学度武汉市九年元月调考数学试卷含标准答案
最新-度武汉市九年级元月调考数学试卷及评分标准
2016~2017学年度武汉市部分学校九年级调研测试数学试卷武汉市教育科学研究院命制2017.1.12第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)1.在数1,2,3和4中,是方程x2+x-12=0的根的为( )A.1.B.2.C.3.D.4.2.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃.则( ) A.从中随机抽取1张,抽到黑桃的可能性更大.B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大.C.从中随机抽取5张,必有2张红桃.D.从中随机抽取7张,可能都是红桃.3.抛物线y=2(x+3)2+5的顶点坐标是( )A.(3,5).B.(-3,5).C.(3,-5).D.(-3,-5).4.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为( ) A.10.B.6.C.5.D.4.5.在平面直角坐标系中,有A(2,-1),B(-1,-2),C(2,1),D(-2,1)四点,其中,关于原点对称的两点为( )A.点A和点B.B.点B和点C.C.点C和点D.D.点D和点A.6.方程x2-8x+17=0的根的情况是( )A.两实数根的和为-8.B.两实数根的积为17.C.有两个相等的实数根.D.没有实数根.7.抛物线y=-(x-2)2向右平移2个单位得到的抛物线的解析式为( ) A.y=-x2.B.y=-(x-4)2.C.y=-(x-2)2+2.D.y=-(x-2)2-2.8.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) 更多精品文档更多精品文档A .4π.B .9π.C .16π.D .25π.9.在50包型号为L 的衬衫的包裹中混进了型号为M 的衬衫,每包20件衬衫.每包中混入的M 号衬衫数如下表:根据以上数据,选择正确选项.( ) A .M 号衬衫一共有47件.B .从中随机取一包,包中L 号衬衫数不低于9是随机事件.C .从中随机取一包,包中M 号衬衫数不超过4的概率为0.26.D .将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M 号的概率为0.252. 10.在抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2和y 3的大小关系为( )A .y 3<y 1<y 2.B .y 3<y 2<y 1.C .y 2<y 1<y 3.D .y 1<y 2<y 3.第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4.那么,掷一次该骰子,“朝上一面为6点”的概率为 . 12.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点.若∠B =110°,则∠ADE 的度数为 .13.两年前生产1t 药品的成本是6 000元,现在生产1t 药品的成本是4 860元.则药品成本的年平均下降率是 .第12题图 第15题图更多精品文档14.圆心角为75°的扇形的弧长是2.5π,则扇形的半径为 .15.如图,正三角形的边长为12cm ,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为 cm .16.在平面直角坐标系中,点C 沿着某条路径运动,以点C 为旋转中心,将点A (0,4)逆时针旋转90°到点B (m ,1),若-5≤m ≤5,则点C 运动的路径长为 . 三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题8分)解方程x 2-5x +3=0.18.(本题8分)如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB =2∠BOC . (1)求证:∠ACB =2∠BAC ;(2)若AC 平分∠OAB ,求∠AOC 的度数.19.(本题8分)如图,要设计一副宽20cm ,长30cm 的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2∶3.如果要彩条所占面积是图案面积的19%.问横、竖彩条的宽度各为多少cm ?C第19题图20.(本题8分)阅读材料,回答问题.材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转;三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案;(3)请直接写出题2的结果.更多精品文档21.(本题8分)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.C第21题图22.(本题10分)某公司产销一种商品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如下表:商品的销售价格(单位:元)为P=35-110x.(每个周期的产销利润=P·x-C.)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写自变量的取值范围);(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.更多精品文档更多精品文档23.(本题10分)如图,在平面直角坐标系中,点A 和点B 的坐标分别为A (4,0),B (0,2),将△ABO 绕点P (2,2)顺时针旋转得到△OCD ,点A ,B 和O 的对应点分别为点O ,C 和D .(1)画出△OCD ,并写出点C 和点D 的坐标;(2)连接AC ,在直线AC 的右侧取点M ,使∠AMC =45°.①若点M 在x 轴上,则点M 的坐标为 ; ②若△ACM 为直角三角形,求点M 的坐标; (3)若点N 满足∠ANC >45°,请确定点N 的位置(不要求说明理由).第23题图 备用图24.(本题12分)已知抛物线y =12 x 2+mx -2m -2(m ≥0)与x 轴交于A ,B 两点,点A 在点B 的左边,与y 轴交于点C .(1)当m =1时,求点A 和点B 的坐标; (2)抛物线上有一点D (-1,n ),若△ACD 的面积为5,求m 的值;(3)P 为抛物线上A ,B 之间一点(不包括A ,B ),PM ⊥x 轴于点M ,求AM ·BM PM 的值.更多精品文档2016~2017学年度武汉市部分学校九年级调研测试数学参考答案及评分标准武汉市教育科学研究院命制2017.1.13二、填空题:11.0.4;12.110°;13.10%;14.6;15.12 3 ;16.5 2 .三、解答题17.解:a =1,b =﹣5,c =3,…………………………………………………………3分 ∴b 2-4ac =13.…………………………………………………………………5分 ∴x =5±132.∴x 1=5-132 ,x 2=5+132 .………………………………………………8分18.(1)证明:在⊙O 中,∵∠AOB =2∠ACB ,∠BOC =2∠BAC , ∵∠AOB =2∠BOC .∴∠ACB =2∠BAC .………………………………………………4分(2)解:设∠BAC =x °.∵AC 平分∠OAB ,∴∠OAB =2∠BAC =2x °; ∵∠AOB =2∠ACB ,∠ACB =2∠BAC , ∴∠AOB =2∠ACB =4∠BAC =4x °; 在△OAB 中,∠AOB +∠OAB +∠OBA =180°,更多精品文档所以,4x +2x +2x =180; x =22.5所以∠AOC =6x =135°.………………………………………………8分19.解:设横彩条的宽为2x cm ,竖彩条的宽为3x cm .依题意,得………………1分(20-2x )(30-3x )=81%×20×30.…………………………………4分 解之,得x 1=1,x 2=19,……………………………………………6分 当x =19时,2x =38>20,不符题意,舍去. 所以x =1.答:横彩条的宽为2 cm ,竖彩条的宽为3 cm .…………………………………8分20.解:(1)至少摸出两个绿球;………………………………………………2分(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率” ,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;………………………………………………5分 (3)13.……………………………………………8分21.(1)过点D 作DF ⊥BC 于点F . ∵∠BAD =90°,BD 平分∠ABC , ∴AD =DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;………………………………………………4分(2)∵∠BAC =90°.∴AB 与⊙D 相切, ∵BC 是⊙D 的切线, ∴AB =FB .∵AB =5,BC =13, ∴CF =8,AC =12. 在Rt △DFC 中,设DF =DE =r ,则r 2+64=(12-r )2, r =103 .更多精品文档∴CE =163 .……………………………………………8分22.解:(1)C =110 x 2+3x +80;………………………………………………3分(2)依题意,得(35-110x )·x -(110x 2+3x +80)=220;解之,得x 1=10,x 2=150,因为每个周期产销商品件数控制在100以内,所以x =10.答:该公司每个周期产销10件商品时,利润达到220元;………………………………6分(3)设每个周期的产销利润为y 元.则y =(35-110x )·x -(110 x 2+3x +80)=﹣15 x 2+32x -80=﹣15(x -80)2+1200,因为﹣15<0,所以,当x =80时,函数有最大值1200.答:当每个周期产销80件商品时,产销利润最大,最大值为1200 元.………………10分 23.(1)C (2,4),D (0,4);更多精品文档(其中画图1分,坐标各1分) (3)分(2)①(6,0);②当∠CAM 为直角时,分别过点C ,M 作x 轴的垂线,垂足分别为E ,F . 可证△CEA ≌△AFM , 则,MF =AE ,AF =CE . 从而,M (8,2);当∠ACM 为直角时,同理可得M (6,6); 综上所述,点M 的坐标为(8,2)或(6,6).………………………………6分(3)点N 在以点(5,3)或点(1,1)为圆心,以10 为半径的圆内.(其中两个圆心的坐标各1分,半径1分,圆内1分)……………………………10分 24.(1)∵m =1, ∴ y =12x 2+x -4.当y =0时,12x 2+x -4=0,解之,得x 1=﹣4,x 2=2. ∴A (﹣4,0),B (2,0);……………………………3分 (2)过点D 作DE ⊥AB 于点E ,交AC 于点F . 当y =0时,12x 2+mx -2m -2=0,∴(x -2)(x +2m +2)=0,x 1=2,x 2=﹣2m -2.∴点A 的坐标为:(﹣2m -2,0),C (0,﹣2m -2).……………………………4分 ∴OA =OC =2m +2,更多精品文档 ∴∠OAC =45°.∵D (﹣1,n ),∴OE =1,∴AE =EF =2m +1.又∵n =﹣3m -32, ∴DE =3m +32, ∴DF =3m +32-(2m +1)=m +12.……………………………6分 又∵S △ACD =12DF ·AO . ∴12(m +12)(2m +2)=5. 2m 2+3m -9=0,(2m -3)(m +3)=0,分(3)点A 的坐标为:(﹣2m -2,0),点B 的坐标为:(2,0).设点P 的坐标为(p ,q ).则AM =p +2m +2,BM =2-p .AM ·BM =(p +2m +2)( 2-p )=﹣p 2-2mp +4m +4.……………………………10分 PM =﹣q .因为,点P 在抛物线上,所以,q =12p 2+mp -2m -2. 所以,AM ·BM =2 PM .更多精品文档 即,AM ·BM PM=2.……………………………12分。
年武汉市元月调考数学试卷及答案(word版)
2014—2015学年度武汉市部分学校九年级调研测试数学试卷武汉市教育科学研究院命制2015.1.28亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:1.本试卷由第1卷(选择题)和第Ⅱ卷(非选择题)两部分组成。
