Autocamtide-2-related inhibitory peptide_钙调蛋白依赖性蛋白激酶II抑制剂_167114-91-2_Apexbio

合集下载

A_2B_型腺苷受体拮抗剂的研究进展

A_2B_型腺苷受体拮抗剂的研究进展

23 400
14 000
13 300
2
6 800
1 700
5 300
22 300
3
319
129
51
795
4
2 200a
24 000a
5314
14%
5
175
595
40
3 910
6
403
503
1197
W E I J ing1 , YU W en2quan1 , GAO Q ing2zhi23
( 1. S chool of Pha rm aceu tica l S cience and Technology, T ian jin U n iversity, T ian jin 300072, Ch ina; 2. Chem istry D epa rtm en t, X enoPort, Inc. , 3410 Cen tra l Expressw ay, S an ta C la ra, CA 95051, USA )
图 2 天然腺苷受体拮抗剂结构
3. 2 82取代黄嘌呤衍生物类选择性拮抗剂 20世 纪末腺苷受体拮抗剂的研究取得了突破性的进展 。 研究中发现黄嘌呤类化合物的 8位上取代基的变化 能大大提高其腺苷受体亲和力 ,并达到纳摩尔 级 [6]。
魏 静等 : A2B型腺苷受体拮抗剂的研究进展
·243·
82环戊烷 21, 32二丙基黄嘌呤 (DPCPX, 3) ,不仅 表现出对 A1 受体较强的亲和力 ( Ki = 019 nmol· L - 1 ) ,而且相对于 A2A受体和 A3 受体具有较好的选 择性 ( Ki 2A / Ki A1 = 522, Ki A3 / Ki A1 = 883 ) ,对 A2B受体 也有较好的亲和力 ( Ki = 51 nmol·L - 1 ) 。因此 ,同 位素 [3 H ]DPCPX被广泛用于 A1 和 A2B受体放射性 标定实验的标记物 ,并为 A2B受体拮抗剂的研究提 供了良好的测定活性条件 。

过氧化物酶体增殖物激活受体

过氧化物酶体增殖物激活受体

过氧化物酶体增殖物激活受体(PPAR) 是一类由配体激活的核转录因子,属Ⅱ型核受体超家族成员, 存在3种亚型,即PPARα、PPARδ、PPARγ,这三种亚型在结构上有一定的相似性,均含DNA结合区和配体结合区等。

PPAR与配体结合后被激活,与9-顺视黄酸类受体形成异二聚体,然后与靶基因的启动子上游的过氧化物酶体增殖物反应元件(peroxisome proliferator response element,PPRE)结合而发挥转录调控作用。

PPRE 由含相隔一个或两个核苷酸的重复序列AGGTCA组成。

与配体结合后,PPAR在DNA结合区发生变构,进而影响PPAR刺激靶基因转录的能力。

PPARδ几乎在所有组织中表达,浓度低于PPARα及PPARγ,直至最近以前尚未找到此一核受体的选择性配基。

PPARδ是代谢综合征(肥胖、胰岛素抵抗、高血压是与脂质紊乱有关的共同的病态表现)的一个新靶点。

有不少的研究表明:GW501516可作为PPARδ的特异激动剂用于研究。

参考网址:/cjh/2003/shownews.asp?id=156/conference/preview.php?kind_id=03&cat_name=ADA2001&title_id=59219 Regulation of Muscle Fiber Type and Running Endurance by PPARδplos biology,Volume 2 | Issue 10 | October 2004/plosonline/?request=get-document&doi=10.1371%2Fjournal.pbio.0020294NF-KB通路中的抑制剂好像有1.PDTC(pyrrolidine dithiocarbamate),是一种抗氧化剂,主要作用于IκB降解的上游环节(IκBα的磷酸化或IKK的活性水平),2.Gliotoxin 是一种免疫抑制剂,机制可能从多个环节阻断NF-KB的激活,如IκB的降解,NF-KB的核移位和与DNA的结合。

拉帕替尼结构式

拉帕替尼结构式

拉帕替尼结构式拉帕替尼结构式(Lapatinib structure)是一种用于治疗乳腺癌和胃癌的药物。

它属于一类叫做酪氨酸激酶抑制剂(tyrosine kinase inhibitors)的药物,通过抑制肿瘤细胞中的酪氨酸激酶的活性,从而阻断肿瘤细胞的生长和扩散。

拉帕替尼的化学结构拉帕替尼的化学名称是4-([3-chloro-4-[(3-fluorobenzyl)oxy]phenyl]amino)-6-[5-[[(2-methanesulfonylethyl)amino]methyl]-2-furyl]quinazoline。

