大学物理电介质练习题
大学物理第7章静电场中的导体和电介质课后习题及答案
1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
大学物理试卷答案(15及以后)
第九章 电磁场理论(一)电介质和导体学号 姓名 专业、班级 课程班序号一 选择题[ C ]1. 如图所示,一封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是 (A) C A B U U U == (B) C A B U U U => (C) U U U A C B >> (D) C A B U U U >>[ D ]2. 一个未带电的空腔导体球壳内半径为R 。
在腔内离球心的距离为d 处 (d < R ) 固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为(A) 0 (B) d q 04πε (C) R q04πε (D) )11(40Rd q-πε[ D ]3. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则(A) 0 U >U A B ≠ (B) 0 U >U A B = (C) A B U U = (D) A B U U <[ A ]4. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源。
再将一块与极板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板位置无关 (B) 储能减少,但与金属板位置有关 (C) 储能增加,但与金属板位置无关 (D) 储能增加,但与金属板位置有关[ C ]5. C 1和C 2两空气电容器并联以后接电源充电,在电源保持联接的情况下,在C 1中插入一电介质板,则 (A) C 1极板上电量增加,C 2极板上电量减少 (B) C 1极板上电量减少,C 2极板上电量增加 (C) C 1极板上电量增加,C 2极板上电量不变(D) C 1极板上电量减少,C 2极板上电量不变二 填空题1. 一半径r 1 = 5cm 的金属球A ,带电量为q 1 =2.0×10-8C; 另一内半径为 r 2 = 10cm 、 外半径为 r 3 = 15cm 的金属球壳B , 带电量为 q 2 = 4.0×10-8C , 两球同心放置,如图所示。
大学物理(第四版)课后习题及答案_电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
第三章--静电场中的电介质习题及答案
10、如图所示一平行板电容器充满三种不同的电
介质,相对介电常数分别为 。极
5、 成立的条件是()。
介质为均匀介质
6、在两种不同的电介质交界面上,如果交界面上无自由电荷,则 = ( )。
7、介质中电场能量密度表示为 只适用于()介质。 适用于( )介质。
各向同性的均匀线性线性
8、若先把均匀介质充满平行板电容器,(极板面积为S,极反间距为L,板间介电常数为 )然后使电容器充电至电压U。在这个过程中,电场能量的增量是()。
13、一圆柱形的电介质截面积为S,长为L,被沿着轴线方向极化,已知极化强度 沿X方向,且P=KX(K为比例常数)
坐标原点取在圆柱的一个端面上,如图所示
则极化电荷的体密度()
在X=L的端面上极化电荷面密度为()
极化电荷的总电量为()。
14、在如图所示的电荷系中相对其位形中心的偶极矩为()。
0
四、问答题
第三章静电场中的电介质
一、判断题
1、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的 倍。
×
2、对有极分子组成的介质,它的介电常数将随温度而改变。
√
3、在均匀介质中一定没有体分布的极化电荷。(内有自由电荷时,有体分布)
×
4、均匀介质的极化与均匀极化的介质是等效的。
×
5、在无限大电介质中一定有自由电荷存在。
(A) (B)
(C) (D)
B
长春工业大学物理答案光导体电介质c5-7
练习五 静电场中导体和电介质(一)1. 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d 。
今使A 板带电量为A q ,B 板带电量为B q ,且A q >B q ,则A 板内侧带电量为 ;两板间电势差AB U = 。
2.把一块两表面电荷面密之和为σ0的无限大导体平板置于均匀电场E 0中,E 0与板面垂直,如图5-2所示,则导体左侧表面电荷面密度σ1= ,在左侧表面外附近的场强E= 。
