2016年全国高考文科数学试题及答案-全国卷
2016年高考文科数学真题答案全国卷1
2016年高考文科数学真题及答案全国卷1注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}1,3,5,7A =,{}25B x x =,则AB =(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。
(2) 设()()12i i a ++的实部与虚部相等,其中a 为实数,则a= (A )-3 (B )-2 (C)2 (D )3 【答案】A 【解析】试题分析:i a a i a i )21(2))(21(++-=++,由已知,得a a 212+=-,解得3-=a ,故选A 。
考点:复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23 (D )56【答案】A 考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举。
首发2016年高考全国卷一文科数学真题及答案
首发2016年高考全国卷一文科数学真题及答案2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A=,{|25}B x x=≤≤,则A B =(A){1,3}(B){3,5}(C){5,7}(D){1,7}(2)设(12i)(i)a++的实部与虚部相等,其中a为实数,则a=(A)-3(B)-2(C)2(D)3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)13(B)12(C)23(D)56(4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,2c=,2cos3A=,则b =(A B (C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin (2x +π4) (B )y =2sin (2x +π3) (C )y =2sin (2x –π4) (D )y =2sin (2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则 (A )log a c函数y =2x 2–e |x|在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A11//CB D α平面,ABCD m α=平面,11ABB A nα=平面,则m ,n 所成角的正弦值为(A)2(B)2(C)3(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =.(14)已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ–π4)=.(15)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。
(完整word)2016年全国高考文科数学试题及答案-全国卷1,推荐文档
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )13(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= (A )2(B )3(C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为 (A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π(8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b(9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A )32(B )22(C )33(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= . (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 。
2016年全国高考文科数学试题及解析全国卷I
绝密★启封并使用完毕前试题类型:A2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I ( ) A.{1,3} B. {3,5} C. {5,7} D. {1,7}2. 设(12)()i a i ++的实部与虚部相等,其中a 为实数,则a =( )A.3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B. 12 C. 23D. 564. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知a =,2c =,2cos 3A =,则b =( )B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B. 12 C. 23 D. 346. 将函数2sin(2)6y x π=+的图像向右平移14个周期后,所得图像对应的函数为( ) A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=- 7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是283π,则它的表面积是( ) A.17π B. 18π C. 20π D. 28π8. 若0a b >>,01c <<,则( )A.log log a b c c <B. log log c c a b <C. c c a b <D. a bc c >9. 函数2||2x y x e =-在[2,2]-的图像大致为( )A BC D10. 执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( ) A.2y x = B. 3y x = C. 4y x = D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,α//平面11CB D ,αI 平面ABCD m =,αI 平面11ABB A n =,则,m n 所成角的正弦值为( )3 B. 22 C. 3 D. 1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( ) A.[1,1]- B. 1[1,]3- C. 11[,]33- D. 1[1,]3--第II 卷二、填空题(每小题5分,共4小题,20分)13. 设向量(,1)a x x →=+,(1,2)b →=,且a b →→⊥,则x = 14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||3AB =C 的面积为16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.5kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元,该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A ,产品B 的利润之和的最大值为 元三、解答题(共70分)17.(12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++= (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和18.(12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G (I )证明:G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件 ,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元,现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期间更换的易损零件数,得下面柱状图:设x 表示1台机器在三年使用期内需要更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数 (I )若19n =,求y 与x 的函数解析式;(II )若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(III )假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均值,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy 中,直线1:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于P 的对称点为N ,连结ON 并延长交C 于点H (I )求||||OH ON ; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(12分)已知函数2()(2)(1)xf x x e a x =-+- (I )讨论()f x 的单调性;(II )若()f x 有两个零点,求a 的取值范围选做题22.(10分)选修4-1:几何证明选讲如图,OAB ∆是等腰三角形,120AOB ∠=o,以O 为圆心,12OA 为半径作圆 (I )证明:直线AB 与圆O 相切;(II )点C ,D 在圆O 上,且A ,B ,C ,D 四点共圆,证明AB//CD23.(10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为 参数,0a >),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ= (I )说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(II )直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a24.(10分)选修4-5:不等式选讲 已知函数()|1||23|f x x x =+--(I )在答题卡第(24)题图中画出()y f x =的图像; (II )求不等式|()|1f x >的解集2016年普通高等学校招生全国统一考试文科数学参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)B (2) A (3)C (4)D (5)B (6)D (7)A (8)B (9)D (10)C (11)A (12)C第II 卷二、填空题:本大题共3小题,每小题5分. (13)23-(14)43-(15)4π (16)216000 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(I )由已知,1221121,1,,3a b b b b b +===得1221121,1,,3a b b b b b +===得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-. (II )由(I )和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313.122313nn n S --==-⨯- (18)(I )因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V (19)(I )分x ≤19及x.19,分别求解析式;(II )通过频率大小进行比较;(III )分别求出您9,n=20的所需费用的平均数来确定。
2016年全国高考文科数学试题及解析全国卷I
