高考数学压轴专题2020-2021备战高考《函数与导数》技巧及练习题附答案
高考数学压轴专题2020-2021备战高考《函数与导数》专项训练解析附答案
数学《函数与导数》知识点一、选择题1.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.3.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.4.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2xf x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4 B .3C .2D .1【答案】B【解析】 【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性. 【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=- 所以(4)(2)()f x f x f x +=-+=,∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-, 函数是偶函数,即()(4)f x f x =-,故②正确. 对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos 2xf x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确. 故选:B . 【点睛】本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.5.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.6.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.7.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( )A .1,2(2,)e e ⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+ ⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e<<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.8.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2- B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.9.函数()()2ln 43f x x x =+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦B .32⎡⎫+∞⎪⎢⎣⎭,C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭,【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.10.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.11.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C 【解析】 【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<. 故选:C 【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.12.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.31.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.13.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( )A .(0,1)B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减,所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.14.已知函数())lnf x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】∵())lnf x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =- ∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >> 故选D.15.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞ C .()1,+∞D .()+∞【答案】B 【解析】【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x x f x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭ ()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin ,142x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦ (14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭ 10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.16.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3)B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞ 【答案】C【解析】【分析】 令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可.【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>,令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>,即当2x >时,()F x 单调递增.函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U .故选:C【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.17.如图,对应此函数图象的函数可能是( )A .21(1)2x y x ⎛⎫=- ⎪⎝⎭B .22(1)x y x =-C .ln y x =D .1x y xe =-【答案】B【解析】【分析】 观察图象,从函数的定义域,零点,以及零点个数,特征函数值判断,排除选项,得到正确答案.【详解】由图象可知当0x =时,1y =-,C 不满足;当1x =时,0y =,D 不满足条件;A.由函数性质可知当2x =-时,()2141122y -⎛⎫=⨯-= ⎪⎝⎭,显然A 不成立; 而B 都成立.故选:B【点睛】本题考查根据函数图象,判断函数的解析式,重点考查函数性质的判断,包含函数的定义域,函数零点,零点个数,单调性,特殊值,等信息排除选项,本题属于中档题型.18.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,(2)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=, 32022223<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.19.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e 上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】 令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增, 结合图像分析,,A C 不正确.故选:D【点睛】本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.20.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A .(4][2,)-∞-+∞U B .[1,2]-C .[4,0)(0,2]-UD .[4,2]- 【答案】D【解析】【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩, 解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.。
高考数学压轴专题2020-2021备战高考《函数与导数》真题汇编及解析
新数学《函数与导数》高考知识点一、选择题1.函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】 【分析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x=>,排除CD ,得到答案. 【详解】()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x =>恒成立,排除CD 故答案选A 【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.2.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A【解析】 【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.3.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2xf x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4 B .3C .2D .1【答案】B 【解析】 【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性. 【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=- 所以(4)(2)()f x f x f x +=-+=,∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-, 函数是偶函数,即()(4)f x f x =-,故②正确. 对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos 2xf x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确. 故选:B . 【点睛】本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.4.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】 【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-, 因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<. 故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.5.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<-D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.6.已知函数()322f x x ax bx a =+++在1x =处取极值10,则a =( )A .4或3-B .4或11-C .4D .3-【答案】C 【解析】分析:根据函数的极值点和极值得到关于,a b 的方程组,解方程组并进行验证可得所求. 详解:∵322()f x x ax bx a =+++, ∴2()32f x x ax b '=++.由题意得2(1)320(1)110f a b f a b a =++=⎧⎨=+++='⎩, 即2239a b a b a +=-⎧⎨++=⎩,解得33a b =-⎧⎨=⎩或411a b =⎧⎨=-⎩. 当33a b =-⎧⎨=⎩时,22()3633(1)0f x x x x '=-+=-≥,故函数()f x 单调递增,无极值.不符合题意. ∴4a =. 故选C .点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.7.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.8.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k . 在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.9.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10.函数()||()af x x a R x=-∈的图象不可能是( ) A . B .C .D .【答案】C 【解析】 【分析】变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案. 【详解】,0(),0a x x xf x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x x f x a x x ⎧+>⎪⎪=⎨⎪-+<⎩'⎪.(1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩,图象为A;(2)当0a >时,210ax+>,∴()f x 在(0,)+∞上单调递增, 令210ax -+=得x a = ∴当x a <,210ax -+<,当0a x <<时,210ax-+>,∴()f x 在(,a -∞上单调递减,在(,0)a 上单调递增,图象为D; (3)当0a <时,210ax-+<,∴()f x 在(,0)-∞上单调递减, 令210ax +=得x a =- ∴当x a >-时,210ax+>,当0x a <<-,210ax+<, ∴()f x 在)a -上单调递减,在(,)a -+∞上单调递增,图象为B; 故选:C. 【点睛】本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.11.()263,034,0x x x x f x x ⎧---≤=⎨->⎩,则函数()y f f x =⎡⎤⎣⎦的零点个数为( )A .3B .5C .6D .7 【答案】D 【解析】 【分析】作出()f x 的图像,将()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数,令()t f x =,解()0f t =有三个实数根,再结合图像即可得到答案.【详解】由题意,()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数, 作()f x 的图像如图所示,设()t f x =,则()0f t =,当0t ≤时,即2630t t ---=,解得,1236,36t t =-=- 当0t >时,即340t -=,解得33log 4t =; 结合图像知,()36f x =-()36f x =-+3()log 4f x =时有三个根,所以()0f f x =⎡⎤⎣⎦有7个根,即()y f f x =⎡⎤⎣⎦的零点个数为7. 故选:D 【点睛】本题主要考查函数的零点问题、解函数值以及一元二次函数和指数函数的图像,考查学生数形结合的思想,属于中档题.12.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A . 【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.13.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C.【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.14.[]0x a,b ∃∈使得()f x m ≥成立,等价于[]()0x a,b ,[f x ]m max ∈≥15.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A.)+∞B.(,-∞ C .(,3)-∞ D .27(,)5-∞ 【答案】D【解析】【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】 220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x =+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】16.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( )A.13+ BCD【答案】B【解析】【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可.【详解】22222sin 2sin cos 2cos 2sin cos 1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 533f x f π⎛⎫==⎪⎝⎭. 故选:A【点睛】 本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.17.如图,对应此函数图象的函数可能是( )A .21(1)2x y x ⎛⎫=- ⎪⎝⎭B .22(1)x y x =-C .ln y x =D .1x y xe =-【答案】B【解析】【分析】 观察图象,从函数的定义域,零点,以及零点个数,特征函数值判断,排除选项,得到正确答案.【详解】由图象可知当0x =时,1y =-,C 不满足;当1x =时,0y =,D 不满足条件;A.由函数性质可知当2x =-时,()2141122y -⎛⎫=⨯-= ⎪⎝⎭,显然A 不成立; 而B 都成立.故选:B【点睛】本题考查根据函数图象,判断函数的解析式,重点考查函数性质的判断,包含函数的定义域,函数零点,零点个数,单调性,特殊值,等信息排除选项,本题属于中档题型.18.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.19.对于任意性和存在性问题的处理,遵循以下规则:20.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=, 32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.。
