高中数学第2章圆锥曲线与方程2.6.1曲线与方程学案苏教版选修2-1

合集下载

选修1--1,选修2--1圆锥曲线与方程复习学案(椭圆)

选修1--1,选修2--1圆锥曲线与方程复习学案(椭圆)
高三数学复习学案
北大附中广州实验学校
王 生
“圆锥曲线与方程”复习讲义
高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用 ② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质 ③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质 ④ 理解数形结合的思想 ⑤ 了解圆锥曲线的简单应用 (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系.

4.(2007 福建理)已知正方形 ABCD,则以 A、B 为焦点,且过 C、D 两点的椭圆的离心率为_______;
5.(2008 全国Ⅰ卷理)在 △ ABC 中, AB BC , cos B 则该椭圆的离心率 e .
7 .若以 A,B 为焦点的椭圆经过点 C , 18
6.(2007 福建文)已知长方形 ABCD,AB=4,BC=3,则以 A、B 为焦点,且过 C、D 两点的椭圆的 离心率为 。
x2 y2 1 的两焦点,过点 F2 的直线 16 9

例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( (A)

1 3
(B)
3 3
(C)
1 2
(D)
3 2
例 3. (2005 全国卷 III 文、理)设椭圆的两个焦点分别为 F1、 、F2,过 F2 作椭圆长轴的垂线交椭圆于 点 P,若△F1PF2 为等腰直角三角形,则椭圆的离心率是( ) A.
x2 y2 1 的焦点,在 C 上满足 PF1⊥PF2 的点 P 的个数为_______. 8 4
x2 y2 1 的两个焦点,过 F1 的直线交椭圆于 A、B 两 6. (2008 浙江文、理)已知 F1、F2 为椭圆 25 9

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word 学案 [学习目标] 1.了解圆锥曲线的统一定义.2.能用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题.[知识链接]1.椭圆上一点到准线距离与它到对应焦点距离之比等于多少? 答:1e. 2.动点M 到一个定点F 的距离与到一条定直线l 的距离之比为定值的轨迹一定是圆锥曲线吗? 答:当F ∉l 时,动点M 轨迹是圆锥曲线.当F ∈l 时,动点M 轨迹是过F 且与l 垂直的直线. [预习导引]1.圆锥曲线的统一定义平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹. 0<e <1时,它表示椭圆;e >1时,它表示双曲线;e =1时,它表示抛物线.2.对于椭圆x 2a 2+y 2b 2=1 (a >b >0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)中,与F (c,0)对应的准线方程是l :x =a 2c ,与F ′(-c ,0)对应的准线方程是l ′:x =-a 2c;如果焦点在y 轴上,则两条准线方程为y =±a 2c.要点一 统一定义的简单应用例1 椭圆x 225+y 29=1上有一点P ,它到左准线的距离等于2.5,那么,P 到右焦点的距离为________.答案 8解析 如图所示,PF 1+PF 2=2a =10,e =c a =45, 而PF 12.5=e =45,∴PF 1=2,∴PF 2=10-PF 1=10-2=8.规律方法 椭圆的两个定义从不同角度反映了椭圆的特征,解题时要灵活运用.一般地,如果遇到有动点到两定点距离和的问题,应自然联想到椭圆的定义;如果遇到有动点到一定点及一定直线距离的问题,应自然联想到统一定义;若两者都涉及,则要综合运用两个定义才行.跟踪演练1 已知椭圆x 24b 2+y 2b 2=1上一点P 到右焦点F 2的距离为b (b >1),求P 到左准线的距离.解 方法一 由x 24b 2+y 2b 2=1,得a =2b ,c =3b ,e =32.由椭圆第一定义, PF 1+PF 2=2a =4b ,得PF 1=4b -PF 2=4b -b =3b .由椭圆第二定义,PF 1d 1=e ,d 1为P 到左准线的距离, ∴d 1=PF 1e =23b ,即P 到左准线的距离为23b . 方法二 ∵PF 2d 2=e ,d 2为P 到右准线的距离. e =c a =32,∴d 2=PF 2e =233b . 又椭圆的两准线的距离为2·a 2c =833b , ∴P 到左准线的距离为833b -233b =23b . 要点二 应用统一定义转化求最值例2 已知椭圆x 28+y 26=1内有一点P (1,-1),F 是椭圆的右焦点,在椭圆上求一点M ,使MP +2MF 之值为最小.解 设d 为M 到右准线的距离.∵e =c a =12,MF d =12, ∴MF 12=d ,即d =2MF (如图). 故MP +2MF =MP +MM ′.显然,当P 、M 、M ′三点共线时,所求的值为最小,从而求得点M 的坐标为(2315,-1).规律方法 本例中,利用统一定义,将椭圆上点M 到焦点F 的距离转化为到准线的距离,再利用图形的形象直观,使问题得到简捷的解决.跟踪演练2 已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),试在双曲线上求一点M ,使MA +35MF 的值最小,并求这个最小值. 解 过M 作MN 垂直于双曲线的右准线l 于N ,由第二定义可知MN =MF e(如图). 又a =3,b =4,c =5,e =53, ∴MN =35MF ,∴MA +35MF =MA +MN ,显然当M 、N 、A 三点共线时MA +MN =AN 为最小,即MA +35MF 取得最小值,此时AN =9-a 2c =9-95=365,∴MA +35MF 的最小值为365,此时点M (352,2). 要点三 圆锥曲线统一定义的综合应用例3 已知A 、B 是椭圆x 2a 2+y 2925a 2=1上的点,F 2是右焦点,且AF 2+BF 2=85a ,AB 的中点N 到左准线的距离等于32,求此椭圆方程. 解 设F 1为左焦点,则根据椭圆定义有:AF 1+BF 1=2a -AF 2+2a -BF 2=4a -(AF 2+BF 2)=4a -85a =125a . 再设A 、B 、N 三点到左准线距离分别为d 1,d 2,d 3,由梯形中位线定理有d 1+d 2=2d 3=3,而已知b 2=925a 2, ∴c 2=1625a 2,∴离心率e =45, 由统一定义AF 1=ed 1,BF 1=ed 2,∴AF 1+BF 1=125a =e (d 1+d 2)=125,∴a =1, ∴椭圆方程为x 2+y 2925=1. 规律方法 在圆锥曲线有关问题中,充分利用圆锥曲线的共同特征,将曲线上的点到准线的距离与到焦点的距离相互转化是一种常用方法.跟踪演练3 设P (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,F 1为其左焦点. (1)求PF 1的最小值和最大值;(2)在椭圆x 225+y 25=1上求一点P ,使这点与椭圆两焦点的连线互相垂直. 解 (1)对应于F 1的准线方程为x =-a 2c, 根据统一定义:PF 1x 0+a 2c=e , ∴PF 1=a +ex 0.又-a ≤x 0≤a ,∴当x 0=-a 时,(PF 1)min =a +c a×(-a )=a -c ; 当x 0=a 时,(PF 1)max =a +c a·a =a +c . (2)∵a 2=25,b 2=5,∴c 2=20,e 2=45. ∵PF 21+PF 22=F 1F 22,∴(a +ex 0)2+(a -ex 0)2=4c 2. 将数据代入得25+45x 20=40.∴x 0=±532. 代入椭圆方程得P 点的坐标为⎝⎛⎭⎫532,52,⎝⎛⎭⎫532,-52,⎝⎛⎭⎫-532,52,⎝⎛⎭⎫-532,-52.1.已知方程(1+k )x 2-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 -1<k <1解析 由题意得⎩⎪⎨⎪⎧ 1+k >0,1-k >0,解得⎩⎪⎨⎪⎧ k >-1,k <1,即-1<k <1. 2.已知点F 1,F 2分别是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF→1+PF →2|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF →1=(-1-x 0,-y 0),PF →2=(1-x 0,-y 0),∴PF →1+PF →2=(-2x 0,-2y 0),∴|PF →1+PF →2|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF →1+PF →2|取最小值为2.3.已知F 1、F 2是椭圆的两个焦点.满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案 (0,22) 解析 ∵MF 1→·MF 2→=0,∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径,由题意知椭圆上的点在圆x 2+y 2=c 2外部,设点P 为椭圆上任意一点,则OP >c 恒成立,由椭圆性质知OP ≥b ,其中b 为椭圆短半轴长,∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2,∴(c a )2<12,∴e =c a <22. 又∵0<e <1,∴0<e <22. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0),有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是________.答案 12解析 由题意,得⎩⎪⎨⎪⎧ a 2-b 2=c 2, ①m 2+n 2=c 2,②c 2=am ,③2n 2=2m 2+c 2,④由②④可得m 2+n 2=2n 2-2m 2,即n 2=3m 2,⑤⑤代入②得4m 2=c 2⇒c =2m ,⑥⑥代入③得4m 2=am ⇒a =4m .所以椭圆的离心率e =c a =12.1.三种圆锥曲线的共同特征是曲线上的点到定点的距离与它到定直线距离的比是常数.2.利用圆锥曲线的统一定义可实现曲线上的点到焦点的距离与到准线距离的相互转化.一、基础达标1.若直线ax -y +1=0经过抛物线y 2=4x 的焦点,则实数a =______.答案 -1解析 焦点为(1,0),代入直线方程,可得a =-1.2.已知椭圆的准线方程为y =±4,离心率为12,则椭圆的标准方程为____________. 答案 x 23+y 24=1 解析 由⎩⎨⎧ a 2c =4,c a =12,解得⎩⎪⎨⎪⎧ a =2,c =1. 所以b 2=a 2-c 2=3,所以椭圆的标准方程为x 23+y 24=1. 3.双曲线3x 2-y 2=9,P 是双曲线上一点,则P 点到右焦点的距离与P 点到右准线的距离的比值为________.答案 2解析 由统一定义,所求距离之比即为双曲线的离心率.双曲线方程可化为x 23-y 29=1, 得a 2=3,b 2=9,c 2=a 2+b 2=12,所以e =c a =123=2. 4.椭圆x 225+y 216=1上一点P 到左焦点F 1的距离为3,则点P 到左准线的距离为________. 答案 5解析 依题意e =35,所以点P 到左准线的距离d =PF 1e=5. 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,右准线方程为x =33,则双曲线方程为__________.答案 x 2-y 22=1 解析 由⎩⎨⎧c a =3,a 2c =33,得⎩⎪⎨⎪⎧a =1,c =3,所以b 2=3-1=2. 所以双曲线方程为x 2-y 22=1. 6.已知抛物线y 2=2px 的准线与双曲线x 2-y 2=2的左准线重合,则抛物线的焦点坐标为________.答案 (1,0)解析 双曲线的左准线为x =-1,抛物线的准线为x =-p 2,所以p 2=1,所以p =2. 故抛物线的焦点坐标为(1,0).7.已知双曲线的渐近线方程为3x ±4y =0,一条准线方程为y =95,求该双曲线的标准方程. 解 由已知可设双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0). 由题意有⎩⎨⎧a 2c =95,ab =34,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=9,b 2=16. 所以所求双曲线方程为y 29-x 216=1. 二、能力提升8.已知点P 在椭圆x 216+y 225=1上,F 1、F 2是椭圆的上、下焦点,M 是PF 1的中点,OM =4,则点P 到下准线的距离为________.答案 403解析 因为OM 是△F 1F 2P 的中位线,所以PF 2=2OM =8.又e =35,所以P 到下准线的距离d =PF 2e =8×53=403. 9.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)上横坐标为3a 2的点到右焦点的距离大于它到左准线的距离,则双曲线的离心率的取值范围是________.答案 (2,+∞)解析 由已知得(3a 2-a 2c )e >3a 2+a 2c,即3c 2>5ac +2a 2, 所以3e 2-5e -2>0,解得e >2或e <-13(舍去). 10.在给定的椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应的准线的距离为1,则椭圆的离心率为________.答案 22解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0), 则右焦点F (c,0),右准线l :x =a 2c. 把x =c 代入椭圆的方程得y 2=b 2(1-c 2a 2)=b 4a 2,即y =±b 2a. 依题设知2b 2a =2且a 2c -c =b 2c=1, 所以e =c a =b 2a ·c b 2=22×1=22. 11.已知双曲线过点(3,-2),且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.解 (1)椭圆的焦点为(5,0),(-5,0),它也是双曲线的焦点.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). 则由题设得⎩⎪⎨⎪⎧ 9a 2-4b 2=1,a 2+b 2=5,解得⎩⎪⎨⎪⎧a 2=3,b 2=2. 所以双曲线的标准方程为x 23-y 22=1. (2)由(1)可知双曲线的右准线为x =a 2c =355. 它也是抛物线的准线,所以p 2=355, 故抛物线的标准方程为y 2=-1255x . 12.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,点F 2到右准线l 的距离为 2.(1)求a 、b 的值;(2)设M 、N 是l 上的两个动点,F 1M →·F 2N →=0,证明:当|MN →|取最小值时,F 2F 1→+F 2M →+F 2N →=0.(1)解 因为e =c a ,F 2到l 的距离d =a 2c-c , 所以由题设得⎩⎨⎧ c a =22,a 2c -c =2,解得c =2,a =2.由b 2=a 2-c 2=2,得b = 2.故a =2,b = 2.(2)证明 由c =2,a =2得F 1(-2,0),F 2(2,0),l 的方程为x =22, 故可设M (22,y 1),N (22,y 2).由F 1M →·F 2N →=0知(22+2,y 1)·(22-2,y 2)=0,得y 1y 2=-6,所以y 1y 2≠0,y 2=-6y 1. |MN →|=|y 1-y 2|=|y 1+6y 1|=|y 1|+6|y 1|≥26, 当且仅当y 1=±6时,上式取等号,此时y 2=-y 1,所以,F 2F 1→+F 2M →+F 2N →=(-22,0)+(2,y 1)+(2,y 2)=(0,y 1+y 2)=0.三、探究与创新13.如图所示,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2作垂直于x 轴的直线与椭圆的一个交点为B ,且F 1B +F 2B =10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:F 2A 、F 2B 、F 2C 成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标.解 (1)由椭圆定义及条件知,2a =F 1B +F 2B =10,得a =5,又c =4,所以b =a 2-c 2=3.故椭圆方程为x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得F 2B =y B =95. 因为椭圆右准线方程为x =254,离心率为45, 根据椭圆定义,有F 2A =45⎝⎛⎭⎫254-x 1,F 2C =45⎝⎛⎭⎫254-x 2,由F 2A 、F 2B 、F 2C 成等差数列,得 45⎝⎛⎭⎫254-x 1+45⎝⎛⎭⎫254-x 2=2×95,由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0),则x 0=x 1+x 22=4.。

