石油工程 CH13
石油工程项目管理机制
关, 与承 包 商 的边 际生 产 率 正 相 关 , 与 其他 可观 测 变 量 相 关 。在 最 优 监 督 水 平 下 , 业 公 司 的 边 际 生 产 率 越 高 , 际 成 还 作 边 本 越 低 , 容 易监 督 , 督 带 来 的边 际 收 益越 高 。 对于 那 些 监督 比较 困难 的项 目, 以通 过 加 强 惩 罚 力 度 的 方 式 弥 补 难 以 越 监 可 有 效 监 督 的 不足 。 激 励 性 承包 方 式 可 以减 小 逆 向选 择 造 成 的危 害 , 建 动 态联 盟 可 以 进 一 步加 强 激 励 作 用 , 组 降低 道 德 风
r s rc e viec m p is e fc i l l s h y s er ie t e c e t its r c o ane fe tvey un e st e up vs h onta t f r c of wor . I h i a onta t s k n t eoptm lc r c s,i en i ei de s nc tv n x i
维普资讯
石
22 4 20 0 6年 4月 油勘探与开发
Vo . 3 No 2 13 .
PE TROL EUM EXPL ORATI ON AND DEVEL OPM ENT
文 章 编 号 :0 0 0 4 ( 0 6 0 — 2 20 1 0 — 7 7 2 0 ) 20 4 —4
石 油 工程 项 目管 理 机 制
罗 东坤 , 治 国 丁
( 国 石油 大 学 ( 京) 中 北 ) 基 金 项 目 : 家 高技 术 研 究发 展 计 划 “ 6 ” 目“ 国 83项 可控 ( 闭环 ) 维轨 迹 钻 井技 术 ” 2 0 AA6 2 1 - 3 三 (01 0 0 20 B)
石油工程类SCI期刊
2013年SCIE收录石油期刊24种,其中SCI收录9种。
2012年JCR收录石油期刊24种,其中影响因子1以上有4种、影响因子0.5以上有7种,2012年石油期刊影响因子前5名期刊如下:1、 AAPG BULLETIN《美国石油地质学家协会通报》Monthly ISSN: 0149-1423,2012年影响因1.768、5年影响因子2.4552、PETROLEUM GEOSCIENCE《石油地质科学》 Quarterly ISSN: 1354-0793,2012年影响因1.500、5年影响因子1.2503、OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES《石油、天然气的科学与技术;法国石油研究所杂志》Bimonthly ISSN: 1294-4475,2012年影响因1.258、5年影响因子1.3674、SPE JOURNAL《石油工程师协会杂志》 Quarterly ISSN: 1086-055X,2012年影响因1.011、5年影响因子1.4635、JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING《石油科学和石油工程杂志》 Monthly ISSN: 0920-4105,2012年影响因0.997、5年影响因子1.2972013年SCI收录石油学科期刊24种目录SCIENCE CITATION INDEX EXPANDEDENGINEERING, PETROLEUM - JOURNAL LIST Total journals: 241. AAPG BULLETIN《美国石油地质学家协会通报》Monthly ISSN: 0149-1423AMER ASSOC PETROLEUM GEOLOGIST, 1444 S BOULDER AVE, PO BOX 979, TULSA, USA, OK, 74119-36042. CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS《燃料与石油化学和工艺学》Bimonthly ISSN: 0009-3092SPRINGER, 233 SPRING ST, NEW YORK, USA, NY, 100133. CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY《中国炼油与石油化工》 Quarterly ISSN: 1008-6234CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY PRESS, NO 