《实数的概念》PPT课件
合集下载
实数的有关概念及实数的分类PPT课件
,则7.卫9星1绕0地3 米球运秒行
1.6 106
例9:[02潍坊]若
( 3与 a)2
则
2 的值为
ab
互为b相反1 数,
。 3 1
第8页/共10页
课堂练习: 《全解》P5
小结:
⑴要注意绝对值概念的正确应用。因为互为相反数的绝对值相等,因此绝对值等于 一个正数的数有两个,它们是一对互为相反数,不可漏掉其中任何一个。
第5页/共10页
6、方根的有关概念:
⑴平方根: 如果
x(2 a ),a那么0x 叫做 a 的平方根(二次方根),记
作 正数有两,个其平中方根x ,叫它做们aa互的为算相术反平数方;根零a。的平方根是零(一个)。负数没有平方
根。
⑵立方根:如果
x(3a为a一切实数),那么 x 叫做 a 的立方根(三次方根), 记
第3页/共10页
四、倒数:
⑴倒数:1除以一个不等于零的数的商叫做这个数的倒数。
⑵ a、b互为倒数 <====> ab=1
a、b互为负倒数 <====> ab=-1
零没有倒数
五、绝对值: ⑴绝对值:一个正数的绝对值是它本身,一 个负数的绝对值是它的相反数,零的绝对值 是零。
⑵一个数的绝对值就是表示这个数的点离开原 点的距离。
实数有理数整数正整数自然数负整数分数正分数负分数无理数正无理数负无理数负无理数负分数负整数负有理数负实数正无理数正分数正整数正有理数正实数实数例1在实数a2个b3个c4个d5个4644ctgctg45cos二数轴
教学目的:通过概念的复习和典型例题评析,使 学生掌握实数的有关概念和实数的分类,并通过 适当的练习得到提高。 教学重点:典型例型评析。 教学难点:学生综合能力的提高。
第1讲实数的概念
7、 3 的绝对值等于 3 , 2 4 的平方根等于 3 , 9
1 3 的倒数是 2
2 7 。
8. 2的相反数是 A. 1 B.
2
9. A
1 2
2
C.-2
D.2
2的相反数是()
2
B
C -2
1 2
D 2
10、的相反数的倒数是 .
课时训练
1、把下列各数填在相应的大括号内: 5 , , 3.14, 0 , 3. 3 3 3, 3, tg 300 , 1, 7
cos600 ,
3
64, 2.1010010001 .
3
-1,0, 64 整数集合:{ ……}; -1 奇数集合:{ ……}; 5 有理数集合:{ -1,,3.14,0, . 3 3 3,cos60°, 3 64 }; 3
1
;
(2) 3 -2的绝
(3)若 x 1, y 2 ,且xy>0,x+y=
3 ; 8; 3 27; 例2、把下列各数填到相应的集合里: 22 ; 3.14; 0.100110001 ; sin 300 ; 7 0 tan45 3; 0.3 21; 3.2
整数集合:{ 3 27 ;tan45°; - 3 }; 3-1;3.14;22/7;sin30°;|-3.2|;-0.32· 1· 分数集合:{ }; 有理数集合: 3-1;3 27 ;3.14;22/7;sin30°;tan45°-3;-0.321;|-3.2| ; 无理数集合:{
4、下列运算正确的是
A.
1 1 5 5
2
B. ( 2) 2
1 3 1 D. ( ) 2 8
实数ppt课件
原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称
。
02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。
《实数的概念》课件
实数的除法运算可以通过乘法转换为乘法运算,即a/b=(a*1/数运算的基本性质
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
《实数》课件精品 (公开课)2022年数学PPT
情境引入2
两位同学背靠背,规定向前为正,
一人向前走3步,记作
,
一人向后走3步 ,记作
.
对照数轴,说出-3与+3两数的相同点和不同点. 你还能说出具备这些特征的成对的数吗?
一 相反数
探究一 相反数的概念
活动1:观察下列一组数+1和-1,+2.5和-2.5, +4和-4,并把它们在数轴上表示出来.
思考: 1)上述各对数之间有什么特点? 2)请写出一组具有上述特点的数 3)你能得出相反数的概念吗? 4)表示各对数的点在数轴上有什么位置关系?