2020高中数学 第二章 圆锥曲线与方程 2. 双曲线 2..1 双曲线及其标准方程讲义 2-1

2020高中数学 第二章 圆锥曲线与方程 2. 双曲线 2..1 双曲线及其标准方程讲义 2-1

2.3。

1 双曲线及其标准方程1.双曲线(1)定义错误!平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(2)双曲线的集合描述设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由错误!P={M|||MF1|-|MF2||=2a,0〈2a〈|F1F2|}.2.双曲线的标准方程1.判一判(正确的打“√",错误的打“×")(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程错误!-错误!=1中,a〉0,b>0且a≠b.( ) (3)双曲线的标准方程可以统一为Ax2+By2=1(其中AB 〈0).()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线错误!-错误!=1上一点M到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x2-4y2=1的焦距为________.(3)(教材改编P55T1)已知双曲线a=5,c=7,则该双曲线的标准方程为________.(4)下列方程表示焦点在y轴上的双曲线的有________(把序号填在横线上).①x2-错误!=1;②错误!+错误!=1(a<0);③y2-3x2=1;④x2cosα+y2sinα=1错误!.答案(1)4或12 (2) 5 (3)错误!-错误!=1或错误!-错误!=1(4)②③④解析(3)∵a=5,c=7,∴b=错误!=错误!=2错误!。

当焦点在x轴上时,双曲线方程为错误!-错误!=1;当焦点在y轴上时,双曲线方程为错误!-错误!=1。

探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x2+y2sinθ=cosθ表示的曲线是()A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆[解析] 曲线方程可化为错误!+错误!=1,θ是第三象限角,则cos θ<0,错误!〉0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为错误!+y 2n=1,则当mn 〈0时,方程表示双曲线.若错误!则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n 〉0则方程表示焦点在y 轴上的双曲线. 【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B.焦点在y轴上的椭圆C.焦点在y轴上的双曲线D.焦点在x轴上的双曲线答案C解析原方程化为错误!-错误!=1,∵k>1,∴k2-1>0,k+1>0。

选修2-1数学课后习题答案(全)

选修2-1数学课后习题答案(全)

新课程标准数学选修2—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+-- ()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等. 逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等.这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上.这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径. 原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(31≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0; (3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}. 6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C ==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形, 利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b+=.因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --= 由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =. 连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+ 所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c .(1)1AF B ∆的周长1212AF AF BF BF =+++. 由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得 直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B)为圆心,以线段2OA (或1OA ) 为半径画圆,圆与x 轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-. 3、(1)2213632x y +=; (2)2212516y x+=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=. 5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12, 12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁; (2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5, 因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49) 1、解:由点(,)M x y10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤101033y -≤≤表示的区域的公共部分. 图略. 4、(1)长轴长28a =,短轴长24b =,离心率2e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得2x =±. 所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x m x +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--=配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12……③化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤ 将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥ 由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,. 12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =所以236927b =-=. 于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF PM d ⎧⎫==⎨⎬⎩⎭由此得 12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,.4、解:如图,由已知,得(0,3)E -,(4,0)F 因为,,R S T 是线段OF 的四等分点,,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''. 直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==. 所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=, 所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a -=.解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =.所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k-=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =; 3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p .设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32p x =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得 3x=±则 321y ==±因为OB k ,OA k=所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线. 2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-=因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan30y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a +=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上.而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为k >k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2p y x =-,得 17(2x p =+.把22)y p =代入)32p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A的坐标为11(,)x y,点B的坐标为22(,)x y,点M的坐标为(,)x y.并设经过点M的直线l的方程为1(2)y k x-=-,即12y kx k=+-.把12y kx k=+-代入双曲线的方程2212yx-=,得222(2)2(12)(12)20k x k k x k------=2(20)k-≠. ……①所以,122(12)22x x k kxk+-==-由题意,得2(12)22k kk-=-,解得4k=当4k=时,方程①成为21456510x x-+=根的判别式25656512800∆=-⨯=>,方程①有实数解.所以,直线l的方程为47y x=-.10、解:设点C的坐标为(,)x y.由已知,得直线AC的斜率(5)5ACyk xx=≠-+直线BC的斜率(5)5BCyk xx=≠-由题意,得AC BCk k m=. 所以,(5)55y ym xx x⨯=≠±+-化简得,221(5)2525x yxm-=≠±当0m<时,点C的轨迹是椭圆(1)m≠-,或者圆(1)m=-,并除去两点(5,0),(5,0)-;当0m>时,点C的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x=上的点P的坐标为(,)x y,则24y x=.点P到直线3y x=+的距离d===当2y=时,d. 此时1x=,点P的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y轴(向上),建立直角坐标系.设隧道顶部所在抛物线的方程为22x py=-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=.2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,a =.由已知及1F A a c =+,得a c +=所以 (1c +=+ c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=. 由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……②(第4题)12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--. 练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3.练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=(第7题)PRS B CAQ O(第3题)所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=. 2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,153DB CM DB CM DB CM-+⋅<>===⋅.习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =.9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-, 所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =- 所以2312CM ==,21312D N == 111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19. 11、31(,,3)22- 习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠∴ OB OC OA OC ⋅=⋅∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点.∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)292247u v u v⋅=-,α与β相交,交角的余弦等于292247.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++(第3题)222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅ 222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以 22cos AA d mn θ'=.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,212MN AD ⋅==1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3AC DB ⋅== 所以 1cos 3θ=-. 因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos 2θ===sin θ=点O 到平面ABC 的距离sin 1OH OA θ===. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O,D ,1(0,,0)2B,3(0,,0)2C,A . ∴3((4DO DA ⋅=-⋅=,184DO DA ⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,02x y AB x y ⋅=⋅=,(,,1)(,,1)0x y AD x y ⋅=⋅=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()απθ=-=7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26=.解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+.(2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅=,10OM BD ⋅=,所以1OM AA ⊥,1OM BD ⊥,2OM ==. 10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD ==解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ PQ MNθ⋅====⋅, 45θ=︒. 习题3.2 B 组(P113) 1、解:12222ABC S ∆=⨯⨯=, ()224502AD BE AB BD BE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M -,,0)N .。

