FLUENT入门04求解器设置
fluent教程
fluent教程Fluent是一款由Ansys开发的计算流体动力学(CFD)软件,广泛应用于工程领域,特别是在流体力学仿真方面。
本教程将介绍一些Fluent的基本操作,帮助初学者快速上手。
1. 启动Fluent首先,双击打开Fluent的图形用户界面(GUI)。
在启动页面上,选择“模拟”(Simulate)选项。
2. 创建几何模型在Fluent中,可以通过导入 CAD 几何模型或使用自带的几何建模工具来创建模型。
选择合适的方法,创建一个几何模型。
3. 定义网格在进入Fluent之前,必须生成一个网格。
选择合适的网格工具,如Ansys Meshing,并生成网格。
确保网格足够精细,以便准确地模拟流体力学现象。
4. 导入网格在Fluent的启动页面上,选择“导入”(Import)选项,并将所生成的网格文件导入到Fluent中。
5. 定义物理模型在Fluent中,需要定义所模拟流体的物理属性以及边界条件。
选择“物理模型”(Physics Models)选项,并根据实际情况设置不同的物理参数。
6. 设置边界条件在模型中,根据实际情况设置边界条件,如入口速度、出口压力等。
选择“边界条件”(Boundary Conditions)选项,并给出相应的数值或设置。
7. 定义求解器选项在Fluent中,可以选择不同的求解器来解决流体力学问题。
根据实际情况,在“求解器控制”(Solver Control)选项中选择一个合适的求解器,并设置相应的参数。
8. 运行仿真设置完所有的模型参数后,点击“计算”(Compute)选项,开始运行仿真。
等待仿真过程完成。
9. 后处理结果完成仿真后,可以进行结果的后处理,如流线图、压力分布图等。
选择“后处理”(Post-processing)选项,并根据需要选择相应的结果显示方式。
10. 分析结果在后处理过程中,可以进行结果的分析。
比较不同参数的变化,探索流体流动的特点等。
以上是使用Fluent进行流体力学仿真的基本流程。
ANSYSFLUENT培训教材之求解器设置
Calculate a solution
Modify solution parameters or grid
Check for convergence
Yes
No
Check for accuracy
No
Yes Stop
A Pera Global Company © PERA China
求解器选择
中有两种求解器 – 压力基和密 度基。
求解过程概览
求解参数 选择求解器 离散格式 初始条件 收敛 监测收敛过程 稳定性 设置松弛因子 设置 加速收敛 精度 网格无关性 自适应网格
Set the solution parameters
Initialize the solution
Enable the solution monitors of interest
启动 初始化 压力基求解器: 密度基求解器: 当选择密度基求解器后在 里可见
在粗网格上用多重网格求解 通过 命令来设置
A Pera Global Company © PERA China
培训教材 第四节:求解器设置
A Pera Global Company © PERA China
概要
使用求解器(求解过程概览) 设置求解器参数 收敛 定义 监测 稳定性 加速收敛 精度 网格无关性 网格自适应 非稳态流模拟(后续章节中介绍) 非稳态流问题设置 非稳态流模型选择 总结 附录
A Pera Global Company © PERA China
初始化
要求所有的求解变量有初始 值
更真实的初值能提高收敛稳 定性,加速收敛过程.