3.(2)一金属球壳的内外半径分别为R 1和R 2,其中心放一点电荷q ,则金属球壳的电势为:(1)104R qπε (2)204R q πε(3)218πεR q R q + (4))(4210R R q+πε4.(1)带电体外套一个导体球壳,则下列说法中正确的是:(1)壳外电场不影响壳内电场,但壳内电场要影响壳外电场;(2)壳内电场不影响壳外电场,但壳外电场要影响壳内电场;(3)壳内、外电场互不影响; (4)壳内、外电场仍互相影响。
5(4)在静电场中,下列说法中哪一个是正确的: (1)带正电荷的导体,其电势一定是正值; (2)等势面上各点的场强一定相等; (3)场强为零处,电势也一定为零;(4)场强相等处,电势梯度矢量一定相等。
6.(4)在静电场中,下面说法正确的是: (1) 带正电荷的导体,其电势一定是正值; (2) 等势面上各点的场强一定相等; (3) 在导体表面附近处的场强,是由该表面上的电荷产生的,与空间其它地方的电荷无关; (4) 一个孤立的带电导体,表面的曲率半径愈大处,电荷密度愈小。
7.半径为R 的导体球外面,同心地罩一内外半径分别为R 1和R 2的导体球壳,若球和球壳分别带有电荷q 和Q ,试求:(1)球和球壳的电势,以及它们的电势差。
(2)若将球壳接地,求它们的电势差。
(3)若用导线将球和球壳连接,其电势差又多少?)11(41444r 4444)1(1020*********R R V V U R qQ R q Q r qqV R q Q R q R qV -=-=+=++-+++-+πεπεπεπεπεπεπεπε球壳球球壳球==UR R V V U r qq V R qR q V =-=-==-+-+)11(41'''04r 4'44')2(1000100πεπεπεπεπε球壳球球壳球==(3)0=U (等势体)8.三块平行金属板A 、B 、C ,面积均为200cm 2,A 、B 间距4cm ,A 、C 间距2cm ,B 、C 两板都接地,如图5-8所示,A 板带正电荷3⨯10-7c ,(不计边缘效应)求:(1)B 、C 板上的感应电荷。
大学物理学第四章静电场中的导体与电介质自学练习题
导体与电介质部分 自学练习题一、选择题:1.将一带正电的物体A 从远处移到一个不带电的导体B 附近,导体B 的电势将:( ) (A )升高; (B )降低; (C )不会发生变化; (D )无法确定。
【提示:相当于将B 从无穷远移到A 附近,电势升高】2.将一带负电的物体M 靠近一个不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷,若将导体N 的左端接地,则:( )(A )N 上的负电荷入地; (B )N 上的正电荷入地; (C )N 上的所有电荷入地; (D )N 上所有的感应电荷入地。
【提示:N 上感应出来的正电荷被M “吸住”,负电荷入地】3.如图所示,将一个电荷量为q 的点电荷放在一个半径为R 的不带电导体球附近,点电荷距导体球球心为d ,设无限远处为电势零点,则导体球心O 点的场强和电势为:( ) (A )0E =,04q V dπε=;(B )204q E d πε=,04q V d πε=;(C )0E =,0V =; (D )204q E d πε=,04q V Rπε=。
【提示:静电平衡状态下,导体球内部不会有电场线;导体球是一个等势体,电势由所在的电场分布决定】4.如图所示,绝缘带电导体上a 、b 、c 三点,电荷密度是( ); 电势是( ): (A )a 点最大; (B )b 点最大; (C )c 点最大; (D )一样大。
【提示:在静电平衡状态下,孤立导体在曲率较大处电荷面密度和场强的值较大;导体是等势体】5.当一个带电导体达到静电平衡时:( )(A )表面上电荷密度较大处电势较高; (B )表面上曲率较大处电势较高; (C )导体内部的电势比导体表面电势高;(D )导体内任一点与其表面上任一点的电势差为零。
【见上题提示】6.一个半径为R 带有电量为Q 的孤立导体球电容的决定式为:( ) (A )04Q C Rπε=; (B )204Q C R πε=;(C )04C Rεπ=;(D )04C R πε=。
第三章静电场中的电介质习题及答案解析
r 分之一。 √
二、选择题
1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为 介质充满电容器。则下列说法中不正确的是:
r 的均匀电
( A ) 介质中的场强为真空中场强的