高中数学 第2章 圆锥曲线与方程章末综合检测(二) 湘教版高二选修2-1数学试题

高中数学 第2章 圆锥曲线与方程章末综合检测(二) 湘教版高二选修2-1数学试题

章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:选D.由题意知椭圆的焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 解析:选A.依题意得c =4,e =c a =4a=2,a =2,b 2=c 2-a 2=12,因此所求的双曲线的标准方程为x 24-y 212=1,故选A.3.若点P 到直线x =-1的距离比到点(2,0)的距离小1,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选D.点P 到直线x =-1的距离比到点(2,0)的距离小1,即点P 到直线x =-2的距离与到点(2,0)的距离相等,根据抛物线的定义可知,点P 的轨迹是抛物线.4.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为14,则椭圆C 的离心率e 为( )A.15B.25C.45D.215解析:选B.根据椭圆定义可得4+2a =14,解得a =5,故其离心率e =c a =25,故选B.5.双曲线的两条渐近线的夹角为60°,则双曲线的离心率是( ) A .2或233B .2C.233D. 3解析:选A.不妨设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则渐近线方程为y =±bax .由题意,则ba =33或a b =33, 所以b 2a 2=13或a 2b 2=13,可以求得e =233或2.6.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C.点(2,0)为双曲线的右顶点,过该点有两条与双曲线的渐近线平行的直线,这两条直线与双曲线仅有一个公共点,另外,过该点且与x 轴垂直的直线也与双曲线只有一个公共点.所以共有3条.7.已知双曲线与椭圆x 216+y 264=1有共同的焦点,且双曲线的一条渐近线方程为x +y =0,则双曲线的方程为( )A .x 2-y 2=50 B .x 2-y 2=24 C .x 2-y 2=-50 D .x 2-y 2=-24解析:选D.因为双曲线与椭圆x 216+y 264=1有共同的焦点,所以双曲线的焦点在y 轴上,且焦点坐标为(0,-43),(0,43).又双曲线的一条渐近线方程为x +y =0,所以可设双曲线方程为y 2-x 2=λ(λ>0),则2λ=48,λ=24,故所求双曲线的方程为y 2-x 2=24,即x 2-y 2=-24.8.过抛物线y 2=8x 的焦点,作倾斜角为45°的直线,则被抛物线截得的弦长为( ) A .8 B .16 C .32D .64解析:选B.抛物线中2p =8,p =4,则焦点坐标为(2,0),过焦点且倾斜角为45°的直线方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,y 2=8x ,得x 2-12x +4=0, 则x 1+x 2=12(x 1,x 2为直线与抛物线两个交点的横坐标).从而弦长为x 1+x 2+p =12+4=16.9.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值X 围是( )A .m >1B .m ≥1或0<m <1C .m ≥1且m ≠5D .0<m <5且m ≠1解析:选C.直线y =kx +1过定点(0,1),只需该点落在椭圆内或椭圆上,所以025+1m ≤1,解得m ≥1,又m ≠5,故选C.10.已知点A (0,2),B (2,0).若点C 在抛物线x 2=y 的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1解析:选A.由已知可得|AB |=22,要使S △ABC =2,则点C 到直线AB 的距离必须为2,设C (x ,x 2),而l AB ∶x +y -2=0,所以有|x +x 2-2|2=2,所以x 2+x -2=±2,当x 2+x -2=2时,有两个不同的C 点;当x 2+x -2=-2时,亦有两个不同的C 点.因此满足条件的C 点有4个,故选A.11.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA |=2|FB |,则k 等于( )A.13B.23C.23D.223解析:选D.设A (x 1,y 1),B (x 2,y 2),易知x 1>0,x 2>0,y 1>0,y 2>0.由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x得k 2x 2+(4k 2-8)x +4k 2=0, 所以x 1x 2=4,①根据抛物线的定义得,|FA |=x 1+p2=x 1+2,|FB |=x 2+2.因为|FA |=2|FB |, 所以x 1=2x 2+2,②由①②得x 2=1(x 2=-2舍去),所以B (1,22),代入y =k (x +2)得k =223.12.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13 C .b 2=12D .b 2=2解析:选C.由题意,知a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,所以直线截椭圆的弦长d =5×2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12. 二、填空题:本题共4小题,每小题5分.13.若椭圆x 2a 2+y 2b2=1过抛物线y 2=8x 的焦点,且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程为________.解析:抛物线y 2=8x 的焦点坐标为(2,0), 双曲线x 2-y 2=1的焦点坐标为(±2,0)由题意得⎩⎪⎨⎪⎧a 2-b 2=2,4a2=1,所以a 2=4,b 2=2,所以椭圆的方程为x 24+y 22=1.答案:x 24+y 22=114.过直线y =2与抛物线x 2=8y 的两个交点,并且与抛物线的准线相切的圆的方程为________.解析:依题意,抛物线x 2=8y 的焦点(0,2)即为圆心,准线y =-2与圆相切,圆心到切线的距离等于半径,所以半径为2-(-2)=4,故圆的方程为x 2+(y -2)2=16.答案:x 2+(y -2)2=1615.已知双曲线中心在原点,一个顶点的坐标是(3,0),且焦距与虚轴长之比为5∶4,则双曲线的标准方程为________.解析:由题意得双曲线的焦点在x 轴上,且a =3,焦距与虚轴长之比为5∶4,即c ∶b =5∶4,又c 2=a 2+b 2,所以c =5,b =4,所以双曲线的标准方程为x 29-y 216=1.答案:x 29-y 216=116.如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上,则抛物线E 的方程为________.解析:依题意知,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在抛物线E :x 2=2py (p >0)上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .答案:x 2=4y三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知抛物线C :x 2=4y 的焦点为F ,椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32.求椭圆E 的方程. 解:因为椭圆焦点在x 轴上,所以设椭圆E 的方程为x 2a 2+y 2b 2=1,半焦距为c (a >0,b >0,c >0).由题意知F (0,1)为椭圆的短轴的上顶点, 所以b =1,又由c a =32,a 2=b 2+c 2, 得a =2,c = 3.所以椭圆E 的方程为x 24+y 2=1.18.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线的一个交点为P ⎝ ⎛⎭⎪⎫32,6,求抛物线的方程和双曲线的方程.解:依题意,设抛物线的方程为y 2=2px (p >0),因为点P ⎝ ⎛⎭⎪⎫32,6在抛物线上,所以6=2p ×32,所以p =2,所以所求抛物线的方程为y 2=4x .因为双曲线的左焦点在抛物线的准线x =-1上, 所以c =1,即a 2+b 2=1,又点P ⎝ ⎛⎭⎪⎫32,6在双曲线上,所以94a 2-6b 2=1,由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1得⎩⎪⎨⎪⎧a 2=14,b 2=34或⎩⎪⎨⎪⎧a 2=9,b 2=-8.(舍去) 所以所求双曲线的方程为4x 2-43y 2=1.19.(本小题满分12分)已知点P (3,4)是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程; (2)△PF 1F 2的面积.解:(1)令F 1(-c ,0),F 2(c ,0), 则b 2=a 2-c 2.因为PF 1⊥PF 2,所以k PF 1·k PF 2=-1,即43+c ·43-c=-1,解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1.因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1.解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去. 故所求椭圆的方程为x 245+y 220=1.(2)由椭圆定义知|PF 1|+|PF 2|=65,① 又|PF 1|2+|PF 2|2=|F 1F 2|2=100,② ①2-②,得2|PF 1|·|PF 2|=80, 所以S △PF 1F 2=12|PF 1|·|PF 2|=20.20.(本小题满分12分)如图,O 为坐标原点,过点P (2,0)且斜率为k 的直线l 交抛物线y 2=2x 于M (x 1,y 1),N (x 2,y 2)两点.(1)求x 1x 2与y 1y 2的值; (2)求证:OM ⊥ON .解:(1)设直线l 的方程为y =k (x -2)(k ≠0).① 由①及y 2=2x 消去y 可得k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1,x 2是方程②的两个根, 由根与系数的关系得x 1x 2=4k2k 2=4,由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16,又y 1y 2<0, 所以y 1y 2=-4.(2)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2,k 1k 2=y 1y 2x 1x 2=-44=-1, 所以OM ⊥ON .21.(本小题满分12分)设A (x 1,y 1),B (x 2,y 2)两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (2)当直线l 的斜率为2时,求l 在y 轴上的截距的取值X 围.解:(1)点F 在直线l 上⇒|FA |=|FB |⇒A ,B 两点到抛物线的准线的距离相等,因为抛物线的准线与x 轴平行,所以上述条件等价于y 1=y 2⇒x 21=x 22⇒(x 1+x 2)·(x 1-x 2)=0,因为x 1≠x 2,所以当且仅当x 1+x 2=0时,直线l 经过抛物线的焦点F .(2)设l 在y 轴上的截距为b ,依题意,得l 的方程为y =2x +b .则过点A ,B 的直线方程可设为y =-12x +m ,由⎩⎪⎨⎪⎧y =2x 2y =-12x +m ,化简得2x 2+12x -m =0, 所以x 1+x 2=-14.因为A ,B 为抛物线上不同的两点,所以上述方程的判别式Δ=14+8m >0,即m >-132.设AB 的中点N 的坐标为(x 0,y 0),则x 0=-18,y 0=-12x 0+m =116+m .又点N 在直线l上,所以116+m =-14+b ,于是b =516+m >516-132=932,所以l 在y 轴上的截距的取值X 围为⎝ ⎛⎭⎪⎫932,+∞.22.(本小题满分12分)如图,抛物线C 1:y 2=4x 的准线与x 轴交于点F 1,焦点为F 2.以F 1,F 2为焦点,离心率为12的椭圆记作C 2.(1)求椭圆的标准方程;(2)直线l 经过椭圆C 2的右焦点F 2,与抛物线C 1交于A 1,A 2两点,与椭圆C 2交于B 1,B 2两点,当以B 1B 2为直径的圆经过F 1时,求A 1A 2的长.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),依据题意得c =1,c a =12,则a =2,b 2=a 2-c 2=3, 故椭圆的标准方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时,B 1⎝ ⎛⎭⎪⎫1,-32,B 2⎝ ⎛⎭⎪⎫1,32, 又F 1(-1,0), 此时B 1F 1→·B 2F 1→≠0,所以以B 1B 2为直径的圆不经过F 1,不满足条件.当直线l 不与x 轴垂直时,设l :y =k (x -1),由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 因为焦点在椭圆内部,所以直线l 与椭圆恒有两个交点. 设B 1(x 1,y 1),B 2(x 2,y 2), 则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为以B 1B 2为直径的圆经过F 1, 所以B 1F 1→·B 2F 1→=0, 又F 1(-1,0),所以(-1-x 1)(-1-x 2)+y 1y 2=0,即(1+k 2)x 1x 2+(1-k 2)(x 1+x 2)+1+k 2=0, 解得k 2=97.由⎩⎪⎨⎪⎧y 2=4x y =k (x -1), 得k 2x 2-(2k 2+4)x +k 2=0. 设A 1(x 3,y 3),A 2(x 4,y 4), 则x 3+x 4=2k 2+4k 2=2+4k2,x 3x 4=1,所以|A 1A 2|=x 3+x 4+2=2+4k 2+2=649.。