有些情况需要一个好的初值
在特定区域对特定变量单独 赋值
fluent计算模型总体设置
fluent计算模型总体设置内容:计算模型是一种基于有限体积法的通用计算流体动力学()软件,广泛应用于工业领域。
在使用进行数值模拟时,需要合理设置计算模型的总体参数,以确保计算结果的准确性和收敛性。
以下是计算模型的一些常见总体设置:1. 选择求解器类型提供了基于密度的求解器和基于压力的求解器两种求解器类型。
密度求解器适用于高速压缩性流动问题,而压力求解器适用于低速不可压缩或微压缩流动问题。
2. 设置物理模型根据具体问题的特点,需要选择合适的物理模型,如层流模型、湍流模型、多相流模型、燃烧模型等。
正确选择物理模型对模拟结果的准确性至关重要。
3. 设置材料属性需要为模拟中涉及的所有流体和固体材料定义其物理属性,如密度、粘度、热导率等。
对于复杂材料,可能需要编写用户自定义函数()来描述其物性。
4. 设置边界条件边界条件是模拟的关键部分,需要根据实际问题合理设置入口、出口、壁面等边界条件。
边界条件的设置直接影响计算结果的准确性。
5. 设置计算域网格计算域网格的质量对模拟结果有重大影响。
需要根据几何形状和流动特征,选择合适的网格类型(结构化或非结构化)和网格加密策略,以确保网格质量。
6. 设置收敛判据需要设置合理的收敛判据,如残差目标、监视面上的通量平衡等,以确定计算何时可以终止。
收敛判据的设置直接关系到计算结果的可靠性。
7. 设置计算控制参数根据问题的复杂程度,可能需要调整一些计算控制参数,如欠松弛因子、显式松弛因子等,以提高计算的稳定性和收敛速度。
8. 设置计算策略对于某些复杂问题,可能需要采用特殊的计算策略,如多重网格技术、动态网格技术等,以提高计算效率和结果精度。
合理设置计算模型的总体参数对于获得准确可靠的模拟结果至关重要。
这需要对流体力学理论和技术有深入的理解,并结合具体问题的特点进行合理设置。
ANSYS FLUENT培训教材之求解器设置
路漫漫其修远兮, 吾将上下而求索
压力速度耦合
压力基求解器通过连续性方程和动量方程导出压力方程或压力修 正方程
FLUENT中有四种耦合方式
– Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
• 默认算法,稳健性好
– SIMPLE-Consistent (SIMPLEC)
隐式方法一般优于显式,因为其对时间步有严格的限制 显式方法一般用于流动时间尺度和声学时间尺度相当的情况(如高马
赫激波的传播)
路漫漫其修远兮, 吾将上下而求索
离散化(插值方法)
存储在单元中心的流场变量必须插值到控制体面上
对流项的插值方法有: – First-Order Upwind – 易收敛,一阶精度。 – Power Law –对低雷诺数流动 ( Recell < 5 )比一阶格式更精确 – Second-Order Upwind – 尤其适用流动和网格方向不一致的四面体/三 角形网格,二阶精度,收敛慢 – Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) – 对非结构网格,局部三阶精度,对二次流、旋转涡、力等 预测的更精确 – Quadratic Upwind Interpolation (QUICK) – 适用于四边形/六面体以及 混合网格,对旋转流动有用,在均匀网格上能达到三阶精度
Initialize the solution
Enable the solution monitors of interest
Calculate a solution
Modify solution parameters or grid
fluent设置
FLUENT设置(1)读入网格,file→read→case;(2)检查网格,确保最小体积为正,grid→check;(3)缩放网格,grid→scale;(4)光顺/交换网格,grid→smooth/swap,直至number swapped为0;(5)求解器设置,define→models→solver,都是默认值(设置为分离求解器、隐式算法、三维空间、稳态流动、绝对速度、压力梯度为单元压力梯度计算);(6)设置计算模型,define→models→viscous,选用标准k-ε模型或RNG k-ε,其他保持默认设置;(7)设置运行环境,define→operating condition,参考压力选用默认值,不计重力,位置选在泵进口边;首先display→grid观察来流方向(对于叶轮要运用右手准则)然后将grid→scale中来流方向的值复制给define→operating condition(8)设置转速单位,define→units,改为rpm;(9)定义材料,define→materials,选择water-liquid即清水(若Fluent Fluid Materials中没有water-liquid,则点击Fluent Database在Fluent Fluid Materials中选择water-liquid);(10)设置交界面,define→grid interface;(11)定义边界条件,define→boundary conditions;如图部分典型边界条件设置蜗壳叶轮叶轮壁面蜗壳壁面进口出口(12)设置求解参数,solve→controls→solution,选择SIMPLE算法;(13)监视残差,solve→monitors→residual,修改收敛精度为10-5,并显示残差,solve→monitors→surface,同时监测进出口面上的总压;(14)初始化流场,solve→initialize→initialize,在Solution initialization选项中的reference frame中选择relative to cell zone,all zones;(15)保存case文件,file→write→case;(16)开始迭代计算,solve→iterate。