18 XUEYUAN RD, BEIJING, PEOPLES R CHINA, 1000834. CT&F-CIENCIA TECNOLOGIA Y FUTURO Annual ISSN: 0122-5383ECOPETROL SA, INST COLOMBIANO PETROLEO, CONSEJO EDITORIAL CT F,KILOMETRO 7 VIA BUCARAMANGA, BOGOTA, COLOMBIA, 000005. HYDROCARBON PROCESSING《烃加工》Monthly ISSN: 0018-8190GULF PUBL CO, BOX 2608, HOUSTON, USA, TX, 77252-26086. INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY《国际石油、天然气与煤炭技术杂志》 Quarterly ISSN: 1753-3309INDERSCIENCE ENTERPRISES LTD, WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, GENEVA, SWITZERLAND, CH-12157. JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY《加拿大石油技术杂志》 Monthly ISSN: 0021-9487SPE-SOC PETROLEUM ENGINEERS, CANADA, 500-5 AVE SW, STE 425, CALGARY, CANADA, ALBERTA, T2P 3L58. JOURNAL OF GEOPHYSICS AND ENGINEERING《地球物理学与工程学》 Irregular ISSN: 1742-2132IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL, ENGLAND, BS1 6BE9. JOURNAL OF PETROLEUM GEOLOGY《石油地质学杂志》 Quarterly ISSN: 0141-6421WILEY-BLACKWELL, 111 RIVER ST, HOBOKEN, USA, NJ, 07030-577410. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING《石油科学和石油工程杂志》Monthly ISSN: 0920-4105ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE11. JOURNAL OF THE JAPAN PETROLEUM INSTITUTE《日本石油学会志》 Bimonthly ISSN: 1346-8804JAPAN PETROLEUM INST, COSMO HIRAKAWA-CHO BLDG, 3-14, 1-CHOMEHIRAKAWA-CHO, CHIYODA-KU, TOKYO, JAPAN, 10212. OIL & GAS JOURNAL《石油与天然气杂志》 Weekly ISSN: 0030-1388PENNWELL PUBL CO ENERGY GROUP, 1421 S SHERIDAN RD PO BOX 1260, TULSA, USA, OK, 7411213. OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES《石油、天然气的科学与技术;法国石油研究所杂志》Bimonthly ISSN: 1294-4475EDITIONS TECHNIP, 27 RUE GINOUX, PARIS 15, FRANCE, 7573714. OIL GAS-EUROPEAN MAGAZINE《欧洲石油气杂志》 Quarterly ISSN: 0342-5622URBAN-VERLAG GMBH, PO BOX 70 16 06, HAMBURG, GERMANY, D-2201615. OIL SHALE《油页岩》Quarterly ISSN: 0208-189XESTONIAN ACADEMY PUBLISHERS, 6 KOHTU, TALLINN, ESTONIA, 1013016. PETROLEUM CHEMISTRY《石油化学》 Bimonthly ISSN: 0965-5441MAIK NAUKA/INTERPERIODICA/SPRINGER, 