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。

高中数学第2章2.6曲线与方程2.6.3曲线的交点讲义(含解析)苏教版选修2_1

高中数学第2章2.6曲线与方程2.6.3曲线的交点讲义(含解析)苏教版选修2_1

2.6.3曲线的交点[对应学生用书P43]给出下列两组直线,回答问题. (1)l 1:x +2y =0,l 2:2x +4y -3=0; (2)l 1:2x -y =0,l 2:3x +y -7=0. 问题1:两组直线的位置关系. 提示:(1)平行;(2)相交.问题2:如何判断它们的位置关系?能否用这种方法来判定两条曲线的位置关系? 提示:两直线位置关系的判断可有两种方法:一是利用斜率;二是两方程联立,利用方程的解来判定.第二种方法可以用来判定两曲线的位置关系.问题3:如何求两曲线的交点坐标.提示:把表示曲线的方程联立,解方程组,其解即为曲线交点的坐标.已知曲线C 1:f 1(x ,y )=0和C 2:f 2(x ,y )=0.(1)P 0(x 0,y 0)是C 1和C 2的公共点⇔⎩⎪⎨⎪⎧f 1(x 0,y 0)=0,f 2(x 0,y 0)=0.(2)求两曲线的交点,就是求方程组⎩⎪⎨⎪⎧f 1(x ,y )=0,f 2(x ,y )=0的实数解.(3)方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点.直线与圆锥曲线联立,消元得方程ax 2+bx +c =0方程特征 交点个数位置关系 直线与椭圆a ≠0,Δ>0 2 相交 a ≠0,Δ=0 1 相切 a ≠0,Δ<0 0 相离直线与双曲线a =0 1 直线与双曲线的渐近线平行,两者相交a ≠0,Δ>02相交a≠0,Δ=0 1 相切a≠0,Δ<00 相离直线与抛物线a=0 1直线与抛物线的对称轴平行,两者相交a≠0,Δ>0 2 相交a≠0,Δ=0 1 相切a≠0,Δ<00 相离[对应学生用书P44]直线与圆锥曲线的位置关系[例1] 已知直线l:kx-y+2=0,双曲线C:x2-4y2=4,当k为何值时:(1)l与C无公共点;(2)l与C有惟一公共点;(3)l与C有两个不同的公共点.[思路点拨] 直线与圆锥曲线公共点的个数就是直线与圆锥曲线方程所组成的方程组解的个数,从而问题可转化为由方程组的解的个数来确定参数k的取值.[精解详析] 将直线与双曲线方程联立消去y,得(1-4k2)x2-16kx-20=0.①当1-4k2≠0时,有Δ=(-16k)2-4(1-4k2)·(-20)=16(5-4k2).(1)当1-4k2≠0且Δ<0,即k<-52或k>52时,l与C无公共点.(2)当1-4k2=0,即k=±12时,显然方程①只有一解.当1-4k2≠0,Δ=0,即k=±52时,方程①只有一解.故当k=±12或k=±52时,l与C有惟一公共点.(3)当1-4k2≠0,且Δ>0时,即-52<k<52,且k≠±12时,方程有两解,l与C有两个公共点.[一点通] 直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,则有:Δ>0⇔直线与圆锥曲线相交于两个点; Δ=0⇔直线与圆锥曲线相交于一个点; Δ<0⇔直线与圆锥曲线无交点.1.对不同的实数值m ,讨论直线y =x +m 与椭圆x 24+y 2=1的位置关系.解:由⎩⎪⎨⎪⎧y =x +m ,x 24+y 2=1,消去y 得x 24+(x +m )2=1, 整理得5x 2+8mx +4m 2-4=0.Δ=(8m )2-4×5(4m 2-4)=16(5-m 2).当-5<m <5时,Δ>0, 直线与椭圆相交;当m =-5或m =5时,Δ=0, 直线与椭圆相切;当m <-5或m >5时,Δ<0, 直线与椭圆相离.2.已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线y 2=4x 只有一个公共点;有两个公共点;没有公共点?解:(1)当k =0时,直线l 与x 轴平行,易知与抛物线只有一个交点.(2)当k ≠0时,联立⎩⎪⎨⎪⎧y =k (x +2)+1,y 2=4x ,消去x ,得ky 2-4y +4(2k +1)=0,Δ=16-4k ×4(2k +1).①当Δ=0,即k =-1或12时,直线l 与抛物线相切,只有一个公共点;②当Δ>0,即-1<k <12且k ≠0时,直线l 与抛物线相交,有两个公共点;③当Δ<0,即k <-1或k >12时,直线l 与抛物线相离,没有公共点.综上:当k =-1或12或0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1或k >12时,直线l 与抛物线没有公共点.直线被圆锥曲线截得的弦长问题[例2] 已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A 、B 两点,求弦AB 的长.[思路点拨] 先求出直线与椭圆的两个交点,再利用两点间的距离公式,也可以从公式上考查A 、B 坐标间的联系,进行整体运算.[精解详析] 法一:∵直线l 过椭圆x 25+y 24=1的右焦点F 1(1,0),又直线的斜率为2.∴直线l 的方程为y =2(x -1),即2x -y -2=0. 由方程组⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1,得交点A (0,-2),B ⎝ ⎛⎭⎪⎫53,43.则AB =(x A -x B )2+(y A -y B )2=(0-53)2+(-2-43)2=1259=553. 法二:设A (x 1,y 1),B (x 2,y 2),则A 、B 的坐标为方程组⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1的公共解.对方程组消去y ,得3x 2-5x =0.则x 1+x 2=53,x 1·x 2=0.∴AB =(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2(1+k 2AB )=(1+k 2AB )[(x 1+x 2)2-4x 1x 2] =(1+22)[(53)2-4×0]=553.法三:设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1,消去y ,得3x 2-5x =0,则x 1,x 2是方程3x 2-5x =0的两根. ∴x 1+x 2=53.由圆锥曲线的统一定义,得AF 1=15×(5-x 1),F 1B =15×(5-x 2),则AB =AF 1+F 1B =15×[10-(x 1+x 2)]=15×253=553.[一点通] 弦长的求法:(1)求出端点坐标,利用两点间的距离公式求解. (2)结合根与系数的关系,利用变形公式l =(1+k 2)[(x 1+x 2)2-4x 1x 2]或 l =(1+1k2)[(y 1+y 2)2-4y 1y 2]求解.(3)利用圆锥曲线的统一定义求解.3.过抛物线y 2=8x 的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为________. 解析:由抛物线y 2=8x 的焦点为(2,0),得直线的方程为y =x -2,代入y 2=8x 得(x -2)2=8x ,即x 2-12x +4=0. ∴x 1+x 2=12,弦长=x 1+x 2+p =12+4=16. 答案:164.直线y =2x -3与双曲线x 22-y 2=1相交于两点A 、B ,则AB =________.解析:设直线y =2x -3与双曲线x 22-y 2=1两交点坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x -3,x 22-y 2=1,得7x 2-24x +20=0,∴x 1+x 2=247,x 1x 2=207,∴|AB |=1+22|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·(247)2-4×207=457. 答案:4575.如图,椭圆x 216+y 29=1的左、右焦点分别为F 1,F 2,一条直线l经过F 1与椭圆交于A ,B 两点,若直线l 的倾斜角为45°,求△ABF 2的面积.解:由椭圆的方程x 216+y 29=1知,a =4,b =3,∴c =a 2-b 2=7.由c =7知F 1(-7,0),F 2(7,0), 又直线l 的斜率k =tan 45°=1, ∴直线l 的方程为x -y +7=0.设A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x -y +7=0,x 216+y 29=1消去x ,整理得25y 2-187 y -81=0,∴y 1+y 2=18 725,y 1y 2=-8125.∴|y 1-y 2|= (y 1+y 2)2-4y 1y 2=⎝ ⎛⎭⎪⎫187252+4×8125=72225, ∴S △ABF 2=12|F 1F 2|·|y 1-y 2|=12×2 7×72 225=721425.两曲线相交的综合问题[例3] 已知椭圆x 216+y 24=1,过点P (2,1)作一弦,使弦在这点被平分,求此弦所在直线方程.[思路点拨] 设出直线的斜率,联立直线与椭圆方程,消去y ,得关于x 的方程,用根与系数的关系和弦中点坐标,得斜率的方程,求解即可,也可用“点差法”求解.[精解详析] 法一:设所求直线的方程为y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0. 又设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2), 则x 1,x 2是上面的方程的两个根, 所以x 1+x 2=8(2k 2-k )4k 2+1, 因为P 为弦AB 的中点,所以2=x 1+x 22=4(2k 2-k )4k 2+1, 解得k =-12,所以所求直线的方程为x +2y -4=0.法二:设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2), 因为P 为弦AB 的中点,所以x 1+x 2=4,y 1+y 2=2, 又因为A ,B 在椭圆上, 所以x 21+4y 21=16,x 22+4y 22=16, 两式相减,得(x 21-x 22)+4(y 21-y 22)=0, 即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, 所以y 1-y 2x 1-x 2=-(x 1+x 2)4(y 1+y 2)=-12,即k AB =-12. 所以所求直线的方程为y -1=-12(x -2),即x +2y -4=0.[一点通] 解决直线与圆锥曲线的位置关系时,一般采用“设而不求”的思想,将直线方程与圆锥曲线方程联成方程组,转化为一元二次方程,利用根与系数的关系,把已知条件转化为弦的端点坐标之间的关系求解,在涉及“中点弦”问题时,“点差法”是最常用的方法.6.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. 求证:(1)x 1x 2为定值;(2)1FA +1FB为定值.证明:(1)抛物线y 2=2px 的焦点为F ⎝ ⎛⎭⎪⎫p2,0,当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -p2)(k ≠0).由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去y ,得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系,得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p 2,x 1x 2=p 24也成立.(2)由抛物线的定义知,FA =x 1+p 2,FB =x 2+p2.1FA +1FB =1x 1+p 2+1x 2+p2 =x 1+x 2+p p2(x 1+x 2)+x 1x 2+p 24=x 1+x 2+p p2(x 1+x 2)+p 22=x 1+x 2+pp 2(x 1+x 2+p )=2p (定值).7.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同点A ,B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,若PA u u u r =512PB u u u r,求a 的值.解:(1)将y =-x +1代入双曲线x 2a2-y 2=1(a >0)中得(1-a 2).x 2+2a 2x -2a 2=0.所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2,且a ≠1.又双曲线的离心率e =1+a2a=1a 2+1,所以e >62,且e ≠ 2. (2)设A (x 1,y 1),B (x 2,y 2),P (0,1),因为PA u u u r =512PB u u u r,所以(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2.由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根,且1-a 2≠0,所以1712x 2=-2a21-a2,512x 22=-2a21-a2. 消去x 2,得-2a 21-a 2=28960.由a >0,解得a =1713. 8.(陕西高考)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.解: (1)如图,设动圆圆心O 1(x ,y ),由题意得,O 1A =O 1M . 当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴O 1M = x 2+42, 又O 1A = (x -4)2+y 2, ∴(x -4)2+y 2= x 2+42, 化简得y 2=8x (x ≠0).当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:如图,由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)·x +b 2=0, 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk2,① x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①②代入③,得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0, ∴直线l 的方程为y =k (x -1), ∴直线l 过定点(1,0).讨论直线与圆锥曲线的位置关系时,先联立方程,消去x 或y ,得出一个一元二次方程,通过研究判别式Δ的情况,研究位置关系,值得注意的是,若是直线与圆或椭圆时,无需讨论二次项系数是否为零(一定不为零),直接考察Δ的情况即可.若是直线与双曲线或抛物线时,则需讨论二次项系数等于零和不等于零两种情况.这是特别要注意的问题.同时还要注意直线斜率不存在时的情形.[对应课时跟踪训练(十七)]1.曲线x 2-xy -y 2-3x +4y -4=0与x 轴的交点坐标是________. 解析:当y =0时,得x 2-3x -4=0, 解得x 1=4或x 2=-1.所以交点坐标为(4,0)和(-1,0). 答案:(4,0),(-1,0)2.曲线x 2+y 2=4与曲线x 2+y 29=1的交点个数为________. 解析:由数形结合可知两曲线有4个交点. 答案:43.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.解析:由y 2=8x ,得准线方程为x =-2. 则Q 点坐标为(-2,0). 设直线y =k (x +2).由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0.若直线l 与y 2=8x 有公共点, 则Δ=(4k 2-8)2-16k 4≥0. 解得-1≤k ≤1. 答案:[-1,1]4.曲线y =x 2-x +2和y =x +m 有两个不同的公共点,则实数m 的范围是________.解析:由⎩⎪⎨⎪⎧y =x +m ,y =x 2-x +2,消去y ,得x 2-2x +2-m =0.若有两个不同的公共点,则Δ=4-4(2-m )>0, ∴m >1.答案:(1,+∞)5.如果椭圆x 236+y 29=1的一条弦被点(4,2)平分,那么这条弦所在直线的方程是 ________.解析:设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2). ∵P (4,2)为AB 中点,∴x 1+x 2=8,y 1+y 2=4. 又∵A ,B 在椭圆上,∴x 21+4y 21=36,x 22+4y 22=36. 两式相减得(x 21-x 22)+4(y 21-y 22)=0, 即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∴y 1-y 2x 1-x 2=-(x 1+x 2)4(y 1+y 2)=-12. 即直线l 的斜率为-12.∴所求直线方程为x +2y -8=0. 答案:x +2y -8=06.已知椭圆的中心在原点,焦点在x 轴上,长轴长为42,离心率为64. (1)求椭圆的标准方程;(2)直线l 与该椭圆交于M 、N 两点,MN 的中点为A (2,-1),求直线l 的方程. 解:(1)由题意2a =42, ∴a =22,又e =c a =c 22=64,∴c = 3.∴b 2=a 2-c 2=8-3=5.故所求椭圆的标准方程为x 28+y 25=1.(2)∵点A 在椭圆内部,∴过A 点的直线必与椭圆有两交点.当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为y +1=k (x -2),它与椭圆的交点分别为M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y +1=k (x -2),x 28+y25=1.消去y 得(8k 2+5)x 2-16k (2k +1)x +8[(2k +1)2-5]=0, ∴x 1+x 2=16k (2k +1)8k 2+5, 又∵A (2,-1)为弦MN 的中点, ∴x 1+x 2=4,即16k (2k +1)8k 2+5=4, ∴k =54,从而直线方程为5x -4y -14=0.7.已知椭圆C 1与抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:(1)求C 1,C 2(2)请问是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同两点M ,N 且满足OM u u u u r ⊥ON u u u r?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)设抛物线C 2:y 2=2px (p ≠0),则有y 2x=2p (x ≠0),据此验证4个点知(3,-23),(4,-4)在抛物线上,易求C 2:y 2=4x .设C 1:x 2a 2+y 2b 2=1(a >b >0),把点(-2,0),⎝⎛⎭⎪⎫2,22代入得⎩⎪⎨⎪⎧4a 2=1,2a 2+12b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.∴C 1的方程为x 24+y 2=1.(2)容易验证直线l 的斜率不存在时,不满足题意;当直线l 的斜率存在时,假设存在直线l 过抛物线焦点F (1,0),设其方程为y =k (x -1),与C 1的交点坐标为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -1)消去y 得,(1+4k 2)x 2-8k 2x +4(k 2-1)=0,于是x 1+x 2=8k 21+4k 2,x 1x 2=4(k 2-1)1+4k 2. ①所以y 1y 2=k (x 1-1)·k (x 2-1) =k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎫4(k 2-1)1+4k 2-8k 21+4k 2+1=-3k 21+4k 2. ② 由OM u u u u r ⊥ON u u u r ,即OM u u u u r ·ON u u u r=0,得x 1x 2+y 1y 2=0. ③将①②代入③式得,4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0,解得k =±2.所以存在直线l 满足条件,且l 的方程为:y =2x -2或y =-2x +2.8.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.解:(1)由题意设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0).由题意得a +c =3,a -c =1, ∴a =2,c =1,b 2=3. ∴椭圆的标准方程为x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1得,(3+4k 2)x 2+8mkx +4(m 2-3)=0, ∴Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0, 即3+4k 2-m 2>0.∴x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k2.y 1y 2=(kx 1+m )·(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k2. ∵以AB 为直径的圆过椭圆的右顶点D (2,0),k AD ·k BD =-1,∴y 1x 1-2·y 2x 2-2=-1,化简得 y 1y 2+x 1x 2-2(x 1+x 2)+4=0,即3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,化简得7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且满足3+4k 2-m 2>0.当m =-2k 时,l :y =k (x -2),直线过定点(2,0),与已知矛盾; 当m =-2k 7时,l :y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0. 综上可知,直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0.。