1
r 倍。
( B) 介质中的场强为自由电荷单独产生的场强的
1
r 倍。
1
( C) 介质中的场强为原来场强的
r 倍。
P;P 的方向平行于球壳直
径,壳内空腔中任一点的电场强度是:
P
E
(A )
30
(B) E 0
E
P
(C)
30
B
E 2P
(D)
30
9. 半径为 R 相对介电常数为 r 的均匀电介质球的中心放置一点电荷
q,则球内电势 的
分布规律是:
q
(A )
4 0r
q
(B)
4 0 rr
q (1 1) q
(C)
4 0 r r R 4 0R
6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中 场强相等。
√
7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。 √
1 r 倍。
8、在均匀电介质中,只有 P 为恒矢量时,才没有体分布的极化电荷。
P =恒矢量
×
Px
Py
Pz 0
p
xy z
Px
Py
Pz
W
(C)
q2 (1 8 0r a
r 1) b 1) b
W
(D)
q2 1 r( 1 1) 80 r ab
B
三、填空题
1、如图,有一均匀极化的介质球,半径为
东华理工大学 物理练习试卷答案 静电场中的导体与电介质
qB 2 S 110 7 C
U A EAC d AC
1 d AC 2.3 103V 0
12 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球 壳,介质相对介电常数为εr,金属球带电Q.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势;
解: 利用有介质时的高斯定理
(1)介质内R1<r<R2场强 介质外r>R2场强 (2)介质外r<R2电势
Qr Qr D 3 , E内 4πr 4π 0 r r 3
Qr Qr D , E外 3 4πr 4π 0 r 3
D dS q
E0
r>R3的区域
1 Q Q2 1 2 2 W2 0 ( ) 4πr dr 2 R3 2 8π 0 R3 4π 0 r
Qr 4π 0 r 3 r>R3时 E2 E1
在R1<r<1 W W1 W2 ( ) 8π 0 R1 R2 R3
静电场中的导体与电介质
一、选择题
1.有一接地金属球,有一弹簧吊起,金属球原来 不 带 电,若在它的下方放置一电量为q的点电荷则 【C 】 (A)只有当q>0时,金属球才会下移 (B)只有当q<0时,金属球才下移 (C)无论q是正是负金属球都下移 ; (D)无论q是正是负金属球都不动
q
2.A、B为两导体板,面积均为S,平行放置, A板带电荷+Q1 , B板电荷 +Q2,如果使 B板接地,则AB间电场强度的大小E为 【C】
E 则两圆筒的电势差为 2 0 r r R2 R2 dr R2 U E d r ln 2 0 r r 2 0 r R1 R1 R1
大学物理习题静电场中的导体和电介质习题课
解:因保持与电源连接,两极间电势保持不变,而
电容值为 C 0S / d C' 0S /(nd ) C / n
电容器储存的电场能量由 We CU 2 / 2
We' C'U 2 / 2 CU 2 / 2n
We
We'We
U
2
/ 2(C
/n
C)
CU 2
21
n n
当电介质被裁成两段后撤去电场,极化的电介质又恢 复原状,仍各保持中性。
选择题:
1.“无限大”均匀带电平面 A 附近平行放 置有一定厚度的“无限大”平面导体板 B, 如图所示,已知 A 上的电荷面密度为 + , 则在导体板 B 的两个表面 1 和 2 上的感
应电荷面密度为
(A) 1=–, 2=0 (B) 1= –, 2=+, (C) 1= – /2 , 2=+ /2 (D) 1= – /2 , 2= – /2
电量还是原来的分布吗?
C
后
+Q -Q
C
+2Q -2Q
设
C
+-qq11
C
+-qq22
C +-qq11
C
由(2)得 由(1)得
C +1.5Q C -1.5Q
+-qq22
求 q1,q2:
q1 q2 3Q
q1 q2 CC
q1 q1
q2 q2
3 2
Q
(1) (2)
+1.5Q -1.5Q
[C]
1 2
AB
2.在一个带电量为 +q 的外表面为球形的 空腔导体 A 内,放有一带电量为 +Q 的带 电导体 B ,则比较空腔导体 A 的电势 UA, 和导体 B 的电势 UB 时,可得以下结论:
清华出版社《大学物理》专项练习及解析 10导体、介质中的静电
2 0
, E0
2 0
.