全卷共6页,三大题,满分120分。
考试用时120分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。
3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
不得答在“试卷”上.........。
4.答第Ⅱ卷(非选择题)时,用0.5毫米黑色笔迹签字笔书写在“答题卡”上。
答在第......I.、Ⅱ卷的试卷上无效。
.......预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑:1.方程5x2-4x -1 =0的二次项系数和一次项系数分别为A.5和4ﻩB.5和-4C.5和-1ﻩD.5和12.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则A.能够事先确定抽取的扑克牌的花色ﻩﻩB.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大3.抛物线y=x2向下平移一个单位得到抛物线A.y=(x+1)2B.y=(x-1)2ﻩﻩC.y=x2+1ﻩﻩD. y=x2-14.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次.B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次.C.抛掷2n次硬币,恰好有n次“正面朝上”.D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5.5.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为A.正方形B.菱形C.矩形 D.直角梯形6.在平面直角坐标系中,点A( -4,1)关于原点的对称点的坐标为A.(4,1) B.(4,-1) C.( -4,-1) D.(-1,4)7.圆的直径为13 cm,,如果圆心与直线的距离是d,则.A.当d=8cm,时,直线与圆相交. B.当d=4.5 cm时,直线与圆相离.C.当d=6.5 fm时,直线与圆相切.D.当d=13 cm时,直线与圆相切.8.用配方法解方程x2+10x +9=0,下列变形正确的是A.(x+5)2=16. B.(x+10)2=91.C.(x-5)2=34. D.(x+10)2=1099.如图,在平面直角坐标系中,抛物线y=ax2 +bx +5经过A(2,5),B( -1,2)两点,若点C在该抛物线上,则C点的坐标可能是A.(-2,0). B.(0.5,6.5). C.(3,2).D.(2,2).10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D,若⊙O的半径等于1,则OC的长不可能为A.2- B.-1.C.2.D.+1.第9题图第10题图第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为________________.12.方程x2-x-=0的判别式的值等于________________.13.抛物线y=-x2+4x-1的顶点坐标为_________________.14.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为________________________________.15.半径为3的圆内接正方形的边心距等于________________.16.圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为________.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)解方程:x2+2x-3=018.(本题8分)不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.19.(本题8分)如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB= 56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.20.(本题8分)如图,E是正方形ABCD申CD边上任意一点.(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由。
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________ 三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;2;连接BE;P为BE的中点;连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△P AD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。
湖北省武汉市江夏区第一中学2023-2024学年九年级(上)期末数学试卷(元月调考)(含答案)
2023-2024学年湖北省武汉市江夏一中九年级(上)期末数学试卷(元月调考)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件2.(3分)下列图形是中心对称图形的是( )A.B.C.D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或24.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.45.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=06.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3 7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.378.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 .12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 cm.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 .15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 .(填写序号)16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件【解答】解:硬币落地后可能正面朝上,也可能反面朝上,这个事件是随机事件,故选:C.2.(3分)下列图形是中心对称图形的是( )A.B.C.D.【解答】解:选项A、B、C均不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;故选:D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或2【解答】解:∵⊙O的半径为5cm,点O到直线a的距离为8cm,5<8,∴⊙O与直线a的位置关系是相离,直线a与⊙O的公共点个数是0个,故选:A.4.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.4【解答】解:∵x2﹣6x﹣4=0,∴x2﹣6x=4,则x2﹣6x+9=4+9,即(x﹣3)2=13,∴p=13,故选:A.5.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=0【解答】解:A、∵在2x2﹣3x+1=0中,Δ=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根,∵=,∴该方程的两个实数根不是互为倒数;故选项A不合题意;B、在方程x2﹣x+1=0中,Δ=(﹣1)2﹣4×1×1=﹣3<0,故选项B不合题意;∴该方程有两个相等的实数根;C、∵在方程x2+x﹣1=0中,Δ=12﹣4×1×(﹣1)=5>0,∴该方程有两个不相等的实数根,∵=﹣1,∴该方程的两个实数根不是互为倒数;故选项C不合题意;D、∵在方程x2﹣3x+1=0中,Δ=(﹣3)2﹣4×1×1=5>0,∴该方程有两个不相等的实数根,∵=1,∴该方程的两个实数根是互为倒数;故选项D符合题意;故选:D.6.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【解答】解:∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴抛物线开口向上,对称轴x=﹣1,顶点坐标为(﹣1,﹣4),当y=0时,(x+1)2﹣4=0,解得x=1或x=﹣3,∴抛物线与x轴的两个交点坐标为:(1,0),(﹣3,0),∴x1<﹣3,﹣1<x2<0,0<x3<1,∴y2<y3<y1,故选:B.7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.37【解答】解:∵x=1.2时,y=ax2+bx+c=﹣0.29;x=1.3时,y=ax2+bx+c=0.14;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.2,0)和点(1.3,0)之间,且更靠近点(1.3,0),∴方程ax2+bx+c=0有一个根约为1.27.故选:C.8.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.【解答】解:画树状图如下:共有18种等可能的结果,其中取出的3张卡片恰好有“数”、“学”、“美”三个字的结果有:(数,学,美),(数,美,学),(学,数,美),(学,美,数),共4种,∴取出的3张卡片恰好有“数”、“学”、“美”三个字的概率为=.故选:C.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°【解答】解:∵将△ABC绕顶点A顺时针旋转,得到△ADE.∴AB=AD,∠BAC=∠DAE=64°,旋转角为∠BAD,∴∠ADB=∠ABD,∵AE∥BC,∴∠BDA=∠DAE=64°,∴∠BAD=180°﹣64°﹣64°=52°.故选:B.10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.【解答】解:设大圆的半径为R,则小圆的半径都为R,根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体,∴圆锥的底面圆的周长等于2πR=πR,扇形弧长为:=πR,∴n=180°,∴扇形圆心角等于180°,故只有D选项符合题意.故选:D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 x2﹣1=0 .【解答】解:∵两根互为相反数的一元二次方程的一次系数为0,∴满足条件的一元二次方程为x2﹣1=0.故答案为x2﹣1=0.12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .【解答】解:如图,令正方形的边长为2a,则阴影部分的面积为2××π•a2+2(a2﹣×π•a2)=πa2+2a2﹣πa2=2a2,所以针头落在阴影部分区域内的概率是=.故答案为:.13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 23π cm.【解答】解:如图,设圆心为O,连接AO、BO,∵PA,PB分别与所在圆相切于点A,B,∴∠OAP=∠OBP=90°,∵∠P=50°,∴∠AOB=130°,∴优弧对应的圆心角为360°﹣130°=230°,∴优弧的长是:,故答案为:23π.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 50% .【解答】解:设“衰分比”是a.乙分配的奖金:100(1﹣a);丙分配的奖金:100(1﹣a)(1﹣a)∴100+100(1﹣a)+100(1﹣a)(1﹣a)=175,a=0.5或a=2.5(不符合题意,舍去),故答案为:50%.15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 ②③④ .