2016年全国高考文科数学试题及解析全国卷I绝密★启封并使用完毕前试题类型:A 2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}=≤≤,则A B=()B x xA=,{|25}A.{1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12)()++的实部与虚部相等,其中a为实数,则a=i a i()A.3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花8. 若0a b >>,01c <<,则( ) A.log log ab c c< B. loglog cc a b< C. ccab <D. abc c >9. 函数2||2x y xe =-在[2,2]-的图像大致为( )A- 2 yx- 2 yxB CD10. 执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A.2y x =B. 3y x =C. 4y x =D. 5y x =- 2yx - 2yx11. 平面α过正方体1111ABCD A B C D -的顶点A ,α//平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( ) 32 C.3 D. 1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A.[1,1]-B. 1[1,]3-C. 11[,]33- D. 1[1,]3--第II 卷二、填空题(每小题5分,共4小题,20分) 13. 设向量(,1)a x x →=+,(1,2)b →=,且a b →→⊥,则x =14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-=15. 设直线2y x a =+与圆22:220C xy ay +--=相交于,A B 两点,若||3AB =,则圆C 的面积为16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.5kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元,该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A ,产品B 的利润之和的最大值为元三、解答题(共70分)17.(12分)已知{}na 是公差为3的等差数列,数列{}nb 满足11b =,213b=,11n n n na bb nb +++=(I )求{}na 的通项公式;(II )求{}nb 的前n 项和18.(12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G(I )证明:G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件 ,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元,现PEAD GBC需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期间更换的易损零件数,得下面柱状图:设x 表示1台机器在三年使用期内需要更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数 (I )若19n ,求y 与x 的函数解析式;频22116更换的易16 17 18(II )若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(III )假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均值,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy 中,直线1:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C ypx p =>于点P ,M 关于P 的对称点为N ,连结ON 并延长交C 于点H(I )求||||OH ON ; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(12分)已知函数2()(2)(1)xf x x e a x =-+-(I )讨论()f x 的单调性;(II )若()f x 有两个零点,求a 的取值范围选做题22.(10分)选修4-1:几何证明选讲如图,OAB ∆是等腰三角形,120AOB ∠=,以O 为圆心,12OA 为半径作圆(I )证明:直线AB 与圆O 相切;(II )点C ,D 在圆O 上,且A ,B ,C ,D 四点共圆,证明AB//CD23.(10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为 参数,0a >),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos Cρθ=OA BD C(I )说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(II )直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a24.(10分)选修4-5:不等式选讲 已知函数()|1||23|f x x x =+--(I )在答题卡第(24)题图中画出()y f x =的图像; (II )求不等式|()|1f x >的解集2016年普通高等学校招生全国统一考试文科数学参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)B (2) A (3)C (4)D (5)B (6)D(7)A (8)B (9)D (10)C (11)A (12)C第II 卷二、填空题:本大题共3小题,每小题5分. (13)23-(14)43-(15)4π (16)216000三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(I )由已知,1221121,1,,3a bb b b b +===得1221121,1,,3a bb b b b +===得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31nan =-.(II )由(I )和11nn n na bb nb +++= ,得13n n b b+=,因此{}nb 是首项为1,公比为13的等比数列.记{}nb 的前n 项和为nS ,则111()313.122313nn n S --==-⨯-(18)(I )因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点. (II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE在等腰直角三角形EFP 中,可得 2.==EF PF所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V (19)(I )分x ≤19及x.19,分别求解析式;(II )通过频率大小进行比较;(III )分别求出您9,n=20的所需费用的平均数来确定。
2016年普通高等学校招生全国统一考试I卷文科数学(含答案)
2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.设(1+2i)(a+i)的实部与虚部相等,其中a 为实数,则a=( ) A.-3B.-2C.2D.33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12C.23D.564.△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b=( )A.√2B.√3C.2D.35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12C.23D.346.将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4)B.y=2sin (2x +π3)C.y=2sin (2x -π4)D.y=2sin (2x -π3)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π8.若a>b>0,0<c<1,则( ) A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b9.函数y=2x 2-e |x|在[-2,2]的图象大致为( )10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x11.平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( ) A.√32B.√22C.√33D.1312.若函数f(x)=x-13sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A.[-1,1]B.[-1,13]C.[-13,13]D.[-1,-13]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2√3,则圆C的面积为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.;(Ⅰ)求|OH||ON|(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与☉O 相切;(Ⅱ)点C,D 在☉O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|x+1|-|2x-3|. (Ⅰ)画出y=f(x)的图象; (Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B ∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.A ∵(1+2i)(a+i)=(a -2)+(2a+1)i, ∴a -2=2a+1,解得a=-3,故选A.3.C 从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P=46=23,故选C.4.D 由余弦定理得5=22+b 2-2×2bcos A,∵cos A=23,∴3b 2-8b-3=0,∴b=3(b =-13舍去).故选5.B 如图,|OB|为椭圆中心到l 的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2,所以e=c a =12.故选B.6.D 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin [2(x -π4)+π6]=2sin (2x -π3),故选D.7.A 由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR 3=28π3,故R=2,从而它的表面积S=78×4πR 2+34×πR 2=17π.故选A.8.B ∵0<c<1,∴当a>b>1时,log a c>log b c,A 项错误; ∵0<c<1,∴y=log c x 在(0,+∞)上单调递减,又a>b>0, ∴log c a<log c b,B 项正确;∵0<c<1,∴函数y=x c在(0,+∞)上单调递增, 又∵a>b>0,∴a c>b c,C 项错误;∵0<c<1,∴y=c x 在(0,+∞)上单调递减, 又∵a>b>0,∴c a<c b ,D 项错误.