(B)
E0
2 0
, E0
2 0
.
(C)
E0
2 0
, E0
2 0
.
(D)
E0
2 0
E0
2 0
.
[
]
10、(1205C45) A、B 为两导体大平板,面积均为 S,平行放置,如图所示.A 板带
+Q1 A
电荷+Q1,B 板带电荷+Q2,如果使 B 板接地,则 AB 间电场强度的大
(A) R / r .
(B) R2 / r2.
(C) r2 / R2.
(D) r / R .
[
]
6、(1171B30)
选无穷远处为电势零点,半径为 R 的导体球带电后,其电势为 U0,则球外离球心距离为 r 处
的电场强度的大小为
(A)
R 2U 0 r3
.
(B)
U0 . R
(C)
RU 0 r2
.
(D)
(A) 1 = -, 2 = +.
(B)
1
=
1 2
,
2
=
1 2
.
(C)
1
=
1 2
,
1
=
1 2
.
AB
(D) 1 = -, 2 = 0. 5、(1140B30)
[
]
半径分别为 R 和 r 的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们带
电.在忽略导线的影响下,两球表面的电荷面密度之比R / r 为
Rd O +q
(A) 0 .
(B)
q
.
大学物理(第四版)课后习题及答案_电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
静电场中的导体和电介质(大学物理作业,考研真题)
物理(下)作业专业班级:姓名:学号:第十一章静电场中的导体和电介质(1)一、选择题1、两个同心薄金属球壳,半径分别为1R 和2R (1R <2R ),若分别带上电量1q 和2q 的电荷,则两者的电势分别为1U 和2U (选无穷远处为电势零点)。
现用导线将两球壳连接,则它们的电势为(A )、1U ;(B )、2U ;(C )、21U U ;(D )、)(2121U U 。
[]2、两导体板A 和B 相距为d ,并分别带有等量异号电荷。
现将另一不带电的,且厚度为t (t ﹤d )的导体板C 插入A 、B 之间(不与它们接触),则导体板A 和B 之间的电势差U AB 的变化为:(A )、不变;(B )、增大;(C )、减小;(D )、不一定。
[]3、(2018年暨南大学)将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有:(A )金属导体因静电感应带电,总电量为-Q ;(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ;(C )金属导体两端带等量异号电荷,且电量q<Q ;(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、填空题1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布在;若腔内有电荷,则空腔导体上的电荷应分布在。
3、如图所示,两同心导体球壳,内球壳带电量+q ,外球壳带电量-2q 。
静电平衡时,外球壳的内表面带电量为______;外表面带电量为_______。
三、计算题1、同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱体构成,如图所示。
设内圆柱体的半径为R 1,外圆柱体的内半径为R 2。
并假定内外圆柱导体分别带等量异号电荷,其线电荷密度大小为λ,求内外圆柱导体之间的电场强度分布以及它们之间的电势差。
西南科技大学2019-2020-2学期电介质物理单元考试及答案
西南科技大学2019-2020-2学期《电介质物理》学习测验一、名词解释(每题4分,共20分)1、离子位移极化:在外电场作用下原来正负电荷中心重合的分子发生正、负电荷中心分离,形成偶极矩的现象。
2、退极化电场:由极化电荷产生的场强被称为退极化电场。
3、电介质的极化:在电场作用下,电介质内部沿电场方向出现宏观偶极子,在电介质表面出现束缚电荷(极化电荷)的现象。
4、电偶极子:两个相距很近的等量异号点电荷组成的系统。
5、极化强度P:单位体积电介质的电偶极矩矢量总和。
6、电介质的损耗:在电场作用下,电介质将部分电能转变成热能的物理过程。
7、电介质的损耗包括:电导损耗,松弛极化损耗,谐振损耗。
8、电介质的热击穿:在电场作用下,电介质内部热量积累、温度过高而导致失去绝缘能力。