233 SPRING ST, NEW YORK, USA, NY, 10013-157817. PETROLEUM GEOSCIENCE《石油地质科学》 Quarterly ISSN: 1354-0793GEOLOGICAL SOC PUBL HOUSE, UNIT 7, BRASSMILL ENTERPRISE CENTRE,BRASSMILL LANE, BATH, ENGLAND, AVON, BA1 3JN18. PETROLEUM SCIENCE《石油科学》Quarterly ISSN: 1672-5107SPRINGER HEIDELBERG, TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY,D-6912119. PETROLEUM SCIENCE AND TECHNOLOGY《石油科学与技术》Semimonthly ISSN: 1091-6466TAYLOR & FRANCIS INC, 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, USA, PA, 1910620. PETROPHYSICS《岩石物理学》 Bimonthly ISSN: 1529-9074SOC PETROPHYSICISTS & WELL LOG ANALYSTS-SPWLA, 8866 GULF FREEWAY, STE 320, HOUSTON, USA, TX, 7701721. SPE DRILLING & COMPLETION《石油工程师协会钻井与完井》 Quarterly ISSN: 1064-6671SOC PETROLEUM ENG, 222 PALISADES CREEK DR,, RICHARDSON, USA, TX, 7508022. SPE JOURNAL《石油工程师协会杂志》 Quarterly ISSN: 1086-055XSOC PETROLEUM ENG, 222 PALISADES CREEK DR,, RICHARDSON, USA, TX, 7508023. SPE PRODUCTION & OPERATIONS《石油工程师协会生产和操作》 Quarterly ISSN: 1930-1855SOC PETROLEUM ENG, 222 PALISADES CREEK DR,, RICHARDSON, USA, TX, 7508024. SPE RESERVOIR EVALUATION & ENGINEERING《石油工程师协会油藏评估与工程》Bimonthly ISSN: 1094-6470SOC PETROLEUM ENG, 222 PALISADES CREEK DR,, RICHARDSON, USA, TX, 75080。
化学名词(石油化学)
1、石脑油:简称NAP ,又称粗汽油,是石油轻质馏分的泛称。
由原油蒸馏或石油二次加工而得。
主要成分为烷烃的C 4~C 6。
主要用途:可分离出汽油、苯、煤油、沥青等多种有机原料。
是裂解制取乙烯、丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。
2、苯:分子式C 6H 6,结构式。
苯是最简单的芳香烃。
苯是一种石油化工基本原料。
苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。
3、甲苯:分子式C 7H 8,结构式,是一种无色,带特殊芳香味的易挥发液体,简称MB 。
甲苯是芳香烃的一种,是一种常用的化工原料,可用于制造炸药、农药、苯甲酸、染料、合成树脂及涤纶等。
同时它也是汽油的一个组成成分。
4、二甲苯:又称1,2-二甲苯,分子式C 6H 4(CH 3)2,简称DMB 。
为无色透明液体,有邻、间、对三种异构体。
由芳烃联合装置的重整液、加氢汽油分馏以及甲苯歧化得到混合二甲苯。
在工业上,二甲苯即指上述异构体的混合物。
广泛用于涂料、树脂、染料、油墨等行业做溶剂;用于医药、炸药、农药等行业做合成单体或溶剂;也可作为高辛烷值汽油组分,是有机化工的重要原料。
5、对二甲苯:又称1,4-二甲苯,分子式C 8H 10,结构式,是苯的衍生物,重要的化工原料,简称PX 。
混合二甲苯经吸附分离制取可得到对二甲苯。
主要用于制造对苯二甲酸,可用于化工及制药工业等。
也是用于生产聚对苯二甲酸乙二醇酯(PET)的重要中间体。
PET 纤维又称聚酯纤维或涤纶纤维,是一种常用的化学合成纤维。