它的分子式为C29H26ClFN4O4S,分子量为581.06克/摩尔。

拉帕替尼的结构式如下所示:在这个结构式中,可以看到拉帕替尼由一个苯环、一个吡唑环和一个喹唑啉环组成。

苯环上连接着一个氯原子和一个苯甲基氧基团。

吡唑环上连接着一个氟苯甲基氧基团。

喹唑啉环上连接着一个甲磺酸乙基胺基甲基氧基团。

这些不同的基团赋予了拉帕替尼独特的化学性质和药理活性。

拉帕替尼的药理作用拉帕替尼主要通过抑制肿瘤细胞中的表皮生长因子受体(EGFR)和人类表皮生长因子受体2(HER2)的激活来发挥作用。

EGFR和HER2是一种受体酪氨酸激酶,它们参与了许多细胞信号传导途径,包括细胞生长、分化和存活等。

过度激活的EGFR和HER2与肿瘤的发生和发展密切相关。

拉帕替尼通过与EGFR和HER2的ATP结合位点竞争结合,从而抑制其酪氨酸激酶活性。

这种抑制作用阻断了EGFR和HER2信号传导途径,抑制了肿瘤细胞的生长和扩散。

此外,拉帕替尼还能够通过抑制其他信号通路如PI3K/AKT/mTOR和MAPK等,进一步增强其抗肿瘤活性。

这些信号通路在肿瘤细胞的增殖、侵袭和转移中起到重要的作用。

拉帕替尼的临床应用拉帕替尼被广泛应用于乳腺癌和胃癌的治疗中。

在乳腺癌的治疗中,拉帕替尼通常与其他药物如氟尿嘧啶(5-fluorouracil)或紫杉醇(paclitaxel)等联合使用。

稳定性英文版

稳定性英文版

HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationFLUOXETINE HClC17H18F3NO•HClM.W. = 345.79CAS — 59333-67-4STABILITY INDICATINGA S S A Y V A L I D A T I O NMethod is suitable for:ýIn-process controlþProduct ReleaseþStability indicating analysis (Suitability - US/EU Product) CAUTIONFLUOXETINE HYDROCHLORIDE IS A HAZARDOUS CHEMICAL AND SHOULD BE HANDLED ONLY UNDER CONDITIONS SUITABLE FOR HAZARDOUS WORK.IT IS HIGHLY PRESSURE SENSITIVE AND ADEQUATE PRECAUTIONS SHOULD BE TAKEN TO AVOID ANY MECHANICAL FORCE (SUCH AS GRINDING, CRUSHING, ETC.) ON THE POWDER.ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationTABLE OF CONTENTS INTRODUCTION........................................................................................................................ PRECISION............................................................................................................................... System Repeatability ................................................................................................................ Method Repeatability................................................................................................................. Intermediate Precision .............................................................................................................. LINEARITY................................................................................................................................ RANGE...................................................................................................................................... ACCURACY............................................................................................................................... Accuracy of Standard Injections................................................................................................ Accuracy of the Drug Product.................................................................................................... VALIDATION OF FLUOXETINE HCl AT LOW CONCENTRATION........................................... Linearity at Low Concentrations................................................................................................. Accuracy of Fluoxetine HCl at Low Concentration..................................................................... System Repeatability................................................................................................................. Quantitation Limit....................................................................................................................... Detection Limit........................................................................................................................... VALIDATION FOR META-FLUOXETINE HCl (POSSIBLE IMPURITIES).................................. Meta-Fluoxetine HCl linearity at 0.05% - 1.0%........................................................................... Detection Limit for Fluoxetine HCl.............................................................................................. Quantitation Limit for Meta Fluoxetine HCl................................................................................ Accuracy for Meta-Fluoxetine HCl ............................................................................................ Method Repeatability for Meta-Fluoxetine HCl........................................................................... Intermediate Precision for Meta-Fluoxetine HCl......................................................................... SPECIFICITY - STABILITY INDICATING EVALUATION OF THE METHOD............................. FORCED DEGRADATION OF FINISHED PRODUCT AND STANDARD..................................1. Unstressed analysis...............................................................................................................2. Acid Hydrolysis stressed analysis..........................................................................................3. Base hydrolysis stressed analysis.........................................................................................4. Oxidation stressed analysis...................................................................................................5. Sunlight stressed analysis.....................................................................................................6. Heat of solution stressed analysis.........................................................................................7. Heat of powder stressed analysis.......................................................................................... System Suitability stressed analysis.......................................................................................... Placebo...................................................................................................................................... STABILITY OF STANDARD AND SAMPLE SOLUTIONS......................................................... Standard Solution...................................................................................................................... Sample Solutions....................................................................................................................... ROBUSTNESS.......................................................................................................................... Extraction................................................................................................................................... Factorial Design......................................................................................................................... CONCLUSION...........................................................................................................................ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationBACKGROUNDTherapeutically, Fluoxetine hydrochloride is a classified as a selective serotonin-reuptake inhibitor. Effectively used for the treatment of various depressions. Fluoxetine hydrochloride has been shown to have comparable efficacy to tricyclic antidepressants but with fewer anticholinergic side effects. The patent expiry becomes effective in 2001 (US). INTRODUCTIONFluoxetine capsules were prepared in two dosage strengths: 10mg and 20mg dosage strengths with the same capsule weight. The formulas are essentially similar and geometrically equivalent with the same ingredients and proportions. Minor changes in non-active proportions account for the change in active ingredient amounts from the 10 and 20 mg strength.The following validation, for the method SI-IAG-206-02 , includes assay and determination of Meta-Fluoxetine by HPLC, is based on the analytical method validation SI-IAG-209-06. Currently the method is the in-house method performed for Stability Studies. The Validation was performed on the 20mg dosage samples, IAG-21-001 and IAG-21-002.In the forced degradation studies, the two placebo samples were also used. PRECISIONSYSTEM REPEATABILITYFive replicate injections of the standard solution at the concentration of 0.4242mg/mL as described in method SI-IAG-206-02 were made and the relative standard deviation (RSD) of the peak areas was calculated.SAMPLE PEAK AREA#15390#25406#35405#45405#55406Average5402.7SD 6.1% RSD0.1ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::PRECISION - Method RepeatabilityThe full HPLC method as described in SI-IAG-206-02 was carried-out on the finished product IAG-21-001 for the 20mg dosage form. The method repeated six times and the relative standard deviation (RSD) was calculated.SAMPLENumber%ASSAYof labeled amountI 96.9II 97.8III 98.2IV 97.4V 97.7VI 98.5(%) Average97.7SD 0.6(%) RSD0.6PRECISION - Intermediate PrecisionThe full method as described in SI-IAG-206-02 was carried-out on the finished product IAG-21-001 for the 20mg dosage form. The