fluent 教程
fluent 教程Fluent是一种流体仿真软件,用于模拟和分析流体流动和热传递问题。
以下是一个简单的Fluent教程,逐步介绍如何使用该软件。
第一步:准备工作在使用Fluent之前,您需要安装软件并获取许可证。
安装完成后,打开软件并创建一个新项目。
第二步:建立几何模型在Fluent中,您需要先创建一个几何模型,用于描述您要仿真的系统或设备的形状。
您可以通过多种方式,如导入CAD文件或手动绘制来创建几何模型。
第三步:网格划分接下来,您需要对几何模型进行网格划分,将其分割成小的单元。
这个过程称为网格划分或网格生成。
Fluent提供了多种网格划分工具和算法,您可以根据需要选择适当的方法。
第四步:设定材料属性和边界条件在仿真之前,您需要为模型中的材料属性和边界条件设置参数。
例如,您需要指定每个单元的材料类型、热传导系数和流体属性。
第五步:设置流动方程和求解器Fluent中使用Navier-Stokes方程描述流体的运动,根据需要选择合适的模型方程和求解器。
您还可以设置其他参数,如稳态或非稳态求解、收敛条件等。
第六步:定义仿真参数在开始仿真前,您需要定义一些仿真参数,如时间步长、迭代次数等。
这些参数将影响仿真结果的准确性和效率。
第七步:运行仿真最后,您可以运行仿真并观察结果。
Fluent将计算并显示流场、温度分布和其他感兴趣的物理量。
您可以使用软件提供的可视化工具进行结果分析和后处理。
通过上述步骤,您可以初步了解Fluent的使用方法。
然而,Fluent具有更多高级功能和选项,如多相流、化学反应等。
如果您对特定应用或问题有更深入的了解,建议参考Fluent官方文档和其他相关资源以获取更多详细信息。
FLUENT全参数设置(新手)
4月1日写给Fluent新手(续)31 数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?假扩散(false diffusion)的含义:基本含义:由于对流—扩散方程中一阶导数项的离散格式的截断误差小于二阶而引起较大数值计算误差的现象。
有的文献中将人工粘性(artificial viscosity)或数值粘性(numerical viscosity)视为它的同义词。
拓宽含义:现在通常把以下三种原因引起的数值计算误差都归在假扩散的名称下1.非稳态项或对流项采用一阶截差的格式;2.流动方向与网格线呈倾斜交叉(多维问题);3.建立差分格式时没有考虑到非常数的源项的影响。
克服或减轻假扩散的格式或方法,为克服或减轻数值计算中的假扩散(包括流向扩散及交叉扩散)误差,应当:1. 采用截差阶数较高的格式;2. 减轻流线与网格线之间的倾斜交叉现象或在构造格式时考虑到来流方向的影响。
3. 至于非常数源项的问题,目前文献中,还没有为克服这种影响而专门构造的格式,但是高阶格式显然对减轻其影响是有利的。
32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?FLUENT等高线(contour)显示过程中,可以通过调节显示的水平等级来调节其显示细节,Levels...最大值允许设置为100.对于封闭的3D物体,可以通过建立Surface,监视Surface上的量来显示计算结果。
或者计算之后将结果导入到Tecplot中,作切片图显示。
33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?对于非定常计算,可以通过创建动画来形象地显示出动态的效果图。
Solve->Animate->Define...,具体操作请参考Fluent用户手册。
34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?GAUGE PRESSURE 就是静压。
最新fluent求解参数设置资料讲解
求解参数设置(Solution Methods/Solution Controls):在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。
在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。
在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。
• 求解的控制方程:在求解参数设置中,可以选择所需要求解的控制方程。
可选择的方程包括Flow(流动方程)、Turbulence(湍流方程)、Energy(能量方程)、V olume Fraction(体积分数方程)等。
在求解过程中,有时为了得到收敛的解,先关闭一些方程,等一些简单的方程收敛后,再开启复杂的方程一起计算。
• 选择压力速度耦合方法:在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。
定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。
PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。
需要注意的是压力速度耦合只用于分离求解器,在耦合求解器中不可以使用。
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。
对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。
