2015国家公务员考试行测备考:靠奇偶性解不定方程最霸气
2015山西省考行测考前指导:巧用奇偶性
2015山西省考行测考前指导:巧用奇偶性在公务员考试中,行测最大的特点就是题量大、时间紧。
不过行测所有题目都是客观选择题,也就是说正确答案已经在选项中,只要我们排除错误选项,最终能够得到正确答案。
利用数字的奇偶特性可以较快地排除错误选项,中公教育专家在此将此方法进行详细解答。
那么到底什么时候用数字的奇偶性、又如何用呢?下面中公教育专家给大家介绍奇偶性的三种应用。
应用一:解不定方程当未知数的个数多于方程的个数,在不定方程中,我们可以利用数字的奇偶性排除错误选项。
例:某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。
假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少?A. 6B.3C.5D.4中公解析:3000×1%+3000×x%+500×y%=120,那么6x+y=18,x、y都是整数,6x一定为偶数,可以得到y为偶数,排除B、C;由于x,y为整数,y=6满足条件,选择A。
在此题中,根据奇偶特性,得到y为偶数,从而排除B、C,节省了做题时间。
应用二:题中出现了奇偶字眼当题干给出的条件中含有“奇”、“偶”这样的字眼时,我们可以考虑利用数字的奇偶特性解题。
例1:A、B两个班级,拥有的人数一奇一偶,A班人数的3倍与 B班人数的2倍之和为114人,问哪一个班级人数一定为偶数?A.A班B.B班C.A班B班均是D.无法判断中公解析:3A+2B=114,2B一定为偶数,所以3A也为偶数,得到A为偶数。
题目明确告知A 、B两个班级一奇一偶,因此选A。
例2:某班部分学生参加数学竞赛,每张试卷有50道试题。
评分标准是:答对一道给3分,不答的题,每道给1分,答错一道扣1分。
试问:这部分学生得分的总和是奇数还是偶数?A.奇数B.偶数C.都有可能D.无法判断中公解析:本题求出这部分学生的总成绩是不可能的,所以应从每个人得分的情况入手分析。
选调生:2015选调生行测备考之不定方程考点分析
选调生:2015选调生行测备考之不定方程考点分析选调生:2015选调生考试备考工作正在火热进行中,行测作为选调生考试的半壁江山,就必须掌握一些做题的策略和技巧。
本文帮助考生梳理选调生行测不定方程考点分析。
更多北京选调生考试内容等信息,请点击北京选调生网。
不定方程指的是未知数的个数要多于方程的个数,可用多种方法进行解答,如下所示:1、尾数法例:有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。
为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是( )。
A.1辆B.3辆C.2辆D.4辆中公解析:显然27大的尾数是1,那哪个数乘以37得到的尾数是1呢,在四个选项中只有B符合,因此选B。
2、奇偶性例:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?A.3B.4C.7D.13中公解析:3、质合性注意质数2的应用。
例:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A.36B.37C.39D.41中公解析:又已知每位老师所带的学生数量都是质数,即是质数又是偶数的只有2,所以推出钢琴学员为2,则拉丁学员为11,那么目前培训中心还剩下学员4钢+3拉=8+33=41,所以选D。
总结:在题目中如出现质数这个词,首先应想到2。
生们要在掌握做题方法的基础上多总结、多反思,从而获得质的提升。
国家公务员考试行测“奇葩题”盘点
国家公务员考试行测“奇葩题”盘点在行测考试中,考生经常会遇到一些令人大跌眼镜的题目,在此,小编为考生盘点十个“奇葩”的题目,希望考生在备考之余能乐一乐,缓解一下紧张的情绪。
一、“自寻烦恼”的题目【考题】布利丹效应源自法国哲学家布利丹讲述的一个寓言故事:一头驴子外出觅食,发现两堆相距不远的草料。
东边是一大堆干草料,西边是一小堆新鲜的嫩草。
驴子很高兴,跑到大堆干草料处,刚要吃,突然想西边草料那么新鲜,肯定好吃,不去可能会被别的驴子吃掉。
于是它就跑到嫩草堆前,刚要吃又想,这堆草虽然很嫩,可别的驴子把那一大堆干草料吃光的话自己就要饿肚子了,还是回去吃干草吧!就这样来来回回,这只可怜的驴子,最后饿死在草堆旁。
(2014山东) 根据上述定义,下列不符合布利丹效应的是:A.弈者举棋不定,终之败矣B.一山望着一山高C.凡事预则立,不预则废D.鱼,我所欲也;熊掌,亦我所欲也【答案】C【解析】布利丹效应指犹豫不决、难作决定的现象,A、B、D三项均符合定义;C项的含义是,不论做什么事,事先有准备就能成功,不然就会失败,与定义明显不符。
故答案选C。