苏教版数学高二-选修2-1教案 抛物线的标准方程

苏教版数学高二-选修2-1教案 抛物线的标准方程

2.4.1抛物线的标准方程●三维目标1.知识与技能(1)理解抛物线的定义,掌握抛物线的标准方程及其推导.(2)明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.2.过程与方法(1)通过对抛物线和椭圆、双曲线离心率的比较,体会三种圆锥曲线内在的区别和联系.(2)熟练掌握求曲线方程的基本方法,通过四种不同形式标准方程的对比,培养学生分析、归纳的能力.3.情感、态度与价值观引导学生用运动变化的观点发现问题、探索问题、解决问题,培养学生的创新意识,体会数学的简捷美、和谐美.●重点难点重点:抛物线的定义及其标准方程的推导.通过学生自主建系和对方程的讨论突出重点.难点:抛物线概念的形成.通过条件e=1的画法设计、标准方程与二次函数的比较突破难点.●教学建议从本章来讲,这一节放在椭圆和双曲线之后,一方面是三种圆锥曲线统一定义的需要,抛物线是离心率e=1的特例.另一方面也是解析几何“用方程研究曲线”这一基本思想的再次强化.本节对抛物线定义的研究,与初中阶段二次函数的图像遥相呼应,体现了数学的和谐之美.教材的这种安排,是为了分散难点,符合认知的渐进性原则.为了充分调动学生的积极性,使学生变被动学习为主动学习,易采用“引导探究”式的教学模式,在课堂教学中,始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地动手、动口、动脑,参与教学的全过程.本节课在实验画法的基础上,以问题为核心,创设情景,通过教师的适时引导,学生间、师生间的交流互动,启迪学生的思维,使学生通过自己的分析、反思、对比并形成抛物线的概念,构建自己的知识体系,尝试合作学习的快乐,体验成功的喜悦.●教学流程设置情景,导入新课.上课开始,用计算机出示太阳系九大行星运行图,以天文学热点事件“冥王星”的降级引入新课:同学们,最近在我们的太阳系发生了一件重大的事件,你们知道吗?⇒引导探究,获得新知(1)复习椭圆、双曲线的第二定义,椭圆和双曲线的离心率e 的取值范围各是什么?(2)离心率e=1是什么含义?你能据此设计一种方案,画出一个这样的点吗?(3)这条曲线是什么?⇒由学生自主建系,求出抛物线的标准方程.并根据焦点位置的不同,写出四种不同的标准方程.归纳标准方程、焦点坐标、准线方程的内在联系和对应关系.⇒通过例1及变式训练,使学生掌握抛物线标准方程的求法,先定位,再定量,利用待定系数法求抛物线的标准方程.⇒通过例2及变式训练,使学生掌握由标准方程求其焦点坐标和准线方程,达到数与形的准确转换.弄清一次项变量系数与焦点同名坐标的四倍关系,焦点坐标与准线方程的相反关系.⇒通过例3及变式训练,使学生掌握抛物线定义和标准方程的综合应用,抛物线上任一点到焦点的距离等于到准线的距离,二者可以灵活转化,在此基础上数形结合,解证有关问题.⇒通过易错易误辨析,体会抛物线标准方程的不同形式,焦点位置有多个,就会有不同的标准方程.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.掌握抛物线的标准方程,会求抛物线的标准方程.(重点)2.抛物线标准方程与定义的应用.(难点)3.抛物线标准方程、准线、焦点的对应.(易错点)抛物线的标准方程1.用《几何画板》画图,如图,点F是定点,l是不经过点F的定直线.H是l上任意一点,过点H作MH⊥l,线段FH的垂直平分线m交MH于点M.拖动点H,观察点M的轨迹.你能发现点M满足的几何条件吗?【提示】点M随着H运动的过程中,始终有|MF|=|MH|,即点M与定点F和定直线l的距离相等.2.比较椭圆、双曲线标准方程的建立过程,你认为应如何选择坐标系,使所建立的抛物线的方程更简单?【提示】根据抛物线的几何特征,我们取经过点F且垂直于直线l的直线为x轴,垂足为K,并使原点与线段KF的中点重合,建立直角坐标系xOy(如图所示).图形标准方程焦点坐标准线方程y2=2px(p>0)F(p2,0)x=-p2y2=-2px(p>0)F(-p2,0)x=p2x2=2py(p>0)F(0,p2)y=-p2 x2=-2py(p>0)F(0,-p2)y=p2求抛物线的标准方程已知抛物线的顶点在原点,试求满足下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上;(3)焦点到准线的距离为52.【思路探究】对于(1),需要确定p的值和开口方向两个条件,∵点(-3,2)在第二象限,∴抛物线的标准方程可设为y2=-2px(p>0)或x2=2py(p>0);对于(2),∵标准方程下抛物线的焦点在坐标轴上,∴求出直线x-2y-4=0与坐标轴的两个交点(4,0)和(0,-2),即为所求抛物线两种情况下的焦点;而对于(3),由题意知,p=52,下一步需要讨论抛物线的开口方向.【自主解答】(1)∵点(-3,2)在第二象限,∴抛物线的标准方程可设为y2=-2px(p>0)或x2=2py(p>0).把点(-3,2)的坐标分别代入y2=-2px(p>0)和x2=2py(p>0),得4=-2p·(-3)或9=2p·2,即2p=43或2p=92.∴所求抛物线的标准方程为y2=-43x或x2=92y.(2)令x=0,得y=-2;令y=0,得x=4.∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,p2=4.∴2p =16,此时抛物线方程为y 2=16x . 当焦点为(0,-2)时,p2=2.∴2p =8,此时抛物线方程为x 2=-8y . 故抛物线方程为y 2=16x 或x 2=-8y .(3)由焦点到准线的距离为52,可知p =52,∴2p =5.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .1.只有顶点有原点,焦点在坐标轴上的抛物线才能将方程写成标准方程.2.求抛物线的标准方程,应当先定位,再定量,即先根据焦点位置设出方程形式,再利用题目条件求出待定字母的值.另外,若只知道焦点在x 轴上,可设抛物线标准方程为y 2=mx 的形式,若只知道焦点在y 轴上,可设抛物线标准方程为x 2=ny 的形式,避免分类讨论.一抛物线的焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求抛物线的标准方程.【解】 设所求抛物线的方程为x 2=-2py (p >0),则其准线方程为y =p2.由抛物线的定义知点M 到焦点的距离等于点M 到准线的距离, ∴p2-(-3)=5,即p =4. ∴所求抛物线的方程为x 2=-8y .由标准方程求抛物线的焦点坐标和准线方程求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ;(2)2y 2+5x =0;(3)y =ax 2(a ≠0). 【思路探究】抛物线方程化为标准形式→求p →求焦点坐标→求准线方程【自主解答】 (1)由方程可得抛物线开口向右,且2p =20,即p =10,所以抛物线的焦点坐标为(5,0),准线方程为x =-5.(2)将方程2y 2+5x =0变形为y 2=-52x ,焦点在x 轴的负半轴上,又2p =52,所以p =54,所以焦点坐标为(-58,0),准线方程为x =58.(3)将方程y =ax 2(a ≠0)化为x 2=1ay ,焦点在y 轴上.当a >0时,抛物线的焦点在y 轴的正半轴上,又2p =1a ,所以焦点坐标为(0,14a ),准线方程为y =-14a;当a <0时,抛物线的焦点在y 轴的负半轴上,又2p =-1a ,所以焦点坐标为(0,14a ),准线方程为y 1=-14a.1.本例中y =ax 2不是抛物线的标准方程,容易被误认为是标准形式,而将焦点写为F (a4,0).2.求焦点坐标与准线方程的基本方法:(1)一般思路是先将已知方程整理为标准方程,再求解,不可与初中二次函数混淆. (2)此类问题中无论a 取正与负,拋物线y 2=ax 的焦点坐标均为(a4,0),准线均为x =-a 4.无论a 取正与负,拋物线x 2=ay 的焦点坐标均为(0,a 4),准线均为y =-a 4.求下列抛物线的焦点坐标和准线方程: (1)y =-18x 2;(2)x 2=ay (a ≠0).【解】 (1)方程可化为:x 2=-8y ,∴F (0,-2),准线y =2. (2)F (0,a 4),准线y =-a4.抛物线标准方程及定义的应用图2-4-1如图2-4-1,已知点A (4,-2),F 为抛物线y 2=8x 的焦点,直线l为其准线,点M 在抛物线上移动,问M 的坐标是什么时,MA +MF 取得最小值,最小值是多少?【思路探究】 如图,过M 向准线l 引垂线ME ,则MF =ME ,转化为求MA +ME 的最小值.【自主解答】 由题意知,抛物线y 2=8x 的准线l 的方程为x =-2,过M 作ME ⊥l ,垂足为E ,由抛物线的定义知,ME =MF ,此时MA +MF =MA +ME ,当M 在抛物线上移动时,MA +ME 的值在变化,显然M 移动到与A ,E 共线时,MA +ME 取得最小值.此时,AM ∥x 轴,把y =-2代入y 2=8x 得x =12,∴M 点的坐标为(12,-2),距离最小值为6.1.解此类最值、定值问题时,首先要注意抛物线定义的转化应用,其次是注意平面几何知识的应用,例如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.2.数形结合思想是求解几何最值的常用方法之一.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么PF=________.【解析】如图,由直线AF的斜率为-3,得∠AFH=60°,∠FAH=30°,∴∠PAF =60°.又由抛物线的定义知PA=PF,∴△PAF为等边三角形,由HF=4得AF=8,∴PF=8.【答案】8忽略对焦点位置的讨论而漏解顶点在原点,焦点在x轴上,过焦点作垂直于x轴的直线交抛物线于A,B两点,AB的长为8,求抛物线的方程.【错解】由于抛物线的顶点在原点,焦点在x轴上,因此设所求抛物线的方程为y2=2px(p>0).因为AB=2p=8,所以所求抛物线的方程为y2=8x.【错因分析】错解中只考虑焦点在x轴的正半轴上的情况,而忽略了焦点也可能在x 轴的负半轴上的情况,故出现漏解.【防范措施】抛物线有四种标准方程,每一种所对应的焦点,准线都不相同.因此,在求抛物线方程的有关问题时,要充分考虑各种情况,以免漏解.【正解】由于抛物线的顶点在原点,焦点在x轴上,因此设所求抛物线的方程为y2=2ax(a≠0).因为AB=|2a|=8,所以2a=±8.故所求抛物线的方程为y2=±8x.1.求抛物线的标准方程,一般利用待定系数法,求解时一般分两步,即先定位,再定量.2.由抛物线的方程求焦点坐标和准线方程,若方程不是标准形式应先化成标准形式,然后求焦点坐标和准线方程,应注意方程中一次变量是谁,焦点就在相应坐标轴上,且焦点的同名坐标是一次变量系数的14.3.抛物线的定义可将抛物线上一点到焦点的距离与到准线的距离相互转化,从而求解与抛物线有关的定值与最值问题.1.抛物线y 2=4x 的焦点坐标是________. 【解析】 ∵p =2,∴F (1,0). 【答案】 F (1,0)2.抛物线y =4x 2的准线方程为________. 【解析】 x 2=14y ,∴2p =14,p =18,∴准线方程为y =-116.【答案】 y =-1163.抛物线y 2=2px的准线经过双曲线x 23-y 2=1的左焦点,则p =________.【解析】 双曲线c 2=3+1=4,∴c =2,∴F 1(-2,0), ∴抛物线准线为x =-2,∴-p2=-2,∴p =4.【答案】 44.若圆x 2+y 2-6x =0的圆心恰是抛物线的焦点,求抛物线的标准方程及准线方程. 【解】 圆心为(3,0),∴p2=3,∴p =6,∴抛物线标准方程为y 2=12x ,准线方程为x =-3.一、填空题1.抛物线y 2=8x 的准线方程是________. 【解析】 ∵p =4,∴准线方程为x =-2. 【答案】 x =-22.顶点在原点,焦点在x 轴上的抛物线经过点(2,2),则此抛物线的方程为________. 【解析】 设抛物线方程为y 2=mx ,将(2,2)代入得m =2, ∴抛物线方程为y 2=2x . 【答案】 y 2=2x3.抛物线y 2=2x 上一点M 到焦点的距离为1,则点M 的横坐标是________. 【解析】 准线x =-12,∴x M +12=1,∴x M =12.【答案】 124.若动点P 在y =2x 2+1上,则点P 与点Q (0,-1)连线中点的轨迹方程是________.【解析】 设P (x 0,y 0),中点(x ,y ),则⎩⎪⎨⎪⎧x 0=2x y 0=2y +1.∵y 0=2x 20+1,∴2y +1=2(2x )2+1,∴y =4x 2.【答案】 y =4x 25.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.【解析】 由抛物线的方程得p 2=42=2,再根据抛物线的定义,可知所求距离为4+2=6.【答案】 6 6.若抛物线y 2=2px的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.【解析】 因为椭圆x 26+y 22=1的右焦点为(2,0),故抛物线的焦点为(2,0),所以p2=2,解得p =4.【答案】 47.已知直线y =3(x -2)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点,若AF →=λFB →,(|AF →|>|FB →|),则λ=________.【解析】 如图,设AF =n ,BF =m ,AA 1⊥l ,BB 1⊥l ,FN ⊥AA 1于N ,BM ⊥x 轴于M .则AN =n -4,FM =4-m .又∠AFN =∠FBM =30°,∴⎩⎨⎧ n -4=n 24-m =m 2.∴⎩⎪⎨⎪⎧n =8m =83,∴λ=n m =3. 【答案】 38.抛物线y =-14x 2上的动点M 到两定点(0,-1),(1,-3)的距离之和的最小值为________.【解析】 将抛物线方程化成标准方程为x 2=-4y ,可知焦点坐标为F (0,-1),因为-3<-14,所以点E (1,-3)在抛物线的内部,如图所示,设抛物线的准线为l ,过点E 作EQ ⊥l 于点Q ,过点M 作MP ⊥l 于点P ,所以MF +ME =MP +ME ≥EQ ,又EQ =1-(-3)=4,故距离之和的最小值为4.【答案】 4二、解答题9.求适合下列条件的拋物线方程.(1)顶点在原点,准线x =4;(2)拋物线的顶点是双曲线16x 2-9y 2=144的中心,焦点是双曲线的左顶点.【解】 (1)由题意p 2=4,∴p =8. ∴拋物线方程为y 2=-16x .(2)双曲线中心为(0,0),左顶点为(-3,0),∴拋物线顶点为(0,0),焦点为(-3,0),∴拋物线方程为y 2=-12x .图2-4-210.如图2-4-2所示,动圆P 与定圆C :(x -1)2+y 2=1外切且与y 轴相切,求圆心P 的轨迹.【解】 设P (x ,y ),动圆P 的半径为r .∵两圆外切,∴PC =r +1.又圆P 与y 轴相切,∴r =|x |(x ≠0),即x -12+y 2=|x |+1,整理得y 2=2(|x |+x ).当x >0时,得y 2=4x ;当x <0时,得y =0.∴点P 的轨迹方程是y 2=4x (x >0)和y =0(x <0),表示一条抛物线(除去顶点)和x 轴的负半轴.11.(1)已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,试给出FP 1,FP 2,FP 3之间的关系式;(2)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,求|FA →|+|FB →|+|FC →|.【解】 (1)由抛物线方程y 2=2px (p >0)得准线方程为x =-p 2,则由抛物线的定义得FP 1=x 1+p 2,FP 2=x 2+p 2,FP 3=x 3+p 2,则FP 1+FP 3=x 1+p 2+x 3+p 2=x 1+x 3+p ,因为x 1+x 3=2x 2,所以FP 1+FP 3=2x 2+p =2(x 2+p 2)=2FP 2,从而FP 1,FP 2,FP 3之间的关系式为FP 1+FP 3=2FP 2.(2)设点A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),由题意知2p =4,p =2,F (1,0),又FA →+FB →+FC →=0,则有x A -1+x B -1+x C -1=0,即x A +x B +x C =3.由抛物线的定义可知,|F A →|+|FB →|+|FC →|=(x A +p 2)+(x B +p 2)+(x C +p 2)=(x A +x B +x C )+3×p 2=3+3=6.已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.【思路探究】 设点P 的坐标为(x ,y ),利用圆P 与圆A 外切及与直线l 相切建立x ,y 的方程,化简即得.【自主解答】 法一 设点P 的坐标为(x ,y ),圆P 半径为r ,由条件知AP =r +1, 即x +22+y 2=|x -1|+1,化简,整理得y 2=-8x .所以点P 的轨迹方程为y 2=-8x .法二 如图,作PK 垂直直线x =1,垂足为K ,PQ 垂直直线x =2,垂足为Q ,则KQ =1,所以PQ =r +1.又AP =r +1,所以AP =PQ ,故点P 到圆心A (-2,0)的距离和定直线x=2的距离相等,所以点P 的轨迹为抛物线,A (-2,0)为焦点,直线x =2为准线.所以p 2=2,所以p =4.所以点P 的轨迹方程为y 2=-8x .1.法一是利用直接法求曲线方程的方法确定点P 的轨迹方程,法二是利用抛物线的定义确定轨迹为抛物线,再根据抛物线的性质写出方程,即定义法,显然法二较为简洁.2.动圆圆心轨迹问题是一类常见问题,求解时一定要审清题意,究竟是外切,内切还是相切,都可能引起结果的不同.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,求动点P的轨迹C的方程.【解】设动点P的坐标为(x,y),由题意有x-12+y2-|x|=1,化简得y2=2x +2|x|.当x≥0时,y2=4x;当x<0时,y=0.所以,动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).。