—CH 3—CH 3CH 3—6、乙烯:乙烯是由两个碳原子和四个氢原子组成的化合物,分子式为C 2H 4,结构式。
乙烯是合成纤维、合成橡胶、合成塑料、合成乙醇的基本化工原料,也用于制造氯乙烯、苯乙烯、环氧乙烷、醋酸、乙醛、乙醇和炸药等。
7、聚乙烯:是乙烯经聚合制得的一种热塑性树脂简称,结构式,简称PE 。
聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无毒,具有优越的介电性能。
石油溶剂知识
馏程:纯化合物都有一定的沸点,但石油及其产品则是一个主要由多种烃类及少量烃类衍生物组成的复杂混合物,其沸点表现为一很宽的范围,是沸点连续的多组分的混合物,因而石油产品没用一个确定的沸点,通常以该产品的沸点范围或馏程表示。
当加热石油产品时,首先蒸发出来的主要是分子量小的,沸点低的组分,随着加热温度的升高,分子量大的,沸点高的也逐渐蒸发出来,直到最后高沸点的物质全部蒸发出来为止。
油品在规定条件下,蒸馏所得到的以初馏点和终馏点表示其蒸发特征的温度范围叫馏程。
馏程规定的实质是将一定体积或重量的油品加热蒸馏,测出各溜出量的相应温度,或相当于一定馏出温度的馏出量。
初馏点:在恩氏蒸馏设备里,当油品加热蒸馏出来第一滴油品时,记录下来的油蒸汽温度。
终馏点:当油品基本上全部蒸馏出来时,油蒸汽温度达最高温度叫油品的干点又叫终馏点。
闪点:又叫闪燃点,是指可燃性液体表面上的蒸汽和空气的混合物与火接触而初次发生闪光时的温度。
各种油品的闪点可通过标准仪器测定。
闪点温度比着火点温度低些。
液体闪点就是可能引起火灾的最低温度。
闪点越低,引起火灾的危险性越大。
燃点:又叫着火点,是指可燃性液体表面上的蒸汽和空气的混合物与火接触而发生火焰能继续燃烧不少于5s时的温度。
可在测定闪点后继续在同一标准仪器中测定。
可燃性液体的闪点和燃点表明其发生爆炸或火灾的可能性的大小,对运输、储存和使用的安全有极大关系。
倾点:是指油品在规定的试验条件下,被冷却的试样能够流动的最低温度。
凝点:是指油品在规定的试验条件下,被冷却的试样油面不再移动时的最高温度,都以℃表示。
是用来衡量润滑油低温流动性的常规指标,同一油品的倾点比凝点略高几度,过去常用凝点,现在国际通用倾点。
倾点或凝点偏高,油品的低温流动性就差。
人们可以根据油品倾点的高低,考虑在低温条件下运输、储存、收发时应该采取的措施,也可以用来评估某些油口的低温使用性能。
苯胺点:在标准试验条件下石油产品与等体积的苯胺,在互相溶解成为单一液相的最低温度叫苯胺点。
缩写_英语石油工程标注和部分缩写
Page 2
工程标注
93 94 95 96 97 98 99 100 101 102 103 104 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
kick lost circulation water flowing lost mud loss losses over haul repair pump lay on blow out preventer swivvel cut off work line slip work line stop check chain block killing well kill the well close well head hole junk basket fish fishing job fish up back off overshot well loggint casing program casing shoe ahead water rear water cementing cemented up wait on cement finish cement plug fill up wait on matterial standby production test setting slip bushing elevator elevator tink rotary table rat hole
Page 3
工程标注
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
采油工程(井基本流动规律)
(1-4)
(1) 采油指数
例: A井 100吨/天 B井 80吨/天
A井 110吨/天
如果 若
B井 120吨/天
Pwf ,则P, qA ,qB qB qA ,则B井产能大。
q P
衡量产能: 采油指数
采油指数:油井日产量与生产压差的比值。
它表示单位生产压差下油井的日产量, 用以衡量油井的生产能力。