高考数学压轴专题2020-2021备战高考《函数与导数》技巧及练习题含答案
《函数与导数》知识点汇总一、选择题1.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.3 1.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.2.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.3.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( )A .ln 2B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.4.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3) B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞【答案】C 【解析】 【分析】令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可. 【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>, 令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>, 即当2x >时,()F x 单调递增. 函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U . 故选:C 【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.5.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e ⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-, 所以11ea >-, 故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.6.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.7.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C 【解析】 【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<. 故选:C 【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.8.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A.)+∞ B.(,-∞C .(,3)-∞D .27(,)5-∞ 【答案】D 【解析】 【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】9.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) A.13+ B.3C.23+ D.3【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >.故()min 3f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.10.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C. 【点睛】本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.11.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020xf x =,则()2020f =( ) A .2020 B .12020C .11010D .0【答案】D 【解析】 【分析】根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得()()20200f f =,由函数的解析式计算可得答案.【详解】解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+, 变形可得:()()42f x f x +=-+,即()()2f x f x +=-, 则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,()()()20200505400f f f ∴=+⨯==;故选:D . 【点睛】本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.12.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.13.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为()A .b a c <<B .c b d <<C .b c a <<D .a b c <<【答案】A 【解析】 【分析】 根据()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系. 【详解】()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称()f x ∴图象关于1x =对称()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫∴-<-< ⎪⎝⎭,即b a c << 本题正确选项:A 【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.14.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.15.下列求导运算正确的是( ) A .()cos sin x x '= B .()1ln 2x x'=C .()333log xx e '= D .()22x x x e xe '=【答案】B 【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x=⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222xxx x e xex e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.16.设函数()xf x x e =⋅,则( )A .()f x 有极大值1eB .()f x 有极小值1e-C .()f x 有极大值eD .()f x 有极小值e -【答案】B 【解析】 【分析】利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论. 【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-.当1x <-时,()0f x '<;当1x >-时,()0f x '>. 所以,函数()xf x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B. 【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.17.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D 【解析】 【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解. 【详解】设()()36g x f x x =--,Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D. 【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.18.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C【解析】【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围.【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a ,所以此时函数g (x )的值域为(2a ,+∞),由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a ≥23时,-a +2≤2a ,由题得21,1222a a a a-+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C .【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=, 32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x'=+-Q 在()0,∞+上单调递增且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增 且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭且()g x 单调递增 12x x ∴>由()21ln 2x h x x-'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。
高考数学压轴专题2020-2021备战高考《函数与导数》知识点训练及答案
数学《函数与导数》知识点一、选择题1.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-<⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.2.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.3.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.4.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.5.已知定义在R 上的函数()f x 满足()()242f x f x x +-=+,设()()22g x f x x =-,若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4【答案】B 【解析】∵()()242f x f x x +-=+,()()22g x f x x =-∴2222()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.6.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.7.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.8.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( )A .1B .13C .23D .12【答案】B 【解析】 【分析】利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案. 【详解】 由题意,曲线21xy e -=+,则22x y e -'=-,所以200|2|2x x x y e -=='=-=-,所以曲线21xy e-=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,令0y =,解得1x =,令y x =,解得23x y ==, 所以切线与直线y 0=和y x =所围成图形的面积为1211233⨯⨯=,故选B .【点睛】本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.9.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.10.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
高考数学压轴专题2020-2021备战高考《函数与导数》知识点训练及答案
【高中数学】数学高考《函数与导数》试题含答案一、选择题1.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-, 所以11ea >-,故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.3.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.4.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A 【解析】【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.5.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.6.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.7.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.8.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.9.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.10.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.11.函数()3ln 2xf x x x=+的图象在点()()1,1f 处的切线方程为( ) A .64y x =- B .75y x =- C .63=-y x D .74y x =-【答案】B 【解析】 【分析】首先求得切线的斜率,然后求解切线方程即可. 【详解】由函数的解析式可得:()221ln '6xf x x x-=+,则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-. 本题选择B 选项. 【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.12.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.13.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C 【解析】 【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<. 故选:C 【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.14.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log <<D .()()()0.3 1.130.50.24f log f f << 【答案】A【解析】【分析】 由已知可得()f x 的图象关于直线1x =对称.因为0.3 1.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称.因为()()()0.3 1.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈, 则0.3 1.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,所以()()()0.3 1.130.20.54f f log f <<. 故选:A.【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.15.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+B .[)5,∞-+C .(),5∞--D .(],5∞-- 【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解.【详解】由题()x f x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+ ()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.16.