高中数学苏教版教材目录(必修+选修)

高中数学苏教版教材目录(必修+选修)

高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n 项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2----------------------------------- 第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。

苏教版数学选修2-1:2.6 曲线与方程2.6.2~2.6.3

苏教版数学选修2-1:2.6 曲线与方程2.6.2~2.6.3

1.已知椭圆的焦点是F 1、F 2,P 是椭圆的一个动点,如果M 是线段F 1P 的中点,则动点M 的轨迹是________.解析:由图知PF 1+PF 2=2a .连结MO ,则F 1M +MO =a (a >F 1O ).故M 的轨迹是以F 1、O 为焦点的椭圆.答案:椭圆2.已知动点M 到A (2,0)的距离等于它到直线x =-1的距离的2倍,则点M 的轨迹方程为________.解析:设M (x ,y ),由题意,得(x -2)2+y 2=2|x +1|.化简,得-3x 2-12x +y 2=0. 答案:y 2=3x 2+12x3.已知动抛物线以y 轴为准线,且过点(1,0),则抛物线焦点的轨迹方程为________. 解析:设焦点坐标为(x ,y ),则(1-x )2+y 2=|x |,即y 2=2x -1. 答案:y 2=2x -14.(2011·高考广东卷改编)设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为________.解析:设圆C 的半径为r ,则圆心C 到直线y =0的距离为r .由两圆外切可得,圆心C 到点(0,3)的距离为r +1,也就是说,圆心C 到点(0,3)的距离比到直线y =0的距离大1,故点C 到点(0,3)的距离和它到直线y =-1的距离相等,符合抛物线的特征,故点C 的轨迹为抛物线.答案:抛物线5.设动点P 在直线x =1上,O 为坐标原点,以OP 为直角边,点O 为直角顶点作等腰Rt △OPQ ,则动点Q 的轨迹是________.解析:设Q (x ,y ),P (1,y 0),由OQ →·OP →=0知y 0y =-x .① 又由OQ =OP ,得x 2+y 2=1+y 20,即x 2+y 2=1+y 20.② 由①②消去y 0,得点Q 的轨迹方程为y =1或y =-1.答案:两条平行线[A 级 基础达标]1.已知两个定点F 1(-1,0),F 2(1,0),且F 1F 2是PF 1与PF 2的等差中项,则动点P 的轨迹是________.解析:PF 1+PF 2=2F 1F 2=4>F 1F 2,根据定义可知动点P 的轨迹是椭圆. 答案:椭圆2.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则动点P 的轨迹方程为________.解析:由抛物线定义知P 的轨迹是以F (2,0)为焦点的抛物线,∴p2=2,即p =4,所以其方程为y 2=8x .答案:y 2=8x3.在平面直角坐标系中,A 为平面内一个动点,B (2,0),若OA →·BA →=|OB →|(O 为坐标原点),则动点A 的轨迹是________.解析:设A (x ,y ),则OA →=(x ,y ),BA →=(x -2,y ),因为OA →·BA →=|OB →|,所以x (x -2)+y 2=2,即(x -1)2+y 2=3,所以动点A 的轨迹是圆.答案:圆4.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2PA →且OQ →·AB →=1,则点P 的轨迹方程是________.解析:设P (x ,y ),则Q (-x ,y ),又设A (a ,0),B (0,b ),则a >0,b >0,于是BP →=(x ,y -b ),PA →=(a -x ,-y ),由BP →=2PA →可得a =32x ,b =3y ,所以x >0,y >0.又AB →=(-a ,b )=(-32x ,3y ),由OQ →·AB →=1可得32x 2+3y 2=1(x >0,y >0)答案:32x 2+3y 2=1(x >0,y >0)5.已知A (-2,0)、B (2,0),点C 、D 满足|AC →|=2,AD →=12(AB →+AC →).则点D 的轨迹方程为________.解析:设C 、D 点的坐标分别为C (x 0,y 0),D (x ,y ), 则AC →=(x 0+2,y 0),AB →=(4,0), 故AB →+AC →=(x 0+6,y 0),所以AD →=12(AB +AC →)=(x 02+3,y 02);又AD →=(x +2,y ),故⎩⎨⎧x 02+3=x +2y 02=y ,解得⎩⎪⎨⎪⎧x 0=2x -2,y 0=2y ,代入|AC →|=(x 0+2)2+y 20=2得x 2+y 2=1,即为所求点D 的轨迹方程.答案:x 2+y 2=16.如图,从双曲线x 2-y 2=1上一点Q 引直线x +y =2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设P 点坐标为(x ,y ),双曲线上点Q 的坐标为(x 0,y 0),因为点P 是线段QN 的中点,所以N 点的坐标为(2x -x 0,2y -y 0).又点N 在直线x +y =2上,所以2x -x 0+2y -y 0=2, 即x 0+y 0=2x +2y -2.①又QN ⊥l ,k QN =2y -2y 02x -2x 0=1,即x 0-y 0=x -y .②由①②,得x 0=12(3x +y -2),y 0=12(x +3y -2).又因为点Q 在双曲线上,所以14(3x +y -2)2-14(x +3y -2)2=1.化简,得(x -12)2-(y -12)2=12.所以线段QN 的中点P 的轨迹方程为(x -12)2-(y -12)2=12.7.如图所示,在Rt △ABC 中,∠CAB =90°,AB =2,AC =32,一曲线E 过点C ,动点P 在曲线E 上运动,且保持P A +PB 的值不变.(1)建立适当的平面直角坐标系,求曲线E 的方程;(2)设点K 是曲线E 上的一个动点,求线段KA 的中点的轨迹方程.解:(1)如图所示,以AB 所在的直线为x 轴,线段AB 的中点为原点,建立平面直角坐标系.设动点P (x ,y ),因为PA +PB =CA +CB =32+⎝⎛⎭⎫322+4=4>AB =2为定值,所以动点P 的轨迹为椭圆,且a =2,c =1,b = 3.所以曲线E 的方程为x 24+y 23=1.(2)设曲线E 上的动点K (x 1,y 1),线段KA 的中点为Q (x ,y ),A (-1,0),则x =-1+x 12,y =y 12,即x 1=2x +1,y 1=2y ,所以(2x +1)24+(2y )23=1,即⎝⎛x +122+4y 23=1.所以线段KA 的中点的轨迹方程为⎝⎛⎭⎫x +122+4y 23=1. [B 级 能力提升]8.设向量i ,j 为平面直角坐标系的x 轴、y 轴正方向上的单位向量,若向量a =(x +3)i +y j ,b =(x -3)i +y j ,且|a |-|b |=2,则满足上述条件的点P (x ,y )的轨迹方程是________.解析:因为|a |-|b |=2,所以(x +3)2+y 2-(x -3)2+y 2=2,其几何意义是动点P (x ,y )到定点(-3,0),(3,0)的距离之差为2,由双曲线定义可知点P (x ,y )的轨迹是以点(-3,0)和(3,0)为焦点,且2a =2的双曲线的一支,由c =3,a =1,解得b 2=c 2-a 2=8,故点P (x ,y )的轨迹方程是x 2-y 28=1(x >0)或者(x ≥1).答案:x 2-y 28=1(x >0)(或x 2-y28=1(x ≥1))9.如图, 半径为1的圆C 过原点,Q 为圆C 与x 轴的另一个交点,OQRP 为平行四边形,其中RP 为圆C 在x 轴上方的一条切线,当圆心C 运动时,则点R 的轨迹方程为________.解析:设圆心C 的坐标为(x 0,y 0)(x 0≠0),则点Q 、P 的坐标分别为(2x 0,0) 、(x 0,y 0+1),得PQ 的中点M 的坐标为(3x 02,y 0+12),因为OQRP 为平行四边形,PQ 的中点M 也是OR 的中点,所以可得R 点坐标为(3x 0,y 0+1),令R 点坐标为(x ,y ),则⎩⎪⎨⎪⎧x =3x 0y =y 0+1即⎩⎪⎨⎪⎧x 0=x 3y 0=y -1,又x 20+y 20=1,代入得x 29+(y -1)2=1,故点R 的轨迹方程为x 29+(y -1)2=1(x ≠0,x ≠2).答案:x 29+(y -1)2=1(x ≠0,x ≠2)10.已知动点A 、B 分别在x 轴、y 轴上,且满足|AB |=2,点P 在线段AB 上,且AP →=tPB →(t 是不为零的常数).设点P 的轨迹方程为C .(1)求点P 的轨迹方程C ;(2)若t =2,点M 、N 是C 上关于原点对称的两个动点(M 、N 不在坐标轴上),点Q 坐标为(32,3),求△QMN 的面积S 的最大值. 解:(1)设A (a ,0),B (0,b ),P (x ,y ),因为AP →=tPB →,即(x -a ,y )=t (-x ,b -y ),所以⎩⎪⎨⎪⎧x -a =-txy =t (b -y ),则⎩⎪⎨⎪⎧a =(1+t )x b =(1+t )y t,由题意知t >0,因为|AB |=2,a 2+b 2=4,即(1+t )2x 2+(1+t t)2y 2=4,所以点P 的轨迹方程为:x 24(1+t )2+y24t2(1+t )2=1. (2)t =2时,轨迹方程C 为9x 24+916y 2=1,设M (x 1,y 1),则N (-x 1,-y 1),|MN |=2x 21+y 21,设直线MN 的方程为:y =y1x 1x (x 1≠0),点Q 到直线MN 的距离为:d =⎪⎪⎪⎪32y 1-3x 1x 21+y 21,所以S △MNQ =12×2x 21+y 21×⎪⎪⎪⎪32y 1-3x 1x 21+y 21=⎪⎪⎪⎪32y 1-3x 1,又9x 214+9y 2116=1,所以9x 21+9y 2144.所以S 2△MNQ =4-9x 1y 1,而1=9x 214+9y 2116≥-2·3x 12·3y 14=-9x 1y 14,所以-9x 1y 1≤4,当且仅当3x 12=-3y 14,即x 1=-12y 1时,取等号.所以S △MNQ 的面积最大值为2 2.11.(创新题)已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.解:(1)设动点P (x ,y ), 则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,即x 24+y 23=1.所以点P 的轨迹C 的方程为x 24+y 23=1.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1),设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0.因为N 在椭圆内,所以Δ>0.所以⎩⎨⎧x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1]=(1+k 2)4k 2-12-8k 2+3+4k23+4k 2=-9(1+k 2)3+4k 2.所以-187≤-9(1+k 2)3+4k 2≤-125,解得1≤k 2≤3,所以-3≤k ≤-1或1≤k ≤ 3.。