在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE 算法。
完整word版,FLUENT中的求解器、算法和离散方法
FLUENT中的求解器、算法和离散方法作为一个非科班出身的CFD工程师,一开始常常被CFD软件里各种概念搞的晕头转向。
最近终于静下心来看了看CFD 理论的书,理清了一些概念。
就此写一遍博文,顺便整理一下所学内容。
I 求解器:FLUENT中求解器的选择在如下图所示界面中设置:FLUENT中的求解器主要是按照是否联立求解各控制方程来区分的,详见下图:II 算法:算法是求解时的策略,即按照什么样的方式和步骤进行求解。
FLUENT中算法的选择在如下图所示的界面中设置:这里简单介绍一下SIMPLE、SIMPLEC、PISO等算法的基本思想和适用范围。
SIMPLE算法:基本思想如前面讲求解器的那张图中解释分离式求解器的例子所示的一样,这里再贴一遍:1.假设初始压力场分布。
2.利用压力场求解动量方程,得到速度场。
3.利用速度场求解连续性方程,使压力场得到修正。
4.根据需要,求解湍流方程及其他方程5.判断但前计算是否收敛。
若不收敛,返回第二步。
简单说来,SIMPLE算法就是分两步走:第一步预测,第二步修正,即预测-修正。
SIMPLC算法:是对SIMPLE算法的一种改进,其计算步骤与SIMPLE算法相同,只是压力修正项中的一些系数不同,可以加快迭代过程的收敛。
PISO算法:比SIMPLE算法增加了一个修正步,即分三步:第一步预测,第二步修正得到一个修正的场分布,第三步在第二步基础上在进行一侧修正。
即预测-修正-修正。
PISO算法在求解瞬态问题时有明显优势。
对于稳态问题可能SIMPLE或SIMPLEC更合适。
如果你实在不知道该如何选择,就保持FLUENT的默认选项好了。
因为默认选项可以很好解决70%以上的问题,而且对于大部分出了问题的计算来说,也很少是因为算法选择不恰当所致。
III 离散方法:离散方法是指按照什么样的方式将控制方程在网格节点离散,即将偏微分格式的控制方程转化为各节点上的代数方程组。
FLUENT中离散方法的选择在如下图所示的界面中设置:简单介绍常用的几种离散方法:一阶迎风格式/ Fisrst order upwind:一阶迎风格式考虑了流动方向,可以得到物理上看起来合理的解。
FLUENT求解器的结构以及使用方法
FLUENT求解器的结构以及使用方法FLUENT是一种流体动力学仿真软件,由ANSYS公司开发的。
它被广泛应用于工程领域,用于模拟、分析和优化涉及流体运动的问题。
FLUENT的结构主要包括以下几个方面:网格预处理、求解器设置、模型和边界条件、求解计算、后处理和结果分析等。
首先是网格预处理,网格是模拟流体运动的基础。
FLUENT支持多种网格类型,包括结构化网格和非结构化网格。
用户可以使用FLUENT的网格生成工具或其他第三方软件来生成网格。
在网格预处理过程中,用户需要检查网格质量,包括网格的网格精度和网格的规则性,以确保获得准确和可靠的模拟结果。
接下来是求解器设置。
FLUENT提供了多种不同的求解器选项,包括湍流模型、物理模型和辐射模型等。
用户可以根据需要选择适合的求解器。
此外,用户还可以定义计算的边界条件和其他设置参数,以便获得准确和可靠的模拟结果。
然后是模型和边界条件。
用户可以根据具体问题设置模型和边界条件。
例如,如果用户需要模拟流过一个管道的流体运动,他们可以设置管道的结构以及流体的流速、温度和其他属性等。
FLUENT提供了广泛的模型和边界条件选项,以满足不同问题的需求。
求解计算是FLUENT的核心部分。
FLUENT使用迭代方法来求解流体力学方程组。
用户可以选择不同的求解算法和计算参数,以控制求解的精度和速度。
FLUENT还提供了并行计算功能,用户可以利用多个处理器或计算机来加快求解速度。
完成求解计算后,用户可以进行后处理和结果分析。
FLUENT提供了丰富的后处理工具,可以用于可视化模拟结果、生成流线图、计算各种流体参数的统计值等。
用户可以根据需要选择并使用这些工具,以进一步分析和理解模拟结果。
使用FLUENT的方法如下所述:1.网格生成:使用FLUENT的网格生成工具或其他第三方软件生成适当的网格。
2.FLUENT软件的启动:打开FLUENT软件,加载所需的网格文件。
3.求解器设置:选择适当的求解器选项,设置相应的模型和边界条件。
fluent操作流程
fluent操作流程Fluent 操作流程简介:Fluent 是一款用于计算流体力学(Computational Fluid Dynamics,简称CFD)的软件。
它提供了一个强大的求解器和用户界面,帮助工程师模拟和分析流体力学问题。
以下是 Fluent 的操作流程简介:1. 启动 Fluent:双击 Fluent 的图标或通过命令行打开软件。
一些版本的 Fluent 还可以通过集成开发环境或命令行调用。
2. 准备几何模型:使用几何建模软件(如 ANSYS DesignModeler)创建和准备几何模型。
将模型导出为支持的文件格式(如 .stl 或 .igs)。
3. 导入几何模型:在 Fluent 中,通过“文件”>“导入”>“几何”选项导入几何模型文件。
根据需要进行缩放和旋转等操作,然后应用更改并关闭几何模型的界面。
4. 定义边界条件:在 Fluent 中,通过“边界条件”选项定义边界类型和条件。
根据模型需求,选择适当的边界类型(如壁面、入口、出口等)并设置相应的条件(如温度、压力、速度等)。
5. 设置求解控制参数:通过“求解控制”选项设置求解器的参数。
这些参数包括收敛标准、计算时间步长、迭代次数等。
根据需要进行适当的调整,以获得准确且稳定的解。
6. 初始化求解器:使用“初始化”选项初始化求解器。
此步骤会根据定义的边界条件和网格生成初始场状态。