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b - B .3223b - C .0 D .2316b b - 【答案】A【解析】【分析】 求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--,∵函数()f x 在区间[3,1]-上不是单调函数, 31b ∴-<<,由()0f x '>,解得:2x >或x b <,由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-, 故选:A.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.17.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( )A .x -y =0B .x -y -2=0C .x +y -2=0D .3x -y -2=0【答案】A【解析】【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案.【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =. 故选:A .【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.18.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .17(1)a r +B .17[(1)(1)]a r r r +-+C .18(1)a r +D .18[(1)(1)]a r r r+-+ 【答案】D【解析】【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.【详解】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +, ⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.19.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为()S S a =,则()S a 的图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据函数的部分特征,利用排除法,即可得到本题答案.【详解】①当011a ≤+<时,即10a -≤<,21()(1)2S a a =+;②当11a +=时,即0a =,1()2S a =. 由此可知,当10a -≤<时,21()(1)2S a a =+且1(0)2S =,所以,,A B C 选项不正确. 故选:D【点睛】本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x'=+-Q 在()0,∞+上单调递增 且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭ 且()g x 单调递增 12x x ∴>由()21ln 2x h x x-'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。
高考数学压轴专题2020-2021备战高考《函数与导数》真题汇编附答案解析
【最新】高考数学《函数与导数》专题解析一、选择题1.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质2.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<,3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.3.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.4.三个数2233ln a b c e ===,的大小顺序为( ) A .b <c <a B .b <a <cC .c <a <bD .a <b <c【答案】D 【解析】 【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<.故选:D 【点睛】本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.5.函数()()2ln 43f x x x=+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦ B .32⎡⎫+∞⎪⎢⎣⎭, C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭, 【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.6.已知函数()2f x x x =+,且()1231ln log 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.7.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.8.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.31.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.9.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1,∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.10.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( )A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A 【解析】 【分析】通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-,∵()()()()220g x g x f x x f x x +-=-+--=,∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.11.若点1414(log 7,log 56)在函数()3f x kx =+的图象上,则()f x 的零点为( ) A .1 B .32C .2D .34【答案】B 【解析】 【分析】将点的坐标代入函数()y f x =的解析式,利用对数的运算性质得出k 的值,再解方程()0f x =可得出函数()y f x =的零点.【详解】141414141414log 56log 4log 1412log 212(1log 7)32log 7=+=+=+-=-Q ,2k ∴=-,()2 3.f x x =-+故()f x 的零点为32,故选B.【点睛】本题考查对数的运算性质以及函数零点的概念,解题的关键在于利用对数的运算性质求出参数的值,解题时要正确把握零点的概念,考查运算求解能力,属于中等题.12.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解.【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减,所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.13.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =, 据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.14.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.15.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A .(22,)+∞ B .(,22)-∞C .(,3)-∞D .27(,)5-∞ 【答案】D 【解析】 【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】16.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.17.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-, 令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增, ∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <. 故选:C.【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .17(1)a r +B .17[(1)(1)]a r r r +-+C .18(1)a r +D .18[(1)(1)]a r r r+-+ 【答案】D【解析】【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.【详解】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +, ⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.19.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为()S S a =,则()S a 的图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据函数的部分特征,利用排除法,即可得到本题答案.【详解】①当011a ≤+<时,即10a -≤<,21()(1)2S a a =+;②当11a +=时,即0a =,1()2S a =. 由此可知,当10a -≤<时,21()(1)2S a a =+且1(0)2S =,所以,,A B C 选项不正确. 故选:D【点睛】 本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】 根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x'=+-Q 在()0,∞+上单调递增 且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增 且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭且()g x 单调递增 12x x ∴>由()21ln 2x h x x-'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。
高考数学压轴专题2020-2021备战高考《函数与导数》真题汇编及答案
【最新】高中数学《函数与导数》专题解析一、选择题1.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( )A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.2.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1C .2D .4【答案】C 【解析】 【分析】根据对称性即可求出答案. 【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】本题主要考查函数的对称性的应用,属于中档题.5.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.6.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.7.已知()2ln33,33ln3,ln3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b <<C .a c b <<D .a b c <<【答案】B 【解析】根据,,a b c与中间值3和6的大小关系,即可得到本题答案.【详解】因为323e e<<,所以31ln32 <<,则3ln322333336,33ln36,(ln3)3a b c<=<=<=+>=<,所以c a b<<.故选:B【点睛】本题主要考查利用中间值比较几个式子的大小关系,属基础题.8.已知函数在区间上有最小值,则函数在区间上一定()A.有最小值B.有最大值C.是减函数D.是增函数【答案】D【解析】【分析】由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.9.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22e <=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.11.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.31.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.12.函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】 【分析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x=>,排除CD ,得到答案. 【详解】()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A 【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.13.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B 【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.14.[]0x a,b ∃∈使得()f x m ≥成立,等价于[]()0x a,b ,[f x ]m max ∈≥15.[]()x a,b ,f x m ∀∈≥恒成立,等价于[]()x a,b ,[f x ]m min ∈≥16.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.17.下列求导运算正确的是( ) A .()cos sin x x '= B .()1ln 2x x'=C .()333log xx e '= D .()22x x x e xe '=【答案】B 【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x=⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222xxx x e xex e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.18.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++.因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D.【点睛】 本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.19.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.20.设113000,,a b xdx c x dx ===⎰⎰,则,,a b c 的大小关系为( ) A .b c a >>B .b a c >>C .a c b >>D .a b c >>【答案】D【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。
高考数学压轴专题2020-2021备战高考《函数与导数》技巧及练习题含答案