9 35
64
π
•
0.6
3 4
3 9
0.13
(1)有理数: {
9
64
•
0.6
3
4
3 0.13
π (2)无理数: { 3 5
3 9
(3)整数: { 9
(4)负数: { 3
4
(5)分数: {
•
0.6
(6)实数: {
64 3
3 9
3 0.13
4
3
}
}
} } }
}
5. 比较 3 7 与6的大小.
解: ∵37 >36 ∴ 3 7 > 6.
二 多重符号的化简 问题1:a的相反数是什么?
a 的相反数是-a , a可表示任意有理数. 问题2:如何求一个数的相反数?
在这个数前加一个“-”号.
问题3:若把 a分别换成+5,-7,0时,这些数的相 反数怎样表示?
a = +5, a = -7, a = 0,
- a = -(+5) - a = -(-7) -a = 0
思考 由此你可以得到什么结论? 有理数都可以化成有限小数或无限循环
2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)
6,
••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.
•
2
•
3
22
,7
36
无理数是: 6
,,
2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
实数的有关概念PPT课件
8.一个近似数的有效数字,是指从这个数的左边第一个非零数字起,到 右边最后一位数字止的所有数字.
9.科学记数法是把一个大于10或小于l的正数记成 a 10n 的形式,其
中1≤a<10 ( n是正整数),这种记数的方法叫科学记数法.
10.实数的分类
整数
有理数
实数
分数
(有限小数或无限循环小数 )
无理数 (无限不循环小数)
各实数的绝对值之间的大小关系,进而判定带绝对值符号的代数式的值是
正、是负还是零,然后再根据绝对值的意义,去掉绝对值符号.
例3 2005年l0月12日,我国“神舟六号”载人航天一举成功升天,历时5 天共飞行3250000km,这个飞行距离用科学计数法表示正确的是( ).
(A)3.25104 km;(B)3.25105 km;(C)3.25106 km;(D)3.25107 km.
(3)下列说法中j正确的是( ). (A)一个数的相反数—定是负数 (B)—个数的绝对值一定是正数 (C)一个数的绝对值一定不是负数 (D)一个数的绝对值的相反数一定是负数
(4)下列命题中错误的是( ). (A)每一个整数都对应着数轴上的一个点 (B)每一个无理数都对应着数轴上的一个点 (C)数轴上每个点都对应着一个实数 (D)有理数和数轴上的点一.一对应 (5)一个实数的偶数幂是正数,这个实数是( ). (A)正实数 (B)任何实数 (C)负实数 (D)正实数或负实数
是
,属于负实数集合的是
,属于整实数集
合的是
,属于分数集合的是
,属于有理数集
合的是
,属于无理数集合的是
·
(2)若m、n互为相反数.则 m+n= ;若m、n互为倒数,则 mn= 。
实数课件PPT
在工程学中的应用
测量和计算
01
在工程学中,实数被广泛应用于测量和计算,如长度、面积、
体积、角度等。
电路分析
02
在电路分析中,电压、电流、电阻等都是实数,通过实数的运
算可以分析电路的工作状态和性能。
建筑设计
03
在建筑设计中,实数被用于描述建筑物的尺寸、比例和位置等
。
在经济学中的应用
1 2
成本和收益计算
实数的表示方法可以根据需要进行转换,但不同的表示方 法可能会影响我们对实数的理解和应用。因此,在数学学 习和研究中,我们需要掌握各种实数的表示方法,以便更 好地理解和应用实数。
实数的性质
实数的性质包括有序性、连续性和完备性等。有序性是指实数可以按照大小关系 进行排列,连续性是指实数在数轴上没有间隙,完备性则是指实数具有完备的代 数性质和几何性质。
04
CATALOGUE
实数与数轴
数轴的定义
数轴
一条直线,每一个点对应 一个实数,每一个实数对 应数轴上的一个点。
定义方式
在数轴上,原点表示0,正 方向表示正数,负方向表 示负数。
单位长度
数轴上相邻两个点之间的 距离都相等,这个距离称 为单位长度。
数轴上的表示方法
整数
在数轴上,每一个整数都可以找 到一个唯一的点与之对应。
实数在实际生活中的应用
在物理学中的应用
描述物体运动轨迹
在物理学中,实数被广泛应用于描述物体的运动轨迹,如速度、 加速度和位移等。
计算物理量
物理量如力、能量、动量等都可以用实数表示,通过实数的运算可 以得出物理规律和公式。
电磁波的频率和振幅
在电磁波的描述中,频率和振幅都是实数,它们决定了电磁波的性 质和传播特性。
第1课时实数的概念和分类PPT课件(沪科版)
负无理数
按大
小分
应用
正实数
零
负实数
有限小数
或无限循
环小数
无限不循
环小数
第1课时
实数的概念和分类
按定义分
分
类
实数
的概
念和
分类
正有理数
按大
小分
正实数
零
负实数
正无理数
负有理数
负无理数
应
用
实数的有关概念
逼近法求无理数的近似值
第1课时
实数的概念和分类
小结
知识点一 无理数的概念
无限不循环小数叫做 无理数 .