【点评】这傻驴一看就不是吃货,来来来,我来教你吃货的标准做法,1.用头把两堆草拱到一起,2.开吃二、不靠谱的砖家【考题】在一次流感大流行中,研究人员到农场去探视,发现很多农民感染了流感。
但有一家每个人都很健康,这家的女主人说在家里的每个房间放了一颗没有剥皮的洋葱。
研究人员观察后在洋葱上发现了流感病毒,因此得出结论,洋葱吸收了病菌,使这家人保护了健康。
但也有专家认为,虽然洋葱是一种不错的蔬菜,但防流感的重任不能交给洋葱。
(2014山东)以下哪项如果为真,最能支持该专家的观点?A.另有研究表明,大蒜同样具有预防流感的功效B.流感病毒在大自然中存在了亿万年都没有灭绝,反而不断变异C.如果身体健康、注意卫生,在空气新鲜县城病原微生物密度极低的环境中,人感染流感的几率就小D.这家人在流感流行期间每天都要吃大量的新鲜蔬菜和水果【答案】D【解析】题干结论为防流感的重任不能交给洋葱。
2015年国考行测备考:靠奇偶性解不定方程最霸气
六安中公教育,皖西地区公考权威机构!六安中公教育地址:白云商厦2单元6楼 2015年国考行测备考:靠奇偶性解不定方程最霸气2015国家公务员考试行测考试中的方程问题一般分为两类,一类是定方程,即方程个数等于未知数;而另一种叫做不定方程,即未知数的个数多于方程个数。
其中,不定方程问题的解法繁多,比如利用数奇偶性,质合性、尾数法、范围法、整数特性等各种方法来求解不定方程,在行测考试中,最常出现的是二元一次补丁方程,其形式一般表现为:ax+by=c 。
今天就利用奇偶性解不定方程来为大家进行举例说明。
要想利用奇偶性来解题首先要了解数的奇偶性,比如在加法运算中,奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数。
在乘法运算中,奇数*奇数=奇数,奇数*偶数=偶数,偶数*偶数=偶数。
例题1:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人,平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A. 36B. 37C. 39D. 41【参考答案】D 。
【中公解析】设每位钢琴老师带x 人,拉丁老师带y 人,根据题意得:5x+6y=76,首先根据奇偶特性知x 必为偶数,而且题目中要求x 是质数,而2是所有质数里唯一的偶数,所以x=2,代入解得y=11,因此还剩学员4×2+3×11=41(人)offcn 版权。
例题2:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?( )A. 3B. 4C. 7D. 13【参考答案】D 。
【中公解析】设大盒x 个,小盒y 个,根据题意得12x+5y=99,根据奇偶法,12x 是偶数,那么5y 是一个奇数,那么y 只能是1、3、5这些数,代入方程中我们发现只有下面两组值满足要求:所以选择D 。
国考行测不定事件备考(精选3篇)
国考行测不定事件备考(精选3篇)国考行测不定大事备考(精选3篇)许多备考公务员考试的小伙伴中对行测数量关系始终摸不清头脑,只是对一些常见的解题方法还有印象,比如我们从学校就开头接触的方程法。
下面我给大家共享国考行测不定大事备考,盼望能够关心大家!国考行测不定大事备考(精选篇1)一、含义不定方程:是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。
二、常用方法及适用条件1、整除法:某一个未知数的系数与常数项有公约数;2、奇偶性:未知数的系数一奇一偶;3、尾数法:某一未知数的系数为5的倍数;4、特值法:求解不定方程组,且所求为一个式子。
三、例题精讲例1.某批发市场有大、小两种规格的盒装鸡蛋,每个大盒里装有23个鸡蛋,每个小盒里装有16个鸡蛋。
餐厅选购员小王去该市场买了500个鸡蛋,则大盒装一共有多少盒?A.6B.8C.10D.12【答案】D。
解析:设大盒数量为x,小盒数量为y,则23x+16y=500,由于500能够被4整除,16y也能够被4整除,因此则23x也是能够被4整除,即x是能够被4整除,排解A、C,代入B、D验证即可,,x=12、y=14符合题意,故选择D。
例2. 办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。
每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。
要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为( )个。
A.1、6B.2、4C.4、1D.3、2【答案】D。
解析:设需要红色文件袋x个、蓝色y个,则有7x+4y=29,4y为偶数,29为奇数,则7x为奇数,x为奇数。
排解B、C,代入A项,x=1时,y取不到整数,排解,直接选D,验证D项,当x=3时,y=2,满意题意。