【最新】数学《函数与导数》专题解析一、选择题1.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.2.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.3.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.4.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1C .2D .4【答案】C 【解析】 【分析】根据对称性即可求出答案. 【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】本题主要考查函数的对称性的应用,属于中档题.5.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.6.三个数2233ln a b c e ===,的大小顺序为( ) A .b <c <a B .b <a <cC .c <a <bD .a <b <c【答案】D 【解析】 【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<.故选:D 【点睛】本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.7.已知()2ln33,33ln3,ln3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b <<C .a c b <<D .a b c <<【答案】B 【解析】 【分析】根据,,a b c 与中间值3和6的大小关系,即可得到本题答案. 【详解】因为323e e <<,所以31ln 32<<, 则3ln3223336,33ln 36,(ln 3)3a b c <=<=<=+>=<, 所以c a b <<. 故选:B 【点睛】本题主要考查利用中间值比较几个式子的大小关系,属基础题.8.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A 【解析】 【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.9.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-,令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增,∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <.故选:C. 【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.10.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.11.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.12.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>,所以当x e =时,t 取得最小值e ,所以t e ≥,所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.13.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+- D .(]2ln2,2-【答案】A 【解析】 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果.()f x Q 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.14.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞ C .()1,+∞D .()+∞【答案】B 【解析】 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x x f x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭ ()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin ,142x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦ (14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭ 10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.15.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A .【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.16.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( )A .)+∞B .(,-∞C .(,3)-∞D .27(,)5-∞ 【答案】D【解析】【分析】 把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】 220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x =+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】17.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.18.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为()S S a =,则()S a 的图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据函数的部分特征,利用排除法,即可得到本题答案.【详解】①当011a ≤+<时,即10a -≤<,21()(1)2S a a =+;②当11a +=时,即0a =,1()2S a =. 由此可知,当10a -≤<时,21()(1)2S a a =+且1(0)2S =,所以,,A B C 选项不正确. 故选:D【点睛】本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.19.曲线3πcos 02y x x ⎛⎫=≤≤⎪⎝⎭与x 轴以及直线3π2x =所围图形的面积为( ) A .4B .2C .52D .3【答案】B【解析】【分析】【详解】 试题分析:()332222(0cos )sin 2S x dx x ππππ=-=-=⎰,选B.考点:定积分的几何意义20.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D【解析】【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可. 【详解】0a >Q5y ax ∴=-在定义域内单调递减 若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤ 故选:D【点睛】本题考查对数函数的单调性,属于中档题.。
高考数学压轴专题2020-2021备战高考《函数与导数》真题汇编附答案
数学《函数与导数》期末复习知识要点一、选择题1.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( ) A .5B .4C .3D .6 【答案】A【解析】【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】函数()()()2384g x fx f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点 即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x fx f x =-+有5个零点,故选:A.【点睛】 本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.2.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( )A .y x =-B .2y x =-+C .y x =D .2y x =-【答案】A【解析】【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程.【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-. 故选:A【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.3.函数22()41x x x f x ⋅=-的图像大致为( ) A . B .C .D .【答案】A【解析】∵函数()22?41x x x f x =-的定义域为(,0)(0,)-∞+∞U ∴222()2()()4114x x x xx x f x f x --⋅-⋅-===--- ∴函数()f x 为奇函数,故排除B ,C.∵2(1)03f =>,故排除D. 故选A.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.4.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( )A .ln 2B .1C .1ln2-D .1ln2+【答案】D【解析】 由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.5.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+ B .146π- C .4π D .16【答案】B【解析】【分析】 用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积.【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162r r r r a T C x x --+⎛⎫= ⎪⎝⎭ , 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2. 曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1)所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.6.曲线2y x =与直线y x =所围成的封闭图形的面积为( )A .16B .13C .12D .56【答案】A【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x =与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.7.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). AB.C.2 D.【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥= 当且仅当2a b a b-=-,即a b -=时等号成立 所以22a b a b+-的最下值为故答案选D考点:基本不等式.8.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( )A .222e e +B .25050e e +C .2100100e e +D .222e e --【答案】A【解析】【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值.【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+ ()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.9.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3)B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞ 【答案】C【解析】【分析】 令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可.【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>,令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>,即当2x >时,()F x 单调递增.函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U .故选:C【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.10.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.11.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+B .[)5,∞-+C .(),5∞--D .(],5∞-- 【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解.【详解】由题()x f x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+ ()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.12.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b - B .3223b - C .0 D .2316b b - 【答案】A【解析】【分析】 求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--,∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <,由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-, 故选:A.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.13.已知函数())ln f x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >> 【答案】D【解析】∵())ln f x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =-∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >>故选D.14.已知函数()2cos f x x x =-,若15log 3a f ⎛⎫= ⎪⎝⎭,31log 5b f ⎛⎫= ⎪⎝⎭,315c f ⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭=⎪,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】B【解析】【分析】 判断()f x 为偶函数,利用导数得出()f x 在()0,π上单调递增,由对数函数的性质,结合函数()f x 的单调性和奇偶性,即可得出答案.【详解】()()()()22cos cos f x x x x x f x -=---=-=,故()f x 为偶函数 故只需考虑()0,x ∈+∞的单调性即可.()'2sin f x x x =+,当()0,x π∈时,易得()'0f x >故()f x 在()0,π上单调递增,()155log 3log 3a f f ⎛⎫== ⎪⎝⎭,()331log log 55b f f ⎛⎫== ⎪⎝⎭, 由函数单调性可知()()3531log 3log 55f f f ⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭,即c a b << 故选:B【点睛】本题主要考查了利用函数的奇偶性以及单调性比较大小,属于中档题.15.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( ) A .20152016B .20162017C .20172018D .20182019【答案】D【解析】【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直, ()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.16.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为()S S a =,则()S a 的图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据函数的部分特征,利用排除法,即可得到本题答案.【详解】①当011a ≤+<时,即10a -≤<,21()(1)2S a a =+;②当11a +=时,即0a =,1()2S a =. 由此可知,当10a -≤<时,21()(1)2S a a =+且1(0)2S =,所以,,A B C 选项不正确. 故选:D【点睛】本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.17.设123log 2,ln 2,5a b c -===则A .a b c <<B .b c a <<C .c a b <<D .c b a << 【答案】C【解析】【分析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】 ∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log ,22a c =>==<=.∴a c >.综上可知:c a b << 故选C.【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.18.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D【解析】【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可. 【详解】0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤ 故选:D【点睛】本题考查对数函数的单调性,属于中档题.19.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25 【答案】D【解析】【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n ⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果. 【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.20.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A .(4][2,)-∞-+∞U B .[1,2]-C .[4,0)(0,2]-UD .[4,2]-【答案】D【解析】【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩, 解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.。