(填写序号)【解答】解:如图,∵a>0,抛物线与x轴交于点(m,0),(2,0),∴抛物线的对称轴在y的右侧,∴a、b异号,∴b<0,∴抛物线与y轴的交点在y轴的正半轴,∵c>0,∴bc<0,所以①错误;把(2,0)代入y=ax2+bx+c得4a+2b+c=0,∴a=,∵x=1时,y<0,∴a+b+c<0,∴+b+c<0,即2b+3c<0,所以②正确;∵抛物线与y轴的交点坐标为(0,c),直线y=﹣x+c经过点(0,c),(2,0),∴抛物线y=ax2+bx+c与直线y=﹣x+c相交于点(0,c),(2,0),∵0<x<2时,ax2+bx+c<﹣x+c,∴不等式ax2+bx+c<﹣x+c的解集为0<x<2,所以③正确;∵抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),∴抛物线解析式可设为y=a(x﹣m)(x﹣2),当直线y=﹣1与抛物线y=a(x﹣m)(x﹣2)有交点时,关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,∴抛物线的顶点在直线y=﹣1的下方或在直线y=﹣1上,即≤﹣1,而a>0,∴b2﹣4ac≥4a,所以④正确.故答案为:②③④.16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 21.2 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)【解答】解:如图,设⊙O为摩天轮,MN为地面,AB为它的直径,且AB⊥MN于点C,由题意得:AB=50m,AC=55m,则BC=5m,OC=30m.圆周上座舱P距离地面50m处,逆时针旋转5分钟后旋转到点P′处.∵摩天轮旋转1周需要12分钟,∴每分钟旋转360°÷12=30°,∴5分钟转过150°,∴∠POP′=150°.连接OP,过点P作PE⊥MN于点E,则PE=50m,延长P′O交PE于点F,则∠POF =30°,过点O作OG⊥PE于点G,过点P作PD⊥AB于点D,过点P′作P′K⊥AB 于点K,P′H⊥MN于点H,∵OG⊥PE,AB⊥MN,PE⊥MN,∴四边形OCEG为矩形,∴EG=OC=30m,∴PG=PE﹣GE=50﹣0=20m.同理:四边形ODPG为矩形,∴OD=PG=20m,∴PD=OG==15m.过点F作FQ⊥OP于点Q,则FQ=OF,设FQ=k,则OF=2k,OQ=k,PQ=25﹣k,∵∠PQF=∠PGO=90°,∠FPQ=∠OPG,∴△PQF∽△PGO,∴,,∴,∴k=.∴OF=2k=.∴,∴PF=,∴FG=PG﹣PF=20﹣=,∵P′K⊥AB,OG⊥PE,AB∥PE,∴∠OP′K=∠FOG,∵∠P′KO=∠OGF=90°,∴△P′OK∽△OFG,∴,∴,∴OK=≈9.82m,∴CK=OC﹣OK=21.18≈21.2m.∵P′K⊥AB,P′H⊥MN,AB⊥MN于点C,∴四边形P′HCK为矩形,∴P′H=CK=21.2m,∴座舱P距离地面的高度是21.2m,故答案为:21.2.三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.【解答】解:设方程的另一个根为t,根据根与系数的关系得2+t=﹣b,2t=﹣12,解得t=﹣6,b=4,即b的值为4,方程的另一个根为﹣6.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.【解答】(1)解:如图,△A'CD即为所求.(2)证明:∵△ABD与△A'CD关于点D对称,∴△ABD≌△A'CD,∴A'C=AB=6,A'D=AD=4,∠CA'D=∠BAD,∴AA'=8,∵AC=10,∴AC2=AA'2+A'C2,∴∠CA'D=90°,∴∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.【解答】解:(1)由题意得,从布袋中随机摸出一只袜子,颜色是白色的概率是=.(2)列表如下:红红白白红(红,红)(红,白)(红,白)红(红,红)(红,白)(红,白)白(白,红)(白,红)(白,白)白(白,红)(白,红)(白,白)共有12种等可能的结果,其中从布袋中随机一次摸出两只袜子恰好是同色的结果有:(红,红),(红,红),(白,白),(白,白),共4种,∴从布袋中随机一次摸出两只袜子恰好是同色的概率为=.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.【解答】解:(1)∵∠BAC=60°,BD是直径,∴∠D=∠BAC=60°,∠BCD=90°,在Rt△BCD中,∠D=60°,BD=d,∴cos∠D=,sin∠D=,∴CD=BD•cos∠D=d•cos60°=,BC=BD•sin∠D=d•sin60°=,∵∠BAC=60°,AC=AB,∴△ABC为等边三角形,∴∠ACB=60°,∴∠CEB=180°﹣(∠ACB﹣∠CBD)=180°﹣(60°+30°)=90°,在Rt△BCE中,∠CBD=30°,BC=,∴cos∠CBD=,∴BE=BC•cos∠CBD=•cos30°=,∴DE=BD﹣BE=d﹣=,∴CD+DE=+=,∴CD+DE=BE;(2)过点A作AF⊥CD交CD的延长线于F,连接AD,如图所示:∴∠ABD=∠ACD,即∠ABE=∠ACF,∵AE⊥BD,AF⊥CD,∴∠AEB=∠F=90°,在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,BD=CF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∵CD=3,DE=1,∴CF=CD+DF=CD+DE=3+1=4,∴BE=CF=4.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.【解答】解:(1)连接AO并延长交CD于G,连接DF交AG于K,连接CK并延长交AD于H,连接OF并延长交⊙O于B,连接并延长OH交⊙O于E,如图:点G即为CD中点,点H即为AD中点,五边形ABCDE即为⊙O的内接正五边形;理由:由圆和等腰三角形的对称性可知G为CD中点;∵F是AC中点,∴K为△ABC重心,∴H为AD中点;∵AC=AD,∠CAD=36°,∴∠ACD=∠ADC=72°,=,=72°,∵F为AC中点,H为AD中点;∴====72°,∴====,∴CD=AB=BC=AE=DE,∴五边形ABCDE即为⊙O的内接正五边形;(2)延长BA,DE交于M,连接OM交AE于N,连接BN,CE并延长交于P,过A,P 作直线AP,如图:直线AP即为所求;理由:由圆和正五边形的对称性可知,N为AE的中点,∵正五边形每个内角为108°,∴∠ABC=∠BCD=108°=∠CDE,∴∠ECD=(180°﹣108°)÷2=36°,∴∠BCE=72°,∴∠ABC+∠BCE=180°,∴AB∥CE,∴∠BAN=∠NEP=108°,∠ABN=∠EPN,∴△ABN≌△EPN(AAS),∴AB=PE,∴AE=AB=PE,∴∠EAP=∠EPA=(180°﹣108°)÷2=36°,∵∠OAB=∠OAE=108°÷2=54°,∴∠OAE+∠EAP=90°,∴OA⊥AP,∵OA是⊙O半径,∴直线AP是⊙O的切线.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.【解答】解:(1)由题意,设抛物线的解析式为y=ax2+bx+c,∴.∴.∴抛物线的解析式为y=﹣x2+2x+3.(2)工程车不能正常通过.理由如下:∵工程车高5m,∴令y=5,即5=﹣x2+2x+3.∴x=3±.∴纵坐标为5时,两点的距离为3+﹣(3﹣)=2≈3.46<4.故高5m,顶部宽4m的工程车不能正常通过.(3)由题意,如图,设A(m,﹣m2+2m+3).当OB=3时,令y=3=﹣m2+2m+3,∴m=0或m=6.∴B(0,﹣m2+2m+3).∵B在墙面上,∴m≥6.由AB+AC=m﹣m2+2m+3=﹣m2+3m+3=﹣(m﹣)2+,又当m>时,(AB+AC)的值随m的增大而减小,∴当m=6时,(AB+AC)取最大值,最大值为9.∴钢架BAC的最大长度为9m.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.【解答】(1)证明:连接AC,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠DCE=60°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=60°,∴∠CAD=∠ABC,∴△BCE≌△ACD(ASA),∴AD=BE;(2)①解:猜想:BE=AD,证明:连接AC,当AB⊥AC时,如图,∵∠ABC=45°,∴△ABC是等腰直角三角形,∴BC=AC,∴∠ACB=45°,∵∠DCE=45°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=45°,∴∠CAD=∠ABC,∴△BCE∽△ACD,∴,∴BE=AD;②证明:过点D作DF⊥AD,交BA的延长线于F,∵AD∥BC,∠ABC=∠DCE=45°.∴∠FAD=∠ABC=45°,∠CEB+∠BCE=45°.∴∠F=∠FAD=45°,∴∠ABC=∠F=45°,AD=FD,∵CD=ED,∠DCE=45°.∴∠CED=45°.∴∠CDE=90°,∠CEB+FED=135°,∴CE=ED,∠BCE=∠FED,∴△BCE∽△FED,∴,∴BE=FD,∵AD=FD,∴BE=AD.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.【解答】解:(1)当y=0时,x2﹣6x+c=0,∴x A+x B=6,x A•x B=c,∴AB==4,解得c=5;(2)∵c=5,∴抛物线L1的解析式为y=x2﹣6x+5,∵将抛物线L1向左平移a(a>0)个单位得到抛物线L2,∴抛物线L2的解析式为y=(x﹣3+a)2﹣4,∴C(0,a2﹣6a+5),∵CD∥x轴,∴D(3﹣,a2﹣6a+5),E(3+,a2﹣6a+5),∴DE=2,CD=3﹣,∵DE=2CD,∴2=6﹣2,解得a=或a=;(3)∵C是抛物线L2的顶点,∴3﹣a=0,解得a=3,∴抛物线L2的解析式为y=x2﹣4,设F(x F,﹣4),G(x G,﹣4),当x2﹣4=mx时,x2﹣mx﹣4=0,∴x F+x G=m,直线CF的解析式为y=x F x﹣4,直线CG的解析式为y=x G x﹣4,当x F x﹣4=nx时,M(,),当x G x﹣4=nx时,N(,),∵OM=ON,∴x F+x G=2n,∴m=2n.。
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)
2019—2020学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61 B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A,B,C,D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°, 2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
武汉市部分学校2020-2021学年度九年级元月调研测试数学试卷答案