例3. 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装金应个装5个苹果,共用了十多个盒子同好装完。
问题:两种包装盒相差多少个?A.3B.4C.7D.13【答案】D。
2015国家公务员考试行测指导:不定方程解法
在行政能力测试数量关系中,以不定方程的形式出现的题目越来越频繁,如果掌握了不定方程的方法,这类题目相对来说是比较容易的。
一、定义不定方程指的是未知数的个数大于方程的个数,且未知数受到某些限制(如要求是整数、质数等)的方程或方程组。
二、形式二元不定方程:ax+by=c;多元不定方程组。
三、方法二元不定方程:数字特性思想中的整数倍数、奇偶特性和尾数法。
多元不定方程组:整体消去法、特值代入法。
【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。
则甲、乙、丙三型产量之比为:()?A. 5∶4∶3B. 4∶3∶2C. 4∶2∶1D. 3∶2∶1【解析】由题意可知,3乙+6丙=4甲,发现左边都包含3这个因子,那么可以得出甲应为3的倍数。
,观察选项只有D项满足。
这里用到了数字特性的思想。
行测、申论复习与考试过程中,阅读量都非常的大,如果不会提高效率,一切白搭。
首先要学会快速阅读,一般人每分钟才看200字左右,我们要学会一眼尽量多看几个字,甚至是以行来计算,把我们的速读提高,然后再提高阅读量,这是申论的基础。
《行测》的各种试题都是考察学生的思维,大家平时还要多刻意的训练自己的思维。
学会快速阅读,不仅在复习过程中效率倍增,在考试过程中更能够节省大量的时间,提高效率,而且,在我们一眼多看几个字的时候,还能够高度的集中我们的思维,大大的利于归纳总结,学会后,更有利于《行测》的复习、考试,特别是在学习速读的同事,还能够学习思维导图,对于《行测》的各种试题都能得心应手的应付。
本人当年有幸学习了快速阅读,至今阅读速度已经超过5000字/分钟,学习效率自然不用说了。
我读大学的成绩是很差,考公务员的时候我妈说我只是碰运气,结果最后成绩出来了居然考了岗位第二,对自己的成绩非常满意,速读记忆是我成功最大的功劳。
找了半天,终于给大家找到了下载的地址,怕有的童鞋麻烦,这里直接给做了个超链接,先按住键盘最左下角的“ctrl”按键不要放开,然后鼠标点击此行文字就可以下载了。
攻克2015公务员考试行测老大难之不定方程
攻克2015公务员考试行测老大难之不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制的方程或方程组。
基于这样一个特点,如何在方程个数不够时,快速定位出最终答案,就成为了解题的关键环节。
其实数学运算当中有一个潜在的条件,这就是未知数一定是整数,且绝大部分是正整数。
应用好这样的一个隐藏条件,结合所给的选项特征,加上合适的解不定方程技巧,相信广大考生在行测考试中遇到不定方程问题都能够引刃而解。
下面专家针对不定方程的解题方法以及它们对应的应用环境进行详解。
例1:已知有1分、2分和5分的硬币共100枚,如果其中2分硬币的价值比1分硬币的价值多13分,那么三种硬币分别多少枚?()A.51、32、17 B.60、20、20 C.45、40、15 D.54、28、18中公解析:设3种的硬币个数分别为x,y,z。
根据题意列出方程:2y-x=13。
通过观察发现本题的选项比较全面,给出了每个未知数的具体值。
因此考虑使用代入排除,这道题,我们直接可以排除B、D,因为B、D选项x、y都为偶数,两个偶数相减不可能为13奇数。
再带入A、D。
发现D不符合题意,因此本题答案选择A选项。
例2:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?()A.3B.4C.7D.13中公解析:设大盒x个,小盒y个。
列出方程,12x+5y=99。
一个方程,两个未知数。
属于不定方程问题,观察y的系数为5,那么5y的尾数好判断,一定为0或5。
由于等号右边的99尾数为9,因此12x尾数对应的为9或4。
但是12x尾数不可能为9,所以能确定12x尾数为4。
x取值只能为2或者7。
当x=2时,y=15,共用了17个盒子,两者差了13个,符合题意;当x=7时,y=3共用了10个盒子,不满足共用十多个盒子,排除。
因此,本题答案选择D选项。
例3:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
2015年浙江省考之数字奇偶性,你想到了吗
2015年浙江省考之行测备考:数字奇偶性,你想到了吗?华图徐书环广大考生都在热火朝天的报名中,报名重要,备考更不能忘,2015年浙江省公务元将于4月25日考试,时间紧,任务重,如何在仅剩的一个月的时间内,快速的提高分数,华图教育为你准备了快速解题的技巧之一——数字的奇偶性。
在浙江公务员行测考试内容中,有相当一部分题目可以通过数本身的性质来排除不符合条件的选项,以此缩小分析计算范围,避免繁琐的列式、计算过程,大大提高解题速度及准确度。