9、电介质的电击穿:电场使电介质中积聚起足够数量和能量的带电质点而导致电介质失去绝缘性能。
二、填空题(每空3分,共30分):1、一平行板真空电容器,极板的自由电荷面密度为δ,现充以介电系数为εr的介质。
如果板上的自由电荷面密度δ不变,则有:真空时板间场强E=δ/ε0,电位移D= δ ,极化强度P= 0 ;充以介质时场强E= δ/ε0 εr,电位移D= δ ,极化强度P= δ(1-1/εr) ,极化电荷产生的场强为δ(1-εr) /ε0εr。
3、根据电介质的极化微观机理,极化可分为:电子和离子位移极化,偶极子转向极化,热离子松弛极化,空间电荷极化。
1、气体在均匀电场中自持放电的条件:正离子在阴极表面碰撞产生 二次电子 ;非自持放电到自持放电的关系式: (3分)。
2、电介质的击穿包括: 热 击穿, 电 击穿, 电化学 击穿。
三、简述及问答题(共20分)1、已知洛伦兹有效场E e =E (εr +2)/ 3,试推导克劳休斯—莫索缔方程。
解:1、流经实际介质电容器的电流由哪几部分组成?作图说明。
解:电导电流,位移极化电流,松弛极化电流(有功,无功)。
大学物理练习题 静电场中的电介质
练习八 静电场中的电介质一、选择题1. 极化强度P v 是量度介质极化程度的物理量,有一关系式为()E P v v 1r 0−=εε,电位移矢量公式为P E D v v v +=0ε,则 (A ) 二公式适用于任何介质。
(B ) 二公式只适用于各向同性电介质。
(C ) 二公式只适用于各向同性且均匀的电介质。
(D ) 前者适用于各向同性电介质,后者适用于任何电介质。
2. 电极化强度P v(A ) 只与外电场有关。
(B ) 只与极化电荷产生的电场有关。
(C ) 与外场和极化电荷产生的电场都有关。
(D ) 只与介质本身的性质有关系,与电场无关。
3. 真空中有一半径为R ,带电量为Q 的导体球,测得距中心O 为r 处的A 点场强为()30π4r r Q E A εv v =,现以A 为中心,再放上一个半径为ρ,相对电容率为ε r 的介质球,如图所示,此时下列各公式中正确的是(A ) A 点的电场强度r εA A E E v v =′。
(B ) ∫∫=⋅S Q S D v v d 。
(C ) ∫∫⋅S S E v v d =Q /ε0。
(D ) 导体球面上的电荷面密度σ = Q /(4πR 2)。
4. 在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面:电介质(A ) 高斯定理成立,且可用它求出闭合面上各点的场强。
(B ) 高斯定理成立,但不能用它求出闭合面上各点的场强。
(C ) 由于电介质不对称分布,高斯定理不成立。
(D ) 即使电介质对称分布,高斯定理也不成立。
5. 关于高斯定理,下列说法中哪一个是正确的? (A ) 高斯面内不包围自由电荷,则面上各点电位移矢量D r 为零。
(B ) 高斯面上处处D r 为零,则面内必不存在自由电荷。
(C ) 高斯面的D r 通量仅与面内自由电荷有关。
(D ) 以上说法都不正确。
6. 关于静电场中的电位移线,下列说法中,哪一种是正确的?(A ) 起自正电荷,止于负电荷,不形成闭合线,不中断。
电介质物理基础习题答案
参考答案第一章1. 电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷的现象称为电介质的极化。
其宏观参数是介电系数ε。
2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。
退极化电场:平均宏观电场:充电电荷产生的电场:3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。
4.氖的相对介电系数:单位体积的粒子数:,而所以:5.洛伦兹有效电场:εr与α的关系为:介电系数的温度系数为:6.时,洛伦兹有效电场可表示为:7. 克----莫方程赖以成立的条件:E”=0。
其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体;非极性及弱极性液体介质。
8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数.10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。
极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。