高考数学压轴专题2020-2021备战高考《函数与导数》分类汇编附答案
新《函数与导数》专题解析一、选择题1.函数()||()af x x a R x=-∈的图象不可能是( ) A . B .C .D .【答案】C 【解析】 【分析】变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案. 【详解】,0(),0a x x xf x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x x f x a x x ⎧+>⎪⎪=⎨⎪-+<⎩'⎪.(1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩,图象为A;(2)当0a >时,210ax+>,∴()f x 在(0,)+∞上单调递增, 令210ax -+=得x a = ∴当x a <,210ax -+<,当0a x <<时,210ax-+>,∴()f x 在(,a -∞上单调递减,在(,0)a 上单调递增,图象为D; (3)当0a <时,210ax-+<,∴()f x 在(,0)-∞上单调递减,令210ax +=得x =∴当x >时,210ax +>,当0x <<,210ax+<,∴()f x 在上单调递减,在)+∞上单调递增,图象为B; 故选:C. 【点睛】本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.2.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .3.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.4.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,且当()0,x ∈+∞时,都有()'f x x >成立,若()()112f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .(],2-∞D .[)2,+∞【答案】A 【解析】 【分析】构造函数21()()2g x f x x =-,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令21()()2g x f x x =-,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,所以(0)0f =,2222111()()()()()222g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.又()()112f a f a a -≥+-Q ()()()2211111222g a a g a a a ∴-+-≥++-, 即()()1112g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. 故选:A 【点睛】本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出21()()2g x f x x =-是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.5.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除;对于选项C:因为5522 522522fππππ--⎛⎫=>⎪⎝⎭,故选项C排除;对于选项B:当0x>,且x无限接近于0时,cosx x-接近于10-<,220x x-->,此时()0f x<.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.6.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为()时,其容积最大.A.34B.23C.13D.12【答案】B【解析】【分析】设正六棱柱容器的底面边长为x,则正六棱柱容器的高为)312x-,则可得正六棱柱容器的容积为()())()3233921224V x x x x x x x=+⋅⋅-=-+,再利用导函数求得最值,即可求解.【详解】设正六棱柱容器的底面边长为x,)31x-,所以正六棱柱容器的容积为()())()32339214V x x x x x x x=+-=-+,所以()227942V x x x'=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x'>;在2,13⎛⎫⎪⎝⎭上,()0V x'<,所以()V x在20,3⎛⎫⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减,所以当23x=时,()V x取得最大值,【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.7.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.8.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..9.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( ) A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A 【解析】 【分析】通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-,∵()()()()220g x g x f x x f x x +-=-+--=,∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.10.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.11.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B 【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.12.已知函数()2cos f x x x =-,若15log 3a f ⎛⎫= ⎪⎝⎭,31log 5b f ⎛⎫= ⎪⎝⎭,315c f ⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭=⎪,则( ) A .a b c >> B .b a c >>C .c b a >>D .c a b >>【答案】B 【解析】 【分析】判断()f x 为偶函数,利用导数得出()f x 在()0,π上单调递增,由对数函数的性质,结合函数()f x 的单调性和奇偶性,即可得出答案. 【详解】()()()()22cos cos f x x x x x f x -=---=-=,故()f x 为偶函数故只需考虑()0,x ∈+∞的单调性即可.()'2sin f x x x =+,当()0,x π∈时,易得()'0f x >故()f x 在()0,π上单调递增,()155log 3log 3a f f ⎛⎫== ⎪⎝⎭,()331log log 55b f f ⎛⎫== ⎪⎝⎭,由函数单调性可知()()3531log 3log 55f f f ⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭,即c a b << 故选:B 【点睛】本题主要考查了利用函数的奇偶性以及单调性比较大小,属于中档题.13.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.14.函数()3ln 2xf x x x=+的图象在点()()1,1f 处的切线方程为( ) A .64y x =-B .75y x =-C .63=-y xD .74y x =-【答案】B 【解析】 【分析】首先求得切线的斜率,然后求解切线方程即可. 【详解】由函数的解析式可得:()221ln '6xf x x x-=+, 则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-. 本题选择B 选项. 【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.15.[]()x a,b ,f x m ∀∈≥恒成立,等价于[]()x a,b ,[f x ]m min ∈≥16.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数; 当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.17.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.18.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n项和,是中档题.19.曲线3πcos02y x x⎛⎫=≤≤⎪⎝⎭与x轴以及直线3π2x=所围图形的面积为()A.4B.2C.52D.3【答案】B【解析】【分析】【详解】试题分析:()332222(0cos)sin2S x dx xππππ=-=-=⎰,选B.考点:定积分的几何意义20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是().(取lg30.4771≈,lg20.3010≈)A.16 B.17 C.24 D.25【答案】D【解析】【分析】由折线长度变化规律可知“n次构造”后的折线长度为43na⎛⎫⎪⎝⎭,由此得到410003n⎛⎫≥⎪⎝⎭,利用运算法则可知32lg2lg3n≥⨯-,由此计算得到结果.【详解】记初始线段长度为a,则“一次构造”后的折线长度为43a,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。
高考数学压轴专题2020-2021备战高考《函数与导数》难题汇编含答案解析
高中数学《函数与导数》期末考知识点一、选择题1.已知定义在R上的函数 f (x) 知足f01,且 f (x)的导函数f'( x) 知足f '( x) 1 ,则不等式 f ln x ln ex的解集为()A.0,1B.1,e C.0, e D.e,【答案】 A【分析】【剖析】设 g( x) f (x)x ,由题得g (x)在 R 上递加,求不等式f ln x ln ex的解集,即求不等式 g(ln x)g(0) 的解集,由此即可获得本题答案.【详解】设 g( x) f (x)x ,则g(0) f (0) 01, g (x)f(x) 1 ,由于 f( x) 1 ,所以 g ( x)0 ,则g( x)在R上递加,又 f (ln x)ln( ex)1ln x ,所以 f (ln x)ln x 1 ,即 g(ln x)g(0),所以 ln x 0,得 0x1.应选: A【点睛】本题主要考察利用导数研究函数的单一性,以及利用函数的单一性解不等式,此中波及到结构函数 .x( x 1) ,若对于 x 方程[ f ( x)]2(2m 1) f ( x) m2m 0 恰有4 2.已知f ( x)| ln x |个不相等的实根,则实数m 的取值范围是()A.1,2(2, e)B.11,e C.(e1,e)D.1, e e e e【答案】 C【分析】【剖析】由已知易知 f (x)m 与f (x)m1 的根一共有4个,作出 f ( x)图象,数形联合即可获得答案 .【详解】由 [ f ( x)]2(2m1) f ( x)m2m0 ,得f (x)m 或f (x)m 1,由题意 f ( x) m与 f (x) m1两个方程的根一共有4个,又 f ( x) 的定义域为(0,1)(1,),所以f ( x)x xx'ln x 10 得 x e ,| ln x |,令 g (x),则 g ( x)2,由 g ' ( x)ln x ln x(ln x)由 g ' ( x)0 得1x e 或0x 1 ,故g( x)在 (0,1),(1,e) 单一递减,在( e,) 上单一递增,由图象变换作出 f ( x) 图象以下图0 m e要使原方程有 4 个根,则,解得e 1 m e .m 1e应选: C【点睛】本题考察函数与方程的应用,波及到方程根的个数问题,考察学生等价转变、数形联合的思想,是一道中档题.3.函数f ( x)2x x2的图像大概为 ( )4x1A.B.C.D.【答案】 A【分析】∵函数 f x2x?x2的定义域为 ( ,0) U (0, )4x12 x(x)22x x2f ( x)∴f ( x)x114x4∴函数 f x 为奇函数,故清除 B , C.∵ f (1)20 ,故清除 D.3应选 A.点睛:函数图象的识辨可从以下方面下手: (1)从函数的定义域,判断图象的左右地点;从函数的值域,判断图象的上下地点.(2)从函数的单一性,判断图象的变化趋向.(3)从函数的奇偶性,判断图象的对称性.(4) 从函数的特点点,清除不合要求的图象.利用上述方法清除、挑选选项.4.已知奇函数f x 在 R 上是增函数,若 af log 21, bf log 2 4.1 ,5cf 20.8 ,则 a,b, c 的大小关系为 ( )A . a b cB . b a cC . c b aD . c a b【答案】 C 【分析】由题意: aflog 21f log25,5且: log 2 5 log 2 4.1 2,1 20.8 2 ,据此: log 2 5 log 2 4.1 20.8 ,联合函数的单一性有: f log 2 5f log 2 4.1f 20.8 ,即 ab c,c ba .本题选择 C 选项.【考点】 指数、对数、函数的单一性【名师点睛】比较大小是高考常有题,指数式、对数式的比较大小要联合指数函数、对数 函数,借助指数函数和对数函数的图象,利用函数的单一性进行比较大小,特别是灵巧利 用函数的奇偶性和单一性数形联合不单能比较大小,还能够解不等式.5.若函数 f (x) e x e xsin 2x ,则知足 f (2 x 2 1)f ( x)0 的 x 的取值范围为( )A .( 1,1)B . (, 1)U(1,)22C .( 1,1)D . (, 1 ) (1,)22【答案】 B【分析】【剖析】判断函数 f x为定义域 R 上的奇函数,且为增函数,再把f2x2 1 f x 0 化为2x21x ,求出解集即可.【详解】解:函数 f xx xsin2 x ,定义域为 R ,e e且知足 f x e x e x sin2x e x e x sin2 x f x ,∴ f x为 R 上的奇函数;又 f ' x e x e x2cos2x22xcos2x0 恒建立,∴ f x为R 上的单一增函数;又 f2x21f x0 ,得 f 2x21 f x f x,∴ 2x21x ,即2x2x10,解得 x 1 或x 1,2所以 x 的取值范围是,1 1 ,.2应选 B.【点睛】本题考察了利用定义判断函数的奇偶性和利用导数判断函数的单一性问题,考察了基本不等式,是中档题.e x6.函数f ( x)的图象大概为()xA.B.C.D.【答案】 B【分析】函数f x e x的定义域为 ( ,0) U (0,) ,清除选项A;x当 x0时, f x0(x 1)e x0,1 时,函数单一递减,当,且f ' x x2,故当 xx1,时,函数单一递加,清除选项C;当x0时,函数e xf x0 ,清除选项,选项B正确.选.D Bx点睛:函数图象的辨别可从以下方面下手:(1)从函数的定义域,判断图象的左右地点;从函数的值域,判断图象的上下地点;(2)从函数的单一性,判断图象的变化趋向;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的周而复始;(5)从函数的特点点,清除不合要求的图象.7.已知a 3ln32, b 3 3ln3, c ln3 ,则a,b, c的大小关系是()A.c b a B.c a b C. a c b D.a b c 【答案】 B【分析】【剖析】依据 a, b, c 与中间值 3 和 6的大小关系,即可获得本题答案.【详解】由于3ln 33e32,所以1,e2则3 a3ln333 3ln 3 6, c (ln 3)2 3,32336, b所以 c a b .应选: B【点睛】本题主要考察利用中间值比较几个式子的大小关系,属基础题.8.函数 ylog a (x 3) 1( a 0 且 a1 )的图像恒过定点 A ,若点 A 在直线mx ny 10上,此中 mn · 4 10 ,则的最小值为()mnA .16B . 24C . 50D . 25【答案】 D【分析】【剖析】由题 A ( 4, 1),点 A 在直线上得 4m+n = 1,用 1 的变换结构出能够用基本不等式求最值的形式求最值.【详解】令 x ﹣ 3= 1,解得 x =4, y = 1,则函数 y = log a ( x ﹣3) +1( a > 0 且 a ≠1)的图象恒过定点 A ( 4, 1),∴ 4m+n = 1,∴41 ( 41 )( 4m+n )= 16+1 4n 4mmn m n mn ≥ 17+24n 4m17+8 = 25,当且仅当 m = n1 m n时取等号,5故则41 的最小值为 25, mn应选 D .【点睛】本题考察均值不等式,在应用过程中,学生常忽略 “等号建立条件 ”,特别是对 “一正、二定、三相等 ”这一原则应有很好的掌握.9.已知函数 fxx 2x ,且 a fln3,b flog 2 1 , cf 21 ,则23a ,b ,c 的大小关系为(). c a bb a c. a c b. b c a.ABCD【答案】 A【分析】【剖析】由函数 f xx 2 x ,可得 f xf x ,获得函数 f x 为偶函数,图象对于y 轴对称,又由由二次函数的性质可得,函数f x 在 [0,) 上为单一递加函数,则函数f x 在 (,0) 上为单一递减函数,再依据对数函数的性质,联合图象,即可求解.