在此将重点介绍数的奇偶性在数学运算中的运用。
一、奇偶性基本知识介绍性质1:奇数+奇数=偶数,奇数-奇数=偶数(例如:3+1=4, 3-1=2)性质2:偶数+偶数=偶数,偶数-偶数=偶数(例如:4+2=6,4-2=2)性质3:奇数+偶数=奇数,奇数-偶数=奇数(例如:5+2=7, 5-2=3)性质4:奇数×奇数=奇数(例如:3*3=9, 7*7=49)性质5:偶数×偶数=偶数(例如:2*4=6, 4*8=24)性质6:奇数×偶数=偶数(例如:3*4=12, 4*5=20)根据以上的性质华图教育徐老师为你总结两句话:(1)加减法——同奇同偶则为偶,一奇一偶则为奇;(2)乘法——乘数有偶则为偶,乘数无偶则为奇。
二、奇偶性在解题中应用【例1】某次测验有50道判断题,每作对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?()A.33B.39C.17D.16【解析】本题答案为D。
根据题意可知,答对题数+答错题数=50.根据上面的性质“加减法中,同奇同偶则为偶”, 50为偶数,故对与错均为奇数或均为偶数,两者之差也应该是偶数,四个选项中只有16为偶数,故答案为D选项。
【例2】有7个杯口全部向上的杯子,每次将其中4个同时翻转,经过几次翻转,杯口可以全部向下?()A.3次B.4次C.5次D.几次也不能【解析】本题答案为D。
行测数学运算:不定方程的求解方法汇总
行测数学运算:不定方程的求解方法汇总行测不定方程类题型只要多练习,还是能轻易拿分的!小编为大家提供行测数学运算:不定方程的求解方法汇总,一起来看看吧!希望大家好好复习!行测数学运算:不定方程的求解方法汇总行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。
但是想要快速正确的求解出结果,还是需要一些技巧和方法的。
小编认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。
一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。
在这里解释一下独立方程。
看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。
二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数【例题】某学校购买桌凳,已知每张桌子单价70元,每张凳子单价40元,且购买凳子的数量大于购买的桌子的数量,购买桌凳共花费了430元,问购买凳子多少张?A.8B.9C.10D.11【解析】B。
设桌子和凳子的单价分别为x元、y元,得到式子:70x+40y=430,化简得7x+4y=43。
7x + 4y = 43。
性质:奇偶奇7x为奇数,x也为奇数。
x可能的取值有1、3、5。
当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。
2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。
任何正整数与5的乘积尾数只有两种可能0或5。
【例题】某单位分发报纸,共有59份。
甲部门每人分的5份,乙部门每人分的4份,且已知乙单位人员超过十人,问甲部门人数为多少?A.1B.2C.3D.4【解析】C。
【行测】不定方程的解题思路
【行测】不定方程的解题思路不定方程(组)是指未知数个数多于方程个数,不能通过一般的消元法直接得到唯一解,常与差倍比问题、利润问题等热门考点相结合,故需要考生们在备考的过程中加以重视。
今天与大家一起探讨一下公务员行测考试中不定方程(组)的解题思路。
不定方程(组)包含不定方程与不定方程组,而根据题目条件对未知数是否必须为整数的限制,可以将不定方程组分为限定性不定方程组和非限定性不定方程组。
前者指未知数必须为正整数,后者则无此要求。
两种类型的不定方程组问题都有其固定的解题思路,方法性与技巧性比较强,掌握相应的思路去解题便会事半功倍。
不定方程题型特征:根据题干可列出一个包含两个未知数的方程解题方法:首先分析奇偶、倍数、尾数等数字特性,然后尝试代入排除例1.【2015联考】每年三月某单位都要组织员工去A、B两地参加植树活动,已知去A地每人往返车费20元,人均植树5棵,去B地每人往返车费30元,人均植树3棵,设到A地有员工x人,A、B两地共植树y棵,y与x之间满足y=8x-15,若往返车费总和不超过3000元时,那么,最多可植树多少棵?A.498B.400C.489D.500【解题思路】已知植树棵数 y=8x-15,一个方程两个未知数为不定方程,8x为偶数,15为奇数,偶数-奇数=奇数,则y为奇数,排除A、B、D项,正确答案为C。
【点评】本题若采用常规解方程的方法也可解题,但耗费时间久,不适合考场使用。
本题不需要算车费等其他数值,因此可利用数字特性直接锁定答案。