11. 极化完成的时间在光频范围内的电子、离子位移极化都称为瞬间极化。
而在无线电频率范围内的松弛极化、自发式极化都称为缓慢式极化。
电子、离子的位移极化的极化完成的时间非常短,在秒的范围内,当外电场的频率在光频范围内时,极化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。
12.参照书中简原子结构模型中关于电子位移极化率的推导方法。
13.“-”表示了E ji的方向性。
14.参考有效电场一节。
15.求温度对介电系数的影响,可利用,对温度求导得出:。
由上式可知,由于电介质的密度减小,使得电子位移极化率及离子位移极化率所贡献的极化强度都减小,第一项为负值;但温度升高又使离子晶体的弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。
静电场中的导体和电介质(含答案,大学物理作业,考研真题)
1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布
在
;若腔内有电荷,则空腔导体上的电荷应分布
在
。
3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;
大学物理(第四版)课后习题及答案电介质共14页
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差 1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R VR =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
大学物理电介质练习题
4-1第十四章 静电场中的导体和电介质习题第十四章 静电场中的导体和电介质习题1. 一带电的平行板电容器中,均匀充满电介质,若在其中挖去一个球形空腔,如图所示,则A 、B 两点的场强( )A .B A E E > B. B A E E <C .B A E E = D. 0=>B A E E2.点电荷+Q 位于金属球壳的中心,球壳的内、外半径分别为R 1,R 2,所带净电荷为0,设无穷远处电势为0,如果移去球壳,则下列说法正确的是: (1) 如果移去球壳,B 点电势增加 (2) 如果移去球壳,B 点电场强度增加 (3) 如果移去球壳,A 点电势增加 (4) 如果移去球壳,A 点电场强度增加3.在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心做一球形闭合面,则对此球形闭合面( )(1) 高斯定理成立,且可用它求出闭合面上各点的场强。
(2) 高斯定理成立,但不能用它求出闭合面上各点的场强。
(3) 由于电介质不对称分布,高斯定理不成立 (4) 即使电介质对称分布,高斯定理也不成立图3B图24.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离是d ,忽略边缘效应,当B 板不接地时,两板间电势差=AB U ;B 板接地时=′AB U 。
5.如图所示,将两个完全相同的平板电容器,串联起来,在电源保持连接时,将一块介质板放进其中一个电容器C 2的两极板之间,则电容器C 1电场强度E 1,和电容器C 2电场强度E 2,及电场能量W 1,W 2的变化情况:(1) E 1不变,E 2增大,W 1不变,W 2增大 (2) E 1不变,E 2减小,W 1不变,W 2减小, (3) E 1减小,E 2增大,W 1减小,W 2增大 (4) E 1增大,E 2减小,W 1增大,W 2减小6.真空中有一带电球体和一均匀带电球面,如果它们的半径和所带的总电量都相等,则 (1) 球体的静电能等于球面的静电能 (2) 球体的静电能大于球面的静电能 (3) 球体的静电能小于球面的静电能 (4) 不能确定 二、计算题1.两块无限大平行带电平板,试证明:(1)相向两面的电荷面密度总是大小相等,符号相反;(2)相背两面的电荷面密度总是大小相等,符号相同;(3)设左边导体板带静电荷2/6m c µ+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-1
第十四章 静电场中的导体和电介质习题
第十四章 静电场中的导体和电介质习题
1. 一带电的平行板电容器中,均匀充满电介质,若在其中挖去一个球形空腔,如图所示,则A 、B 两点的场强( )
A .