7. 运行求解器:通过点击“求解”选项运行求解器。
Fluent 会迭代求解流体场方程,并根据设定的参数逐步逼近最终解。
8. 分析结果:求解器收敛后,可以通过“结果”选项查看和分析模拟结果。
可以选择显示流线、剖面图或其他感兴趣的结果。
9. 调整设置和重新求解(可选):根据结果分析的需要,可以回到先前的步骤调整设置,如边界条件、求解控制参数等,并重新运行求解器。
10. 保存结果:完成分析后,可以通过“文件”>“导出”选项将结果保存为需要的格式,以备进一步的处理或展示。
FLUENT入门04求解器设置
– SIMPLE-Consistent (SIMPLEC)
• 对简单问题,收敛更快,如层流
– Pressure-Implicit with Splitting of Operators (PISO)
• 对非稳态流动或者高扭曲度网格有用
– Fractional Step Method (FSM) 对非稳态问题
离散化(插值方法)
存储在单元中心的流场变量必须插值到控制体面上
对流项的插值方法有: – First-Order Upwind – 易收敛,一阶精度。 – Power Law –对低雷诺数流动 ( Recell < 5 )比一阶格式更精确 – Second-Order Upwind – 尤其适用流动和网格方向不一致的四面体/三 角形网格,二阶精度,收敛慢 – Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) – 对非结构网格,局部三阶精度,对二次流、旋转涡、力等 预测的更精确 – Quadratic Upwind Interpolation (QUICK) – 适用于四边形/六面体以及 混合网格,对旋转流动有用,在均匀网格上能达到三阶精度
Initialize the solution
Enable the solution monitors of interest
Calculate a solution
Modify solution parameters or grid
Check for convergence
Yes
No
Check for accuracy
– PRESTO! – 用于高度旋流,包括压力梯度突变(多孔介质,风 扇模型等)或者计算域存在大曲率的面
Fluent求解参数设置知识分享
F l u e n t求解参数设置求解参数设置(Solution Methods/Solution Controls):在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。
在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。
在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。
• 求解的控制方程:在求解参数设置中,可以选择所需要求解的控制方程。
可选择的方程包括Flow(流动方程)、Turbulence(湍流方程)、Energy(能量方程)、VolumeFraction(体积分数方程)等。
在求解过程中,有时为了得到收敛的解,先关闭一些方程,等一些简单的方程收敛后,再开启复杂的方程一起计算。
• 选择压力速度耦合方法:在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。
定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。
PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。
需要注意的是压力速度耦合只用于分离求解器,在耦合求解器中不可以使用。
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。
对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。
在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。
FLUENT求解器的设置
– 设置能够用TUI命令存取/solve/init/set-fmg-initialization
FMG初始化方法对很多复杂问题。包括在一个大的计算域上存在很大压力和速度 梯度的复杂流动问题都比较有用(比如:旋转喷灌器,扩展螺旋管)
Introductory FLUENT Notes FLUENT v6.3 December 2006
Solve – – – Initialize Patch… 自由射流(高速射流) 燃烧问题(高温区域来初始化反应) 单元寄存器(在自适应面板上给单元 体作记号)能够用于补缀不同领域的 不同地方
Introductory FLUENT Notes FLUENT v6.3 December 2006
中国制造业信息化门户网
Introductory FLUENT Notes FLUENT v6.3 December 2006
中国制造业信息化门户网
收敛
收敛必须满足下面条件:
– 所有离散化的守恒方程(动量,能量,等等)在所有单元体 中都达到设定的残差或者解算在之后的迭代中不再改变 – 全部的质量,动量,能量,和标量平衡都要达到
– Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 半隐 式连接压力方程方法
缺省格式
– SIMPLE-Consistent (SIMPLEC)
允许对简单问题快速收敛(比如,没有物理上可用模型的层流)
– Pressure-Implicit with Splitting of Operators (PISO)