不定方程组1.限定性不定方程组题型特征:可根据题意列出方程组,未知数多于方程数,且未知数必须为正整数,常用来表示人数、盒子或者其他物体的个数等解题方法:先消元转化为不定方程,再按不定方程求解例1.【2017江苏】小王打靶共用了10发子弹,全部命中,都在10环、8环和5环上,总成绩为75环,则命中10环的子弹数是:A.1 发B.2 发C.3 发D.4 发【解题思路】设命中10环、8环、5环的子弹数分别为正整数x、y、z。
公务员考试行政能力测试技巧
公务员考试行测技巧:快速解决资料分析之比重比较问题近两年公务员考试行测的资料分析比较复杂的选项会涉及一个考点就是两个基期量之间的除法式子和现期量除法式子之间的比较。
今年现期量分别是A、B,各自的增长率分别是a%,b%,然后问去年两者之间的倍数关系或者几分之几,所占比重等等。
去年比重列式如下:或者。
这类题目大家不要直接去求去年两个量的大小,再去比较,这样计算量明显很大。
遇到这类题目大家记得直接比较增长率的大小关系即可:若A的增长率>B的增长率,则比重上升。
下面就以2011年国家公务员考试真题为例,进行方法讲解:一、根据以下资料,回答101~105题。
2008年世界稻谷总产量68501.3万吨,比2000年增长14.3%;小麦总产量68994.6万吨,比2000年增长17.8%;玉米总产量82271.0万吨,比2000年增长39.1%;大豆产量23095.3万吨,比2000年增长43.2%。
2008年部分国家各种谷物产量2008年与2000年相比各种谷物产量增长率(%)国家稻谷小麦玉米大豆中国 1.912.956.40.9印度16.3 2.960.271.4美国 6.712.022.07.3巴西9.1254.285.183.0125、能够从上述资料中推出的是:A、2008年,美国是世界最大的大豆产地;B、2008年,巴西玉米产量占世界总产量的比重比2000年略有下降;C、与2000年相比,2008年中国小麦增产900多亿吨;D、2008年,印度稻谷产量是其小麦产量的2倍以上。
解析:B选项中就是比较2008年比重和2000年比重的大小关系,材料中巴西玉米产量的增长率是85.1%,世界玉米的增长率39.1%,所以比重上升,B错误。
三、根据以下资料,回答111~115题。
2010年一季度,我国水产品贸易进出口总量158.7万吨,进出口总额40.9亿美元,同比分别增长14.2%和29.0%.其中出口量67.1万吨,出口额26.5亿美元,同比分别增长11.7%和24.9%;进口量91.6万吨,进口额14.4亿美元,同比分别增上16.0%和37.5%。
2015宁夏银行考试行测备考:方程问题奇偶解法
2015宁夏银行考试行测备考:方程问题奇偶解法2014-09-17 16:14:44 来源:宁夏中公教育宁夏银行招聘考试网:方程问题的解法繁多,中公教育专家就奇偶解法进行一定的阐述。
在方程问题中一般情况下分为两类,一类是定方程,即有几个方程,就有几个未知数,而另一种叫做不定方程,当未知数的个数多于方程个数时,我们将这种方程叫做不定方程,因为它的解不是唯一的,是不确定的。
在行测考试中,最常出现的是二元一次方程,其形式一般表现为:ax+by=c。
那么在解这类方程的时候怎样使用?奇偶特性(对于加减法:同类为偶、异类为奇;对于乘法:乘数有偶则为偶,乘数无偶则为奇)。
下面中公教育专家通过几道例题来给大家具体演示。
【例题1】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人? A. 36 B. 37 C. 39 D. 41【答案】D 。
【中公解析】设每位钢琴老师带x人,拉丁老师带y人,根据题意得:5x+6y=76,首先根据奇偶特性知x必为偶数,而且题目中要求x是质数,而2是所有的质数里面唯一的一个偶数,所以x=2,代入解得y=11,因此还剩学员4×2+3×11=41(人)。
【例题2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?( )A. 3B. 4C. 7D. 13【答案】D。
【中公解析】设大盒x个,小盒y个,根据题意得12x+5y=99,根据奇偶法,12x是偶数,那么5y是一个奇数,那么y只能是1、3、5这些数,代入方程中我们发现只有下面两组值满足要求。
行测数量关系技巧:如何巧解不定方程
行测数量关系技巧:如何巧解不定方程不定方程在行测中经常考到,为大家提供行测数量关系技巧:如何巧解不定方程,一起来看看吧!希望大家顺利通过考试!行测数量关系技巧:如何巧解不定方程方程法是在公务员考试行测中比较常用且最基础的一种方法。
而在具体使用中,普通方程大家都较为熟悉,而对于不定方程不太了解。
其实,不定方程也是在考试中常考查的一种题型,同时也是较为简单的部分,学习不定方程,巧解方程,不定方程将变为送分题,下面就来带领大家学习了解不定方程。
一、不定方程定义:未知数的个数大于独立方程的个数。