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。

高中数学选修2-1《圆锥曲线》教案

高中数学选修2-1《圆锥曲线》教案

4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。

选修2-1圆锥曲线全章节

选修2-1圆锥曲线全章节

问题1:解析几何与坐标法. 我们把借助于坐标系研究几何图形的方法叫做坐标
法. 在数学中,用坐标法研究几何图形的知识形成的学 科叫做解析几何.因此,解析几何是用代数方法研究几何 问题的一门数学学科.
问题2:平面解析几何研究的两个基本问题. (1)根据已知条件,求出表示平面曲线的方程; (2)通过曲线的方程,研究平面曲线的性质.
说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以 省略不写,如有特殊情况,可适当予以说明. 另外,也可以根据情况 省略步骤(2),直接列出曲线方程.
例2.已知一条直线l 和它上方的一个点F,点F到l 的距离是2. 一条曲线也在l 的上方,它上面的每一点到F的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.
x+2y-7=0. ①
我们证明方程①是线段AB的垂直平分线的方程. (1)由求方程的过程可知,垂直平分线上每一点的坐
标都是方程①的解;
(2)设点M1的坐标(x1,y1)是方程①的解,即 x1+2y1-7=0, x1=7-2y1.
点M1到A,B的距离分别是
所以 | M1A || M1B | 即点M在线段AB的垂直平分线上. 由(1)、(2)可知,方程①是线段AB的垂直平分线的方程.
例3.已知曲线C的方程为 x 4 y2,说明曲线C是什 么样的曲线,并求该曲线与y轴围成的图形的面积.
解:由 x 4 y2 ,得x2+y2=4,又x≥0, 所以方程 x 4 y2 表示的曲线是以原点为圆心,2为半径 的右半圆,从而该曲线C与y轴围成的图形是半圆, 其面积 S 1 4 2
第二章 圆锥曲线与方程
2.1 曲线与方程
1.理解曲线与方程的概念、意义.(重点、难点) 2.了解数与形结合的基本思想.(难点)

高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。

高中数学选修2-1第二章圆锥曲线

高中数学选修2-1第二章圆锥曲线
双曲线的标准方程: 双曲线的标准方程:
2
2
y x + 2 =1 (a > b > 0) 2 a b
2
2
x2 y2 − 2 =1 (a > 0,b > 0) 2 a b
抛物线的标准方程: 抛物线的标准方程:
y2 x2 − 2 =1 (a > 0,b > 0) 2 a b
y2 = ±2px ( p > 0)
动 M 一 定 F的 离 它 一 定 线的 离 比 点 与 个 点 距 和 到 条 直 l 距 的 是 数e, 常 l d .M
l
d
.M .
F
l
d.M
.
.
e >1
F
F
0 <e <1
e =1
定点是焦点,定直线叫做准线,常数e是离心率 .
椭圆的标准方程: 椭圆的标准方程:
x y + 2 =1 (a > b > 0) 2 a b
3.双曲线的几何性质:以 .双曲线的几何性质: x2/a2-y2/b2=1(a、b>0)表示的双曲线为例,其几 表示的双曲线为例, > 表示的双曲线为例 何性质如下: 何性质如下: (1)范围:x≤-a,或x≥a 范围: 范围 , (2)关于 轴、y轴、原点对称, 关于x轴 轴 原点对称, 关于 (3)两顶点是 ±a,0)(4)离心率 两顶点是(± 两顶点是 离心率 e=c/a∈(1,+∞).c=√a2+b2(5)渐近线方程为 ∈ 渐近线方程为 y=±bx/a,准线方程是 ±a2/c ± ,准线方程是x=±
椭圆 圆 锥 曲 线
定义 标准方程
双曲线
几何性质
抛物线
直线与圆锥曲线 的位置关系

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1的全部内容。

2.3。

2 双曲线的几何性质学习目标1。

了解双曲线的几何性质(范围、对称性、顶点、实轴长和虚轴长等)。

2。

理解离心率的定义、取值范围和渐近线方程。

3。

掌握标准方程中a,b,c,e间的关系.知识点一双曲线的性质标准方程错误!-错误!=1(a〉0,b〉0)错误!-错误!=1 (a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴;对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0)顶点坐标:A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!a,b,c间的关系c2=a2+b2(c〉a〉0,c>b>0)知识点二等轴双曲线思考求下列双曲线的实半轴长、虚半轴长,并分析其共同点.(1)x2-y2=1;(2)4x2-4y2=1.答案(1)的实半轴长为1,虚半轴长为1(2)的实半轴长为错误!,虚半轴长为错误!。

它们的实半轴长与虚半轴长相等.梳理实轴和虚轴等长的双曲线叫作等轴双曲线,其渐近线方程为y=±x,离心率为 2.1.双曲线错误!-错误!=1与错误!-错误!=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-错误!=1与错误!-错误!=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的离心率为错误!。

(新)高中数学第二章圆锥曲线与方程2_4_2抛物线的几何性质学案新人教B版选修2-1

(新)高中数学第二章圆锥曲线与方程2_4_2抛物线的几何性质学案新人教B版选修2-1

2.4.2 抛物线的几何性质学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题.知识点一抛物线的范围思考观察下列图形,思考以下问题:(1)观察焦点在x轴的抛物线与双曲线及椭圆的图形,分析其几何图形存在哪些区别?(2)根据图形及抛物线方程y2=2px(p>0)如何确定横坐标x的范围?梳理抛物线y2=2px(p>0)中,x∈__________,y∈__________.抛物线y2=-2px(p>0)中,x∈__________,y∈__________.抛物线x2=2py(p>0)中,x∈__________,y∈__________.抛物线x2=-2py(p>0)中,x∈__________,y∈__________.知识点二四种形式的抛物线的几何性质标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) 图形范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 对称轴x轴x轴y轴y轴焦点F(p2,0)F(-p2,0)F(0,p2)F(0,-p2)准线方程 x =-p 2x =p 2y =-p 2y =p 2顶点坐标 O (0,0) 离心率 e =1通径长 2p知识点三 直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程组⎩⎪⎨⎪⎧y =kx +b ,y 2=2px解的个数,即二次方程k 2x 2+2(kb -p )x +b 2=0解的个数.当k ≠0时,若Δ>0,则直线与抛物线有______个不同的公共点;若Δ=0时,直线与抛物线有______个公共点;若Δ<0时,直线与抛物线________公共点.当k =0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点.类型一 依据抛物线的几何性质求标准方程例1 抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程. 引申探究将本例改为“若抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A ,B 两点,O 为坐标原点,若△OAB 的面积等于4”,求此抛物线的标准方程.反思与感悟 用待定系数法求抛物线方程的步骤跟踪训练1 已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交于A ,B 两点,|AB |=23,求抛物线方程.类型二 抛物线的焦半径和焦点弦问题例2 (1)过抛物线y 2=8x 的焦点,倾斜角为45°的直线被抛物线截得的弦长为________. (2) 直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,若|AB |=8,则直线l 的方程为________________.(3)过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,则AB 的中点M 到抛物线准线的距离为________________.反思与感悟 (1)抛物线上任一点P (x 0,y 0)与焦点F 的连线得到的线段叫做抛物线的焦半径,对于四种形式的抛物线来说其焦半径的长分别为: ①抛物线y 2=2px (p >0),|PF |=|x 0+p 2|=p2+x 0;②抛物线y 2=-2px (p >0),|PF |=|x 0-p 2|=p2-x 0;③抛物线x 2=2py (p >0),|PF |=|y 0+p 2|=p2+y 0;④抛物线x 2=-2py (p >0),|PF |=|y 0-p2|=p2-y 0.(2)已知AB 是过抛物线y 2=2px (p >0)的焦点的弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2),则:①y 1·y 2=-p 2,x 1·x 2=p 24;②|AB |=x 1+x 2+p =2psin 2θ(θ为直线AB 的倾斜角); ③S △ABO =p 22sin θ(θ为直线AB 的倾斜角);④1|AF |+1|BF |=2p ; ⑤以AB 为直径的圆与抛物线的准线相切.(3)当直线经过抛物线的焦点,且与抛物线的对称轴垂直时,直线被抛物线截得的线段称为抛物线的通径,显然通径长等于2p .跟踪训练2 已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点. (1)若直线l 的倾斜角为60°,求|AB |的值; (2)若|AB |=9,求线段AB 的中点M 到准线的距离.类型三 抛物线综合问题命题角度1 与抛物线有关的最值问题例3 抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,若点A (-1,0),求|PF ||PA |的最小值.反思与感悟 (1)若曲线和直线相离,在曲线上求一点到直线的距离最小问题,可找到与已知直线平行的直线,使其与曲线相切,则切点为所要求的点.(2)以上问题一般转化为“两点之间线段最短”或“点到直线的垂线段最短”来解决. 跟踪训练3 已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 C.115 D.3716命题角度2 定值或定点问题例4 抛物线y 2=2px (p >0)上有两动点A ,B 及一个定点M ,F 为抛物线的焦点,若|AF |,|MF |,|BF |成等差数列.(1)求证:线段AB 的垂直平分线过定点Q ;(2)若|MF |=4,|OQ |=6(O 为坐标原点),求抛物线的方程.反思与感悟 在抛物线的综合性问题中,存在着许多定值问题,我们不需要记忆关于这些定值的结论,但必须牢牢掌握研究这些定值问题的基本方法,如设直线的点斜式方程、根与系数关系的利用、焦半径的转化等.跟踪训练4 在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A ,B 两点,OA →·OB →=-4,求证:直线l 必过一定点.1.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-122.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ) A.172 B .3 C. 5 D.923.过抛物线y 2=4x 的焦点作直线l 交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则|AB |=________.4.已知过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =________.5.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在抛物线C 上,且|AK |=2|AF |,则△AFK 的面积为________.1.抛物线的中点弦问题用点差法较简便.2.轴对称问题,一是抓住对称两点的中点在对称轴上,二是抓住两点连线的斜率与对称轴所在直线斜率的关系.3.在直线和抛物线的综合问题中,经常遇到求定值、过定点问题.解决这类问题的方法很多,如斜率法、方程法、向量法、参数法等.解决这些问题的关键是代换和转化.提醒:完成作业 第二章 2.4.2答案精析问题导学 知识点一思考 (1)抛物线与另两种曲线相比较,有明显的不同,椭圆是封闭曲线,有四个顶点,有两个焦点,有中心;双曲线虽然不是封闭曲线,但是有两支,有两个顶点,两个焦点,有中心;抛物线只有一条曲线,一个顶点,一个焦点,无中心.(2)由抛物线y 2=2px (p >0)有⎩⎪⎨⎪⎧2px =y 2≥0,p >0,所以x ≥0.所以抛物线x 的范围为x ≥0.抛物线在y 轴的右侧,当x 的值增大时,︱y ︱也增大,这说明抛物线向右上方和右下方无限延伸.梳理 [0,+∞) (-∞,+∞) (-∞,0] (-∞,+∞) (-∞,+∞) [0,+∞) (-∞,+∞) (-∞,0] 知识点三两 一 没有 平行或重合 一 题型探究例1 解 椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3, 即p2=3,∴p =6. ∴抛物线的标准方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3或x =3. 引申探究解 由题意,设抛物线方程为y 2=2mx (m ≠0),焦点F (m 2,0),直线l :x =m2,所以A ,B 两点坐标为(m 2,m ),(m2,-m ),所以|AB |=2|m |. 因为△OAB 的面积为4,所以12·|m2|·2|m |=4,所以m =±2 2.所以抛物线的标准方程为y 2=±42x .跟踪训练1 解 由已知,抛物线的焦点可能在x 轴正半轴上,也可能在负半轴上. 故可设抛物线方程为y 2=ax (a ≠0).设抛物线与圆x 2+y 2=4的交点A (x 1,y 1),B (x 2,y 2). ∵抛物线y 2=ax (a ≠0)与圆x 2+y 2=4都关于x 轴对称, ∴点A 与B 关于x 轴对称, ∴|y 1|=|y 2|且|y 1|+|y 2|=23, ∴|y 1|=|y 2|=3,代入圆x 2+y 2=4, 得x 2+3=4,∴x =±1,∴A (±1,3)或A (±1,-3),代入抛物线方程,得(3)2=±a ,∴a =±3. ∴所求抛物线方程是y 2=3x 或y 2=-3x .例2 (1)16 (2)x +y -1=0或x -y -1=0 (3)72跟踪训练2 解 (1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°= 3.又F ⎝ ⎛⎭⎪⎫32,0,所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝ ⎛⎭⎪⎫x -32,消去y 得x 2-5x +94=0.若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5, 而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p=x 1+x 2+3,所以x 1+x 2=6.于是线段AB 的中点M 的横坐标是3,又准线方程是x =-32,所以M 到准线的距离等于3+32=92.例3 解 抛物线y 2=4x 的准线方程为x =-1,如图,过点P 作PN 垂直x =-1于点N ,由抛物线的定义可知|PF |=|PN |, 连接PA , 在Rt△PAN 中,sin∠PAN =|PN ||PA |,当|PN ||PA |=|PF ||PA |最小时,sin∠PAN 最小,即∠PAN 最小,即∠PAF 最大,此时,PA 为抛物线的切线, 设PA 的方程为y =k (x +1), 联立⎩⎪⎨⎪⎧y =k x +1,y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0, 所以Δ=(2k 2-4)2-4k 4=0, 解得k =±1,所以∠PAF =∠NPA =45°, |PF ||PA |=|PN ||PA |=cos∠NPA =22. 跟踪训练3 A例4 (1)证明 设点A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则|AF |=x 1+p 2,|BF |=x 2+p2,|MF |=x 0+p2,x 0为已知值. 由题意得x 0=x 1+x 22,∴线段AB 的中点坐标可设为(x 0,t ), 其中t =y 1+y 22≠0(否则|AF |=|MF |=|BF |⇒p =0).而k AB =y 1-y 2x 1-x 2=y 1-y 212py 21-y 22=2p y 1+y 2=pt , 故线段AB 的垂直平分线的方程为y -t =-t p(x -x 0),即t (x -x 0-p )+yp =0,可知线段AB 的垂直平分线过定点Q (x 0+p ,0).(2)解 由|MF |=4,|OQ |=6,得x 0+p2=4,x 0+p =6,联立解得p =4,x 0=2.∴抛物线方程为y 2=8x .跟踪训练4 证明 设l :x =ty +b ,代入抛物线y 2=4x , 消去x 得y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4b . 又∵OA →·OB →=x 1x 2+y 1y 2 =(ty 1+b )(ty 2+b )+y 1y 2 =t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2 =-4bt 2+4bt 2+b 2-4b =b 2-4b , 又∵OA →·OB →=-4,∴b 2-4b =-4, 解得b =2,故直线过定点(2,0). 当堂训练1.C 2.A 3.8 4.2 5.8。