2020-2021学年湖北省武汉市部分学校九年级(上)期末数学试卷(元月调考)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)将一元二次方程2x2﹣1=3x化成一般形式后,二次项系数和一次项系数分别是()A.2,﹣1B.2,0C.2,3D.2,﹣3【分析】先化成一般形式,即可得出答案.【解答】解:将一元二次方程2x2﹣1=3x化成一般形式是2x2﹣3x﹣1=0,二次项的系数和一次项系数分别是2和﹣3,故选:D.【点评】本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.(3分)下列垃圾分类标识中,是中心对称图形的是()A.B.C.D.【分析】利用中心对称图形的定义进行解答即可.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.(3分)下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A.B.C.D.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:第一个袋子摸到红球的可能性=;第二个袋子摸到红球的可能性==;第三个袋子摸到红球的可能性==;第四个袋子摸到红球的可能性==.故选:A.【点评】本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.(3分)已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定【分析】根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.【解答】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.【点评】本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.(3分)一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:D.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.(3分)在平面直角坐标系中,抛物线y=(x+2)(x﹣4)经变换后得到抛物线y=(x﹣2)(x+4),则下列变换正确的是()A.向左平移6个单位B.向右平移6个单位C.向左平移2个单位D.向右平移2个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+2)(x﹣4)=(x﹣1)2﹣9,顶点坐标是(1,﹣9).y=(x﹣2)(x+4)=(x+1)2﹣9,顶点坐标是(﹣1,﹣9).所以将抛物线y=(x+2)(x﹣4)向左平移2个单位长度得到抛物线y=(x﹣2)(x+4),故选:C.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.(3分)如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.52°【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°﹣∠ACD﹣∠BCE=180°﹣63°﹣63°=54°.故选:C.【点评】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.(3分)三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是=.故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=,则⊙O的半径是()A.B.C.D.【分析】连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH =r,OH=r,利用勾股定理得到(r)2+(r+r)2=(+1)2,然后解方程即可.【解答】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=OA=r,OH=AH=r,在Rt△ACH中,(r)2+(r+r)2=(+1)2,解得r=,即⊙O的半径为.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.(3分)已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A.2020B.2021C.2022D.2023【分析】根据题意得出x=x1+x2=﹣,代入函数的解析式即可求得二次函数的值.【解答】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=﹣,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(﹣)2+2021•(﹣)+2022=2022.故选:C.【点评】本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2).【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.(3分)如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是.【分析】用阴影部分的面积除以平行四边形的总面积即可求得答案.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形ABCD,∴点A落在阴影区域内的概率为,故答案为:.【点评】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.(3分)国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是50%.【分析】设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1﹣x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.(3分)已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是125°或145°.【分析】利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+∠BAC,然后把∠BAC的度数代入计算即可.【解答】解:∵O是△ABC的外心,∴∠BAC=∠BOC=×140°=70°(如图1)或∠BAC=180°﹣70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+∠BAC,当∠BAC=70°时,∠BIC=90°+×70°=125°;当∠BAC=110°时,∠BIC=90°+×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.(3分)如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是π.【分析】点O所经过的路径是三个圆周长.【解答】解:点O所经过的路径长=3×=π.故答案为:π.【点评】本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.(3分)下列关于二次函数y=x2﹣2mx+1(m为常数)的结论:①该函数的图象与函数y=﹣x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=﹣x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是①③(填写序号).【分析】利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=x2﹣2mx+1的对称轴为直线x=﹣=m,二次函数y =﹣x2+2mx的对称轴为直线x=﹣=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(﹣2m)2﹣4×1×1=4m2﹣4≥0,∴m≥1,故结论②错误;③∵y=x2﹣2mx+1=(x﹣m)2+1﹣m2,∴顶点为(m,﹣m2+1),∴该函数的图象的顶点在函数y=﹣x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴<m,∵二次函数y=x2﹣2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.【点评】本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.【分析】把x=1代入方程计算求出b的值,进而求出另一根即可.【解答】解:∵关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,∴1﹣b+2=0,解得:b=3,把b=3代入方程得:x2﹣3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【点评】此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.(8分)如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.【分析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.【解答】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【点评】本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(8分)小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.【分析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.【解答】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为=;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为=.【点评】此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.(8分)如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=F A.【分析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,⊙P 与格线的交点D,连接FR,DR,作DR交⊙P于G,连接FG,可证F A=FR=FG,线段FG即为所求作.【解答】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【点评】本题考查作图﹣应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(8分)如图,正方形ABCD内接于⊙O,E是的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.【分析】(1)欲证明AE=DE,只要证明=.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE=CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵E是的中点,∴=,∴+=+,即=,∴AE=DE.(2)解:连接BD,AO,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=∠EDF﹣∠DEF=90°﹣45°=45°,∴DE=DF,∵∠AED=∠AOD=45°,∴∠AED=∠F=45°,∵∠ADC=∠EDF=90°,∴∠ADE+∠EDC=∠CDF+∠EDC=90°,∴∠ADE=∠CDF在△ADE和△CDF中,,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=DE=EC+DE,EC=1,∴1+DE=DE,∴DE=+1,∴S四边形AECD=S△DEF=DE2=+.【点评】本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.(10分)疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).【分析】(1)由顶点坐标为(30,900),可设y=a(x﹣30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.【解答】解:(1)∵顶点坐标为(30,900),∴设y=a(x﹣30)2+900,将(0,0)代入,得:900a+900=0,解得a=﹣1,∴y=﹣(x﹣30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x=﹣(x﹣30)2+900﹣40x=﹣x2+60x﹣900+900﹣40x=﹣x2+20x=﹣(x﹣10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:﹣(4+m)2+60(4+m)﹣40×4﹣(40+12)m=0,整理得:﹣m2+64=0,解得:m1=8,m2=﹣8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.(10分)问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.