例:3X+4Y=16二、不定方程的求解:方程法主要根据题干的条件,构建等量关系,列出方程式,接下来进行求解。
对于不定方程来说,只看不定方程,如3X+4Y=16是有无数组解的,那要如何求出具体X、Y为多少呢?其实题干一般会给出限制条件,例如:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果共用了十多个盒子刚好装完。
问两种包装盒相差多少个?我们可以直接设大包装盒用了X个,小包装盒用了Y个,列出方程:12X+5Y=99。
接下来就是具体求解,通过题意可以看到无论大小盒子,个数肯定为整数,因此对X、Y就限定了范围便于求解。
在考试中一般题目都会有正整数的限定条件,我们就可以利用这个进行求解。
1、整除法:存在未知数系数与常数存在共同因数时使用例:已知6X+7Y=49,X、Y为正整数,求X=?A.3B.4C.5D.7【解析】D。
我们通过式子可以看出来,7Y和49都可以被7整除,所以6X肯定也可以被7整除,6不能够被7整除,那么X 一定能够被7整除,选择D。
2、奇偶性:利用最多的方式例:已知7X+8Y=43,X、Y为正整数,求X=?A.5B.4C.3D.2【解析】D。
8Y为偶数,43为奇数,所以7X为奇数,所以X 为奇数,排除B、C,代入A选项若X=5,则Y=1,所以选择D。
3、尾数法:利用0、5尾数的特性,0乘任何数尾数为0.5乘奇数尾数为5,乘偶数尾数为0例:已知6X+5Y=41,X、Y为正整数,求X=?A.6B.5C.4D.3【解析】A。
公务员考试行测不定方程解法大全
公务员考试行测不定方程解法大全公务员考试数量关系主要测查报考者理解、把握事物间量化关系和解决数量关系问题的能力,主要涉及数据关系的分析、推理、判断、运算等。
觉的题型有:数字推理、数学运算等。
了解公务员成绩计算方法,可以让你做到心中有数,高效备考。
公务员行测题库帮助您刷题刷出高分来!>>>我想看看国考课程。
不定方程是公务员考试行测试卷当中最为常见的一种题型,也是考生在备考过程中重点关注的内容。
所谓不定方程,是指未知数的个数多于方程的个数,例如一个方程两个未知数、两个方程三个未知数等等。
这样的方程我们直接解是解不出来的,需要借助一些其他的方法来选出正确答案,常见的解决不定方程的方法包括:尾数法、奇偶性、质合性、整除特性、代入排除等方法,下面中公教育专家就结合例子讲解下如何运用这些方法解不定方程问题。
(一)尾数法绝大多数题目描述的量是整数,可以通过这些数的尾数的特点选出正确选项。
例1 .超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?A.3B.4C.7D.13【中公解析】选D。
设有x个大包装盒,y个小包装盒,则12x+5y=99,其中5y的尾数应为5或0,但是12x为偶数,99为奇数,所以5y必为奇数,这样就确定了5y的尾数一定为5,那么12x就是尾数为4的数,所以x可能为2或7,对应的y等于15或3,根据“共用了十多个盒子刚好装完”,排除x=7,y=3。
即x=2,y=15,15—2=13。
总结:可用尾数法的不定方程问题的题型特点:当未知数的系数中出现了5的倍数,比如20x、35y、105z时,可能会用到尾数法。
因为如果是10的倍数,其尾数必然是0,如果是5的倍数,其尾数必然是5或0,这样尾数就容易确定,范围比较小。
(二)奇偶性和质合性奇偶性和质合性的运用也是在题干中描述的量是整数的前提下。
例2.某儿童艺术培训中心有5名钢琴老师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学员数量都是质数,后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A.36B.37C.39D.41【中公解析】选D。
2015公务员考试行测不定方程解法大全
2015公务员考试行测不定方程解法大全不定方程是考试试卷当中最为常见的一种题型,也是考生在备考过程中重点关注的内容。
所谓不定方程,是指未知数的个数多于方程的个数,例如一个方程两个未知数、两个方程三个未知数等等。
这样的方程我们直接解是解不出来的,需要借助一些其他的方法来选出正确答案,常见的解决不定方程的方法包括:尾数法、奇偶性、质合性、整除特性、代入排除等方法,下面专家就结合例子讲解下如何运用这些方法解不定方程问题。
绝大多数题目描述的量是整数,可以通过这些数的尾数的特点选出正确选项。
例1 .超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?A.3B.4C.7D.13【中公解析】选D。
设有x个大包装盒,y个小包装盒,则12x+5y=99,其中5y的尾数应为5或0,但是12x为偶数,99为奇数,所以5y必为奇数,这样就确定了5y的尾数一定为5,那么12x就是尾数为4的数,所以x可能为2或7,对应的y等于15或3,根据“共用了十多个盒子刚好装完”,排除x=7,y=3。