故选B.9.D 当x=2时,y=8-e 2∈(0,1),排除A,B;易知函数y=2x 2-e |x|为偶函数,当x∈[0,2]时,y=2x 2-e x ,求导得y'=4x-e x,当x=0时,y'<0,当x=2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D.10.C 执行程序框图:当n=1时,x=0,y=1,此时02+12≥36不成立;当n=2时,x=12,y=2,此时(12)2+22≥36不成立;当n=3时,x=32,y=6,此时(32)2+62≥36成立,结束循环,输出x 的值为32,y 的值为6,满足y=4x,故选C.11.A 设正方体ABCD-A 1B 1C 1D 1的棱长为a.将正方体ABCD-A 1B 1C 1D 1补成棱长为2a 的正方体,如图所示.正六边形EFGPQR 所在的平面即为平面α.点A 为这个大正方体的中心,直线GR 为m,直线EP 为n.显然m 与n 所成的角为60°.所以m,n 所成角的正弦值为√32.故选A.12.C f '(x)=1-23cos 2x+acos x=1-23(2cos 2x-1)+acos x=-43cos 2x+acos x+53, f(x)在R 上单调递增,则f '(x)≥0在R 上恒成立,令cos x=t,t∈[-1,1],则-43t 2+at+53≥0在[-1,1]上恒成立,即4t 2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t 2-3at-5,则{g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a≤13,故选C.二、填空题 13.答案 -23解析 因为a ⊥b,所以x+2(x+1)=0,解得x=-23.14.答案-43 解析 解法一:∵sin (θ+π4)=√22×(sin θ+cos θ)=35, ∴sin θ+cos θ=3√25①, ∴2sin θcos θ=-725. ∵θ是第四象限角,∴sin θ<0,cos θ>0,∴sin θ-cos θ=-√1-2sinθcosθ=-4√25②, 由①②得sin θ=-√210,cos θ=7√210,∴tan θ=-17, ∴tan (θ-π4)=tanθ-11+tanθ=-43.解法二:∵(θ+π4)+(π4-θ)=π2,∴sin (θ+π4)=cos (π4-θ)=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k ∈Z, ∴cos (θ+π4)=45,∴sin (π4-θ)=45, ∴tan (π4-θ)=sin(π4-θ)cos(π4-θ)=43, ∴tan (θ-π4)=-tan (π4-θ)=-43. 15.答案 4π解析 把圆C 的方程化为x 2+(y-a)2=2+a 2,则圆心为(0,a),半径r=√a 2+2.圆心到直线x-y+2a=0的距离d=√2.由r 2=d 2+(|AB |2)2,得a 2+2=a 22+3,解得a 2=2,则r 2=4,所以圆的面积S=πr 2=4π. 16.答案 216 000解析 设生产产品A x 件,生产产品B y 件,利润之和为z 元,则z=2 100x+900y.根据题意得{ 1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ,y ∈N ,即{ 3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ,y ∈N ,作出可行域(如图).由{10x +3y =900,5x +3y =600得{x =60,y =100. 当直线2 100x+900y-z=0过点A(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000. 故所求的最大值为216 000元.三、解答题17.解析 (Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分) 所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分)(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n 得b n+1=bn 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分)记{b n }的前n 项和为S n ,则S n =1-(13)n1-13=32-12×3n -1.(12分)18.解析 (Ⅰ)证明:因为P 在平面ABC 内的正投影为D,所以AB ⊥PD.因为D 在平面PAB 内的正投影为E,所以AB ⊥DE.(2分)又PD∩DE=D,所以AB ⊥平面PED,故AB ⊥PG.又由已知可得,PA=PB,从而G 是AB 的中点.(4分)(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F,F 即为E 在平面PAC 内的正投影.(5分)理由如下:由已知可得PB ⊥PA,PB ⊥PC,又EF ∥PB,所以EF ⊥PA,EF ⊥PC,又PA∩PC=P,因此EF ⊥平面PAC,即点F 为E 在平面PAC 内的正投影.(7分)连结CG,因为P 在平面ABC 内的正投影为D,所以D 是正三角形ABC 的中心,由(Ⅰ)知,G 是AB的中点,所以D 在CG 上,故CD=23CG.(9分)由题设可得PC ⊥平面PAB,DE ⊥平面PAB,所以DE ∥PC,因此PE=23PG,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2√2.在等腰直角三角形EFP 中,可得EF=PF=2,(11分)所以四面体PDEF 的体积V=13×12×2×2×2=43.(12分)19.解析 (Ⅰ)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700,所以y 与x 的函数解析式为y={3 800, x ≤19,500x -5 700,x >19(x ∈N).(4分) (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(5分)(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元).(7分)若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元).(10分)比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(12分)20.解析 (Ⅰ)由已知得M(0,t),P (t 22p ,t).(1分)又N 为M 关于点P 的对称点,故N (t 2p ,t),ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x1=0,x2=2t 2p.因此H(2t 2p,2t).(4分)所以N为OH的中点,即|OH||ON|=2.(6分)(Ⅱ)直线MH与C除H以外没有其他公共点.(7分) 理由如下:直线MH的方程为y-t=p2t x,即x=2tp(y-t).(9分)代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.(12分)21.解析(Ⅰ)f '(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).(i)设a≥0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ii)设a<0,由f '(x)=0得x=1或x=ln(-2a).①若a=-e2,则f '(x)=(x-1)(e x-e),所以f(x)在(-∞,+∞)单调递增.②若a>-e2,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当x∈(ln(-2a),1)时, f '(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.(4分)③若a<-e2,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时, f '(x)>0;当x∈(1,ln(-2a))时, f '(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(6分)(Ⅱ)(i)设a>0,则由(Ⅰ)知, f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,所以f(x)有两个零点.(8分)(ii)设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.(9分)(iii)设a<0,若a≥-e 2,则由(Ⅰ)知, f(x)在(1,+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点;(10分)若a<-e 2,则由(Ⅰ)知, f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点.(11分)综上,a 的取值范围为(0,+∞).(12分)22.证明 (Ⅰ)设E 是AB 的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE ⊥AB,∠AOE=60°.(2分)在Rt △AOE 中,OE=12AO,即O 到直线AB 的距离等于☉O 半径,所以直线AB 与☉O 相切.(5分)(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设O'是A,B,C,D 四点所在圆的圆心,作直线OO'.(7分)由已知得O 在线段AB 的垂直平分线上,又O'在线段AB 的垂直平分线上,所以OO'⊥AB. 同理可证,OO'⊥CD.所以AB ∥CD.(10分)23.解析 (Ⅰ)消去参数t 得到C 1的普通方程:x 2+(y-1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.(2分)将x=ρcos θ,y=ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(4分)(Ⅱ)曲线C 1,C 2的公共点的极坐标满足方程组{ρ2-2ρsinθ+1-a 2=0,ρ=4cosθ.(6分) 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,(8分)由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C 1,C 2的公共点,在C 3上.所以a=1.(10分)24.解析(Ⅰ)f(x)={x-4,x≤-1,3x-2,-1<x≤32,-x+4,x>32,(4分)y=f(x)的图象如图所示.(6分)(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5,(8分)故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x|x<13或x>5}.(9分)所以|f(x)|>1的解集为{x|x<13或1<x<3或x>5}.(10分)。
2016年全国高考文科数学试题及答案
2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
234(1B =2} ((2(A (3)=sin()y A x ωϕ+(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=(4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为(A)12π(B)323π(C)8π(D)4π(5)设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x 轴,则k=(A)12(B)1(C)32(D)2(6)圆(A(7)(A(8)40秒.若(A(9)(A(B(C)17(D)34(10)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是(A)y=x(B)y=lg x(C)y=2x(D)y=(11)函数π()cos 26cos()2f x x x =+-的最大值为(A )4(B )5 (C )6 (D )7(12)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0(B)m (C)2m (D)4m(13)(14)(15513C =,a =1(16(17等差数列{n a }中,34574,6a a a a +=+=(I )求{n a }的通项公式;(II)设n b =[n a ],求数列{n b }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2 (18)(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