method was repeated six times by a second analyst on a different day using a different HPLC instrument. The average assay and the relative standard deviation (RSD) were calculated.SAMPLENumber% ASSAYof labeled amountI 98.3II 96.3III 94.6IV 96.3V 97.8VI 93.3Average (%)96.1SD 2.0RSD (%)2.1The difference between the average results of method repeatability and the intermediate precision is 1.7%.HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationLINEARITYStandard solutions were prepared at 50% to 200% of the nominal concentration required by the assay procedure. Linear regression analysis demonstrated acceptability of the method for quantitative analysis over the concentration range required. Y-Intercept was found to be insignificant.RANGEDifferent concentrations of the sample (IAG-21-001) for the 20mg dosage form were prepared, covering between 50% - 200% of the nominal weight of the sample.Conc. (%)Conc. (mg/mL)Peak Area% Assayof labeled amount500.20116235096.7700.27935334099.21000.39734463296.61500.64480757797.52000.79448939497.9(%) Average97.6SD 1.0(%) RSD 1.0ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::RANGE (cont.)The results demonstrate linearity as well over the specified range.Correlation coefficient (RSQ)0.99981 Slope11808.3Y -Interceptresponse at 100%* 100 (%) 0.3%ACCURACYACCURACY OF STANDARD INJECTIONSFive (5) replicate injections of the working standard solution at concentration of 0.4242mg/mL, as described in method SI-IAG-206-02 were made.INJECTIONNO.PEAK AREA%ACCURACYI 539299.7II 540599.9III 540499.9IV 5406100.0V 5407100.0Average 5402.899.9%SD 6.10.1RSD, (%)0.10.1The percent deviation from the true value wasdetermined from the linear regression lineHPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::ACCURACY OF THE DRUG PRODUCTAdmixtures of non-actives (placebo, batch IAG-21-001 ) with Fluoxetine HCl were prepared at the same proportion as in a capsule (70%-180% of the nominal concentration).Three preparations were made for each concentration and the recovery was calculated.Conc.(%)Placebo Wt.(mg)Fluoxetine HCl Wt.(mg)Peak Area%Accuracy Average (%)70%7079.477.843465102.27079.687.873427100.77079.618.013465100.0101.0100%10079.6211.25476397.910080.8011.42491799.610079.6011.42485498.398.6130%13079.7214.90640599.413080.3114.75632899.213081.3314.766402100.399.618079.9920.10863699.318079.3820.45879499.418080.0820.32874899.599.4Placebo, Batch Lot IAG-21-001HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::VALIDATION OF FLUOXETINE HClAT LOW CONCENTRATIONLINEARITY AT LOW CONCENTRATIONSStandard solution of Fluoxetine were prepared at approximately 0.02%-1.0% of the working concentration required by the method SI-IAG-206-02. Linear regression analysis demonstrated acceptability of the method for quantitative analysis over this range.ACCURACY OF FLUOXETINE HCl AT LOW CONCENTRATIONThe peak areas of the standard solution at the working concentration were measured and the percent deviation from the true value, as determined from the linear regression was calculated.SAMPLECONC.µg/100mLAREA FOUND%ACCURACYI 470.56258499.7II 470.56359098.1III 470.561585101.3IV 470.561940100.7V 470.56252599.8VI 470.56271599.5(%) AverageSlope = 132.7395299.9SD Y-Intercept = -65.872371.1(%) RSD1.1HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationSystem RepeatabilitySix replicate injections of standard solution at 0.02% and 0.05% of working concentration as described in method SI-IAG-206-02 were made and the relative standard deviation was calculated.SAMPLE FLUOXETINE HCl AREA0.02%0.05%I10173623II11503731III10103475IV10623390V10393315VI10953235Average10623462RSD, (%) 5.0 5.4Quantitation Limit - QLThe quantitation limit ( QL) was established by determining the minimum level at which the analyte was quantified. The quantitation limit for Fluoxetine HCl is 0.02% of the working standard concentration with resulting RSD (for six injections) of 5.0%. Detection Limit - DLThe detection limit (DL) was established by determining the minimum level at which the analyte was reliably detected. The detection limit of Fluoxetine HCl is about 0.01% of the working standard concentration.ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::VALIDATION FOR META-FLUOXETINE HCl(EVALUATING POSSIBLE IMPURITIES)Meta-Fluoxetine HCl linearity at 0.05% - 1.0%Relative Response Factor (F)Relative response factor for Meta-Fluoxetine HCl was determined as slope of Fluoxetine HCl divided by the slope of Meta-Fluoxetine HCl from the linearity graphs (analysed at the same time).F =132.7395274.859534= 1.8Detection Limit (DL) for Fluoxetine HClThe detection limit (DL) was established by determining the minimum level at which the analyte was reliably detected.Detection limit for Meta Fluoxetine HCl is about 0.02%.Quantitation Limit (QL) for Meta-Fluoxetine HClThe QL is determined by the analysis of samples with known concentration of Meta-Fluoxetine HCl and by establishing the minimum level at which the Meta-Fluoxetine HCl can be quantified with acceptable accuracy and precision.Six individual preparations of standard and placebo spiked with Meta-Fluoxetine HCl solution to give solution with 0.05% of Meta Fluoxetine HCl, were injected into the HPLC and the recovery was calculated.HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::META-FLUOXETINE HCl[RECOVERY IN SPIKED SAMPLES].Approx.Conc.(%)Known Conc.(µg/100ml)Area in SpikedSampleFound Conc.(µg/100mL)Recovery (%)0.0521.783326125.735118.10.0521.783326825.821118.50.0521.783292021.55799.00.0521.783324125.490117.00.0521.783287220.96996.30.0521.783328526.030119.5(%) AVERAGE111.4SD The recovery result of 6 samples is between 80%-120%.10.7(%) RSDQL for Meta Fluoxetine HCl is 0.05%.9.6Accuracy for Meta Fluoxetine HClDetermination of Accuracy for Meta-Fluoxetine HCl impurity was assessed using triplicate samples (of the drug product) spiked with known quantities of Meta Fluoxetine HCl impurity at three concentrations levels (namely 80%, 100% and 120% of the specified limit - 0.05%).The results are within specifications:For 0.4% and 0.5% recovery of 85% -115%For 0.6% recovery of 90%-110%HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::META-FLUOXETINE HCl[RECOVERY IN SPIKED SAMPLES]Approx.Conc.(%)Known Conc.(µg/100mL)Area in spikedSample Found Conc.(µg/100mL)Recovery (%)[0.4%]0.4174.2614283182.66104.820.4174.2614606187.11107.370.4174.2614351183.59105.36[0.5%]0.5217.8317344224.85103.220.5217.8316713216.1599.230.5217.8317341224.81103.20[0.6%]0.6261.3918367238.9591.420.6261.3920606269.81103.220.6261.3920237264.73101.28RECOVERY DATA DETERMINED IN SPIKED SAMPLESHPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::REPEATABILITYMethod Repeatability - Meta Fluoxetine HClThe full method (as described in SI-IAG-206-02) was carried out on the finished drug product representing lot number IAG-21-001-(1). The HPLC method repeated serially, six times and the relative standard deviation (RSD) was calculated.IAG-21-001 20mg CAPSULES - FLUOXETINESample% Meta Fluoxetine % Meta-Fluoxetine 1 in Spiked Solution10.0260.09520.0270.08630.0320.07740.0300.07450.0240.09060.0280.063AVERAGE (%)0.0280.081SD 0.0030.012RSD, (%)10.314.51NOTE :All results are less than QL (0.05%) therefore spiked samples with 0.05% Meta Fluoxetine HCl were injected.HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationED. N0: 04Effective Date:APPROVED::Intermediate Precision - Meta-Fluoxetine HClThe full method as described in SI-IAG-206-02 was applied on the finished product IAG-21-001-(1) .It was repeated six times, with a different analyst on a different day using a different HPLC instrument.The difference between the average results obtained by the method repeatability and the intermediate precision was less than 30.0%, (11.4% for Meta-Fluoxetine HCl as is and 28.5% for spiked solution).IAG-21-001 20mg - CAPSULES FLUOXETINESample N o:Percentage Meta-fluoxetine% Meta-fluoxetine 1 in spiked solution10.0260.06920.0270.05730.0120.06140.0210.05850.0360.05560.0270.079(%) AVERAGE0.0250.063SD 0.0080.009(%) RSD31.514.51NOTE:All results obtained were well below the QL (0.05%) thus spiked samples slightly greater than 0.05% Meta-Fluoxetine HCl were injected. The RSD at the QL of the spiked solution was 14.5%HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationSPECIFICITY - STABILITY INDICATING EVALUATIONDemonstration of the Stability Indicating parameters of the HPLC assay method [SI-IAG-206-02] for Fluoxetine 10 & 20mg capsules, a suitable photo-diode array detector was