【分析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD ≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,得出∠BDF=30°,由直角三角形的性质得出BF=DF,则可得出答案;拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE的长,则可得出答案.【解答】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.【点评】本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.(12分)如图,经过定点A的直线y=k(x﹣2)+1(k<0)交抛物线y=﹣x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.【分析】(1)由A为直线y=k(x﹣2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x﹣2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.【解答】解:(1)∵A为直线y=k(x﹣2)+1上的定点,∴A的坐标与k无关,∴x﹣2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点D的坐标为(2,4),∵点A的坐标为(2,1),∴AD⊥x轴.如图(1),分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2,∵△ACD的面积是△ABD面积的两倍,∴CN=2BM,∴x2﹣2=2(2﹣x1),∴2x1+x2=6.联立,得x2+(k﹣4)x﹣2k+1=0,①解得x1=,x2=,∴2×+=6,化简得:=﹣3k,解得k=﹣.另解:接上解,由①得x1+x2=4﹣k,又由2x1+x2=6,得x1=2+k.∴(2+k)2+(k﹣4)(2+k)﹣2k+1=0,解得k=±.∵k<0,∴k=﹣;(3)如图(2),设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a).∵E是AC的中点,∴将线段AE沿AC方向平移与EC重合,∴x E﹣x A=x C﹣x E,y E﹣y A=y C﹣y E,∴x E=(x A+x C),y E=(y A+y C).∴E(1+,).分别过点E,A作x轴,y轴的平行线交于点F,在Rt△AEF中,由勾股定理得:EA2=+=+,过点E作PE⊥GH,垂足为P,连接EH,∴GH=2PH,EP2=,又∵AE=EH,∴GH2=4PH2=4(EH2﹣EP2)=4(EA2﹣EP2)=4[+﹣]=4[﹣a+1+﹣(﹣a2+4a+1)+1﹣+t(﹣a2+4a+1)﹣t2]=4[(﹣t)a2+(4t﹣5)a+1+t﹣t2].∵GH的长为定值,∴﹣t=0,且4t﹣5=0,∴t =.【点评】本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.菁优网APP 菁优网公众号菁优网小程序第21页(共21页)。
完整word版2018~2019度武汉市九年级元月调考数学试卷含标准答案
学年度武汉市部分学校九年级调研测试数学试卷2018~201914:00~16:00 日1月17考试时间:2019年分)3分,共30一、选择题(共10小题,每小题6,常数项是1 1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-)的方程是(22221=+6x=1 D.3x-6A.3x.+1=6x B3x3-1=6x C.xx)2.下列图形中,是中心对称图形的是(. C D..A B.2)个单位长度,再向上平移2个单位长度,就得到抛物线(3.若将抛物线y=x先向右平移122222 =(x+1).x A.y=(-B.y=(x1)--2 1)++2 2 D y=(x+1)-C.y的点数,则下列事件为随机事件4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6 )的是(1 B.两枚骰子向上一面的点数之和等于A.两枚骰子向上一面的点数之和大于112 .两枚骰子向上一面的点数之和等于C.两枚骰子向上一面的点数之和大于12 D 8 cm,圆心O到直线l的距离为9 cm,则直线O的公共点的个数l与⊙5.已知⊙O的半径等于为()D2B .1C..无法确定0 A.6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁为中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD)的长为(==于点的直径,弦⊙OAB垂直CDE,CE1寸,AB10寸,则直径CD.寸.A12.5 B13寸寸D.26 25 C.寸题图第9 第8题图6第题图枚鸟卵全部成功孵化,那么3只雏7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3 )鸟中恰有2只雄鸟的概率是(2351..D C.A .B3868OAB8.如图,将半径为1,圆心角为120°的扇形绕点A逆时针旋转一个角度,使点O的对应BD围成的封闭图形,则图中CD、BC和弧BCBD点落在弧AB上,点的对应点为C,连接)面积是(????33??.A .B. C D.?33?82623622的方程的图解法是:如图,画b=ax+x.古希腊数学家欧几里得的《几何原本》记载,形如9.aa,则该方程的一个上截取BD=,∠ACB=90°,BC,AC=b=,再在斜边ABRt△ABC22 )正根是(B.BC的长 C A.AC的长.AD的长D.CD的长2+bx+c(a<0)的对称轴为xax=-1,与x轴的一个交点为(2,0).若关10.已知抛物线y=2+bx +c=p(p>0)有整数根,则p的值有()于x的一元二次方程ax A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)2=p的一个根,则另一根是是一元二次方程.已知3x___________1112.在平面直角坐标系中,点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是_____13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm,宽为20 cm,他1.想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的4为求镜框的宽度,他设镜框的宽度为x cm,依题意列方程,化成一般式为_____________16题图第第15题图题图第1415.如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m.水面下降2.5 m,水面宽度增加___________m16.如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是___________三、解答题(共8题,共72分)2-3x-1=0 17.(本题8分)解方程:x18.(本题8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“烧“米粑粑”、);乙类食品有:D,C,B,A(分别记为“锅贴饺”“生煎包”、“面窝”、.梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润,EDC=120°ABC与等腰三角形△EDC有公共顶点C,其中∠23.(本题10分)如图,等边△26,连接BE,P为BE的中点,连接PD、AB=CEAD=(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△PAD的面积2+(1-m)x-m交x轴于A,x24.(本题12分)如图,在平面直角坐标系中,抛物线y=B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
武汉市元月调考初中九年级的数学试卷试题及含答案汇总
2009-2010 学年度武汉市部分学校九年级调研测试数学试题武 市教育科学研究院命制2010.1.26.一、 (每小 3 分,共 36 分)1、要使式子 2a3 在 数范 内存心 ,字母 a 的取 必 足()A.a ≥0. B. a≥ - 3 .C. a≠ - 3.D. a≤- 3.2222. 以下 算①35 = 15 ;②3 3 ; ③ 3 2 =2;④ 16 =4. 此中 的是 ( )100 10 27 3A . ① B. ② C. ③ D. ④3. 在一元二次方程 x 2-4x-1=0 中,二次 系数和一次 系数分 是()A.1 , 4.B.1,-4.C. 1, -1.D. x2,4x.4. 某校九个班 行迎新春大合唱比 ,用抽 的方式确立出 序。
筒中有9 根形状、大小完整同样的 ,上面分 有出 的序号1, 2, 3,⋯, 9. 以下事件中是必定事件的是()A. 某班抽到的序号小于 6.B. 某班抽到的序号 0.C. 某班抽到的序号7.D. 某班抽到的序号大于0.5. 在一个口袋中有 3 个完整同样的小球,把它 分 号 1,2,3,随机地摸取一个小球而后放回,再随机地摸出一个小球。
两次取的小球的 号同样的概率 ()A.1 . B.1 C. 1. D.136296. 方程 x 2-5x-6=0 的两根之和 ( ) A. -6. B. 5 C. -5. D. 1.7. 以下 案是部分汽 的 志,此中是中心 称 形的是() A.B.C.D.8. 如 ,在⊙ O 中,弦 BE 与 CD 订交于点 F , CB,ED 的延 订交于点 A , 若∠ A=30°,∠ CFE=70° , ∠ CDE=( ) A. 20°B. 40° .C. 50° .D. 60°9.2009 年,甲型 H1N1病毒延伸全世界,抗病毒的 物需求量大增。
某制 厂 两个月加大投入,提升生 量,此中九月份生 35 万箱, 十一月份生 51 万箱。
2018~2019学年度武汉市九年级元月调考数学试卷(含实用标准问题详解)
2018~2019学年度市部分学校九年级调研测试数学试卷考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( )A .63π-B .623π- C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国举行,小明幸运获得了一军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、 “面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小和小王同时去品尝美食,小准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
2018-2019学年度武汉市九年级元月调考数学试卷(含答案)
2018~2019学年度武汉市九年级调研测试数学试卷考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形 面积是( )A .63π-B .623π- C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个 正根是( ) A .AC 的长B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇 匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸 到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、 “面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
2020~2021学年度武汉市九年级元月调考数学试卷(元调)