高中数学详细目录章节

高中数学详细目录章节

高中数学目录数学必修1第1章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集第2章函数概念与基本初等函数Ⅰ2.1 函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2 指数函数分数指数幂指数函数2.3 对数函数对数对数函数2.4 幂函数2.5 函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6 函数模型及其应用数学必修2第3章立体几何初步3.1 空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2 点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1 直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2 圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3 空间直角坐标系空间直角坐标系空间两点间的距离数学必修3第5章算法初步5.1 算法的意义5.2 流程图5.3 基本算法语句5.4 算法案例第6章统计6.1 抽样方法6.2 总体分布的估计6.3 总体特征数的估计6.4 线性回归方程第7章概率7.1随机事件及其概率7.2 古典概型7.3 几何概型7.4 互斥事件及其发生的概率数学必修4第8章三角函数8.1 任意角、弧度8.2 任意角的三角函数8.3 三角函数的图象和性质第9章平面向量9.1 向量的概念及表示9.2 向量的线性运算9.3 向量的坐标表示9.4 向量的数量积9.5 向量的应用第10章三角恒等变换10.1 两角和与差的三角函数10.2 二倍角的三角函数10.3 几个三角恒等式数学必修5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修 1-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用选修 1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修 2-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用选修 2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义选修 2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6.1 曲线与方程
[学习目标] 1.了解曲线和方程的概念.2.理解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的含义.
知识点曲线的方程、方程的曲线
如果曲线C上点的坐标(x,y)都是方程f(x,y)=0的解,且以方程f(x,y)=0的解(x,y)为坐标的点都在曲线C上,那么,方程f(x,y)=0叫做曲线C的方程,曲线C叫做方程f(x,y)=0的曲线.
思考(1)如果曲线与方程仅满足“以这个方程的解为坐标的点都是曲线上的点”,会出现什么情况?举例说明.
(2)如果曲线C的方程是f(x,y)=0,那么点P(x0,y0)在曲线C上的充要条件是什么?
答案(1)如果曲线与方程仅满足“以这个方程的解为坐标的点都是曲线上的点”,有可能扩大曲线的边界.如方程y=1-x2表示的曲线是半圆,而非整圆.
(2)若点P在曲线C上,则f(x0,y0)=0;若f(x0,y0)=0,则点P在曲线C上,所以点P(x0,y0)在曲线C上的充要条件是f(x0,y0)=0.
题型一曲线与方程的概念
例 1 (1)已知坐标满足方程f(x,y)=0的点都在曲线C上,那么下列说法正确的是________.(填序号)
①曲线C上的点的坐标都适合方程f(x,y)=0;
②凡坐标不适合f(x,y)=0的点都不在曲线C上;
③不在曲线C上的点的坐标必不适合f(x,y)=0;
④不在曲线C上的点的坐标有些适合f(x,y)=0,有些不适合f(x,y)=0.
答案③
(2)分析下列曲线上的点与相应方程的关系:
①与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;
②第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.
解①与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点一定满足与两坐标轴的距离之积等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.
②第二、四象限两轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两轴夹角平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x +y =0.
反思与感悟 判断方程是不是曲线的方程的两个关键点: 一是检验点的坐标是否适合方程;
二是检验以方程的解为坐标的点是否在曲线上. 跟踪训练1 判断下列命题是否正确.
(1)以坐标原点为圆心,r 为半径的圆的方程是y =r 2
-x 2
; (2)过点A (2,0)平行于y 轴的直线l 的方程为|x |=2.
解 (1)不正确.设(x 0,y 0)是方程y =r 2
-x 2
的解,则y 0=r 2
-x 2
0,即x 2
0+y 2
0=r 2
.两边开平方取算术平方根,得x 2
0+y 2
0=r 即点(x 0,y 0)到原点的距离等于r ,点(x 0,y 0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、r 为半径的
圆上的一点如点(r 2,-32
r )在圆上,却不是y =r 2-x 2
的解,这就不满足曲线上的点的坐
标都是方程的解.所以,以原点为圆心,r 为半径的圆的方程不是y =r 2
-x 2
,而应是y =±r 2
-x 2
.
(2)不正确.直线l 上的点的坐标都是方程|x |=2的解.然而,坐标满足|x |=2的点不一定在直线l 上,因此|x |=2不是直线l 的方程,直线l 的方程为x =2. 题型二 由方程判断其表示的曲线
例2 方程(2x +3y -5)(x -3-1)=0表示的曲线是什么? 解 因为(2x +3y -5)(x -3-1)=0,
所以可得⎩⎪⎨
⎪⎧
2x +3y -5=0,
x -3≥0,
或者x -3-1=0,即2x +3y -5=0(x ≥3)或者x =4,故方
程表示的曲线为一条射线2x +3y -5=0(x ≥3)和一条直线x =4.
反思与感悟 判断方程表示什么曲线,必要时要对方程适当变形,变形过程中一定要注意与原方程等价,否则变形后的方程表示的曲线就不是原方程的曲线. 跟踪训练2 “(2x +3y -5)[log 2(x +2y )-3]=0”,其表示什么曲线? 解 因为(2x +3y -5)[log 2(x +2y )-3]=0,
所以可得⎩⎪⎨


2x +3y -5=0,x +2y >0,
或者x +2y =8,即2x +3y -5=0(x <10)或者x +2y =8,故方
程表示的曲线为一条射线2x +3y -5=0(x <10)(去除端点)和一条直线x +2y =8. 题型三 曲线与方程关系的应用
例3 若曲线y 2
-xy +2x +k =0过点(a ,-a ) (a ∈R ),求k 的取值范围.
解 ∵曲线y 2
-xy +2x +k =0过点(a ,-a ), ∴a 2
+a 2
+2a +k =0.
∴k =-2a 2
-2a =-2(a +12)2+12.
∴k ≤12,∴k 的取值范围是(-∞,1
2
].
反思与感悟 (1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是不是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上. (2)已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关参数的值或范围问题.
跟踪训练3 (1)已知方程y =a |x |和y =x +a (a >0)所确定的两条曲线有两个交点,则a 的取值范围是________. 答案 a >1
解析 ∵a >0,∴方程y =a |x |和y =x +a (a >0)的图象大致如图,要使方程y =a |x |和y =x +a (a >0)所确定的两条曲线有两个交点,则要求y =a |x |在y 轴右侧的斜率大于y =x +a 的斜率,∴a >1.
(2)已知直线l :y =x +b 与曲线C :y =1-x 2
有两个公共点,求b 的取值范围.
解 由方程组⎩⎨

y =x +b ,y =1-x 2,
得⎩
⎪⎨⎪⎧
y =x +b ,x 2+y 2
=1y ≥0.
消去x ,得到2y 2
-2by +b 2
-1=0(y ≥0).
l 与C 有两个公共点,等价于此方程有两个不等的非负实数解,
可得⎩⎪⎨
⎪⎧
Δ=4b 2-8b 2-1>0,
y 1
+y 2=b >0,y 1y 2
=b 2
-12
≥0,
解得1≤b < 2.
所以b 的取值范围为[1,2).
1.“点M 在曲线y 2
=4x 上”是“点M 的坐标满足方程y =-2x ”的________条件. 答案 必要不充分
解析 ∵y =-2x ≤0,而y 2
=4x 中y 可正可负,
∴点M 在曲线y 2
=4x 上时, 点M 不一定在y =-2x 上.
反之,点M 在y =-2x 上时,点M 一定在y 2
=4x 上. 2.方程(x 2
-4)2
+(y 2
-4)2
=0表示的图形是________. 答案 四个点
解析 由已知得⎩
⎪⎨⎪⎧
x 2
-4=0,
y 2
-4=0,∴⎩
⎪⎨
⎪⎧
x =±2,
y =±2
即⎩⎪⎨
⎪⎧
x =2,y =2
或⎩⎪⎨
⎪⎧
x =2,
y =-2
或⎩⎪⎨
⎪⎧
x =-2,y =2
或⎩⎪⎨
⎪⎧
x =-2,y =-2.
3.下列四个图形中,图形下面的方程是图形中曲线的方程的是________.(填序号)
答案 ④
解析 对于①,点(0,-1)满足方程,但不在曲线上,排除①; 对于②,点(1,-1)满足方程,但不在曲线上,排除②;
对于③,曲线上第三象限的点,由于x <0,y <0,不满足方程,排除③.
4.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2
+y 2
=3上,则α的值为________. 答案
π3或5π
3
解析 由(cos α-2)2+sin 2
α=3,得cos α=12.
又0≤α<2π,∴α=π3或α=5π
3
.
5.过点P (1,1)且互相垂直的两条直线l 1与l 2分别与x 轴,y 轴交于A ,B 两点,则AB 中点
M 的轨迹方程为______________.
答案 x +y -1=0 解析 设M (x ,y ),如图,
由直角三角形的性质可知
PM =MO ,
即(x -1)2
+(y -1)2
=x 2
+y 2
, ∴x +y -1=0.
1.曲线的方程和方程的曲线必须满足两个条件:曲线上点的坐标都是方程的解,以方程的解为坐标的点都在曲线上.
2.点(x0,y0)在曲线C上的充要条件是点(x0,y0)适合曲线C的方程.
3.方程表示的曲线的判断步骤:
4.判断方程表示曲线的注意事项:
(1)方程变形前后要等价,否则变形后的方程表示的曲线不是原方程代表的曲线.
(2)当方程中含有绝对值时,常采用分类讨论的思想.。

相关文档
最新文档