2016年全国高考文科数学试题及答案-全国卷
2016 年一般高等学校招生全国一致考试文科数学一、选择题:本大题共12 小题。
每题 5 分 .( 1)已知会合,则(A)(B)(C)(D)(2)设复数z 知足,则 =(A)(B)(C)(D)(3)函数的部分图像以下图,则(A)(B)(C)(D)(4)体积为 8 的正方体的极点都在同一球面上,则该球面的表面积为(A)(B)( C)( D)(5)设 F 为抛物线C:y2=4x 的焦点,曲线y=( k>0)与C交于点P,PF⊥ x 轴,则k=(A)(B)1( C)(D)2(6)圆x2+y2- 2x- 8y+13=0的圆心到直线ax+y- 1=0的距离为1,则a=(A)-(B)-(C)(D)2(7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯连续时间为40 秒,若一名行人到达该路口碰到红灯,则起码需要等候15 秒才出现绿灯的概率为(A)( B)( C)( D)(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.履行该程序框图,若x=2, n=2,输入的 a 为2, 2, 5,则输出的s=(A) 7(B)12(C)17(D) 34(10)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域同样的是(A)y=x( B)y=lg x( C)y=2x( D)(11)函数的最大值为(A) 4( B)5(C)6(D)7(12) 已知函数f (x) (∈ R)知足f(x)=f(2-x) ,若函数y=|x2x-3|与= (x) 图像的交-2x y f点为( x1, y1),( x2, y2),,( x m, y m),则(A)0(B)m(C) 2m(D) 4m二.填空题:共 4 小题,每题 5 分 .(13)已知向量 a=( m,4), b=(3,-2),且 a∥ b,则 m=___________.(14)若 x, y 知足拘束条件,则 z=x-2 y 的最小值为__________(15)△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.(16)有三张卡片,分别写有 1 和 2,1 和 3, 2 和 3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上同样的数字不是 2”,乙看了丙的卡片后说:“我与丙的卡片上同样的数字不是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17) ( 本小题满分12 分 )等差数列 {} 中,( I )求 {} 的通项公式;(II)设=[] ,求数列 {} 的前 10 项和,此中 [ x] 表示不超出x的最大整数,如 []=0,[]=2(18) ( 本小题满分 12 分 )某险种的基本保费为a(单位:元),连续购置该险种的投保人称为续保人,续保人今年度的保费与其上年度出险次数的关系以下:随机检查了该险种的200 名续保人在一年内的出险状况,获得以下统计表:(I )记 A 为事件:“一续保人今年度的保费不高于基本保费”。
2016年全国普通高等学校统一招生考试文科数学及解答
2016年全国普通高等学校统一招生考试文科数学及解答D(2)若43i z =+,则||z z = (A )1 (B )1- (C )43+i 55(D )43i 55-【答案】D 【解析】试题分析:因i z 34+=,则其共轭复数为i z 34-=,其模为534|34|||22=+=+=i z ,故i z z5354||-=,应选答案D 。
(3)已知向量BA →=(123,BC →=312),则∠ABC =(A )30° (B )45° (C )60° (D )120° 【答案】A 【解析】:试题分析:因为1331(,),(,)22BA BC ==,故333442BA BC ⋅=+=,又因为||||cos 11cos cos BA BC BA BC ABC ABC ABC⋅=⋅∠=⨯⨯∠=∠所以3cos 2ABC ∠=,所以6ABC π∠=,应选答案A (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个【答案】D【解析】试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,可以确定D是不正确的,因为从图中可以看出:平均最高气温高于20C0只有7、8两个月份,故应选答案D 。
(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A )815 (B )18 (C )115(D )130【答案】C 【解析】试题分析:前2位共有3515⨯=种可能,其中只有1种是正确的密码,因此所求概率为115P =.故选C . (6)若tanθ=13,则cos2θ= (A )45-(B )15-(C )15(D )45【答案】D 【解析】 试题分析:22222222cos sin 1tan cos 2cos sin cos sin 1tan θθθθθθθθθ--=-==++2211()43151()3--==+-.故选D .(7)已知4213332,3,25a b c ===,则(A)b<a<c (B) a < b <c (C) b <c<a (D) c<a< b 【答案】A 【解析】 试题分析:423324a ==,1233255c ==,又函数23y x =在[0,)+∞上是增函数,所以b a c <<.故选A .(8)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6 【答案】B(9)在ABC中 ,B=1,,sin 43BC BC A π=边上的高等于则(A)310105310【答案】D 【解析】试题分析:由题意得,1112=sin 2323ABCS a a ac B c a ∆⋅=⇒=, ∴232sin sin()4C A A A π=⇒-=222A A A +=,∴310tan 3sin A A =-⇒=,故选D.(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(B)54185+(C)90(D)81【答案】B【解析】试题分析:由题意得,该几何体为一四棱柱,∴表面积为(3336335)2545⋅+⋅+⋅⋅=+ B.(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π(B)9π2(C)6π(D)32π3【答案】B(12)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A 【解析】 试题分析:由题意得,(,0)A a -,(,0)B a ,根据对称性,不妨2(,)b Pc a-,设:l x my a =-,∴(,)a c M c m --,(0,)aE m,∴直线BM :()()a c y x a m a c -=--+,又∵直线BM 经过OE 中点,∴()1()23a c a a c e ac m m a -=⇒==+,故选A. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则z =2x +3y –5的最小值为______.【答案】-10 【解析】试题分析:可行域为一个三角形ABC 及其内部,其中(1,0),(-1,-1),(1,3)A B C ,直线z 235x y =+-过点B 时取最小值-10(14)函数y =sin x –3cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到. 【答案】3π 【解析】试题分析:2sin()3y x π=-,所以至少向右平移3π(15)已知直线l :360x -+=与圆x2+y2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD|= . 【答案】3 【解析】试题分析:由题意得:26212()232AB =-=因此23cos3.6CD π==(16)已知f (x )为偶函数,当0x ≤ 时,1()x f x e x--=-,则曲线y = f (x )在点(1,2)处的切线方程式_____________________________. 【答案】y 2x.= 【解析】 试题分析:110,(),()1,x x x f x e x f x e --'>=+=+时(1)2,y 22(x 1)y 2x.f '=-=-⇒=三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分) 已知各项都为正数的数列{}na 满足11a=,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}na 的通项公式.【答案】(1)11,24;(2)112nn a -=.【解析】试题分析:(I )因为11a =,211(21)20n n n n aa a a ++---=,所以21212(21)20aa a a ---=,解得212a=同理可得 22323(21)20aa a a ---=,解得314a=(II )由已知得211220n n n n n aa a a a ++-+-=,即1(2)(1)0n n n aa a +-+=因为{}na 各项都为正数,所以12n na a +=,即112n na a+=,故数列{}na 是首项为11a=,公比为12q =的等比数列,其通项公式为112nn a-=(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32ii y ==∑,7140.17i ii t y ==∑721()0.55ii y y =-=∑,7≈2.646. 参考公式:12211()()()(yy)n iii nni ii i t t y y r t t ===--=--∑∑∑回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()niii ni i t t y y b t t ==--=-∑∑,=.a y bt -【答案】(1)可用线性回归模型拟合变量y 与t 的关系.(2)我们可以预测2016年我国生活垃圾无害化处理1.83 亿吨. 【解析】试题分析:(1)变量y 与t 的相关系数77771111777722221111()()7()()7()()iii i i ii i i i iii ii i i i t t y y t y t y r t t y y t t y y ========---⋅==-⋅-⨯-⋅-∑∑∑∑∑∑∑∑,又7128ii t==∑,719.32ii y ==∑,7140.17i ii t y ==∑721()27 5.292ii t t =-==∑,721()0.55ii y y =-=∑,所以740.17289.320.997 5.2920.55r ⨯-⨯=≈⨯⨯ , 故可用线性回归模型拟合变量y 与t 的关系. (2)4t =,y =7117ii y =∑,所以7172211740.17749.327ˆ0.10287i ii ii t y t ybtt ==-⋅-⨯⨯⨯===-∑∑,1ˆˆ9.320.1040.937ay bx =-=⨯-⨯≈,(19)(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点. (I )证明MN ∥平面PAB; (II )求四面体N-BCM 的体积.【答案】(I )见解析;(II )53。