场变量(存储于单元体中心)必须内插于控制体的面上
(ρφ) V+ t
∑ρ
Fluent求解参数设置
求解参数设置〔Solution Methods/Solution Controls〕:在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。
在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。
在VOF模型中,PISO比拟适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。
• 求解的控制方程:在求解参数设置中,可以选择所需要求解的控制方程。
可选择的方程包括Flow(流动方程)、Turbulence(湍流方程)、Energy(能量方程)、V olume Fraction(体积分数方程)等。
在求解过程中,有时为了得到收敛的解,先关闭一些方程,等一些简单的方程收敛后,再开启复杂的方程一起计算。
• 选择压力速度耦合方法:在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。
定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。
PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。
需要注意的是压力速度耦合只用于别离求解器,在耦合求解器中不可以使用。
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。
对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。
在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,那么需要使用更为保守的亚松弛或者使用SIMPLE算法。
Fluent求解参数设置
求解参数设置(Solution Methods/Solution Controls):在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。
在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。
在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。
• 求解的控制方程:在求解参数设置中,可以选择所需要求解的控制方程。
可选择的方程包括Flow(流动方程)、Turbulence(湍流方程)、Energy(能量方程)、Volume Fraction(体积分数方程)等。
在求解过程中,有时为了得到收敛的解,先关闭一些方程,等一些简单的方程收敛后,再开启复杂的方程一起计算。
• 选择压力速度耦合方法:在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。
定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。
PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。
需要注意的是压力速度耦合只用于分离求解器,在耦合求解器中不可以使用。
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。
对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。
在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE算法。
fluent求解器设置
FLUENT求解器设置FLUENT求解器设置主要包括:1、压力-速度耦合方程格式选择2、对流插值3、梯度插值4、压力插值下面对这几种设置做详细说明。
一、压力-速度耦合方程求解算法FLUENT中主要有四种算法:SIMPLE,SIMPLEC,PISO,FSM(1)SIMPLE(semi-implicit method for pressure-linked equations)半隐式连接压力方程方法,是FLUENT的默认格式。
(2)SIMPLEC(SIMPLE-consistent)。
对于简单的问题收敛非常快速,不对压力进行修正,所以压力松弛因子可以设置为1(3)Pressure-Implicit with Splitting of Operators (PISO)。
对非定常流动问题或者包含比平均网格倾斜度更高的网格适用(4)Fractional Step Method (FSM)对非定常流的分步方法。
用于NITA格式,与PISO具有相同的特性。
二、对流插值(动量方程)FLUENT有五种方法:一阶迎风格式、幂率格式、二阶迎风格式、MUSL三阶格式、QUICK格式(1)FLUENT默认采用一阶格式。
容易收敛,但精度较差,主要用于初值计算。
(2)Power Lar.幂率格式,当雷诺数低于5时,计算精度比一阶格式要高。
(3)二阶迎风格式。
二阶迎风格式相对于一阶格式来说,使用更小的截断误差,适用于三角形、四面体网格或流动与网格不在同一直线上;二阶格式收敛可能比较慢。
(4)MUSL(monotone upstream-centered schemes for conservation laws).当地3阶离散格式。
主要用于非结构网格,在预测二次流,漩涡,力等时更精确。
(5)QUICK(Quadratic upwind interpolation)格式。
此格式用于四边形/六面体时具有三阶精度,用于杂交网格或三角形/四面体时只具有二阶精度。