2020~2021学年度武汉市部分学校九年级质量检测数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2x 2-1=3x 化成一般形式后,二次项系数和一次项系数分别是( )A .2,-1B .2,0C .2,3D .2,-3 2.下列垃圾分类标识的图案是中心对称图形的是( )A .B .C .D .3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是( )A .B .C .D .4.已知⊙O 的半径等于3,圆心O 到点P 的距离为5,那么点P 与⊙O 的位置关系是( )A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定 5.一元二次方程x 2-4x -1=0配方后正确的是( )A .(x +2)2=3B .(x +2)2=5C .(x -2)2=3D .(x -2)2=56.在平面直角坐标系中,抛物线y =(x +2)(x -4)经变换后得到抛物线y =(x -2)(x +4),则下列变换正确的是( )A .向左平移6个单位B .向右平移6个单位C .向左平移2个单位D .向右平移2个单位7.如图,将△ABC 绕点C 按逆时针方向旋转至△DEC ,使点D 落在BC 的延长线上已知∠A =33°,∠B =30°,则∠ACE 的大小是( )A .63°B .58°C .54°D .52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是( )A .49 B .59 C .1727D .79 9.如图,PM ,PN 分别与⊙O 相切于A ,B 两点,C 为⊙O 上一点,连接AC ,BC .若∠P =60°,∠MAC=75°,AC 1,则⊙O 的半径是( )A BC .32D10.已知二次函数y =2020x 2+2021x +2022的图象上有两点A (x 1,2023)和B (x 2,2023),则当x =x 1+x 2时,二次函数的值是( ) A .2020 B .2021 C .2022 D .2023E BC D A二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点P (-1,2)关于原点对称的点的坐标是__________.12.如图,平行四边形ABCD 的对角线交于点O ,过点O 的直线EF 分别交边AB ,CD 于E ,F 两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是__________.13.国家实施“精准扶贫”政策以来贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是__________.14.已知O ,I 分别是△ABC 的外心和内心,∠BOC =140°,则∠BIC 的大小是__________.15.如图,放置在直线l 上的扇形OAB ,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA =1,∠AOB =90°,则点O 所经过的路径长是__________.第12题图 第15题图16.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上.若x 1<x 2,x 1+x 2<2m ,则y 1<y 2. 其中正确的结论是__________(填写序号). 三、解答题(共8小题,共72分) 17.(本小题满分8分)若关于x 的一元二次方程x 2-bx +2=0有一个根是x =1,求b 的值及方程的另一个根. 18.(本小题满分8分)如图,将△ABC 绕点C 顺时针旋转得到△DEC ,点D 落在线段AB 上.求证:DC 平分∠ADE .19.(本小题满分8分)小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品. (1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.③②① lBO ABOAOBEBDCA如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P 经过A ,B 两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示). (1)在图(1)中,⊙P 经过格点C ,画圆心P ,并画弦BD ,使BD 平分∠ABC ;(2)在图(2)中,⊙P 经过格点E ,F 是⊙P 与网格线的交点,画圆心P ,并画弦FG ,使FG =F A .21.(本小题满分8分)如图,正方形ABCD 内接于⊙O ,E 是BC 的中点,连接AE ,DE ,CE . (1)求证:AE =DE ;(2)若CE =1,求四边形AECD 的面积.22.(本小题满分10分)疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x ≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y 与x 之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).(1) CBAFABE (2)问题背景 如图(1),△ABD ,△AEC 都是等边三角形,△ACD 可以由△AEB 通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小. 尝试应用 如图(2),在Rt △ABC 中,∠ACB =90°,分别以AC ,AB 为边,作等边△ACD 和等边△ABE ,连接ED ,并延长交BC 于点F ,连接BD .若BD ⊥BC ,求DFDE的值. 拓展创新 如图(3),在R △ABC 中,∠ACB =90°,AB =2,将线段AC 绕点A 顺时针旋转90°得到线段AP ,连接PB ,直接写出PB 的最大值.24.(本小题满分12分)如图,经过定点A 的直线y =k (x -2)+1(k <0)交抛物线y =-x 2+4x 于B ,C 两点(点C 在点B 的右侧),D 为抛物线的顶点. (1)直接写出点A 的坐标; (2)如图(1),若△ACD 的面积是△ABD 面积的两倍,求k 的值; (3)如图(2),以AC 为直径作OE ,若OE 与直线y =t 所截的弦长恒为定值,求t 的值.(1)CBEAD(2)F DBCEA(3)BCAP(1)(2)。
2021-2022学年武汉市初三数学元月调考数学模拟练习试卷及解析
2021年武汉市初三数学元月调考数学模拟练习试卷一、选择题(共10小题,每小题3分,共30分)1.将方程2326x x -=化为一般形式,若二次项系数为3,则一次项系数和常数项分别为( ) A .2-,6B .2-,6-C .2,6D .2,6-2.下面四个图形,是中心对称图形的是( )A .B .C .D .3.关于方程2240x x +-=的根的情况,下列结论错误的是( ) A .有两个不相等的实数根 B .两实数根的和为2C .两实数根的差为25±D .两实数根的积为4-4.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( ) A .连续抛掷2次必有1次正面朝上 B .连续抛掷10次不可能都正面朝上 C .大量反复抛掷每100次出现正面朝上50次 D .通过抛掷硬币确定谁先发球的比赛规则是公平的5.如图,AB 为O 的直径,CD 为O 的弦,AB CD ⊥于E ,下列说法错误的是( )A .CE DE =B .AC AD =C .OE BE =D .2COB BAD ∠=∠6.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是( ) A .相离B .相切C .相交D .相交或相切7.如图,Rt ABC ∆中,90C ∠=︒,3BC =,4AC =,将ABC ∆绕点B 逆时针旋转得△A BC '',若点C '在AB 上,则AA '的长为( )A .13B .4C .25D .58.若m ,n 为方程2310x x --=的两根,则多项式23m n +的值为( ) A .8-B .9-C .9D .109.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-10.若方程220x x t --=在14x -<范围内有实数根,则t 的取值范围为( ) A .38t <B .13t -C .18t -<D .18t -二、填空题(共6小题,每小题3分,共18分) 11.若2是方程20x c -=的一个根,则c 的值为 .12.把抛物线22y x =先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 . 13.如图,四边形ABCD 内接于O ,110A ∠=︒,则BOD ∠= ︒.14.有不同的两把锁和三把钥匙,其中两把钥匙能分别打开这两把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是 .15.二次函数2(y ax bx c a =++、b 、c 为常数,0)a ≠中的x 与y 的部分对应值如表:x1-0 3 yn3-3-当0n >时,下列结论中一定正确的是 .(填序号即可)①0bc >;②当2x >时,y 的值随x 值的增大而增大;③4n a >;④当1n =时,关于x 的一元二次方程2(1)0ax b x c +++=的解是11x =-,23x =.16.如图,AB 为O 的直径,C 为O 上一动点,将AC 绕点A 逆时针旋转120︒得AD ,若2AB =,则BD 的最大值为 .三、解答题17.已知关于x 的方程2(2)210x m x m +++-=,当m 为何值时,方程的两根相互为相反数?并求出此时方程的解.18.如图,在O 中,弦AB 与弦CD 相交于点E ,且AB CD =.求证:CE BE =.19.把一副普通扑克牌中的4张:黑2,红3,梅4,方5,洗匀后正面朝下放在桌面上. (1)从中随机抽取一张牌是红心的概率是 ;(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽取的两张牌牌面数字之和大于7的概率.20.如图,在下列的网格中,横、纵坐标均为整数的点叫做格点,例如(3,0)A ,(0,4)B ,(4,2)C 都是格点. (1)直接写出ABC ∆的形状;(2)要求在上图中仅用无刻度的直尺作图:将ABC ∆绕点B 逆时针旋转得到△11A BC ,旋转角2ABC =∠,请你完成作图;(3)在网格中找一个格点G ,使得1C G AB ⊥,并直接写出G 点坐标.21.如图,O 是ABC ∆的外心,I 是ABC ∆的内心,连AI 并延长交BC 和O 于D 、E 两点. (1)求证:EB EI =;(2)若4AB =,3AC =,2BE =,求AI 的长.22.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y (件)与销售单价x (元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x (元) 40 60 80 日销售量y (件) 806040(1)求y 与x 的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润; (3)若物价部门规定该商品销售单价不能超过a 元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y (件)与销售单价x (元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a 的值.23.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,D 为BC 边上的点,将DA 绕D 逆时针旋转120︒得到DE . (1)如图1,若30DAC ∠=︒. ①求证:AB BE =;②直接写出22BE CD +与2AD 的数量关系为 ;(2)如图2,D 为BC 边上任意一点,线段BE 、CD 、AD 是否满足(1)中②的关系,请给出结论并证明.24.抛物线2y ax ax b =-+交x 轴于A ,B 两点(A 在B 的左边),交y 轴于C ,直线4y x =-+经过B ,C 两点.(1)求抛物线的解析式;(2)如图1,P 为直线BC 上方的抛物线上一点,//PD y 轴交BC 于D 点,过点D 作DE AC ⊥于E 点.设1021m PD DE =+,求m 的最大值及此时P 点坐标; (3)如图2,点N 在y 轴负半轴上,点A 绕点N 顺时针旋转,恰好落在第四象限的抛物线上点M 处,且180ANM ACM ∠+∠=︒,求N 点坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.解:由2326x x -=,得23260x x --=,所以一次项系数是2-、常数项是6-, 故选:B .2.解:A 、不是中心对称图形,故本选项不合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、是中心对称图形,故本选项符合题意.故选:D .3.解:方程2240x x +-=, 这里1a =,2b =,4c =-, △416200=+=>,∴方程有两个不相等的实数根,且122x x +=-,124x x =-,12x x ∴-==±故结论错误的是B , 故选:C .4.