【详解】由题意,函数 f x x2x 2x2xf x ,x ,知足 f ( x) x所以函数 fx 为定义域上的偶函数,图象对于y 轴对称,又当 x0 时, f xx 2 x ,由二次函数的性质可得,函数f x 在 [0,) 上为单一递增函数,则函数f x 在 (,0) 上为单一递减函数,又由 ln3ln e1111,211 ,log 2 3log 2 2,222f (ln 3) f (2 1 )1依据对称性,可得f (log 2 3 ) ,即 a c b ,应选 A .2【点睛】本题主要考察了函数的奇偶性和单一性的应用,此中解答中获得函数的单一性与奇偶性,以及娴熟应用对数函数的性质是解答的重点,侧重考察了推理与运算能力,属于基础题.10. 函数 f xlog 2 x , x 0,则函数 g x 3 f 2 x8 f x 4 的零点个数是()2x , x 0,A . 5B . 4C . 3D . 6【答案】 A【分析】【剖析】经过对 g (x) 式子的剖析,把求零点个数转变成求方程的根,联合图象,数形联合获得根的个数,即可获得零点个数.【详解】函数 g x 3 f 2 x8 f x 4 3 f x 2 f x 2 的零点 即方程 f x2 f x2 的根,和3函数 f xlog 2 x , x 0,2x, x的图象以下图:由图可得方程f x2x2共有 5个根,和 f3即函数 g x 3 f 2 x8 f x4有 5个零点 ,应选: A.【点睛】作图很重点,要标准.0, x1 11.已知函数f xln x, x,若不等式 f x x k 对随意的 x R 恒建立,则实1数 k 的取值范围是()A.,1B.1,C.0,1D.1,0【答案】 A【分析】【剖析】先求出函数 f x 在(1,0)处的切线方程,在同向来角坐标系内画出函数0, x1和 g( x)x k 的图象,利用数形联合进行求解即可.f xln x, x1【详解】当 x 1时,f x ln x, f ' (x)1 f ' (1)1,所以函数f x在 (1,0) 处的切线方x程为: y x1,令g (x)x k ,它与横轴的交点坐标为(k,0) .在同向来角坐标系内画出函数f x 0, x1和 g( x)x k 的图象以以下图的所示:ln x, x1利用数形联合思想可知:不等式 f x x k 对随意的 x R 恒建立,则实数k 的取值范围是 k 1.应选: A【点睛】本题考察了利用数形联合思想解决不等式恒建立问题,考察了导数的应用,属于中档题.12.已知函数f ( x)x,则使 g( x)ln f ( x) a有2个零点的a的取值范围()f (x)ln x A.(0,1)B.0, 1C.1,1D.,1e e e 【答案】 B【分析】【剖析】令 t f ( x)x,利用导数研究其图象和值域,再将ln f ( x)a 有2个零点,ln xg (x)f (x)转变为 a ln t[ e,)上只有一解求解 .在t【详解】令 t f ( x)x,当 0 x1时, t f (x)x0 ,ln x ln x当 x 1 时,t f ln x1( x)ln x 2 ,当 1x e 时, t0 ,当x e 时,t0 ,所以当 x e 时, t 获得最小值e,所以t e,以下图:所以 g( x)ln f ( x)a 有2个零点,转变为ln t在 [ e,) 上只有一解,f ( x)at令 m ln t1ln t0 ,所以 mln t在 [e,) 上递减,t,mt2t所以 0m1,e所以 0a 1,当 a1时, x e,只有一个零点,不合题意,e e所以 0a 1 e应选: B【点睛】本题主要考察导数与函数的零点,还考察了数形联合的思想和运算求解的能力,属于中档题.13.已知定义在R 上的奇函数y f x知足 f x8f x0 ,且 f 5 5 ,则f2019f2024()A. -5B. 5C. 0D. 4043【答案】 B【分析】【剖析】依据 f ( x8) f ( x)0 得函数的周期为16,联合f55, f (0) 0 即可求解.【详解】由 f (x 8) f (x) 0 ,得 f ( x 8) f ( x) ,所以 f ( x 16) f ( x8) f ( x) .故函数 y f (x) 是以16为周期的周期函数 .又在 f ( x8) f ( x)0 中,令x0 ,得 f (8) f (0) 0,且奇函数 y f ( x) 是定义在R上的函数,所以 f (0)0.故 f (8)0 .故 f (2024) f (161268) f (8)0 .又在 f ( x8) f ( x)0 中,令 x3,得 f (5) f (3)0 .得 f (5) f (3) f (3) 5 ,则 f (2019) f (161263) f (3) 5 .所以 f (2019) f (2024) 5 .应选: B.【点睛】本题考察依据函数的周期性求抽象函数的函数值,重点在于依据函数关系正确得出函数周期,联合定义在 R 上的奇函数的特点求值 .1, c f 314.已知函数f x x2cos x ,若 a f log 1 3, b f log31,555则()A. a b c B.b a cC.c b a D.c a b【答案】 B【分析】【剖析】判断 f x为偶函数,利用导数得出 f x在 0,上单一递加,由对数函数的性质,联合函数 f x的单一性和奇偶性,即可得出答案.【详解】f x x 2x 2 cos x f x ,故 f xcos x为偶函数故只要考虑x 0,的单一性即可 .f ' x2x sin x ,当 x 0, 时,易得 f ' x 0故 fx 在 0,上单一递加, af log 1 3f log 5 3 ,5bf log 3 1f log 3 5 ,53由函数单一性可知 f1 3 f log 35 ,即 c a bf log 55应选: B 【点睛】本题主要考察了利用函数的奇偶性以及单一性比较大小,属于中档题.15. 函数 f x ln x 2x 3 的图象在点 1, f 1 处的切线方程为(). y 6x 4 x. y 7x 5 . y 6x 3.y 7x 4ABCD【答案】 B【分析】【剖析】第一求得切线的斜率,而后求解切线方程即可 .【详解】由函数的分析式可得:f ' x1 ln x 6x2 ,x 2 则所求切线的斜率k f ' 11 ln1 6 12 7 ,120 2 1 2 ,即切点坐标为1,2 ,且: f 11由点斜式方程可得切线方程为: y2 7 x 1 ,即 y 7 x 5 .本题选择 B 选项 .【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防备与乘法公式混杂.二是直线与曲线公共点的个数不是切线的实质,直线与曲线只有一个公共点,直线不必定是曲线的切线,相同,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的重点是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积 .16.以下求导运算正确的选项是()A.cos xsin x B. ln 2x1C.3x3x log 3 e D. x2e x2xe xx【答案】 B【分析】剖析:利用基本初等函数的导数公式、导数的运算法例对给出的四种运算逐个考证,即可获得正确答案 .''121, B 正确;3x'详解:cosx sinx ,A不正确; ln2 x3x ln3 ,C不2x x正确;x2 e x '2xe x x2 e x, D 不正确,应选 B.点睛:本题主要考察基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.17.设函数 f x x e x,则()1A.f x 有极大值B.eC.f x 有极大值eD.f xf x1有极小值e有极小值e【答案】 B【分析】【剖析】利用导数求出函数y f x 的极值点,剖析导数符号的变化,即可得出结论.【详解】Q f x x e x,定义域为R, f xx 1 e x,令 f x 0 ,可得 x 1.当 x1时,f x0 ;当x1时,f x0 .所以,函数 f x x e x在 x 1 处获得极小值f11,e应选: B.【点睛】本题考察利用导数求函数的极值,在求出极值点后,还应剖析出导数符号的变化,考察计算能力,属于中等题.18.已知函数f x x2mx 图象在点 A 1, f 1处的切线 l 与直线x 3y 20 垂直,1的前 n 项和为 S n,则 S2018的值为(若数列)f n2015B .2016C .2017 D .2018 A .2017201820192016【答案】 D【分析】【剖析】求出原函数的导函数,获得y f x 在 x 1 时的导数值,进一步求得 m ,可得函数分析式,而后利用裂项相消法可计算出 S 2018 的值.【详解】由 f xx 2 mx ,得 f x 2x m , f 1 m 2 ,由于函数 f xx 2 mx 图象在点 A 1, f 1 处的切线 l 与直线 x 3y2 0垂直,f 1m2 3 ,解得 m , f x x 2x ,则11 111 1f nn2n n n 1n n 1 .S201811 1 111 1 2018所以,2 2L201820191.320192019应选: D. 【点睛】本题考察利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前 n 项和,是中档题.-1, g a cosx 2, x 0? x 1∈ [1,+19. 已知函数 f ( x )= 2xx2a, x (a ∈R ),若对随意x 2 0∞),总存在 x 2∈ R ,使 f ( x 1)= g ( x 2),则实数 a 的取值范围是()A .,1B . 2 ,C .,1U 1,2D . 1,3U7, 22322 4【答案】 C 【分析】【剖析】对 a 分 a=0,a <0 和 a >0 议论, a > 0 时分两种状况议论,比较两个函数的值域的关系,即得实数 a 的取值范围 .【详解】当 a=0 时,函数 f ( x )= 2x -1 的值域为 [1,+ ∞),函数 g x 的值域为 [0,++ ∞),知足题意 .当 a < 0 时, y= x 2 2a( x 0) 的值域为( 2a,+ ∞), y= acosx2 x 0 的值域为 [a+2,-a+2],由于 a+2-2a=2-a>0,所以 a+2> 2a,所以此时函数 g(x)的值域为( 2a,+ ∞),由题得 2a < 1,即 a < 1,即 a < 0.2当 a > 0时, y= x 22a( x 0) 的值域为( 2a,+ ∞),y= acosx 2 x 0 的值域为 [- a+2,a+2],当 a ≥2时, -a+2≤2a,由题得a 2 11 a2 .a 2,32a当 0< a < 2时, -a+2> 2a ,由题得 2a < 1 ,所以 a <1.所以 0< a <1 .3221综合得 a 的范围为 a <或 1≤a ≤2,应选 C.【点睛】本题主要考察函数的图象和性质,考察指数函数和三角函数的图象和性质,意在考察学生 对这些知识的理解掌握水平易剖析推理能力.x 2 ln x20. 函数 y的图象大概是( )xA .B .C .D .【答案】 D【分析】【剖析】依据函数为偶函数清除 B ,当 x0时 ,利用导数得 f (x) 在 (0, 1) 上递减 ,在 ( 1 , )上递加 ,根ee据单一性剖析 A,C 不正确 ,故只好选 D .【详解】x 2 ln | x |( x)2 ln | x |f (x) ,令 f (x),则 f ( x)| x || x |所以函数 f (x) 为偶函数 ,其图像对于y 轴对称 ,故 B 不正确 ,当 x 0时,f ( x)x2 ln xx ln x ,f ( x) 1 ln x,x由 f (x)0 ,得x 1,由f ( x)0 ,得 0 x e所以 f (x) 在(0,1)上递减,在(1,)上递加 ,e e联合图像剖析 , A, C不正确 .应选 :D【点睛】本题考察了利用函数的奇偶性判断函数的图象性判断函数的图象 ,属于中档题 .1,e,考察了利用导数研究函数的单一性,利用单一。
高考数学压轴专题2020-2021备战高考《函数与导数》全集汇编附答案解析
【最新】单元《函数与导数》专题解析一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A 【解析】 【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.5.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
高考数学压轴专题2020-2021备战高考《函数与导数》全集汇编含答案
【最新】《函数与导数》专题解析一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.3.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.4.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-<⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.5.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.6.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭. 故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.7.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1,∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++ ≥17+24n 4mm n⋅=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.8.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.9.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>,所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e <≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意,所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.10.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020xf x =,则()2020f =( ) A .2020 B .12020C .11010D .0【答案】D 【解析】 【分析】根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得()()20200f f =,由函数的解析式计算可得答案.【详解】解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+, 变形可得:()()42f x f x +=-+,即()()2f x f x +=-, 则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,()()()20200505400f f f ∴=+⨯==;故选:D . 【点睛】本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.11.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B 【解析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.12.已知定义在R 上的函数(f x ),其导函数为()f x ',若()()3f x f x '-<-,()04f =,则不等式()3x f x e >+的解集是( )A .(),1-∞B .(),0-∞C .()0,+∞D .()1,+∞【答案】B 【解析】不等式()3xf x e >+得()()3311xx xf x f x e e e ->+∴>, ()()()()()330xxf x f x f xg x g x ee--+=∴='<'设,所以()g x 在R 上是减函数,因为()()()4301001g g x g x -==∴>∴<. 故选B .点睛:本题的难点在于解题的思路. 已知条件和探究的问题看起来好像没有分析联系,这里主要利用了分析法,通过分析构造函数,利用导数的知识解答.13.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.14.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=, 所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=, 根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A . 【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.15.设函数()xf x x e =⋅,则( ) A .()f x 有极大值1e B .()f x 有极小值1e- C .()f x 有极大值eD .()f x 有极小值e -【答案】B【解析】【分析】 利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论.【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-. 当1x <-时,()0f x '<;当1x >-时,()0f x '>.所以,函数()x f x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B.