即x=2,y=15,15—2=13。
总结:可用尾数法的不定方程问题的题型特点:当未知数的系数中出现了5的倍数,比如20x、35y、105z时,可能会用到尾数法。
因为如果是10的倍数,其尾数必然是0,如果是5的倍数,其尾数必然是5或0,这样尾数就容易确定,范围比较小。
奇偶性和质合性的运用也是在题干中描述的量是整数的前提下。
例2.某儿童艺术培训中心有5名钢琴老师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学员数量都是质数,后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A.36B.37C.39D.41【中公解析】选D。
公务员考试行测高频考点不定方程解法点拨
不定方程问题是公考考试的重要内容,尤其是在国家公务员考试中,不定方程问题更是几乎年年出现。
不定方程有很多解法,如尾数法、奇偶性,这两种方法能解决大部分不定方程问题,但是有一些不定方程问题用这两种方法可能解不出来。
因此,中公教育专家接下来介绍另外两种解决不定方程问题的方法,以拓宽考生视野,提升考生能力。
1、整除例1.某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照x%税率征收,超过6000美元的部分按照y%税率征收(x、y为整数)。
假设该国某居民月收入为6500美元,支付了120美元的所得税,则y为多少?A.6B.3C.5D.4中公解析:根据题目给的条件可以列出方程:3000×1%+(6000-3000)x%+(6500-6000)y%=120。
化简得6x+y=18,此题只能列出这一个方程,不能直接解出来,但是最终化简出来的式子中有两个常数6、18都是6的倍数,由此想到y=6(3-x),即y是6的倍数,所以只有A符合,选择A。
此题最终化简后的方程的特点是给出x、y均为整数,且存在多个常数是6的倍数,由此想到了整除性。
因此:当方程中未知数是整数,且方程中有多个数是某一个数的倍数时,我们可以尝试整除性来解题。
在这道题目中也可以根据奇偶性结合代入排除选出结果,一道不定方程问题的解法往往可以用不同种解法,考生在做题时一定要多方面思考,以锻炼做题思维。
2、余数性质例1.现在有100个小球,要将其装到大小两种袋中,大袋子能装3个球,小袋子能装1个球,要把全部的球放到袋子中,需要多少个小袋子?A.41B.42C.43D.44中公解析:设大、小两种袋子分别用了x、y个(x、y均为正整数),则可以列出方程3x+y=100,求y值,此方程中x的系数为3,则3x必为3的倍数,而100除以3余1,所以可以得出y除以3应该余1,满足这个条件的只有C符合,选择C。
2015国考行测:理科题实战秒杀之奇偶性
>>>2015国家公务员考试信息及备考汇总公务员考试行测题量较大、时间紧张是所有考生有目共睹的事实,那么在考试或者平时做题中我们在掌握牢固基础知识的前提下,再多学习一些快速解题的技巧一定利于行测分数的提升。
在这里中公教育专家同大家一起来学习一下奇偶性的应用。
一、奇偶性概念1.奇数:不能被2整除的数称为奇数;2.偶数:能被2整除的数称为偶数。
二、奇偶性的运算性质1、基本性质性质1:偶数偶数=偶数,奇数奇数=偶数,偶数奇数=奇数性质2:偶数奇数=偶数,奇数奇数=奇数,偶数偶数=偶数2、推论推论1:偶数个奇数的和或差是偶数;奇数个奇数的和或差是奇数。
推论2:当且仅当几个整数的乘积是奇数,得到这几个数均为奇数;当且仅当几个整数的乘积是偶数,那么其中至少有一个偶数。
推论3:两数之和与两数之差同奇(偶)。
三、奇偶性应用1、解方程(重点是解不定方程)例题:一次数学考试共有20道题,规定:答对一题得2分,答错一题扣1分,未答的题不计分。
考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是个偶数。
请你帮助小明计算一下,他答错了多少道题?A.3B.4C.5D.6中公解析:假设答对x题,答错y题,依题意可有2x-y=23,且x+y<20,又知道未答的数目是偶数。
根据奇偶性判断,x、y都是奇数,选项中满足条件的只有A和C,代入A,即y=3,求得x=13,符合题意;C项求得x=14为偶数不符合,舍弃。
故正确答案为A。
2、题中出现奇偶字眼例题:A、B两个班级,拥有的人数一奇一偶,A班人数的3倍与B班人数的2倍之和为114人,问哪一个班级人数一定为偶数?A.A班B.B班C.A班B班均是D.无法判断中公解析:3A+2B=114,2B一定为偶数,所以3A也为偶数,得到A为偶数。
题目明确告知A 、B两个班级一奇一偶,因此选A。
3、已知两数之和或之差,求两数之差或之和例题1:如果a,b,c都是正整数,且a,b是奇数,则+ c是( )。
数量关系常用秒杀技巧(个人心得)
数量关系常用秒杀技巧(个人心得)第一篇:数量关系常用秒杀技巧(个人心得)数量关系常用秒杀技巧快考试了,介绍一些常用的数量秒杀技巧,点到为止,希望给山东版的Q友一些帮助,大家都加油了。