FLUENT全参数设置
FLUENT全参数设置FLUENT是一款流体力学仿真软件,用于通过求解流动和传热问题来模拟和分析各种工程现象。
在使用FLUENT进行仿真之前,我们需要进行全参数设置,以确保所得到的结果准确可靠。
本文将介绍FLUENT的全参数设置,并提供一些适用于新手的建议。
1.计算网格设置:计算网格是FLUENT仿真中最重要的因素之一、合适的网格划分能够很好地表达流场和传热场的特征。
在设置计算网格时,可以考虑以下几个因素:-网格类型:可以选择结构化网格或非结构化网格。
结构化网格具有规则排列的单元,易于生成和细化。
非结构化网格则适用于复杂的几何形状。
-网格密度:根据仿真需求和计算资源的限制,选择合适的网格密度。
一般来说,流动和传热现象较为复杂时,需要更密集的网格划分。
-边界层网格:在靠近流体边界处增加边界层网格可以更准确地捕捉边界层流动的细节。
-剪切层网格:对于具有高速剪切层的流动,应添加剪切层网格以更好地刻画流场。
2.物理模型设置:- 湍流模型:选择合适的湍流模型,如k-epsilon模型、Reynolds Stress Model(RSM)等。
根据流动领域的特点,选用合适的湍流模型能够更准确地预测湍流现象。
- 辐射模型:对于辐射传热问题,可以选择合适的辐射模型进行建模。
FLUENT提供了多种辐射模型,如P1模型、Discrete Ordinates模型等。
-传热模型:根据具体问题,选择适当的传热模型,如导热模型、对流传热模型等。
在选择传热模型时,需要考虑流体性质和边界条件等因素。
3.数值方法设置:数值方法的选择和设置对仿真结果的准确性和稳定性有很大影响。
以下是一些建议:-离散格式:选择合适的离散格式进行数值计算。
一般来说,二阶精度的格式足够满足大多数仿真需求。
-模拟时间步长:选择合适的模拟时间步长以保证数值稳定性。
一般来说,时间步长应根据流场的特性和稳定性来确定。
-松弛因子设置:对于迭代求解的过程,设置合适的松弛因子能够提高求解的收敛速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Pera Global Company © PERA China
初始化
FLUENT 要求所有的求解变 量有初始值 – 更真实的初值能提高收敛稳 定性,加速收敛过程. – 有些情况需要一个好的初值
在特定区域对特定变量单独 赋值 – 自由射流(喷射区高速) – 燃烧问题 (高温激活反应) – 单元标注(自适应)
– 设置更好的初场
• 从前次的计算结果开始(如需要,可以使用file/interpolation)
– 渐次增加松弛因子或Courant数
• 过高的值容易引起发散 • 继续迭代是应保存case和date文件
– 控制多重网格求解器设置 (一般不推荐)
• 缺省设置一般足够稳定,不建议修改
Calculate a solution
Modify solution parameters or grid
– 稳定性
• 设置松弛因子 • 设置 Courant number
Yes
Check for convergence No
– 加速收敛
精度 – 网格无关性 – 自适应网格
Yes
Check for accuracy
A Pera Global Company © PERA China
求解器选择
密度基耦合求解器
– 以矢量方式求解连续性方程、动 量方程、能量方程和组分方程
– 通过状态方程得到压力
– 其他标量方程按照分离方式求解
DBCS 可以显式或隐式方式求解
– 隐式 – 使用高斯赛德尔方法求解 所有变量 – 显式: 用多步龙格库塔显式时间积 分法。
对显式求解器:
– 稳定性约束限制了最大Courant 数
• 不能超过 2 (缺省为1) • 有收敛困难时减少 Courant 数
对隐式求解器:
– Courant 没有稳定性约束限制
• 缺省值为 5.
A Pera Global Company © PERA China
加速收敛
可以通过以下方法加速收敛:
A Pera Global Company © PERA China
FMG 初始化
Full MultiGrid (FMG) 能用来创建更好的初场。
– FMG 初始化对包括大的压力梯度和速度梯度的复杂流动有用 – 在粗级别网格上求解一阶欧拉方程 – 可用于压力基或密度基求解器,但限于稳态问题
启动 FMG 初始化
– Quadratic Upwind Interpolation (QUICK) – 适用于四边形/六面体以及 混合网格,对旋转流动有用,在均匀网格上能达到三阶精度
A Pera Global Company © PERA China
插值方法(梯度)
为了得到扩散通量、速度导数,以及高阶离散格式,都需要求解 变量的梯度
Pressure-Based (segregated)
Solve U-Momentum Solve V-Momentum Solve W-Momentum Solve Mass Continuity; Update Velocity
Pressure-Based Density-Based (coupled) (coupled)
– 压力基求解器: /solve/init/fmg-initialization – 密度基求解器: 当选择密度基求解器后在 GUI里可见
FMG 在粗网格上用多重网格求解
– 通过 TUI 命令来设置
/solve/init/set-fmg-initialization
A Pera Global Company © PERA China
使用残差历史曲线来监测收敛:
– 一般地,残差下降三个量级表示至少达到定性的收敛,流场的主 要特征已经形成。 – 压力基求解器的能量残差应下降到10-6 – 组分残差应下降到10-5