2016年全国高考文科数学试卷及答案-全国卷1
2016年全国高考新课标1卷文科数学试题第Ⅰ卷一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}2.设(1+2i )(a+i )的实部和虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .564.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知25,2,cos 3a c A ===, 则b=( ) A . 2 B 3 C .2 D .35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .346.若将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为 ( )A .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π) 7.如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条相互垂直的半径.若该几何体的体积是283π, 则它的表面积是( )A .17πB .18πC .20πD .28π8.若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )10.执行右面的程序框图,如果输入的x =0,y =1,n =1, 则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x 11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A , α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) y x y 2 O -2 1C x 2 O -2 1 B y x 2 O -2 1 A x 2 O -2 1D y 开始 x 2+y 2≥36?是结束输出x ,y否 n=n+1 输入x ,y ,n 1,2n x x y ny -=+=B E G P DC A A .32 B .22 C .33 D .1312.若函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .[-1,13] C .[-13,13] D .[-1,-13] 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 15.设直线y=x +2a 和圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=3C 的面积为 .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.(本题满分12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.18.(本题满分12分)如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点; (Ⅱ)在答题卡第(18)题图中作出点E 在平面P AC内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分) 某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y和x的函数分析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求OHON;(Ⅱ)除H以外,直线MH和C是否有其它公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x -2)e x+a(x -1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若有两个零点,求a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB和⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.23.(本小题满分10分)选修4—4:坐标系和参数方程在直线坐标系xoy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1和C2的公共点都在C3上,求a.24.(本小题满分10分),选修4—5:不等式选讲已知函数f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;(Ⅱ)求不等式| f(x)|>1的解集.2016年全国高考新课标1卷文科数学试题参考答案一、选择题,本大题共12小题,每小题5分,共60分.1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C【12题分析】二、填空题:本大题共4小题,每小题5分,共20分.13.23- 14.43- 15.4π 16.216000BE G PFD C A三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313n n --=-⨯- …12分 18.(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面PAB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3分 又PG ⊂平面PDE ,∴AB ⊥PG .依题PA=PB ,∴G 是AB 的中点.…6分(Ⅱ)解:在平面PAB 内作EF ⊥PA (或EF // PB )垂足为F ,则F 是点E 在平面PAC 内的正投影. …7分理由如下:∵PC ⊥PA ,PC ⊥PB ,∴ PC ⊥平面PAB . ∴EF ⊥PC作EF ⊥PA ,∴EF ⊥平面PAC .即F 是点E 在平面PAC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE // PC ,PC=PB=PA = 6,∴DE =2,PE =22322233PG =⨯= 则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.所以四面体PDEF 的体积1433V S DE =⨯=. …12分 19.解:(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700. 所以y 和x 的函数分析式为3800,19(*)5005700,19x y x N x x ≤⎧=∈⎨->⎩…3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分(Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100(3800×70+4300×20+4800×10)=4000. …9分 若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分20.解:(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分 所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 和C 只有一个交点H .所以除H 以外,直线MH 和C 没有其它公共点. …12分21.解:(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①若a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②若a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))和(1,+∞)上,f '(x )>0,f (x )单调递增.③若a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)和(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,若取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;若a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.若a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a的取值范围是(0,1). …12分。
2016年全国高考文科数学试题及答案-全国卷1
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效.4。
考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则AB =(A){1,3} (B ){3,5} (C){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A)-3 (B)-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=(A(B(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的错误!,则该椭圆的离心率为(A)错误! (B)错误! (C )错误! (D)错误!(6)若将函数y =2sin (2x +错误!)的图像向右平移错误!个周期后,所得图像对应的函数为(A )y =2sin (2x +错误!) (B )y =2sin(2x +错误!) (C )y =2sin(2x –错误!) (D )y =2sin(2x –错误!)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。
若该几何体的体积是错误!,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a 〉b>0,0〈c 〈1,则(A )log a c <log b c (B )log c a <log c b (C)a c <b c (D )c a >c b (9)函数y =2x 2–e|x |在[–2,2]的图像大致为(A )(B )(C) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足结束(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为(B )2 (C (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B)11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分。