incorporated utilizing a commercial chromatography software managing system2, and applied to analyze a range of stressed samples of the finished drug product.GLOSSARY of PEAK PURITY RESULT NOTATION (as reported2):Purity Angle-is a measure of spectral non-homogeneity across a peak, i.e. the weighed average of all spectral contrast angles calculated by comparing all spectra in the integrated peak against the peak apex spectrum.Purity Threshold-is the sum of noise angle3 and solvent angle4. It is the limit of detection of shape differences between two spectra.Match Angle-is a comparison of the spectrum at the peak apex against a library spectrum.Match Threshold-is the sum of the match noise angle3 and match solvent angle4.3Noise Angle-is a measure of spectral non-homogeneity caused by system noise.4Solvent Angle-is a measure of spectral non-homogeneity caused by solvent composition.OVERVIEWT he assay of the main peak in each stressed solution is calculated according to the assay method SI-IAG-206-02, against the Standard Solution, injected on the same day.I f the Purity Angle is smaller than the Purity Threshold and the Match Angle is smaller than the Match Threshold, no significant differences between spectra can be detected. As a result no spectroscopic evidence for co-elution is evident and the peak is considered to be pure.T he stressed condition study indicated that the Fluoxetine peak is free from any appreciable degradation interference under the stressed conditions tested. Observed degradation products peaks were well separated from the main peak.1® PDA-996 Waters™ ; 2[Millennium 2010]ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationFORCED DEGRADATION OF FINISHED PRODUCT & STANDARD 1.UNSTRESSED SAMPLE1.1.Sample IAG-21-001 (2) (20mg/capsule) was prepared as stated in SI-IAG-206-02 and injected into the HPLC system. The calculated assay is 98.5%.SAMPLE - UNSTRESSEDFluoxetine:Purity Angle:0.075Match Angle:0.407Purity Threshold:0.142Match Threshold:0.4251.2.Standard solution was prepared as stated in method SI-IAG-206-02 and injected into the HPLC system. The calculated assay is 100.0%.Fluoxetine:Purity Angle:0.078Match Angle:0.379Purity Threshold:0.146Match Threshold:0.4272.ACID HYDROLYSIS2.1.Sample solution of IAG-21-001 (2) (20mg/capsule) was prepared as in method SI-IAG-206-02 : An amount equivalent to 20mg Fluoxetine was weighed into a 50mL volumetric flask. 20mL Diluent was added and the solution sonicated for 10 minutes. 1mL of conc. HCl was added to this solution The solution was allowed to stand for 18 hours, then adjusted to about pH = 5.5 with NaOH 10N, made up to volume with Diluent and injected into the HPLC system after filtration.Fluoxetine peak intensity did NOT decrease. Assay result obtained - 98.8%.SAMPLE- ACID HYDROLYSISFluoxetine peak:Purity Angle:0.055Match Angle:0.143Purity Threshold:0.096Match Threshold:0.3712.2.Standard solution was prepared as in method SI-IAG-206-02 : about 22mg Fluoxetine HCl were weighed into a 50mL volumetric flask. 20mL Diluent were added. 2mL of conc. HCl were added to this solution. The solution was allowed to stand for 18 hours, then adjusted to about pH = 5.5 with NaOH 10N, made up to volume with Diluent and injected into the HPLC system.Fluoxetine peak intensity did NOT decrease. Assay result obtained - 97.2%.ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationSTANDARD - ACID HYDROLYSISFluoxetine peak:Purity Angle:0.060Match Angle:0.060Purity Threshold:0.099Match Threshold:0.3713.BASE HYDROLYSIS3.1.Sample solution of IAG-21-001 (2) (20mg/capsule) was prepared as per method SI-IAG-206-02 : An amount equivalent to 20mg Fluoxetine was weight into a 50mL volumetric flask. 20mL Diluent was added and the solution sonicated for 10 minutes. 1mL of 5N NaOH was added to this solution. The solution was allowed to stand for 18 hours, then adjusted to about pH = 5.5 with 5N HCl, made up to volume with Diluent and injected into the HPLC system.Fluoxetine peak intensity did NOT decrease. Assay result obtained - 99.3%.SAMPLE - BASE HYDROLYSISFluoxetine peak:Purity Angle:0.063Match Angle:0.065Purity Threshold:0.099Match Threshold:0.3623.2.Standard stock solution was prepared as per method SI-IAG-206-02 : About 22mg Fluoxetine HCl was weighed into a 50mL volumetric flask. 20mL Diluent was added. 2mL of 5N NaOH was added to this solution. The solution was allowed to stand for 18 hours, then adjusted to about pH=5.5 with 5N HCl, made up to volume with Diluent and injected into the HPLC system.Fluoxetine peak intensity did NOT decrease - 99.5%.STANDARD - BASE HYDROLYSISFluoxetine peak:Purity Angle:0.081Match Angle:0.096Purity Threshold:0.103Match Threshold:0.3634.OXIDATION4.1.Sample solution of IAG-21-001 (2) (20mg/capsule) was prepared as per method SI-IAG-206-02. An equivalent to 20mg Fluoxetine was weighed into a 50mL volumetric flask. 20mL Diluent added and the solution sonicated for 10 minutes.1.0mL of 30% H2O2 was added to the solution and allowed to stand for 5 hours, then made up to volume with Diluent, filtered and injected into HPLC system.Fluoxetine peak intensity decreased to 95.2%.ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationSAMPLE - OXIDATIONFluoxetine peak:Purity Angle:0.090Match Angle:0.400Purity Threshold:0.154Match Threshold:0.4294.2.Standard solution was prepared as in method SI-IAG-206-02 : about 22mg Fluoxetine HCl were weighed into a 50mL volumetric flask and 25mL Diluent were added. 2mL of 30% H2O2 were added to this solution which was standing for 5 hours, made up to volume with Diluent and injected into the HPLC system.Fluoxetine peak intensity decreased to 95.8%.STANDARD - OXIDATIONFluoxetine peak:Purity Angle:0.083Match Angle:0.416Purity Threshold:0.153Match Threshold:0.4295.SUNLIGHT5.1.Sample solution of IAG-21-001 (2) (20mg/capsule) was prepared as in method SI-IAG-206-02 . The solution was exposed to 500w/hr. cell sunlight for 1hour. The BST was set to 35°C and the ACT was 45°C. The vials were placed in a horizontal position (4mm vials, National + Septum were used). A Dark control solution was tested. A 2%w/v quinine solution was used as the reference absorbance solution.Fluoxetine peak decreased to 91.2% and the dark control solution showed assay of 97.0%. The difference in the absorbance in the quinine solution is 0.4227AU.Additional peak was observed at RRT of 1.5 (2.7%).The total percent of Fluoxetine peak with the degradation peak is about 93.9%.SAMPLE - SUNLIGHTFluoxetine peak:Purity Angle:0.093Match Angle:0.583Purity Threshold:0.148Match Threshold:0.825 ED. N0: 04Effective Date:APPROVED::HPLC ASSAY with DETERMINATION OF META-FLUOXETINE HCl.ANALYTICAL METHOD VALIDATION10 and 20mg Fluoxetine Capsules HPLC DeterminationSUNLIGHT (Cont.)5.2.Working standard solution was prepared as in method SI-IAG-206-02 . The solution was exposed to 500w/hr. cell sunlight for 1.5 hour. The BST was set to 35°C and the ACT was 42°C. The vials were placed in a horizontal position (4mm vials, National + Septum were used). A Dark control solution was tested. A 2%w/v quinine solution was used as the reference absorbance solution.Fluoxetine peak was decreased to 95.2% and the dark control solution showed assay of 99.5%.The difference in the absorbance in the quinine solution is 0.4227AU.Additional peak were observed at RRT of 1.5 (2.3).The total percent of Fluoxetine peak with the degradation peak is about 97.5%. STANDARD - SUNLIGHTFluoxetine peak:Purity Angle:0.067Match Angle:0.389Purity Threshold:0.134Match Threshold:0.8196.HEAT OF SOLUTION6.1.Sample solution of IAG-21-001-(2) (20 mg/capsule) was prepared as in method SI-IAG-206-02 . Equivalent to 20mg Fluoxetine was weighed into a 50mL volumetric flask. 20mL Diluent was added and the solution was sonicated for 10 minutes and made up to volume with Diluent. 4mL solution was transferred into a suitable crucible, heated at 105°C in an oven for 2 hours. The sample was cooled to ambient temperature, filtered and injected into the HPLC system.Fluoxetine peak was decreased to 93.3%.SAMPLE - HEAT OF SOLUTION [105o C]Fluoxetine peak:Purity Angle:0.062Match Angle:0.460Purity Threshold:0.131Match Threshold:0.8186.2.Standard Working Solution (WS) was prepared under method SI-IAG-206-02 . 4mL of the working solution was transferred into a suitable crucible, placed in an oven at 105°C for 2 hours, cooled to ambient temperature and injected into the HPLC system.Fluoxetine peak intensity did not decrease - 100.5%.ED. N0: 04Effective Date:APPROVED::。