解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的. 故选:D .5.解:连接OD ,如图, AB CD ⊥,CE DE ∴=,AC AD =,BC BD =, BC BD =,BOC BOD ∴∠=∠, 2BOD BAD ∠=∠, 2BOC BAD ∴∠=∠.故选:C .6.解:圆的直径为13 cm ,∴圆的半径为6.5 cm ,圆心与直线上某一点的距离是6.5cm ,∴圆的半径圆心到直线的距离,∴直线于圆相切或相交,故选:D .7.解:根据旋转可知:90AC B C ∠''=∠=︒,4AC AC ''==,AB A B =',根据勾股定理,得2222345AB BC AC ++=, 5A B AB ∴'==, 2AC AB BC ∴'=-'=,在Rt △AA C ''中,根据勾股定理,得22222425AA AC A C ''''=++ 故选:C .8.解:m ,n 为方程2310x x --=的两根, 2310m m ∴--=,3m n +=, 231m m ∴-=.22333313()13310m n m m m n m n ∴+=-++=++=+⨯=. 故选:D .9.解:过A 作AD BC ⊥于D ,ABC ∆是等边三角形,2AB AC BC ∴===,60BAC ABC ACB ∠=∠=∠=︒, AD BC ⊥,1BD CD ∴==,33AD BD ==ABC ∴∆的面积为1123322BC AD ⨯⨯=⨯260223603BACS ππ⨯==扇形,∴莱洛三角形的面积23232233S ππ=⨯-=-故选:D .10.解:设212y x x =-,212y x x =-的对称轴为直线1x =,∴一元二次方程220x x t --=的实数根可以看作212y x x =-与函数2y t =的交点,方程在14x -<的范围内有实数根, 当1x =-时,13y =; 当4x =时,18y =;函数212y x x =-在1x =时有最小值1-;∴当18t -时,212y x x =-与函数2y t =有交点,即方程220x x t --=在18t -<范围内有实数根;故选:D .二、填空题(共6小题,每小题3分,共18分)11.解:根据题意,将2x =代入方程20x c -=,得:40c -=, 解得4c =, 故答案为:4.12.解:由“上加下减”的原则可知,二次函数22y x =的图象向下平移1个单位得到221y x =-, 由“左加右减”的原则可知,将二次函数221y x =-的图象向左平移2个单位可得到函数22(2)1y x =+-,故答案是:22(2)1y x =+-.13.解:四边形ABCD 内接于O ,110A ∠=︒, 180********C A ∴∠=︒-∠=︒-︒=︒, 2140BOD C ∴∠=∠=︒.故答案为:140.14.解:画树状图为:(两把钥匙能分别打开这两把锁表示为A 、a 和B 、b ,第三把钥匙表示为)c共有6种等可能的结果数,其中任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数为2, 所以任意取出一把钥匙去开任意的一把锁,一次打开锁的概率2163==. 故答案为13.15.解:①函数的对称轴为直线13(03)22x =+=,即322b a =-,则3b a =-,0n >,故在对称轴的左侧,y 随x 的增大而减小,故抛物线开口向上,则0a >,对称轴在y 轴的右侧,故0b <,而3c =-,故0bc >正确,符合题意;②2x =在函数对称轴的右侧,故y 的值随x 值的增大而增大,故②正确,符合题意; ③当1x =-时,434n y a b c a a ==-+=-<,故③错误,不符合题意; ④当1n =时,即:1x =-时,1y =,2(1)0ax b x c +++=可以变形为2ax bx c x ++=-,即探讨一次函数y x =-与二次函数为2y ax bx c =++图象情况,当1x =-,1y =,即(1,1)-是上述两个图象的交点,则抛物线和另一个交点在第四象限,且横纵坐标互为相反数,而本题表中告诉了(3,3)-在二次函数图象上,所以另一个交点为(3,3)-, 故两个函数交点的横坐标为1-、3,即关于x 的一元二次方程2(1)0ax b x c +++=的解是11x =-,23x =,正确,符合题意, 故答案为:①②④.16.解:解法一:如图,将ABD ∆绕点A 顺时针旋转120︒,则D 与C 重合,B '是定点,BD 的最大值即B C '的最大值,即B '、O 、C 三点共线时,BD 最大,过B '作B E AB '⊥于点E ,由题意得:2AB AB '==,120BAB '∠=︒, 60EAB '∴∠=︒,Rt AEB '∆中,30AB E '∠=︒,112AE AB '∴==,22213EB '=-=, 由勾股定理得:22222(3)7OB OE B E ''=+=+=, 71B C OB OC ''∴=+=+.解法二:如图1,连接OC ,将AOC ∆绕点A 逆时针旋转120︒得到AGD ∆,发现点D 的运动轨迹是:以G 为圆心,以AG 为半径的圆,所以当B 、G 、D 三点共线时,BD 的值最大,如图2,过点G 作GH AB ⊥,交BA 的延长线于H ,由旋转得:1AO AG ==,120OAG ∠=︒, 60HAG ∴∠=︒, 30AGH ∴∠=︒,12AH ∴=,3GH由勾股定理得:222231()(2)722BG GH BH =+=++= BD ∴71.故答案为:71+. 三、解答题17.解:关于x 的方程2(2)210x m x m +++-=两根相互为相反数,(2)0m ∴-+=,解得2m =-,则方程为250x -=,解得15x =,25x =-.18.证明:AB CD =,∴AB CD =,∴AB CB CD CB -=-,即AC BD =,C B ∴∠=∠,CE BE ∴=.19.解:(1)从黑2,红3,梅4,方5这4张扑克牌中任摸一张,是红心的可能性为14, 故答案为:14; (2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中和大于7的有4种,所以抽取的两张牌牌面数字之和大于7的概率为41123=. 20.解:如图所示:(1)ABC ∆的形状为:直角三角形;(2)将ABC ∆绕点B 逆时针旋转得到△11A BC ,旋转角2ABC =∠;(3)在网格中找一个格点G ,使得1C G AB ⊥,G 点坐标为(0,3).21.(1)证明:I 是ABC ∆的内心,AE ∴平分CAB ∠,BI 平分ABC ∠,BAE CAE ∴∠=∠,ABI CBI ∠=∠,BIE BAE ABI ∠=∠+∠,IBE IBD EBD ∠=∠+∠,CBE CAE ∠=∠,BIE EBI ∴∠=∠,EB EI ∴=;(2)解:连接EC .BAE CAE ∠=∠,∴BE EC =,2BE EC ∴==,ADB CDE ∠=∠,BAD DCE ∠=∠,ADB CDE ∴∆∆∽, ∴422BD AD AB DE DC EC ====,设DE m =,CD n =,则2BD m =,2AD n =, 同法可证:ADC BDE ∆∆∽, ∴AD AC BD BE =, ∴2322n m =, :3:2n m ∴=,设3n k =,2m k =,CED AEC ∠=∠,ECD BAE CAE ∠=∠=∠,ECD EAC ∴∆∆∽,2EC ED EA ∴=⋅,4(2)m m n ∴=⋅+,42(26)k k k ∴=+ 12k ∴=或12-(舍弃), 1DE ∴=,3AD =,4AE ∴=,2EI BE ==,2AI AE EI ∴=-=.解法二:过点E 作EM AB ⊥,EN AC ⊥交AC 的延长线于N .利用全等三角形的性质证明AM AN =,BM CN =,EM EN =,求出BM ,EM ,AE ,可得结论.22.解:(1)设函数的表达式为y kx b =+,将(40,80)、(60,60)代入上式得:40806060k b k b +=⎧⎨+=⎩,解得1120k b =-⎧⎨=⎩, 故y 与x 的关系式为120y x =-+;(2)公司销售该商品获得的最大日利润为w 元, 则2(20)(20)(120)(70)2500w x y x x x =-=--+=--+,200x -,1200x -+,2020100%x -⨯,2040x ∴,10-<,故抛物线开口向下,故当70x <时,w 随x 的增大而增大,∴当40x =(元)时,w 的最大值为1600(元),故公司销售该商品获得的最大日利润为1600元;(3)当1500w =最大时,2(80)16001500x --+=,解得170x =,290x =,2200x -⨯,40x ∴,又x a ,40x a ∴.∴有两种情况,①80a <时,即40x a ,在对称轴左侧,w 随x 的增大而增大,∴当70x a ==时,1500w =最大,②80a 时,即40x a ,在40x a 范围内16001500w =≠最大,∴这种情况不成立,70a ∴=.23.(1)①证明:如图1中,AB AC =,120BAC ∠=︒30ABC ACB ∴∠=∠=︒,30DAC ∠=︒30DAC ACB ∴∠=∠=︒,60ADB CAD ACB ∠=∠+∠=︒,90BAD ∴∠=︒,由旋转得:DE DA CD ==,60BDE ADB ∠=∠=︒,()BDE BDA SAS ∴∆≅∆,AB BE ∴=.②解:BDE BDA ∆≅∆,90BED BAD ∴∠=∠=︒,BE AB =,22222BE CD BE DE BD ∴+=+= 1cos cos602AD ADB BD =∠=︒=, 2BD AD ∴=,2224BE CD AD ∴+=. 故答案为:2224BE CD AD +=. (2)能满足(1)中的结论.理由:当点E 在BC 的下方时,将ACD ∆绕点A 顺时针旋转120︒得到ABD ∆',使AC 与AB 重合,连接ED ',DD ',AE ,设AB 交DD '于点J .30DBJ ADJ ∠=∠=︒,BJD D JA ∠=∠',BJD ∴∆∽△D JA ',∴BJ DJ D J AJ =', ∴BJ D J DJ AJ'=, BJD DJA ∠'=∠,BJD DJA ∴∆'∆∽,30JBD JDA ∴∠'=∠=︒,同法可证,30EBD EAD ∠=∠=︒,30ED D EAD ∠'=∠=︒,30ABC D BJ EBD ∠=∠'=∠=︒,90D BE ∴∠'=︒,120ADE ∠=︒,30ADD ∠'=︒,90D DE ∴∠'=︒,30ED D ∠'=︒,22D E DE AD ∴'==,在Rt △D BE '中,222D E D B BE '='+,CD BD =',2224CD BE AD ∴+=.当B ,E 重合时,0BE =,90DAC ∠=︒,30C ∠=︒,2CD AD ∴=,24CD AD ∴=,结论成立.当点E 在BC 的上方时,如图3中,同法可证,90EBD ∠'=︒,22ED AD AD '='=.222BD BE ED ∴'+=',2224CD BE AD ∴+=.24.解:(1)当0x =时,4y =;当0y =时,40x -+=,4x =;(4,0)B ∴,(0,4)C ,点B ,C 在抛物线上,∴16404a a b b -+=⎧⎨=⎩,解得:134a b ⎧=-⎪⎨⎪=⎩, 211433y x x ∴=-++; (2)如图1,连接AD ,延长PD 交x 轴于H ,//PD y 轴,PH x ∴⊥轴,设(,4)D t t -+,211(,4)33P t t t -++, 2211144(4)3333PD t t t t t =-++--+=-+, ABC ADC ADB S S S ∆∆∆=+,且(3,0)A -,(4,0)B ,(0,4)C , ∴111747(4)222AC DE t ⨯⨯=⋅+⨯⨯-+, 22345AC =+,75DE t ∴=, 1021m PD DE =+, 22214107112(3)33321533m t t t t t t ∴=-++⋅=-+=--+, ∴当3t =时,m 有最大值是3,此时(3,2)P ;(3)过N 作NF MC ⊥交MC 于点F ,过N 点作NG AC ⊥,交CA 的延长线于点G ,则90G CFN ∠=∠=︒, 180ACM GNF ∴∠+∠=︒,由旋转得:AN MN =, 180ANM ACM ∠+∠=︒, ANM GNF ∴∠=∠, ANG MNF ∴∠=∠, 90G MFN ∠=∠=︒, ()NGA NFM AAS ∴∆≅∆, NG NF ∴=,NC ∴平分ACM ∠, CO AB ⊥,3OK OA ∴==, (3,0)K ∴,CK ∴的解析式为:443y x =-+, 241144333x x x ∴-+=-++, 解得:10x =,25x =,8(5,)3M ∴-, 设(0,)N y ,AN MN =,22228(3)5()3y y ∴-+=++,解得:133y =-, 13(0,)3N ∴-.。