(一)奇偶性例题:有8个盒子分别装有17个,24个,29个,33个,35个,36个,38个和44个乒乓球,小赵取走一盒,其余各盒被小钱,小孙,小李取走,已知小钱和小孙取走的乒乓球个数相同,并且是小李取走的两倍,则小钱取走的各个盒子中的乒乓球最可能是A.17个,44个B.24个,38个C.24个,29个,36个D.24个,29个,35个墨子解析:小钱是小李的两倍,小钱肯定是偶数,排除AC,B选项的一半是12+19=31,上面没有31这个数字,排除B,得到答案为D。
(二)大小性例题:现有一种预防禽流感药物配置成的甲、乙两种不同浓度的消毒溶液。
若从甲中取2100克,乙中取700克混合而成的消毒浓度为3%;若从甲中取900克,乙中取2700克,则混合而成的溶液的浓度为5%。
则甲、乙两种消毒溶液的浓度分别为:A、3% 6%B、3% 4%C、2% 6%D、4% 6%墨子解析:A,B,D不管怎么配都不可能达到3%,得到答案为C。
(三)因数特性(重点是因数3和9)例题: A、B两数恰含有质因数3和5,它们的最大公约数是75,已知A数有12个约数,B数有10个约数,那么AB两数和等于()A 2500B 3115C 2225D 2550墨子解析:AB的和肯定能被3整除,ABC显然都不能被3整除,得到答案为D。
例题:某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他们的工号,凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和是多少()A.12B.9C.15D.18墨子解析:第10名能被10整除,尾数肯定是0。
1到9 应该是XXX1,XXX2,XXX3………..XXX9,XXX9能被9整除,所以XXX能被9整除,答案减去3肯定能被9整除,只有12-3=9,得到答案为A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015国家公务员考试行测备考:靠奇偶性解不定方程最霸气
(温馨提示:下载文档后,按住键盘ctrl,左键点击可以打开文章链接)
公务员考试行测考试中的方程问题一般分为两类,一类是定方程,即方程个数等于未知数;而另一种叫做不定方程,即未知数的个数多于方程个数。
其中,不定方程问题的解法繁多,比如利用数奇偶性,质合性、尾数法、范围法、整数特性等各种方法来求解不定方程,在行测考试中,最常出现的是二元一次补丁方程,其形式一般表现为:ax+by=c。
今天中公教育专家就利用奇偶性解不定方程来为大家进行举例说明。
要想利用奇偶性来解题首先要了解数的奇偶性,比如在加法运算中,奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数。
在乘法运算中,奇数*奇数=奇数,奇数*偶数=偶数,偶数*偶数=偶数中公教育。
例题1:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人,平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?
A. 36
B. 37
C. 39
D. 41
【参考答案】D。
【中公解析】设每位钢琴老师带x人,拉丁老师带y人,根据题意得:5x+6y=76,首先根据奇偶特性知x必为偶数,而且题目中要求x是质数,而2是所有质数里唯一的偶数,所以x=2,代入解得y=11,因此还剩学员4×2+3×11=41(人)offcn版权。
例题2:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?( )
A. 3
B. 4
C. 7
D. 13
【参考答案】D。
【中公解析】设大盒x个,小盒y个,根据题意得12x+5y=99,根据奇偶法,12x是偶数,那么5y是一个奇数,那么y只能是1、3、5这些数,代入方程中我们发现只有下面两组值满足要求:
所以选择D。
例题3:小李用150元钱购买了16元一个的书包、10元一个的计算器和7元一支的钢笔寄给灾区儿童。
如果他买的每一样物品数量都不相同,书包数量最多而钢笔最少,那么他买的计算器数量比钢笔多几个?( )
A.1
B.2
C.3
D.4
【参考答案】B。
【中公解析】由题得:16x+10y+7z=150,根据奇偶特性,z只能是偶数,又因为钢笔最少,所以假设z=2,那么7z的尾数为4,10y的尾数为0,所以判断16x的尾数为6,故得:x=6,进而得到y=4,完全符合题意,所以计算器比钢笔多4-2=2个。
选择B选项。
以上就是中公教育专家讲解的奇偶特性在解不定方程题中的应用,有时候奇偶性在使用的时候不会单独使用,会结合尾数法、范围法一起使用,所以希望考生在备考复习中多多练习,熟练掌握这几种方法。
更多搜索:合肥人事考试网
更多搜索:安徽人事考试网。