};
(2)有理数:{
, ,-., ,-., };
(3)负实数:{ -π,-0.1010010001,-3.14
}.
第1课时
实数的概念和分类
【归纳总结】实数分类的“两点注意”:
(1)弄清“标准”,清楚按什么分.
(2)“不重不漏”,即分类时不能漏掉一个数,也不能使某个数在两
是两个整数的比,而 是无理数,故 是无理数,不是分数.
谢 谢 观 看!
第6章
6.2 实数
实数
第6章 实数
第1课时
实数的概念和分类
目标突破
总结反思
第1课时
实数的概念和分类
目标突破
目标一 会辨认无理数
例 1 [教材补充例题] 在 3.14159,-2,
中,无理数有 ( A )
A.2 个
B.3 个
C.4 个
··
,0, ,0.20 , 这 7 个数
D.5 个
按大
小分
应用
正实数
零
负实数
有限小数
或无限循
环小数
无限不循
环小数
第1课时
实数的概念和分类
按定义分
分
类
实数
的概
念和
分类
正有理数
按大
小分
正实数
零
负实数
正无理数
负有理数
负无理数
应
用
实数的有关概念
逼近法求无理数的近似值
第1课时
实数的概念和分类
小结
知识点一 无理数的概念
无限不循环小数叫做 无理数 .
};
(2)有理数:{
, ,-., ,-., };
(3)负实数:{ -π,-0.1010010001,-3.14
}.
第1课时
实数的概念和分类
【归纳总结】实数分类的“两点注意”:
(1)弄清“标准”,清楚按什么分.
(2)“不重不漏”,即分类时不能漏掉一个数,也不能使某个数在两
是两个整数的比,而 是无理数,故 是无理数,不是分数.
谢 谢 观 看!
第6章
6.2 实数
实数
第6章 实数
第1课时
实数的概念和分类
目标突破
总结反思
第1课时
实数的概念和分类
目标突破
目标一 会辨认无理数
例 1 [教材补充例题] 在 3.14159,-2,
中,无理数有 ( A )
A.2 个
B.3 个
C.4 个
··
,0, ,0.20 , 这 7 个数
D.5 个
《实数的概念》课件
实数在生活中的应用
温度计上的实数
温度计上的数字表示实际温 度
温度计在生活中的应用:测 量体温、监测天气等
温度计的种类:水银温度计、 电子温度计等
温度计的准确性和使用注意 事项
身高体重指数(BMI)中的实数
身高体重指数(BMI)的定义 BMI中的实数计算 BMI指数在健康生活中的应用 如何根据BMI指数调整生活方式
课堂互动环节设计
案例分析:通过分析具体案例,让 学生更好地理解实数的概念和应用
添加标题
添加标题
添加标题
添加标题
分组讨论:将学生分成小组,让他 们讨论相关问题,提高合作能力
课堂测验:通过小测验或练习题, 检验学生对实数概念的理解和掌握 情况
练习题与答案解析
● 题目1:什么是实数? 答案1:实数包括有理数和无理数,有理数包括整数、分数、小数等,无理数包括无限不循 环小数等。
添加标题 添加标题 添加标题 添加标题
地图上的经纬度
经纬度定义:经度和纬度是地图上的两个基本坐标系统,用于确定地球上 任何位置的坐标。
实数与经纬度的关系:经度和纬度都是实数,可以用小数或度数表示。
经纬度在地图上的应用:通过经纬度可以确定地球上任何位置的精确位置, 从而进行导航、定位和地理信息系统的应用。
添加标题
添加标题
实数与其他数学概念的关系
总结与回顾
本节课的重点与难点总结
重点:实数的概 念、分类和性质
难点:实数的运 算规则和实际应 用
解决方法:通过 例题讲解和练习 巩固,加深对实 数概念的理解和 掌握
总结:回顾本节 课所学内容,强 调容
数
无理数与有理 数的区别:定 义、性质、运 算规则等方面
的差异