【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.16.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )A .()()2019202020202019f f >B .()()20192020f f >C .()()2019202020202019f f <D .()()20192020f f <【解析】【分析】构造函数()()f x g x x=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.【详解】令()()()0f x g x x x =>,则()()()2xf x f x g x x '-'=. 由已知得,当0x >时,()0g x '>.故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,即()()2020201920202019f f >,所以()()2019202020202019f f >. 故选:A.【点睛】 本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.17.40cos2d cos sin x x x xπ=+⎰( ) A.1)B1 C1 D.2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.18.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e上递减,在1(,)e +∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】 令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】 本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.19.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25 【答案】D【解析】【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n ⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果. 【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.20.设113000,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( ) A .b c a >>B .b a c >>C .a c b >>D .a b c >>【答案】D【解析】 根据微积分定理,3120022|33a xdx x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。
高考数学压轴专题2020-2021备战高考《函数与导数》专项训练及解析答案
【高中数学】《函数与导数》知识点汇总一、选择题1.函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】 【分析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x=>,排除CD ,得到答案. 【详解】()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x =>恒成立,排除CD 故答案选A 【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.2.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.3.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.4.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.5.已知21()cos 4f x x x =+,'()f x 为()f x 的导函数,则'()f x 的图像是( ) A . B .C .D .【答案】A 【解析】Q ()21f cos 4x x x =+,()()1'sin ,'2f x x x y f x ∴=-=为奇函数,∴图象关于原点对称,排除,B D ,又()'10f <Q ,可排除C ,故选A.【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6.函数22cos x xy x x--=-的图像大致为( ). A . B .C .D .【答案】A【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.7.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.8.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.9.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.10.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.11.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e <≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意,所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.12.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >>C .b a c >>D .c a b >>【答案】B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.13.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+-D .(]2ln2,2-【解析】 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x Q 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.14.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞B .[)1,+∞ C .()1,+∞D .()+∞【解析】 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x xf x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin ,142x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦ (14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.15.已知函数()2cos f x x x =-,若15log 3a f ⎛⎫= ⎪⎝⎭,31log 5b f ⎛⎫= ⎪⎝⎭,315c f ⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭=⎪,则( ) A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】B 【解析】 【分析】判断()f x 为偶函数,利用导数得出()f x 在()0,π上单调递增,由对数函数的性质,结合函数()f x 的单调性和奇偶性,即可得出答案. 【详解】()()()()22cos cos f x x x x x f x -=---=-=,故()f x 为偶函数故只需考虑()0,x ∈+∞的单调性即可.()'2sin f x x x =+,当()0,x π∈时,易得()'0f x > 故()f x 在()0,π上单调递增,()155log 3log 3a f f ⎛⎫== ⎪⎝⎭,()331log log 55b f f ⎛⎫== ⎪⎝⎭,由函数单调性可知()()3531log 3log 55f f f ⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭,即c a b << 故选:B 【点睛】本题主要考查了利用函数的奇偶性以及单调性比较大小,属于中档题.16.[]0x a,b ∃∈使得()f x m ≥成立,等价于[]()0x a,b ,[f x ]m max ∈≥17.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.18.40cos2d cos sin x x x xπ=+⎰( ) A.1)B1 C1 D.2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞. 故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.20.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D【解析】【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可. 【详解】0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤ 故选:D【点睛】本题考查对数函数的单调性,属于中档题.。
高考数学压轴专题2020-2021备战高考《函数与导数》难题汇编及答案解析
数学《函数与导数》试卷含答案一、选择题1.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.3 1.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.2.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.3.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1C .2D .4【答案】C 【解析】 【分析】根据对称性即可求出答案. 【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】本题主要考查函数的对称性的应用,属于中档题.4.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.5.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x -'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x-'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.6.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( ) A .1 B .13C .23D .12【答案】B 【解析】 【分析】利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案. 【详解】 由题意,曲线21xy e -=+,则22x y e -'=-,所以200|2|2x x x y e -=='=-=-,所以曲线21xy e-=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,令0y =,解得1x =,令y x =,解得23x y ==, 所以切线与直线y 0=和y x =所围成图形的面积为1211233⨯⨯=,故选B .【点睛】本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.7.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】 【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-,因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<. 故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.8.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.9.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
高考数学压轴专题2020-2021备战高考《函数与导数》分类汇编含答案
数学《函数与导数》复习知识重点一、选择题1.若点 (log 14 7,log 14 56) 在函数 f (x) kx 3 的图象上,则 f (x) 的零点为()A.1B.3C. 23 2D.4【答案】 B【分析】【剖析】将点的坐标代入函数y f x的分析式,利用对数的运算性质得出k 的值,再解方程f x0 可得出函数 y f x 的零点.【详解】Q log 14 56 log14 4log 14 1412log 14 2 1 2(1 log 14 7) 3 2log 14 7,k 2 ,f ( x)2x 3.故 f x 的零点为3,应选 B. 2【点睛】此题考察对数的运算性质以及函数零点的观点,解题的重点在于利用对数的运算性质求出参数的值,解题时要正确掌握零点的观点,考察运算求解能力,属于中等题.2.设 f ( x) 为R上的奇函数,知足 f (2x) f (2 x) ,且当0x2时, f (x)xe x,则 f (1) f (2) f (3)L f (100)()A.2e 2e2B.50e50e2C.100e100e2D.2e2e2【答案】 A【分析】【剖析】由 f 2x f2x可得对称轴,联合奇偶性可知 f x周期为 8;可将所求式子经过周期化为 f1 f 2f3f4 ,联合分析式可求得函数值.【详解】由 f 2 x f 2 x得: f x对于 x 2 对称又Q f x为 R 上的奇函数f x 是以 8 为周期的周期函数Q f 1 f 2 f 8 f 1 f 2 f 4f1f2f40且 f 1 f 2 f 3 f 42e 2e2f1f2f10012f1 f 2 f 8f1 f 2f3 f 4 2e2e2应选: A【点睛】此题考察利用函数的奇偶性、对称性和周期性求解函数值的问题,重点是可以利用奇偶性 和对称轴获得函数的周期,并求得基础区间内的函数值.3.已知函数 f ( x) 是偶函数,当 x 0 时, f ( x) x ln x1 ,则曲线 yf ( x) 在 x 1处的切线方程为( )A .yxB . yx 2C . y xD . y x 2【答案】 A【分析】【剖析】第一依据函数的奇偶性,求适当x 0 时, f x 的分析式,而后求得切点坐标,利用导数求得斜率,进而求得切线方程.【详解】因为 x0 , f ( x) f ( x)x ln( x) 1, f ( 1) 1 , f ( x) ln( x) 1 ,f ( 1)1,所以曲线 yf ( x) 在 x1 处的切线方程为 y 1 x1 ,即yx .应选: A【点睛】本小题主要考察依据函数奇偶性求函数分析式,考察利用导数求切线方程,属于基础题.4.已知定义在 R 上的函数 f x 知足 f x f x 2 2 ,设 g x24x f x 2x ,若 g x 的最大值和最小值分别为 M 和 m ,则 Mm ( )A .1B . 2C . 3D . 4【答案】 B【分析】∵ f xf x4x 22 , g x f x 2x 2∴ g( x) g ( x) f (x) 2x 2f ( x) 2x 24x 22 4 x 22∴函数 gx 对于点 (0,1) 对称∵ g x 的最大值和最小值分别为 M 和 m∴ M m 1 2 2应选 B.5.已知直线 y kx 2 与曲线 yx ln x 相切,则实数 k 的值为()A . ln 2B . 1C. 1 ln2D. 1 ln2【答案】 D 【分析】由 yxlnx 得 y' ln x1 ,设切点为 x 0, y 0 ,则 kln x 0 y 0kx 0 21 ,,y 0x 0 ln x 0 kx 0 2 x 0 ln x 0 ,2 ,对照 k ln x 01 ,x 0 2 ,kln 2 1 ,故k ln x 0x 0选 D.6.曲线 y = x 2 与直线 yx 所围成的关闭图形的面积为()11 1D .5A .B .C .6632【答案】 A【分析】曲线 yx2与直线 yx 的交点坐标为 0,0 , 1,1,由定积分的几何意义可得曲线y x 211 x2 1x3|101与直线 yx 所围成的关闭图形的面积为x x 2 dx,应选 A.2367.三个数 a22 , bln 2, c ln 3e3 A . b<c<aB . b<a<c的大小次序为 ( )C . c<a<bD . a<b<c【答案】 D【分析】【剖析】1b c ,由此得出三者的大小关系 .经过证明 a3【详解】221 11 66123ln e 3,因为e3ae,2 28 ,所以 e 32 ,所以263e1111616112332ln e 3 lnb .而 228, 339 ,所以2 ,即 a2233 ,所以 331 1ln 3 1ln 22ln 33,即 bc ,所以 a b c .3应选: D 【点睛】本小题主要考察指数式、对数式比较大小,考察指数运算和对数运算,属于中档题.8.设函数 f x 在 R 上存在导数 f x ,x R 有 f x f x 2x 2,在 0, 上f x 2x ,若 f 4 m f m 16 8m ,则实数 m 的取值范围是()A . 2,B . 0,C . 