Ko Kw qL Ch JL Pe Pwf ln re rw S Bo o Bw w
采油指数反映了地层参数,反过来说, 地层参数影响采油指数。
(3) 流入动态关系曲线
①流入动态关系
根据(1-2a)式:qo =Jo(Pe-Pwf) 一般,在一定时期内: J=C(单相渗流), Pe=C
Pe C
Pw
( 1-1a )
参见: DAKE : Fundamentals of Reservoir Engineering
(3)
非圆边界的产量公式
A—泄流面积;
Cx值见P3 图1—2
2、 采油指数及流入动态
q0 h ( Pe Pwf ) re o B o (ln S) rw CK
Pwf q0 / 1 0.2 Pwf / Pr 0.8 Pr
2
解:(1) 求:q0max
qo max
2 11 11 0.8 30 / 1 0.2 13 13 3 116.3m / d
reh 区域的长半轴; a L 0.5 0.25 2 L/2
4
(1-9)
L——水平井水平段长度(简称井长); S——水平井表皮系数; reh——水平井的泄流半径
油气储运工程相关期刊
油气储运专业相关期刊看文献, 发论文?期刊水平如何?现将油气储运专业论文常见的期刊整理如下,低共分5类:SCI 核心,SCIE El,―※SCI 核心1. 《科学》Scienee (周刊,美国,2. 《自然》Nature (周刊,英国,3. 《石油工程师协会杂志》4. 《石油科学和石油工程杂志》ISSN: 0920-4105, SCI ) 5《. 石油、天然气的科学与技术 -法国石油研究所杂志》 (双月刊, 法国, ISSN:1294-4475, SCI )Oil & Gas Science And Technology-Revue D IFP Energies Nouvelles 6. 《中国科学-化学•英文版》(月刊,中科院主办,ISSN 1674-7291 , SC ) 7.《化学学报•中文版》 Acta Chimica Sinica (半月刊,中科院主办, ISSN 0567-7351 , SC )8. 《物理学报-中文版》Acta Physica Sinica (半月刊,中国物理学会主办,ISSN 1000-3290 ,SCI ) 9.《高等学校化学学报•中文版》 Chemical Journal of Ch ineseU Diversities (月刊,吉林大学主办, ISSN :0251-0790, SCI )10. 《中国化学-英文版》Chinese Journalof Chemistry (月刊,中国化学会主办,ISSN 1001-604X,SCI )11. 《中国物理快报-英文版》Chinese Physics Lette (月刊,中国物理学会主办,ISSM 0256-307X, SCI )12. 《国际多相流杂志》 (月刊,英国, ISSN : 0301-9322, SC )I INTERNATIONAL JOURNAL OF MULTIPHASEFLOW13. 《化学工程研究与设计》 (月刊,英国, ISSN : 0263-8762, SCI ) CHEMICAL ENGINEERING RESEARCH &DESIGN14. 《化工科学》 (半月刊,英国, ISSN : 0009-2509, SCI ) CHEMICAL ENGINEERING SCIENCE15. 《粉末技术》 (半月刊,瑞士, ISSN : 0032-5910, SCI ) POWDER TECHNOLOGY16. 《流变学杂志》 (双月刊,美国, ISSN : 0148-6055, SC )I JOURNAL OF RHEOLOGY17. 《非牛顿流体力学杂志》 (半月刊,荷兰, ISSN : 0377-0257, SCI )Journal of Non-Newtonian FluidMechanics18. 《胶体与界面科学杂志》 (半月刊,美国, ISSN : 0021-9797, SCI ) JOURNAL OF COLLOID AND INTERFACESCIENCE19. 《兰茂尔》LANGMUIR (周刊,美国,ISSN 0743-7463, SC )水平从高到 中文核心, 非核心杂志 (各类均包含的以最高类别为准) 。
石油加工热加工过程
2020/6/24
石油加工工程
28
1. 8. 最近国内新建装置常采用对流串辐射工艺,原料油经换热后先进原 料缓冲罐,然后泵送进加热炉对流段与辐射段连续加热,不再由对流 段后抽出进分馏塔换热,这样可以灵活调控循环比。