2016年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )A. {1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则=a( )A. 3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( )A.13 B.12 C. 23D. 564. ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知a =,2c =,2cos 3A =,则b =( )A.B.C. 2D. 35. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B.12 C. 23D. 346. 将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为( )A. 2sin(2)4y x π=+ B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=-D. 2sin(2)3y x π=-7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π 8. 若0a b >>,01c <<,则( )A. log log a b c c <B. log log c c a b <C. cca b <D. ab c c>9. 函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D10. 执行如图的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足 ( )A. 2y x =B. 3y x =C. 4y x =D. 5y x =11. 平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.C.D.1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A. []1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C. 11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13. 设向量a 1(),x x =+,b (1,2)=,且a ⊥b ,则x = .14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 15. 设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若||AB =则圆C的面积为 .16. 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求{}n b 的前n 项和. 18.(本小题满分12分)如图,已知正三棱锥P ABC -的侧面是直角三角形,6PA =.顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若19n =,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2C y px =(0)p >于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求||||OH ON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点,C D 在⊙O 上,且,,,A B C D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.{3,5}A B=a-=,由已知,得213/ 13数学试卷 第10页(共39页)数学试卷 第11页(共39页) 数学试卷 第12页(共39页)平面ABB1D平面1n所成角等于所成角的正弦值为5/ 13数学试卷 第16页(共39页)数学试卷 第17页(共39页) 数学试卷 第18页(共39页)【解析】由题意,0a b x =+,3【提示】根据向量垂直的充要条件便可得出0a b =,进行向量数量积的坐标运算即可得出关于的值.【考点】向量的数量积,坐标运算7/ 13作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.7z77z数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)18.【答案】(Ⅰ)因为P在平面ABC内的正投影为D,所以AB PD⊥.9/ 13数学试卷第29页(共39页)数学试卷第30页(共39页)11 / 13))(1,)+∞时,(,ln(2)),1,+a -,1)(ln(2),)a -+∞时,单调递增,在1,ln((2))a -单调递减)在(,1)-∞ln 2a ,则f数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)同理可证,'OO CD ⊥,所以//AB CD .13/ 13。
2016年高考全国Ⅰ文科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅰ,文1,5分】设集合{}1,3,5,7A =,{}25B x x =≤≤,则A B = ( )(A ){}1,3 (B ){}3,5 (C ){}5,7 (D ){}1,7【答案】B【解析】集合A 和集合B 公共元素有3,5,所以{}3,5A B = ,所以A B 中有2个元素,故选B .【点评】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)【2016年全国Ⅰ,文2,5分】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( )(A )3- (B )2- (C )2 (D )3【答案】A【解析】()()()12i i 212i a a a ++=-++,由已知,得212a a -=+,解得3a =-,故选A .【点评】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)【2016年全国Ⅰ,文3,5分】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13(B )12 (C )23 (D )56 【答案】A【解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选A . 【点评】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.(4)【2016年全国Ⅰ,文4,5分】ABC ∆的内角A B C 、、的对边分别为a b c 、、.已知a =2c =,2cos 3A =,则b =( )(A (B (C )2 (D )3【答案】D 【解析】由余弦定理得2254223b b =+-⨯⨯⨯,解得3b =(13b =-舍去),故选D . 【点评】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!(5)【2016年全国Ⅰ,文5,5分】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13(B )12 (C )23 (D )34 【答案】B【解析】如图,由题意得在椭圆中,OF c =,OB b =,11242OD b b =⨯=,在Rt OFB ∆中,OF OB BF OD ⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B . 【点评】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .(6)【2016年全国Ⅰ,文6,5分】若将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函 数为( )(A )2sin 24y x π⎛⎫=+ ⎪⎝⎭ (B )2sin 23y x π⎛⎫=+ ⎪⎝⎭ (C )2sin 24y x π⎛⎫=- ⎪⎝⎭ (D )2sin 23y x π⎛⎫=- ⎪⎝⎭ 【答案】D 【解析】函数=2sin(2+)6y x π的周期为π,将函数=2sin(2+)6y x π的图像向右平移14个周期即4π个单位,所得函数为=2sin 2()+2sin 2463y x x πππ⎡⎤⎛⎫-=- ⎪⎢⎥⎣⎦⎝⎭,故选D . 【点评】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.(7)【2016年全国Ⅰ,文7,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π(B )18π (C )20π (D )28π【答案】A 【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=,解得2r =, 2271431784S r r πππ∴=⋅+⋅=,故选A . 【点评】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(8)【2016年全国Ⅰ,文8,5分】若0a b >>,01c <<,则( ) (A )log log a b c c < (B )log log c c a b < (C )c c a b < (D )a b c c >【答案】B【解析】由01c <<可知log c y x =是减函数,又0a b >>,所以log log c c a b <.故选B .本题也可以用特殊值代入验证,故选B .【点评】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)【2016年全国Ⅰ,文9,5分】函数22xy x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )【答案】D【解析】解法一(排除法):2()2x f x x e =- 为偶函数,且2(2)887.40.6f e =-≈-=,故选D . 解法二:2()2xf x x e =- 为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如 图),故存在实数0(0,1)x ∈,使得'0()0f x =,且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时,'0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(10)【2016年全国Ⅰ,文10,5分】执行右面的程序框图,如果输入的0,1,1x y n ===,则输出,x y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x =【答案】C【解析】第一次循环:0,1,2x y n ===,第二次循环:1,2,32x y n ===,第三次循环: 3,6,32x y n ===,此时满足条件2236x y +≥,循环结束,3,62x y ==,满足 4y x =,故选C .【点评】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(11)【2016年全国Ⅰ,文11,5分】平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为( )(A (B (C (D )13 【答案】A【解析】如图,设平面11CB D 平面ABCD m '=,平面11CB D 11ABB A n '=,因为α∥平面11CB D ,所以m m '∥,n n '∥,则,m n 所成的角.延长AD ,过1D 作11D E B C ∥,连接CE ,11B D ,则CE 为m ',同理11B F 为n ',而BD CE ∥,111B F A B ∥,则,m n ''所成的角即为1A B ,BD所成的角即为60︒,故,m n 故选A . 【点评】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12)【2016年全国Ⅰ,文12,5分】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦ (C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C【解析】()21cos2cos 03f x x a x '=-+≥对x ∈R 恒成立,故()2212cos 1cos 03x a x --+≥,245cos cos 033a x x -+≥恒成立,即245033at t -+≥对[]1,1t ∈-恒成立,构造()24533f t at t =-+,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f t f t ⎧-=-≥⎪⎪⎨⎪-=+≥⎪⎩,解得1133t -≤≤,故选C . 