度武汉市九级元月调考数学试卷
度武汉市九级元月调考数学试卷2011-2012学年度武汉市九年级元月调考数学试卷2012年元月一、选择题(共2小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.要使式子3a-在实数范围内有意义,字母a的取值必须满足A .a≥3 B.a≤3 C.a≠3 D.a≠02.有两个事件,事件A:掷一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中.则A.只有事件S是随机事件.B.只有事件B是随机事件.C.声件A和B都是随机事件.D.事件A和B 都不是随机事件.3.将一元二次方程5x2-1=4x化成一般形式后,二次项系数和一次项系数分别为A.5,-4 B.5, 4 C.5, 1 D.5x2,-4x 4.如图,点C、D、D、B、A都在方格纸的格点上,若⊿AOB是由⊿COD绕点O按顺时针方向旋转而得的,则旋转的角度为A.30°B.45 ° C.90°D.135 °5.如图,小惠同学设计了一个圆半径的测量器,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直.在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的半径为A.3个单位.B.4个单位.C.5个单位.D.6个单位.6.下列各式中计算正确的是A235=B.2222=.C121065-=D.32222=7.从1,-2,3三个数中随机抽取一个数,这个数是正数的概率是A.0 B.13C.23D.18.方程x2+7=8x的根的情况为A.有两个不相等的实数根.B.有两个相等的实数根.C .有一个实数根.D .没有实数根. 9.为迎接“2011李娜和朋友们国际网球精英赛”,某款桑普拉斯网球包原价168元,连续两 次降价a %后售价为128元.下列所列方程中正确的是A .168(1+a %)2=1 28.B .168(1--a 2%)=1 28.C .168(1-2a %)=1 28.D .168(1—a %)2=128. 10.如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则,以AC 和BC 的长为两根的一元二次方程是 A .2510x x += B .24205xx -+= C .24205xx +-= D .2510xx +-=11.设12211112S =++,22112123S =++,22113134S =++…,22111(1)nSn n =+++,设12nS S S S =+,其中n 为正整数,则用含n 的代数式表示S 为A .211n n n --+ B .221n n n ++ C .1(1)n n + D .21(1)n n n ++ 12.如图,AB 是半圆直径,半径OC ⊥ AB 于点D ,AD 平分∠CAB 交弧BC 于点D ,连接CD 、OD. 下列结论:①A C ∥OD ;②CE=OE ;③∠OED=∠AOD ;④CD=DE.其中正确结论的个数有A .1个.B .2个.C .3个.D .4个. 二、填空题(共4小题,每小题3分,共l 2分) 下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置. 132(5)-= 。
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2 B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;AB=CE=62;连接BE;P为BE的中点;连接PD、AD(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△PAD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018~2019学年度武汉市部分学校九年级调研测试数学试卷 考试时间:2019年1月17日14:00~16:00
一、选择题(共10小题,每小题3分,共30分)
1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1 的方程是( )
A .3x 2+1=6x
B .3x 2-1=6x
C .3x 2+6x =1
D .3x 2-6x =1 2.下列图形中,是中心对称图形的是( ) A .
B .
C .
D . 3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( ) A .y =(x -1)2+2
B .y =(x -1)2-2
C .y =(x +1)2+2
D .y =(x +1)2-2 4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件 的是( )
A .两枚骰子向上一面的点数之和大于1
B .两枚骰子向上一面的点数之和等于1
C .两枚骰子向上一面的点数之和大于12
D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数
为( )
A .0
B .1
C .2
D .无法确定
6.如图,“圆材埋壁”和我国古代着名数学着作《九章算术》中的问题:“今有圆材,埋在壁 中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为 ⊙O 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )
A .12.5寸
B .13寸
C .25寸
D .26寸 第6题图 第8题图 第9题图
7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏 鸟中恰有2只雄鸟的概率是( )
A .61
B .83
C .85
D .3
2 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应 点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形
面积是( )
A .63π-
B .
623π- C .823π- D .3
3π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画 Rt △ABC ,∠ACB =90°,BC =
2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个 正根是( )
A .AC 的长
B .B
C 的长
C .A
D 的长 D .CD 的长 10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关 于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )
A .2个
B .3个
C .4个
D .5个 二、填空题(本大题共6个小题,每小题3分,共18分) 11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________
12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____
13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的
白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇
匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸
到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个
14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一
张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm ,宽为20 cm ,他 想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的4
1. 为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为_____________
第14题图 第15题图 第16题图
15.如图是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加
___________m
16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点
G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________
三、解答题(共8题,共72分)
17.(本题8分)解方程:x 2
-3x -1=0
18.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD
第18题图
19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、
“面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A ,B ,E ,F )这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C ,D ,G ,H )这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率
20.(本题8分)如图,在边长为1的正方形网格中,点A 的坐标为(1,7),点B 的坐标为
(5,5),点C 的坐标为(7,5),点D 的坐标为(5,1)
(1) 将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出
点A 运动的路径,并直接写出点A 运动的路径长
(2) 小贝同学发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转
一个角度可以得到另一条线段,直接写出这个旋转中心的坐标
第20题图
21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AD ⊥CD ,AC =AB ,⊙O 为△ABC 的
外接圆
(1) 如图1,求证:AD 是⊙O 的切线
(2) 如图2,CD 交⊙O 于点E ,过点A 作AG ⊥BE ,垂足为F ,交BC 于点G
① 求证:AG =BG
② 若AD =2,CD =3,求FG 的长
22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)
与当天的销售单价x (元/件)满足一次函数关系,并且当x =25时,y =550;当x =30时, y =500.物价部门规定,该商品的销售单价不能超过48元/件
(1) 求出y 与x 的函数关系式
(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?
(3) 直接写出商家销售该商品每天获得的最大利润
23.(本题10分)如图,等边△ABC 与等腰三角形△EDC 有公共顶点C ,其中∠EDC =120°,
AB =CE =62,连接BE ,P 为BE 的中点,连接PD 、AD
(1) 小亮为了研究线段AD 与PD 的数量关系,将图1中的△EDC 绕点C 旋转一个适当的
角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系
(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由
(3) 如图3,若∠ACD=45°,求△PAD的面积
24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C
(1) 如图1,m=3
①直接写出A,B,C三点的坐标
②若抛物线上有一点D,∠ACD=45°,求点D的坐标
(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于
M,N两点,求证:OM·ON是一个定值。