2. 9. 由于延迟焦化的操作是循环式操作,带来许多操作连锁影响问题, 例如压力变动、温度变动、操作不稳等,又如焦炭塔塔顶油气携带焦 粉会促使大油气管线和分馏塔塔底结焦,加热炉进料中含有焦粉会促 进炉管结焦,在炭化过程中这些焦粉促进缩合使焦炭产率增大,使焦 炭的机械强度降低,容易产生粉焦等。
3.渣油在热过程中可发生相分离
渣油是一种胶体分散体系
2020/6/24
石油加工工程
14
2020/6/24
石油加工工程
15
渣油热反应产物分布随时间的变化 1-原料; 2-中间馏分; 3-汽油; 4-裂化气; 5-残油; 6-焦炭
2020/6/24
石油加工工程
16
裂化 产物
裂
化断 侧 链
饱和烃 脱
应速率常数与反应温度的关系服从阿累尼乌斯方程;
➢ 在实际计算中,使用反应速率常数的温度系数 kt 有时更
为方便。Kt 的定义是:
➢ 对于烃类热裂解反应而言, Kt 值约在1.5 - 2.0之间,即
反应温度每升高10℃则反应速率约提高到原反应速率的 1.5 - 2.0倍。
2020/6/24
石油加工工程
2020/6/24
石油加工工程
27
4. 对加热炉最重要的要求是炉膛的热分布良好、各部分炉管 的表面热强度均匀、而且炉管环向热分布良好,避免局部 过热的现象发生
5. 延迟焦化装置常用的炉型是双面加热无焰燃烧炉 6. 延迟焦化装置采用水力除焦,利用高压水(约120巴)从水
常见的GB、GB-T、JGJ标准名称意思
GB中华人民共和国国家标准,简称国标(按汉语拼音发音),强制标准冠以“GB”。
是由国家标准化主管机构批准发布,对全国经济、技术发展有重大意义,且在全国范围内统一的标准。
国家标准是在全国范围内统一的技术要求,由国务院标准化行政主管部门编制计划,协调项目分工,组织制定(含修订),统一审批、编号、发布。
法律对国家标准的制定另有规定的,依照法律的规定执行。
GB/T推荐性国家标准(GB/T) , GB即"国家标准"的汉语拼音缩写,“T”是推荐的意思。
推荐性国标是指生产、交换、使用等方面,通过经济手段调节而自愿釆用的一类标准,又称自愿标准。
这类标准任何单位都有权决定是否釆用,违反这类标准,不承担经济或法律方面的责任。
但是,一经接受并釆用,或各方商定同意纳入经济合同中,就成为各方必须共同遵守的技术依据,具有法律上的约束性。
JGJ建筑工程行业建设标准,JGJ为汉语拼音缩写,由住房和城乡建设部制定的行业标准。
CECS中国工程建设标准化协会(China Association forEngineering Construction Standardization), CECS为英文首字母简写,作为推动建设工程领域标准化的主要民间机构,其研究和制定的协会标准是对建设部相关标准的重要补充。
-主要分类中国标准分为国家标准、行业标准、地方标街□企业标准,并将标准分为强制性标和推荐性备注两类。
二主要分级国际标准由国际标准化(ISO )理事会审查,ISO理事会接纳国际标准并由中央秘书处颁布;国家标准在中国由国务院标准化行政主管部门制定,行业标准由国务院有关行政主管部门制定,企业生产的产品没有国家标准和行业标准的,应当制定企业标准,作为组织生产的依据并报有关部门备案。
三.具体解経1、规范封面左上角的'UDCU DC表示国际十进分类法(Universal Decimal Classification),是世界上较流行的一种文献分类法国际标准化组织(ISO)规走各成员国应硬国家标准封面上加印UDC分类号,以利用国际交流。
中国石油大学采油工程课程设计
采油工程课程设计姓名:魏征编号:19班级:石工11-14班指导老师:张黎明日期:2014年12月25号目录3.1完井工程设计.....................................................3.1.1油层及油井数据.............................................3.1.2射孔参数设计优化...........................................3.1.3计算油井产量...............................................3.1.4生产管柱尺寸选择...........................................3.1.5射孔负压设计...............................................3.1.6射孔投资成本计算...........................................