【点评】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,文13,5分】设向量(),1x x =+a ,()1,2=b ,且⊥a b ,则x = .【答案】23-【解析】由题意,20,2(1)0,3x x x ⋅=++=∴=-a b . 【点评】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)【2016年全国Ⅰ,文14,5分】已知θ是第四象限角,且3sin 45πθ⎛⎫+= ⎪⎝⎭,则tan 4πθ⎛⎫-= ⎪⎝⎭ . 【答案】43- 【解析】由题意sin sin 442θθπ⎡ππ⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭,因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z ,从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 【点评】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.(15)【2016年全国Ⅰ,文15,5分】设直线2y x a =+与圆22220C x y ay +--=:相交于A ,B 两点,若AB =,则圆C 的面积为 .【答案】4π【解析】有题意直线即为20x y a -+=,圆的标准方程为()2222x y a a +-=+,所以圆心到直线的距离d =,所以AB ==2224a r +==,所以244S r ππ==. 【点评】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到. (16)【2016年全国Ⅰ,文16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元, 那么 1.50.5150,0.390,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩①目标函数2100900z x y =+.①等价于3300,103900,53600,0,0.x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩ ②作出二元一次不等式组②表示的平面区域(如图),即可行域将2100900z x y =+变形得73900z y x =-+,平行直线73y x =-,当直线73900z y x =-+经过点M 时,z取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标()60,100.所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=.故生产产品A 、产品B 的利润之和的最大值为216000元.【点评】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2016年全国Ⅰ,文17,12分】已知{}n a 是公差为3的等差数列,数列{}n b满足11b =,213b =,11n n n n a b b nb +++=.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.解:(1)由已知1221a b b b +=,11b =,213b =,得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-.(2)由(1)和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313122313nn n S --==-⨯-. 【点评】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(18)【2016年全国Ⅰ,文18,12分】如图,在已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 解:(1)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正 投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点. (2)在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,PB PC ⊥,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以//DE PC ,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF ==所以四面体PDEF 的体积114222323V =⨯⨯⨯⨯=. 【点评】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.(19)【2016年全国Ⅰ,文19,12分】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若19n =,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求的n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买PA B D C GE19个还是20个易损零件?解:(1)当19x ≤时,3800y =;当19x >时,()3800500195005700y x x =+-=-,所以y 与x 的函数解析式为()3800,195005700,19x y x x x ≤⎧=∈⎨->⎩Ν. (2)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯+⨯=.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 【点评】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20)【2016年全国Ⅰ,文20,12分】在直角坐标系xOy 中,直线():0l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OH ON; (2)除H 以外,直线M H 与C 是否有其它公共点?说明理由.解:(1)由已知得()0,M t ,2,2t P t p ⎛⎫ ⎪⎝⎭.又N 为M 关于点P 的对称点,故2,t N t p ⎛⎫ ⎪⎝⎭,ON 的方程为2y px =,整理得2220px t x -=,解得10x =,222t x p =,因此22,2t H t p ⎛⎫ ⎪⎝⎭.所以N 为OH 的中点,即2OH ON =. (2)直线M H 与C 除H 以外没有其它公共点.理由如下:直线M H 的方程为2p y t x t-=,即2()t x y t p =-. 代入22y px =得22440y ty t -+=,解得122y y t ==,即直线M H 与C 只有一个公共点,所以除H 以外 直线M H 与C 没有其它公共点.【点评】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)【2016年全国Ⅰ,文21,12分】已知函数()()()22e 1x f x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()()()()()'12112x x f x x e a x x e a =-+-=-+.(i) 设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >.所以在(),1-∞单调递减,在()1,+∞单调递增.(ii) 设0a <,由()'0f x =得1x =或()ln 2x a =-. ①若2e a =-,则()()()'1xf x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2e a >-,则()ln 21a -<,故当()()(),ln 21,x a ∈-∞-+∞ 时,()'0f x >;当()()ln 2,1x a ∈-时, ()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减. ③若2e a <-,则()ln 21a ->,故当()()(),1ln 2,x a ∈-∞-+∞ 时,()'0f x >,当()()1,ln 2x a ∈-时, ()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(2)(i) 设0a >,则由(1)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()1f e =-,()2f a =,取b 满足0b <且ln 22b a <,则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点. (ii)设0a =,则()()2x f x x e =-,所以()f x 有一个零点.(iii)设0a <,若2e a ≥-,则由(1)知,()f x 在()1,+∞单调递增.又当1x ≤时,()0f x <,故()f x 不 存在两个零点;若2e a <-,则由(1)知,()f x 在()()1,ln 2a -单调递增,在()()ln 2,a -+∞单调递增.又 当1x ≤时,()0f x <,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【点评】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2016年全国Ⅰ,文22,10分】(选修4-1:几何证明选讲)如图,OAB ∆是等腰三角形,120AOB ∠=︒.以O 为圆心,12OA 为半径作圆. (1)证明:直线AB 与O 相切;(2)点C ,D 在⊙O 上,且A B C D ,,,四点共圆,证明://AB CD .解:(1)设E 是AB 的中点,连接OE ,因为OA OB =,120AOB ∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半 径,所以直线AB 与O e 相切. (2)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .【点评】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)【2016年全国Ⅰ,文23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .解:(1)cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为 222210x y y a +-+-=∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+= ② 3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①-②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.【点评】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)【2016年全国Ⅰ,文24】(本小题满分10分)(选修4-5:不等式选讲)已知函数()123f x x x =+--.(1)在答题卡题图中画出()y f x =的图像;O D C B A E O'D C O BA(2)求不等式()1f x >的解集.解:(1)4,13()12332,1234,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=--≤<⎨⎪⎪-+≥⎪⎩,如图所示: (2)①当1x <-时,()41f x x =->,解得3x <或5x >,1x ∴<-; ②当312x -≤<时,()321f x x =->,解得13x <或1x >, 113x ∴-≤<或312x <<; ③当32x ≥时,()41f x x =-+>,解得3x <或5x >,332x ∴≤<或5x >. 综上可知,不等式()1f x >的解集为()()1,1,35,3⎛⎫-∞+∞ ⎪⎝⎭ . 【点评】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。