2,2D ., 22,【答案】 A【分析】 【剖析】通 x R 有 f x f x2x 2 ,结构新函数 g x f x x 2,可得 g x 奇函数;利用f x2x ,求 g x的 函数得出g x 的 性,再将不等式f 4 mf m16 8m化,可求 数 m 的取 范 .【 解】g x f xx 2 ,∵ g x g x f x x 2fx x 2 0 ,∴函数 g x 奇函数,∵在 x 0,上, fx2x ,即 f x 2x 0 ,∴ g x f x 2x 0 ,∴函数 g x 在 x 0,上是减函数,∴函数 gx 在 x,0 上也是减函数,且 g 0 0,∴函数 g x 在 xR 上是减函数,∵ f 4 m f m 16 8m ,2g m m 216 8m ,∴ g 4 m4 m∴ g 4 m g m ,∴ 4 m m , 即 m 2 .故 : A.【点睛】本 考 函数的奇偶性、 性的 用,考 运算求解能力、 化与化 的数学思想,是中档 .9.已知函数f ( x )( x ∈ R ) 足 f (x ) =f (2-x ),若函数y=|x 2-2x-3| 与 y=f ( x ) 像的m交点 ( x 1,y 1),( x 2,y 2), ⋯,( x m ,y m ),x i =i 1A .0B . mC . 2mD . 4m【答案】 B【分析】试题剖析:因为 y f (x), y x22x 3的图像都对于x 1对称,所以它们图像的交点也对于 x1对称,当 m 为偶数时,其和为2m m ;当 m 为奇数时,其和为2m 11m ,所以选 B.22【考点】函数图像的对称性【名师点睛】假如函数 f (x) ,x D ,知足x D ,恒有 f (a x) f (b x) ,那么函数的图象有对称轴a b;假如函数 f (x) ,x D ,知足x D ,恒有x2f (a x) f (b x) ,那么函数 f ( x) 的图象有对称中心( a b,0) .210.已知函数 f x ln x2 1 x,设a f log3 0.2 ,b f 3 0.2,c f 31.1,则()A. a b c B.b a c C.c b a D.c a b 【答案】 D【分析】∵ f x ln x21x∴ f (x)ln(x21x) ln1x2 1 x∴ f ( x) ln( x2 1 x)∵当∴当x0 时,21 x 1;当 x0时,021 x 1x xx0 时,f ( x)ln( x2 1 x)ln( x21x) ln( x2 1 x) ,f (x)ln(x21x);当 x0时 f (x)ln(x21x)ln(x2 1 x) ;f (x)ln(x21x)ln(x21x).∴ f ( x) f ( x)∴函数 f x 是偶函数∴当 x 0 时,易得f ( x)ln(x21x) 为增函数∴ a f (log 3 0.2) f (log 3 5), c f (31.1 ) f (31.1 )∵ 1log 3 5 2 , 03 0.21, 31.13∴ f (31.1 ) f (log 3 5) f (3 0.2 )∴c a b应选 D.11.已知a ln 3 , b ln 4 , c ln e( e 是自然对数的底数),则a,b, c 的大小关系是34e()A.c a b B. a c b C.b a c D.c b a 【答案】 C【分析】【剖析】依据 a ln 3bln 4,cln e的结构特色,令 f xln x ,4e,求导3xf x 1ln xf x在 0,e 上递加,在e,+上递减,再利用单一性求解 .x2,可得【详解】令 f x ln x,x所以 f x 1ln xx2,当 0 x e时, f x0 ,当x e时,f x0 ,所以 f x在 0,e上递加,在e,+上递减 .因为 e34,所以 f e f3f4,即 b a c .应选: C【点睛】此题主要考察导数与函数的单一性比较大小,还考察了推理论证的能力,属于中档题.12.已知函数f x 的导函数为 f x 且知足 f x 2 x f 11 ln x ,则fe()12B.e 2C.1D.eA.e【答案】 B【分析】【剖析】对函数求导获得导函数,代入x 1 可求得 f11,进而获得 f x ,代入 x1 求得e结果 . 【详解】由题意得:fx 2 f11x令 x 1 得: f1 2 f 1 1,解得: f11f x21 f1 e 2x e此题正确选项: B【点睛】此题考察导数值的求解,重点是可以经过赋值的方式求得常数,致使求导错误 .f 1 ,易错点是忽视f 1 为13 . 已知定义在 R 上的函数f ( x )f x,若 f xf x3,,其导函数为f0 4 ,则不等式 f xe x 3的解集是( )A .,1B .,0C . 0,D . 1,【答案】 B【分析】不等式 fxf x3f x3x e3得1e x1,e xe x设 g xf x 3, g xf xf x 3 0e xe x所以 gx 在 R 上是减函数,因为g 04 3g x g 0x 0 .1 1应选 B .点睛:此题的难点在于解题的思路. 已知条件和研究的问题看起来仿佛没有剖析联系,这里主要利用了剖析法,经过剖析结构函数,利用导数的知识解答.14. 已知函数在区间上有最小值,则函数 在区间上必定()A .有最小值B .有最大值C .是减函数D .是增函数【答案】 D【分析】【剖析】由二次函数在区间上有最小值得悉其对称轴,再由基本初等函数的单一性或单一性的性质可得出函数在区间【详解】因为二次函数在区间上有最小值,可知其对称轴上的单一性 .,.当时,因为函数和函数在上都为增函数,此时,函数当时,在上为增函数;在上为增函数;当时,由双勾函数的单一性知,函数在上单一递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,应选 D.【点睛】此题考察二次函数的最值,同时也考察了型函数单一性的剖析,解题时要注意对的符号进行分类议论,考察分类议论数学思想,属于中等题.15.已知定义在R上的函数f x知足 f 3 2x f 2x 1 ,且 f x 在[1,) 上单一递加 ,则()A.f0. 20.3f log 30.5f41.1B.f0. 20.3f41.1f log 30.5C.f41.1f0.20.3f log 3 0.5D.f log 3 0.5f0.20.3f41.1【答案】 A【分析】【剖析】由已知可得f x 的图象对于直线 x 1 对称 .因为 0.20.3 1log 3 0.5 141.1 1 ,又f x 在 [1, )上单一递加 ,即可得解 .【详解】解:依题意可得 , f x 的图象对于直线 x 1 对称 .因为 0.20.3 0,1 , log 3 0.5log 3 2 1, 0 , 41.14,8 ,则 0.20.3 1 log 3 0.5 141.11 ,又 f x在 [1, ) 上单一递加 ,所以 f 0.20.3f log 3 0.5f41.1.应选 :A.【点睛】此题考察了函数的对称性及单一性,重点考察了利用函数的性质判断函数值的大小关系, 属中档题 .16. 如图,对应此函数图象的函数可能是 ( )1 xA . y( x 21)B . 2C . yln xD .y2x ( x 2 1)y xe x1【答案】 B【分析】【剖析】察看图象,从函数的定义域,零点,以及零点个数,特色函数值判断,清除选项,获得正确答案 .【详解】由图象可知当 x 0 时, y1 ,C 不知足;当 x 1 时, y0 ,D 不知足条件;2A.由函数性质可知当x 214 1 12 ,明显 A 不建立;时, y2而 B 都建立.应选: B【点睛】此题考察依据函数图象,判断函数的分析式,重点考察函数性质的判断,包括函数的定义域,函数零点,零点个数,单一性,特别值,等信息清除选项,此题属于中档题型.17.已知函数f x的导函数为 f x ,在 0,上知足 xf x f x ,则以下必定成立的是()A.2019 f20202020 f2019B.f2019f2020C.2019 f20202020 f2019D.f2019f2020【答案】 A【分析】【剖析】结构函数g x f x,利用导数判断函数y g x 在 0,上的单一性,可得出xg 2019 和 g2020 的大小关系,由此可得出结论.【详解】令g x f xx0,则 gxf x f x x x x2.由已知得,当 x0 时, g x0 .故函数 y g x在 0,上是增函数,所以g2020g 2019 ,即 f 2020f2019,所以 2019f 20202020 f2019 .20202019应选: A.【点睛】此题考察利用结构函数法得出不等式的大小关系,依据导数不等式的结构结构新函数是解答的重点,考察推理能力,属于中等题.3π与 x 轴以及直线 x 3π)18.曲线y cos x 0 x所围图形的面积为(22A.4B.2C.5D.3 2【答案】 B 【分析】【剖析】【详解】3 32试题剖析: S(0 cosx)dxsin x 2222,选 B.考点:定积分的几何意义19. 函数 f ( x) log a 5 ax , a 0, a 1 在 1,3上是减函数,则a 的取值范围是 ( )A . 5,B . 1,1C . 1,5D . 1,5353 3【答案】 D【分析】【剖析】 依据 a0 可知 y 5 ax 在定义域内单一递减,若使得函数f ( x)log a 5 ax , a 0, a 1 在 1,3a 1上是减函数,则需3a,解不等式即可 .5 0【详解】Q a 0y 5 ax 在定义域内单一递减若使得函数 f ( x) log a 5 ax , a 0, a 1 在 1,3 上是减函数则需a 153a,解得 1 a5 03应选: D 【点睛】此题考察对数函数的单一性,属于中档题.x 2 1,x 0 a1,则实数 a 的取值范围是(20. 已知函数 f ( x), x ,若 f)log 2 xA . ( 4] U[2, )B . [ 1,2]C . [ 4,0) U (0,2]D . [ 4,2]【答案】 D【分析】【剖析】不等式 f a 0,a 0,分别解不等式组后,取并集可求得aa 1等价于2 1 或a1, log 2 a 1,的取值范围 .【详解】f aa0, a 0,1211,或,a log2 a1,解得: 4 a0 或0a 2 ,即a [4,2] ,应选D.【点睛】此题考察与分段函数相关的不等式,会对 a 进行分类议论,使f ( a) 取不一样的分析式,进而将不等式转变为解绝对值不等式和对数不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】数学《函数与导数》专题解析(1)一、选择题1.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】 【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-, 因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<. 故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.2.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.3.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.4.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.5.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.6.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x-'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x -'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.7.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k +->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165,故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.8.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2- B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.9.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A .【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.10.已知()2ln33,33ln3,ln3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b << C .a c b <<D .a b c <<【答案】B 【解析】 【分析】根据,,a b c 与中间值3和6的大小关系,即可得到本题答案. 【详解】因为323e e <<,所以31ln 32<<, 则3ln3223336,33ln 36,(ln 3)3a b c <=<=<=+>=<,所以c a b <<.故选:B 【点睛】本题主要考查利用中间值比较几个式子的大小关系,属基础题.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -,则可得正六棱柱容器的容积为()())()3233921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,)31x -, 所以正六棱柱容器的容积为()())()32339214V x x x x x x x =+-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫ ⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.13.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.14.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C.考点:函数的性质15.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( )A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A【解析】【分析】 通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-, ∵()()()()220g x g x f x x f x x +-=-+--=, ∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<,∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数,∴函数()g x 在(),0x ∈-∞上也是减函数,且()00g =,∴函数()g x 在x ∈R 上是减函数,∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥,∴4m m -≤,即2m ≥.故选:A.【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.16.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b - B .3223b - C .0 D .2316b b - 【答案】A【解析】【分析】 求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--,∵函数()f x 在区间[3,1]-上不是单调函数, 31b ∴-<<,由()0f x '>,解得:2x >或x b <,由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-, 故选:A.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.17.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( )A .a c b >>B .a b c >>C .b a c >>D .c a b >> 【答案】B【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.18.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B【解析】【分析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解.【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=,且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==.又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==.所以(2019)(2024)5f f +=.故选:B.【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.19.下列求导运算正确的是( )A .()cos sin x x '=B .()1ln 2x x '=C .()333log x x e '=D .()22x x x e xe '= 【答案】B【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x =⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222x x x x e xe x e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.20.对于任意性和存在性问题的处理,遵循以下规则:。