3.2有杆泵抽油系统设计...............................................3.2.1基础数据...................................................3.2.2绘制IPR曲线...............................................3.2.3根据配产量确定井底流压.....................................3.2.4井筒压力分布计算...........................................3.2.5确定动液面的深度...........................................3.2.6抽油杆柱设计...............................................3.2.7校核抽油机.................................................3.2.8计算泵效,产量以及举升效率.................................3.3防砂工艺设计.....................................................3.3.1防砂工艺选择...............................................3.3.2地层砂粒度分析方法.........................................3.3.3 砾石尺寸选择方法...........................................3.3.4支持砾石层的机械筛管规格及缝宽设计。
《我国深海油气开发工程技术及装备的起步与发展》记录
《我国深海油气开发工程技术及装备的起步与发展》阅读记录目录一、内容描述 (3)1.1 背景介绍 (4)1.2 深海油气资源的重要性 (5)1.3 我国深海油气开发的历史与现状 (6)二、深海油气开发工程技术 (7)2.1 深海油气勘探技术 (8)2.1.1 地震勘探技术 (10)2.1.2 遥感勘探技术 (11)2.1.3 潜水勘探技术 (12)2.2 深海油气钻井技术 (13)2.2.1 自升式钻井平台技术 (15)2.2.2 半潜式钻井平台技术 (16)2.2.3 深海钻井液技术 (17)2.3 深海油气开采技术 (18)2.3.1 深海采油树技术 (20)2.3.2 深海油气输送技术 (21)三、深海油气开发装备 (21)3.1 钻井装备 (23)3.1.1 钻井泵 (24)3.1.2 钻井钻机 (26)3.1.3 钻井工具 (27)3.2 采油装备 (28)3.2.1 采油树 (29)3.2.2 采油泵 (30)3.2.3 采油管线 (31)3.3 输送装备 (33)3.3.1 输油管道 (34)3.3.2 输气管道 (35)3.3.3 海底管道 (36)四、我国深海油气开发工程技术的进展与挑战 (37)4.1 技术进展 (38)4.1.1 技术创新 (39)4.1.2 技术优化 (41)4.1.3 技术整合 (42)4.2 面临的挑战 (43)4.2.1 技术难题 (44)4.2.2 技术成本 (46)4.2.3 技术安全 (47)五、结论 (48)5.1 我国深海油气开发工程技术的成就 (49)5.2 对未来发展的展望 (50)一、内容描述该段落首先概述了我国深海油气开发的重要性和背景,强调了深海油气资源在我国能源战略中的地位和作用。
描述了我国深海油气开发工程技术的起步阶段,包括早期勘探、开发技术的引进、消化、吸收和初步创新。
提及了我国在深海油气装备方面的初步尝试和探索,以及面对的技术挑战和困难。
石油化工建设工程项目竣工验收规定
5.3.5.3 试生产阶段,建设单位应委托具有相应资质 的环境监测站、环境放射性监测站或环境影响评价单 位,对建设工程项目环境保护设施运行效果进行监测 和评价,并取得环境保护验收监测报告(表)或环境 保护验收调查报告(表)。
e)工程监理单位按GB/T 50328的要求向建设单位 移交监理文件。
第十二页,共91页。
5.2.2 建设工程项目投料试车并生产出合格产品或 试运行生产标定后,建设、设计、施工、工程监理 及相关单位办理(bànlǐ)工程交工验收手续,签署 “工程交工证书”。
5.2.3 建设工程项目实行总承包或实行勘察、设计、 采购(cǎigòu)、施工的一项或多项总承包的,由总 承包单位按合同约定和本规定条、条的要求向建设 单位交工。