B A E E > B. B A E E <
C .B A E E = D. 0=>B A E E
2.点电荷+Q 位于金属球壳的中心,球壳的内、外半径分别为R 1,R 2,所带净电荷为0,设无穷远处电势为0,如果移去球壳,则下列说法正确的是: (1) 如果移去球壳,B 点电势增加 (2) 如果移去球壳,B 点电场强度增加 (3) 如果移去球壳,A 点电势增加 (4) 如果移去球壳,A 点电场强度增加
3.在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心做一球形闭合面,则对此球形闭合面( )
(1) 高斯定理成立,且可用它求出闭合面上各点的场强。
(2) 高斯定理成立,但不能用它求出闭合面上各点的场强。
(3) 由于电介质不对称分布,高斯定理不成立 (4) 即使电介质对称分布,高斯定理也不成立
图3
B
图2
4.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离是d ,忽略边缘效应,当B 板不接地时,两板间电势差=AB U ;B 板接地时=′AB U 。
5.如图所示,将两个完全相同的平板电容器,串联起来,在电源保持连接时,将一块介质板放进其中一个电容器C 2的两极板之间,则电容器C 1电场强度E 1,和电容器C 2电场强度E 2,及电场能量W 1,W 2的变化情况:
(1) E 1不变,E 2增大,W 1不变,W 2增大 (2) E 1不变,E 2减小,W 1不变,W 2减小, (3) E 1减小,E 2增大,W 1减小,W 2增大 (4) E 1增大,E 2减小,W 1增大,W 2减小
6.真空中有一带电球体和一均匀带电球面,如果它们的半径和所带的总电量都相等,则 (1) 球体的静电能等于球面的静电能 (2) 球体的静电能大于球面的静电能 (3) 球体的静电能小于球面的静电能 (4) 不能确定 二、计算题
1.两块无限大平行带电平板,试证明:(1)相向两面的电荷面密度总是大小相等,符号相反;(2)相背两面的电荷面密度总是大小相等,符号相同;(3)设左边导体板带静电荷2
/6m c µ+。
求各板面上的电荷面密度。
d
图4
C 1 C 2
ε
图5
2.一半径为a 的接地导体球外有一点电荷,它与球心的距离为b 。
试求导体球上的感应电荷q ’。
3.点电荷q=4.0×10-10C 处在导体球壳的中心,壳的内外半径分别为R 1=2.0cm ,R 2=3.0cm ,求:
(1)导体球的电势;(2)离球心r=1.0cm 处的电势;(3)把点电荷移开球心1.0cm ,再求导体球壳的电势。
4.半径为r 1和r 2(r 1<r 2)互相绝缘的二个同心球壳,现把+q 的电量给予内球时,问: (1) 外球的电荷分布电势。
(2) 把外球接地后再重新绝缘,外球的电荷分布及电势
(3) 然后把内球接地,内球的电荷分布及外球的电势改变量。
5.两个同轴圆柱面,长度均为l ,半径分别为a 和b ,两圆柱面之间充有介电常数为ε的均匀介质,当这两个圆柱面带有等量异号电荷+Q 和-Q 时,求: (1)在半径为r (a<r<b ),厚度为dr ,长度为l 的圆柱薄壳中任一处,电场能量密度是多少?整个薄壳中的能量是多少?
(2)电介质中的总能量是多少?(由积分式算出),能否从此总能量推算圆柱形电容器的电容。
6.在一半径为R 、电量为q 1的均匀带电圆环L1的几何轴上放一长为2L 、电量为q 2的均匀带电L2。
细圆环中心O 与直线近端的距离为a ,试求此电荷系统的静电相互能。
图7
L
图8
第十四章 静电场中的导体和电介质习题答案
一填空,选择1. B 2. 3 3. B , 4. d S Q U AB ⋅=
2ε,d S Q
U AB
⋅=′0ε 5. 4 6. 2 二、计算题
1.2322
41/1/7m C m C µσσµσσ=−===
2. q b a
q −
=′ 3.120V (2)300V (3)120V 4.2024r q
U πε=
; 0; 2
024r q e U U U πε−=−=∆外外
5.
r
dr l Q πε42; a
l
C ln 2πε=
6. 222202
1)2(2ln
8a
R a L a R L a L q q W ++++++=πε。