人钙调素依赖蛋白激酶II

人钙调素依赖蛋白激酶II

人钙调素依赖蛋白激酶II(elisa)试剂盒使用说明详细介绍:人钙调素依赖蛋白激酶II(elisa)试剂盒使用说明检测范围:96T4pg/ml-200pg/ml使用目的:本试剂盒用于测定人血清、血浆及相关液体样本中钙调素依赖蛋白激酶II(CaMKII)含量。

实验原理本试剂盒应用双抗体夹心法测定标本中人钙调素依赖蛋白激酶II(CaMKII)水平。

用纯化的人钙调素依赖蛋白激酶II (CaMKII)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入钙调素依赖蛋白激酶II(CaMKII),再与HRP 标记的钙调素依赖蛋白激酶II(CaMKII)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。

TMB 在HRP 酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。

颜色的深浅和样品中的钙调素依赖蛋白激酶II(CaMKII)呈正相关。

用酶标仪在450nm 波长下测定吸光度(OD 值),通过标准曲线计算样品中人钙调素依赖蛋白激酶II(CaMKII)浓度。

试剂盒组成1 30 倍浓缩洗涤液20ml×1 瓶7 终止液6ml×1 瓶2 酶标试剂6ml×1 瓶8 标准品(320pg/ml)0.5ml×1 瓶3 酶标包被板12 孔×8 条9 标准品稀释液1.5ml×1 瓶4 样品稀释液6ml×1 瓶10 说明书1 份5 显色剂A 液6ml×1 瓶11 封板膜2 张6 显色剂B 液6ml×1/瓶12 密封袋1 个标本要求1.标本采集后尽早进行提取,提取按相关文献进行,提取后应尽快进行实验。