监测定量的收敛:
– 监测其他关键的物理量 – 确保全局的质量、能量、组分守恒。
A Pera Global Company © PERA China
Enabling pressurebased coupled solver (PBCS)
A Pera Global Company © PERA China
如何选择求解器
压力基求解器应用范围覆盖从低压不可压缩流到高速压缩流 – 需要的内存少 – 求解过程灵活 压力基耦合求解器 (PBCS) 适用于大多数单相流,比分离求解器性能更 好 – 不能用于多相流(欧拉)、周期质量流和 NITA – 比分离求解器多用1.5–2倍内存 密度基耦合求解器 (DBCS)适用于密度、能量、动量、组分间强耦合的 现象 – 例如: 伴有燃烧的高速可压缩流动,超高音速流动、激波干扰 隐式方法一般优于显式,因为其对时间步有严格的限制 显式方法一般用于流动时间尺度和声学时间尺度相当的情况(如高马 赫激波的传播)
ANSYS FLUENT 培训教材 第四节:求解器设置
安世亚太科技(北京)有限公司
A Pera Global Company © PERA China
概要
使用求解器(求解过程概览) – 设置求解器参数 – 收敛 • 定义 • 监测
• 稳定性
• 加速收敛 – 精度 • 网格无关性 • 网格自适应 – 非稳态流模拟(后续章节中介绍) • 非稳态流问题设置
A Pera Global Company © PERA China
压力速度耦合
压力基求解器通过连续性方程和动量方程导出压力方程或压力修 正方程 FLUENT中有四种耦合方式 – Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
• 非稳态流模型选择
– 总结 – 附录
A Pera Global Comp程概览
求解参数 – 选择求解器 – 离散格式
Initialize the solution Set the solution parameters
初始条件
收敛 – 监测收敛过程
Enable the solution monitors of interest
– 缺省值对大多数问题都适用, 需要时你可以改变这些值
– 合适的设置最好通过经验获得
对密度基求解器,对耦合方程组 外的方程,松弛因子同样有用
A Pera Global Company © PERA China
修改 Courant 数
对密度基求解器,即使稳态问题, 也存在瞬态项
– 用Courant 定义时间步长
面上的梯度用多级泰勒级数展开求得
A Pera Global Company © PERA China
压力的插值方法
使用分离算法时,计算面上压力的插值方法有:
– Standard – 默认格式,对于近边界的沿面法向存在大压力梯度流 动,精度下降(如果存在压力突变,建议改用 PRESTO! ) – PRESTO! – 用于高度旋流,包括压力梯度突变(多孔介质,风 扇模型等)或者计算域存在大曲率的面 – Linear – 当其他格式导致收敛问题或非物理解时使用 – Second-Order – 用于压缩流,不适用多孔介质、风扇、压力突 变以及VOF/Mixture 多相流 – Body Force Weighted – 用于大体积力的情况,如高瑞利数自然 对流或高旋流
监测收敛-残差
残差图显示何时收敛达到指定标准
All equations converged. 10-3
10-6
A Pera Global Company © PERA China
监测收敛-力和面上的变量
除了残差外,也可以监测升力、阻力和 力矩系数 边界或其他定义的面上的导出变量或函 数(如面积分)
A Pera Global Company © PERA China
Continuity equation convergence trouble affects convergence of all equations.
修改松弛因子
松弛因子用来稳定压力基求解器 的迭代过程
以缺省的松弛因子开始计算 减少动量方程的松弛因子经常有 助于收敛
No
Stop
A Pera Global Company © PERA China
求解器选择
FLUENT中有两种求解器 – 压 力基和密度基。 压力基求解器以动量和压力为 基本变量 – 通过连续性方程导出压力和 速度的耦合算法 压力基求解器有两种算法 – 分离求解器 – 压力修正和动 量方程顺序求解。 – 耦合求解器 (PBCS) –压力和 动量方程同时求解
– 减小残差标准或关闭监测残差的窗口 – 继续迭代直至计算收敛
在Convergence Criterion
窗口选择 None关闭监测
残差的窗口
A Pera Global Company © PERA China
收敛遇到的困难
对一些病态问题,差质量的网格或不合适的求解设置,都 可能出现数值不稳定性
单元中心的变量梯度由以下三种方法得到:
– Green-Gauss Cell-Based – 可能会引起伪扩散 – Green-Gauss Node-Based – 更精确,更少伪扩散,建议对三角 形/四面体网格采用 – Least-Squares Cell-Based – 建议对多面体网格采用,精度和属 性同Node-based
– 表现为残差曲线上扬(发散)或不下降 – 发散意味守恒方程的不平衡增加 – 没收敛的结果会误导使用者
解决方法 – 确保问题是物理合理的 – 用一阶离散格式计算一个初场 – 对压力基求解器,减少发散方程的 松弛因子 – 对密度基求解器,减少Courant 数 – 重新生成网格或加密质量差的网格
• 注意网格自适应不能提高扭曲度大 的网格质量