2016年全国高考文科数学试题及标准答案全国卷1
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则AB =(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=(A(B(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C ) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为 (A(B(C (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13) ~ (21)题为必考题,每个试题考生都必须作答.第(22) ~ (24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =___________ (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=___________.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为_________(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题。
每小题5分.(1)已知集合,则(A)(B)(C)(D)(2)设复数z满足,则=(A)(B)(C)(D)(3) 函数的部分图像如图所示,则(A)(B)(C)(D)(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为(A)(B)(C)(D)(5) 设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=(A)(B)1 (C)(D)2(6) 圆x2+y2−2x−8y+13=0的圆心到直线ax+y−1=0的距离为1,则a=(A)−(B)−(C)(D)2(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(A)(B)(C)(D)(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若x=2,n=2,输入的a为2,2,5,则输出的s=(A)7 (B)12 (C)17 (D)34(10) 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是(A)y=x (B)y=lg x (C)y=2x (D)(11) 函数的最大值为(A)4 (B)5 (C)6 (D)7(12) 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则(A)0 (B)m (C) 2m (D) 4m二.填空题:共4小题,每小题5分.(13) 已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________.(14) 若x,y满足约束条件,则z=x-2y的最小值为__________(15)△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.(16)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)等差数列{}中,(I)求{}的通项公式;(II)设=[],求数列{}的前10项和,其中[x]表示不超过x的最大整数,如[]=0,[]=2(18)(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”。
求P(A)的估计值;(II)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.(19)(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF 交BD于点H,将沿EF折到的位置.(I)证明:;(II)若,求五棱锥体积.(20)(本小题满分12分)已知函数.(I)当时,求曲线在处的切线方程;(II)若当时,,求的取值范围.(21)(本小题满分12分)已知A是椭圆E:的左顶点,斜率为的直线交E于A,M两点,点N在E上,.(I)当时,求的面积(II)当2时,证明:.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D 点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为.(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,,求l 的斜率. (24)(本小题满分10分)选修4-5:不等式选讲已知函数,M 为不等式的解集. (Ⅰ)求M ;(Ⅱ)证明:当a ,b 时,.2016年普通高等学校招生全国统一考试文科数学答案第Ⅰ卷一. 选择题(1)【答案】D (2)【答案】C (3) 【答案】A(4) 【答案】A(5)【答案】D(6) 【答案】A (7) 【答案】C(8) 【答案】B(9)【答案】C(10) 【答案】D (11)【答案】B (12) 【答案】B二.填空题(13)【答案】6- (14)【答案】5-(15)【答案】2113(16)【答案】1和3三、解答题(17)(本小题满分12分) 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的性质求1a ,d ,从而求得n a ;(Ⅱ)根据已知条件求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等茶数列的性质,数列的求和. 【结束】(18)(本小题满分12分) 【答案】(Ⅰ)由6050200+求P(A)的估计值;(Ⅱ)由3030200+求P(B)的估计值;(III )根据平均值得计算公式求解. 【解析】 试题分析:试题解析:(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=,故P(A)的估计值为.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3200+=, 故P(B)的估计值为. (Ⅲ)由题所求分布列为:调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.3020.10 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费估计值为. 考点:样本的频率、平均值的计算. 【结束】(19)(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)证明.'⊥OD OH 再证'⊥OD 平面.ABC 最后呢五棱锥体积.试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (II )由//EF AC 得1.4==OH AE DO AD由5,6==AB AC 得 4.===DO BO所以1, 3.'===OH D H DH于是2222219,''+=+==OD OH D H 故.'⊥OD OH由(I )知'⊥AC HD ,又,'⊥=I AC BD BD HD H ,所以⊥AC 平面,'BHD 于是.'⊥AC OD又由,'⊥=I OD OH AC OH O ,所以,'⊥OD 平面.ABC又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S所以五棱锥体积169342=⨯⨯=V 考点:空间中的线面关系判断,几何体的体积. 【结束】(20)(本小题满分12分)【答案】(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞. 【解析】试题分析:(Ⅰ)先求定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解. 试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x , (i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a ,由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x .综上,a 的取值范围是(],2.-∞ 考点:导数的几何意义,函数的单调性. 【结束】(21)(本小题满分12分)【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k . 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k-=+,故12||2|34AM x k =+=+.由题设,直线AN 的方程为1(2)y x k=-+,故同理可得||AN =. 由2||||AM AN =得2223443k k k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在2)2k <<. 考点:椭圆的性质,直线与椭圆的位置关系. 【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲 【答案】(Ⅰ)详见解析;(Ⅱ)12. 【解析】试题分析:(Ⅰ)证,DGF CBF ∆~∆再证,,,B C G F 四点共圆;(Ⅱ)证明,Rt BCG Rt BFG ∆~∆四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF ∆~∆则有,,DF DE DGGDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠ 由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点:三角形相似、全等,四点共圆 【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(I )利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(II )先将直线l 的参数方程化为普通方程,再利用弦长公式可得l 的斜率.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 83αα==±,所以l . 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式. 【结束】(24)(本小题满分10分)选修4—5:不等式选讲 【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析. 【解析】试题分析:(I )先去掉绝对值,再分12x <-,1122x -≤≤和12x >三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而 22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<, 因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明.【结束】。