若不能马上进行试验,可将标本放于-20℃保存,但应避免反复冻融2.不能检测含NaN3 的样品,因NaN3 抑制辣根过氧化物酶的(HRP)活性。

操作步骤1. 标准品的稀释:本试剂盒提供原倍标准品一支,用户可按照下列图表在小试管中进行稀释。

2’-岩藻 糖基乳糖 hplc

2’-岩藻 糖基乳糖 hplc

2’-岩藻糖基乳糖(2'-Fucosyllactose)是一种重要的人乳中寡糖,其在婴儿发育和免疫系统健康方面扮演着至关重要的角色。

近年来,随着人们对婴儿配方奶粉和母乳替代品的需求增加,对2’-岩藻糖基乳糖的研究和生产也变得愈发重要。

在这篇文章中,我们将以从简到繁的方式,深入探讨2’-岩藻糖基乳糖这一主题。

首先从其基本概念和结构特点开始,逐步展开到其在婴儿营养和健康方面的重要作用,最后将讨论其在分析检测中的应用及其在食品工业中的意义。

1. 2’-岩藻糖基乳糖的基本概念2’-岩藻糖基乳糖,简称2’-FL,是一种存在于人乳中且含量较高的寡糖成分。

它的化学结构中包含岩藻糖和乳糖两个部分,具有独特的生物功能和生理活性。

在人体内,2’-FL可以被婴儿的盲肠中的盲肠杆菌特有的酶所分解,产生短链脂肪酸等对肠道健康有益的代谢产物。

2. 2’-岩藻糖基乳糖在婴儿发育中的作用研究表明,2’-岩藻糖基乳糖不仅可以预防婴儿腹泻和呼吸道感染,还能够促进正常的肠道菌群组成和免疫系统的发育。

2’-FL还具有抗菌和抗病毒的作用,帮助婴儿建立健康的免疫系统。

3. 2’-岩藻糖基乳糖的分析检测和食品工业应用从分析检测的角度来看,高效液相色谱(HPLC)是目前常用的分离和检测2’-岩藻糖基乳糖的方法之一。

在食品工业中,添加2’-FL到婴儿配方奶粉和其他营养品中,可以模拟母乳的营养成分,促进婴儿的健康成长。

总结:2’-岩藻糖基乳糖作为一种重要的寡糖成分,不仅在婴儿发育和免疫系统健康方面发挥着重要作用,还具有广阔的应用前景。

通过HPLC等分析方法的检测和分离,能够更好地理解和应用2’-FL,从而更好地满足婴儿和儿童的营养需求,促进其健康成长。

个人观点:对于2’-岩藻糖基乳糖这一寡糖成分,我认为我们需要更多的科研投入和生产技术的发展,以满足日益增长的市场需求,并为婴儿和儿童的健康提供更好的保障。

在接下来的内容中,我们将进一步探讨2’-岩藻糖基乳糖的制备、生产工艺和应用前景,以及其在人体内的生物学机制和作用方式。

拓扑替康结构式 -回复

拓扑替康结构式 -回复

拓扑替康结构式-回复拓扑替康(Tofacitinib)是一种属于JAK抑制剂的药物,用于治疗关节炎、银屑病和溃疡性结肠炎等自身免疫性疾病。

该药物的结构式如下所示:[拓扑替康结构式]拓扑替康属于一种小分子化合物,其化学名称为“3-{(3R,4R)-4-[(4-{(1E)-2-(5-氯-2-氧代苯基)乙-1-烯基}-1-苯基环己基)氨基]-3-甲基环己基}丙酸甲酯”。

它的化学式为C16H20N6O,分子量为312.37g/mol。

拓扑替康为无色结晶状固体,可溶于有机溶剂或水。

作用机制:拓扑替康通过抑制Janus激酶(JAK)的活性来发挥其治疗作用。

JAK是一类细胞内酪氨酸激酶,对细胞信号转导和调控起着重要作用。

通过抑制JAK的活性,拓扑替康可以干扰多个细胞因子途径的信号传递,从而调控免疫系统,减轻相关疾病的症状。

药物应用:拓扑替康已被美国食品药品监督管理局(FDA)批准用于治疗成人类风湿性关节炎、银屑病性关节炎、中度至重度溃疡性结肠炎以及活动性类风湿性关节炎。

它通常在其他治疗方法无效或无法耐受的情况下使用。

治疗效果:在临床试验中,拓扑替康已被证明能有效减少关节炎相关的关节疼痛、关节肿胀和关节运动受限等症状。

在银屑病和溃疡性结肠炎的治疗中,使用拓扑替康也能减少病情的恶化和复发。

注意事项:1. 在使用拓扑替康之前,患者应告知医生有关其过敏史、其他药物的使用情况以及存在的其他疾病,以便医生进行全面评估。

2. 拓扑替康可能会增加感染的风险。

在使用期间,患者应密切注意任何感染的症状,并及时向医生报告。

3. 服用拓扑替康可能导致一些不良反应,如头痛、腹泻、恶心、呕吐等。

如有不适,应立即告知医生。

总结:拓扑替康是一种抗关节炎和免疫性疾病药物,通过抑制JAK的活性,调控免疫系统,从而减轻相关疾病的症状。

尽管其可以有效改善患者的症状,但患者在使用该药物时需要密切关注可能产生的不良反应,并向医生报告任何异样症状。

通过科学的用药指导和临床监测,拓扑替康可以为患者提供更好的治疗效果。

抗过敏药物盐酸松齐拉敏的合成

抗过敏药物盐酸松齐拉敏的合成

Chenmical Intermediate当代化工研究138生物制药与研究2017·03抗过敏药物盐酸松齐拉敏的合成*王碧玉(泉州师范学院 化工与材料学院 福建 362000)摘要:抗过敏药物是医院日常医疗过程中比较常用的一种药物,对患者病情的康复有着重大作用,不仅是医院,就连小的诊所和药店里面也广泛应用到了抗过敏药物。

抗过敏药物的种类繁多,不同的抗敏药物其抗敏效果不一样,有时为了更好的治疗疾病,减轻患者的病痛,医院会利用多种药物合成更有利于患者治疗的新型抗过敏药物,盐酸松齐拉敏就是一种常见的合成抗过敏药物,合成的原料包括2-氨基嘧啶、对甲氧基氯苄和N,N-二甲基-2-氯乙胺,其合成步骤为两次N-烃基化反应,其合成后的总收率为79.2%,最终合成功的结构要通过1H NMR,13C NMR和HR-MS(ESI)确证。

关键词:2-氨基嘧啶;对甲氧基氯苄;N,N-二甲基-2-氯乙胺中图分类号:T 文献标识码:ASynthesis of Anti-allergic Medicine Hydrochloric Acid ThonzylamineWang Biyu(Chemical Engineering and Material College, Quanzhou Normal University, Fujian, 362000)Abstract :Anti-allergic medicine is the common used medicine in hospitals’ daily medical process and has important function on the recovery ofpatients,besides,it not only has application in hospitals, but also in small clinics and pharmacies. The drug categories are of a great variety and the anti-allergic effect of different anti-allergic medicines is different, sometimes,in order to better treat the isease and release patients’ pain, the hospital will use many kinds of medicines to make new-type anti-allergic synthetic medicine that is more helpful to patients.Hydrochloric acid is one common seen synthetic anti-allergic medicine and its synthetic materials include 2-aminopyrimidine ,methoxybenzyl chloride and N,N-dimethyl-2-chloroethylamine, besides,its synthetic step is two-time N-alkylation, which total recovery rate after synthesis is 79.2%, finally, the structure of synthetic work needs to be confirmed by 1HNMR ,13C NMR and HR-MS(ESI).Key words :2-aminopyrimidine ;methoxybenzyl chloride ;N,N-dimethyl-2-chloroethylamine据相关研究资料显示,抗过敏要求盐酸松齐拉敏的合成方法一共有两种,一种就是以2-氯嘧啶、对甲氧基氯苄[N'-(4-甲氧基苄基)]和N,N-二甲基乙二胺为原料,经过两次N-烃基化反应合成的方法,另一种则是以4,6-二氯-N-[(4-甲氧基苄基) 甲基]嘧啶-2-胺为原料的合成方法,其中第一种合成方法的总收率为70%~90%,而第二种的为45%~70%。

α-酮戊二酸依赖型酶的酶活检测试剂盒及其应用[发明专利]

