奇函数, ∴f (-x )=-f (x ),即-ax 3+(a -1)x 2-48(a -2)x +b =-ax 3-(a -1)x 2-48(a -2)x -b , 于是2(a -1)x 2+2b =0恒成立,∴⎩⎪⎨⎪⎧a -1=0,b =0,解得a =1,b =0.(2)由(1)得f (x )=x 3-48x ,∴f ′(x )=3x 2-48=3(x +4)(x -4), 令f ′(x )=0,得x 1=-4,x 2=4; 令f ′(x )<0,得-4<x <4;令f′(x)>0,得x<-4或x>4.∴f(x)的递减区间为(-4,4),递增区间为(-∞,-4)和(4,+∞),∴f(x)极大值=f(-4)=128,f(x)极小值=f(4)=-128.(3)由(2)知,函数在[1,4]上单调递减,在[4,5]上单调递增,则f(4)=-128,f(1)=-47,f(5)=-115,∴函数的最大值为-47,最小值为-128.当堂训练1.③ 2.-37 3.(-∞,12) 4.③5.证明设f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0对x∈(0,+∞)恒成立,∴函数f(x)=x-sin x在(0,+∞)上是单调增函数,又f(0)=0,∴f(x)>0对x∈(0,+∞)恒成立,∴x>sin x(x>0).。