α-酮戊二酸依赖型酶的酶活检测试剂盒及其应用[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201711346017.2(22)申请日 2017.12.15(71)申请人 上海交通大学医学院地址 200025 上海市黄浦区重庆南路227号(72)发明人 张良 罗静 张会冰 孟周文理 (74)专利代理机构 上海翼胜专利商标事务所(普通合伙) 31218代理人 翟羽(51)Int.Cl.C12Q 1/32(2006.01)C12Q 1/26(2006.01)(54)发明名称α-酮戊二酸依赖型酶的酶活检测试剂盒及其应用(57)摘要本发明公开α-酮戊二酸依赖型酶的酶活检测试剂盒及其应用,所述试剂盒包括还原型辅酶Ⅱ(NADPH)或者还原型辅酶Ⅰ(NADH)中的一种,异柠檬酸脱氢酶IDH突变体蛋白和缓冲盐,所述IDH突变体蛋白是指IDH特定氨基酸突变后所获得的具有催化α-酮戊二酸(2-OG )新功能的IDH突变体蛋白。

作为一个优选方案,所述试剂盒还包括竞争亚铁离子的金属离子。

本发明提供了一种高效率高精确度检测α-酮戊二酸含量的方法,可用于检测α-酮戊二酸依赖型酶的酶催化活性,测定其酶动力学参数,及针对该类型酶展开高通量药物筛选。

该方法解决了α-酮戊二酸依赖型酶的酶活检测操作繁琐,准确度和可重复性差,通量低,难以进行高通量药物筛选等诸多问题。

权利要求书2页 说明书9页 附图5页CN 109929908 A 2019.06.25C N 109929908A1.α-酮戊二酸依赖型酶的酶活检测试剂盒,其特征在于,所述试剂盒包括还原型辅酶Ⅱ或者还原型辅酶Ⅰ中的一种,异柠檬酸脱氢酶IDH突变体蛋白和缓冲盐,所述IDH突变体蛋白是指IDH特定氨基酸突变后所获得的具有催化α-酮戊二酸新功能的IDH突变体蛋白。

2.根据权利要求1所述的α-酮戊二酸依赖型酶的酶活检测试剂盒,其特征在于,所述试剂盒还包括竞争亚铁离子的金属离子,所述竞争亚铁离子的金属离子包括锰离子、镁离子、钙离子、钴离子、镍离子、铜离子、锌离子及其同族金属中的一种或几种金属离子。

双苯氟嗪对爪蟾卵母细胞上表达的herg钾通道电流的影响

双苯氟嗪对爪蟾卵母细胞上表达的herg钾通道电流的影响

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
·40·
中国药理学通报 Ch inese Pha rm acolog ica l B u lletin 2009 Jan; 25 (1)
±113) mV 相比差异无统计学意义 ( P > 0105, n = 5) 。用单指数方程拟合激活电流曲线 ,得到激活时 间常数 , Fig 5A、B 显示在钳制电压为 - 80 mV ,去极 至 1 0mV时 ,溶剂对照的激活时间常数为 ( 1 0 2 ±
中国 图 书 分 类 号 : R2332; R 32111; R 32912; R 329124; R 54117; R 97212 文献标识码 : A 文章编号 : 1001 - 1978 (2009) 01 - 0039 - 06 摘要 :目的 研究双苯氟嗪对 hERG钾通道电流的影响 ,探 讨其抗心律失常作用的可能机制 。方法 以非洲爪蟾卵母 细胞作为表达系统 ,采用双电极电压钳技术观察双苯氟嗪对 hERG钾通道电流的影响 。结果 双苯氟嗪 (8 nmol·L - 1 ~ 5 μmol·L - 1 ) 浓度依赖性地抑制 hERG电流 , IC50为 9810 nmol·L - 1 ;在 - 10 mV ~40 mV 范围内双苯氟嗪对 hERG电 流的抑制作用具有电压依赖性 ;双苯氟嗪 1 μmol·L - 1对半 数激活电压无明显影响 ,但可降低激活时间常数和去活时间 常数 ,加快 hERG电流的激活去活 。结论 双苯氟嗪降低 hERG钾通道电流并改变其动力学特征 , 提示双苯氟嗪抗心 律失常的作用可能与此有关 。
+A0 拟合激活电流曲线和去活尾电流曲线 ,得到激 活时间常数和去活时间常数 (τ) 。实验数据以 x ±s 表示 ,用 Clampex912、Clampfit912、originPro710、Adobe Illustrator 10及 STATA 810软件进行图像处理及数据 分析。组间比较采用方差分析及 t检验。 2 结果 2. 1 D ip对 hERG电流的浓度依赖性抑制作用 通过 mRNA 微注射 , hERG蛋白异源性地表达在非 洲爪蟾卵母细胞膜上 ,将电压钳制在 - 80 mV ,然后 去极化至 10 mV ,维持 1 s,再复极至 - 50 mV ,维持 2 s,观察双苯氟嗪对 hERG电流的影响 。 Fig 1A 显 示的是灌流 1 μmol·L - 1 D ip 前后的 hERG原始电 流图 , Fig 1B 为灌流溶剂对照 0105 %DM SO 和不同 浓度 D ip 前后 hERG电流的时程图 ,显示双苯氟嗪 可明 显 抑 制 hERG 电 流 。按 公 式 : 抑 制 率 / % = ( I药前 - I药后 ) / I药前 ×100%计算 。 8、40、200、1 000、 5 000 nmol·L - 1 D ip 对 hERG电流的抑制率分别 为 : ( 918 ±211 ) %、( 3514 ±217 ) %、( 5217 ± 411) %、( 7219 ±312) %、( 8315 ±511) % ,与 DMSO 对 hERG电流抑制率 (114 ±013) %相比差异有显著 性 ( P < 0101, n = 6 ) ,用 ND96液冲洗后 ,电流可部分 恢复 。D ip抑制 hERG电流的量效关系曲线如 Fig 1C所示 , D ip 抑制 hERG电流的作用在 8 nmo l·L - 1 ~5μmol·L - 1范围内 ,随着剂量的增大而增加 ,用 H ill方程拟合量效关系曲线后所得 IC50为 9810 nmol ·L - 1 。 2. 2 D ip对 hERG电流的作用呈电压依赖性 将 电压钳制在 - 80 mV ,从 - 60 mV 开始 ,以 10 mV 为 步阶去极化至 30 mV ,维持 2 s记录 hERG时间依赖 性电流 ;实验电压保持在 - 50 mV ,脉冲持续 2 s记 录 hERG尾电流 。用溶剂对照的最大电流标准化 D ip 1μmol·L - 1的电流 ,得到标准化的 I2U 曲线 。 实验结果显示在大部分指令电压下 D ip 1 μmol· L - 1均可抑制 hERG时间依赖性电流 ( Istep , Fig 2B ) 和尾电流 ( Itail , Fig 2C) 。用每 1个电压下溶剂对照 的电流分别标准化 D ip 1μmol·L - 1作用 5 m in后的 hERG尾电流 ,进一步分析 D ip对 hERG电流的抑制 与电压之间的关系 ,发现在 - 10 mV ~40 mV 之间 , 随着电压的增大 , D ip 对 hERG电流的抑制作用逐 渐增大 ,证明 D ip 抑制 hERG电流在 - 10 mV ~40 mV 之间具有电压依赖性 ( Fig 3) 。 2. 3 D ip对 hERG电流动力学特性的影响 用 Bo2 ltzmann方程拟和标准化的尾电流 - 电压关系曲线 ( Fig 4) ,得到 D ip 1μmo l·L - 1作用 5 m in后的 V1 /2 为 ( - 2011 ±312 ) mV ,与溶剂对照的 V1/2 ( - 1714

伊立替康分子量

伊立替康分子量

伊立替康分子量
伊立替康分子量是多少?这是很多人关心的问题。

作为一款常被用于治疗糖尿病的口服药物,伊立替康的分子量对药物的疗效和副作用产生重要影响。

1. 什么是伊立替康?
伊立替康(Empagliflozin)是一种双吡嗪类抑制剂,用于治疗2型糖尿病。

它起到促进肾脏排泄过多的糖分,从而降低血糖水平的作用。

2. 伊立替康的分子结构
伊立替康的化学名为(编号:761423-87-4)-(S)-1,5-二羟甲基-4-(4-甲基苯基)-2- [4-(三氟甲基)苯氧]吡咯烷-3-羧酸二乙酯。

其分子式为C23H27F3O7,分子量为僅僅450.46。

3. 伊立替康分子量和药效的关系
伊立替康分子量较小,因此可以更容易地进入肾脏和其他器官。

这种小分子量也是许多糖尿病患者更喜欢选择口服药物的原因之一。

由于其分子量越小,越容易口服,被吸收和运输到靶细胞位置。

4. 小结
伊立替康分子量为僅僅450.46,这使得它能够更容易地进入肾脏和其他器官,发挥其治疗糖尿病的作用。

因此,掌握伊立替康分子量是非常重要的,关于伊立替康的更多知识应该通过各种途径,包括药品说明书和医疗专业人员来获取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

167114-91-2 1822.14
//struct//
C78 H142 N22 O20 . C2 H F3 O2
(2S,3Z,5S,6Z,8S,9Z,11S,12Z,14S,15Z,17S)-17-((Z)-((2S,3Z,5S,6Z,8S,9Z, 11S,12Z,14S,15Z,17S,18Z,20S,21Z)-17,20-bis(4-aminobutyl)-5,8-bis(3 -guanidinopropyl)-1,4,7,10,13,16,19,22-octahydroxy-2-(3-hydroxy-3iminopropyl)-11-isobutyl-14-methyl-3,6,9,12,15,18,21-he
Evaluation sample solution : ship with blue ice All other available size: ship with RT , or blue ice upon request
Membrane Transporter/Ion Channel Calcium Channel
特别声明
产品仅用于研究,
不针对患者销售,望谅解。
每个产品具体的储存和使用信息显示在产品说明书中。ApexBio 产品在推荐的条件下是稳定 的。产品会根据不同的推荐温度进行运输。许多产品短期运输是稳定的,运输温度不同于长 期储存的温度。我们确保我们的产品是在保持试剂质量的条件下运输的。收到产品后,按照 产品说明书上的要求进行储存。
IC50:作用于 CaM 激酶 II 为 40 nM [1]。 Synthetic peptide AIP(autocamtide-2 相关抑制肽)是 autocamtide-2 的一种非磷酸化类似物, 被确认为一种高特异性的和强效的钙调蛋白依赖性蛋白激酶 II(CaM 激酶 II,CaMKII)抑制 剂。 CaMKII 是一种丝氨酸/苏氨酸特异性蛋白激酶,由 Ca2+/钙调蛋白调控。 体外:AIP(1 mM)完全抑制 CaMKII 的活性,但并不影响 cAMP 依赖性蛋白激酶、钙调蛋白 依赖性蛋白激酶 IV 和蛋白激酶 C。所述抑制是非竞争性的,通过结合到与外源性底物不同 的自磷酸化位点引起作用。CaM Ⅱ自磷酸化的 IC50 为 100 nM[1]。 体内:通过转基因表达 AIP 治疗的小鼠,可防止富含果糖饮食引起的心律失常、自发性收缩 和自发性 Ca2+释放[2]。AIP 的内伏隔核(NAc)单一注射可剂量依赖性地增加大鼠对有害热 和机械刺激的 HWL(后爪缩回潜伏期)[3]。 临床试验:目前尚未进行临床研究。
参考文献: [1] Ishida A1, Kameshita I, Okuno S, Kitani T, Fujisawa H. A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochem Biophys Res Commun. 1995 Jul 26;212(3):806-12. [2] Sommese L, Valverde CA, Blanco P, Castro MC, Rueda OV, Kaetzel M, Dedman J, Anderson ME, Mattiazzi A, Palomeque J. Ryanodine receptor phosphorylation by CaMKII promotes spontaneous Ca(2+) release events in a rodent model of early stage diabetes: The arrhythmogenic substrate. Int J Cardiol. 2016 Jan 1;202:394-406. [3] Bian H, Yu LC. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor AIP induced antinociception in rats with mononeuropathy. Neurosci Lett. 2015 Jul 10;599:129-32.
产品说明书
化学性质
产品名: Cas No.: 分子量: 分子式: 化学名:
SMILES:
溶解性: 储存条件: 一般建议:
运输条件:
生物活性
靶点 : 信号通路: 产品描述:
产品名: Autocamtide-2-related inhibitory peptidtocamtide-2-related inhibitory peptide
CCCCCCCCCCCCC/C(O)=N/[C@@](/C(O)=N/[C@@](/C(O)=N/[C@@] (/C(O)=N/[C@@](/C(O)=N/[C@@](/C(O)=N/[C@@](/C(O)=N/[C@@ ](/C(O)=N/[C@@](/C(O)=N/[C@@](/C(O)=N/[C@@](/C(O)=N/[C@ @](/C(O)=N/[C@@](/C(O)=N/[C@@](C(O)=O)([H])CC(C)C)([H])C)([H] )CC(O)=O)([H])C(C)C)([H])C)([H
ApexBio Technology
Soluble to 1 mg/ml in sterile water
Desiccate at -20°C
For obtaining a higher solubility , please warm the tube at 37°C and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20°C for several months.
相关文档
最新文档