第二十四页,共91页。
5.6.3 国家重点建设工程项目尚应按《国家重点建设 项目档案管理登记办法(bànfǎ)》的要求办理档案管理 登记事宜。
5.6.4 档案验收后,应取得档案行政管理(guǎnlǐ)部门 或建设工程项目主管部门档案验收的评审意见。
第二十五页,共91页。
6 竣工验收(yànshōu)会议
第十五页,共91页。
5.3.3.1 建设单位应按《建设项目职业病危害分 类管理办法(bànfǎ)》的要求办理建设工程项目职 业卫生验收。
5.3.3.2 试生产阶段,建设单位应委托具有相应资质 的职业卫生技术服务机构(jīgòu)对职业病防护设施运 行情况和工作场所职业病危害因素进行监测及职业病 危害控制效果评价,并取得评价报告。
国劳动部令 第3号 1996年10月ǐnyòng)文 件
全国石油工程设计大赛综合组范例(109页)
评审编号:PS029方案类型:油藏钻完井采油项目管理 HSE 经济评价全国石油工程设计大赛组织委员会制作品说明为了提升自身能力与专业水平,我们参加了此次大赛。
在本次设计大赛中,我们主要做了以下几项内容。
首先进行地质图件的Geomap化,提取其中的地质参数。
然后结合大赛所给其他资料进行地质储量的计算与评价。
然后进行油藏工程方案设计,主要包括以下几个方面:①利用经验公式、极限经济井网密度初步确定井网密度,在已有井的基础上进行井网的部署;②建立东西南断层封闭,北边边水的层状油藏数值模拟模型;③开发方案的论证:a天然能量开发指标计算预测 b注水开发(注水时机:同期注水;注采井网:边部注水,面积注水—五点、反七点、反九点,注采强度:以注采比为基础,论证0.8/1.0/1.2)论证,推荐三个可选优化方案。
进一步,从低渗油藏开发的现场经验及地下地质条件出发,选择丛式定向井进行钻井方案和采油方案的设计。
最后,对整个开发方案进行了经济评价。
本次设计主要侧重于使用油藏数值模拟对开发方案的论证。
在结合已有资料的基础上查阅了大量文献及资料,在老师的指导及团队成员的通力合作之下完成了本次设计大赛。
本参赛作品由团队成员独立完成,不存在剽窃、抄袭等侵权现象。
若违反自愿放弃参赛资格并承担相关责任。
负责人签字:团队成员签字:指导老师签字:时间:2010年5月6日目录概述 (1)第1章油藏地质特征 (2)1.1 概况 (2)1.1.1 地理位置和自然地理概况 (2)1.1.2 勘探开发历史 (3)1.2 油田地质特征 (4)1.2.1 构造位置 (4)1.2.2 地层分布及储层分布 (5)1.2.3 沉积特征 (8)1.2.4 储层性质 (8)1.2.5 储层流体特征 (11)1.2.6 储层渗流特征 (11)1.2.7 储层敏感性分析 (12)1.2.8 油藏类型 (16)1.3 储量计算与评价 (16)1.3.1 储量计算概述 (16)1.3.2 储量类别 (18)1.3.3 储量参数确定及储量计算 (19)1.3.4 地质储量计算及结果 (22)1.3.5 储量评价 (22)第2章油藏工程设计 (23)2.1 开发原则 (23)2.2 开发层系划分及井网井距设计 (23)2.2.1 开发层系划分 (23)2.2.2 井网密度 (23)2.2.3 井距、排距的确定及优化 (25)2.3 数值模拟模型及方案优化 (29)2.3.1 数值模拟模型建立 (29)2.3.2 油田开发生产历史拟合 (29)2.3.3 对模拟区开发井网设计和指标预测 (30)2.4 油藏注水时机研究 (35)2.5 最终推荐方案 (43)第3章钻井和采油工艺 (44)3.1 编制依据及基础资料 (44)3.1.1 编制的依据 (44)3.1.2 基础资料 (44)3.2 钻井工程设计 (45)3.2.1 钻前准备 (45)3.2.2 井身结构 (45)3.2.3 钻头及钻具 (46)3.2.4 定向井的设计 (48)3.2.5 钻机 (55)3.2.6 钻井液 (63)3.2.7 钻井其他要求 (69)3.2.8 钻井进度计划 (69)3.2.9 钻井费用 (70)3.3 完井设计 (70)3.3.1 完井方法 (70)3.3.2 射孔工艺 (72)3.4 采油工艺 (73)3.4.1 油管柱设计 (73)3.4.2 采油方式 (74)3.4.3 注水工艺 (76)3.5 油水井压裂 (80)3.5.1 压裂层位 (80)3.5.2 压裂液 (80)3.5.3 压裂步骤 (80)3.6 油层保护 (82)第4章项目组织管理和生产作业 (83)4.1 生产管理 (83)4.2 动态监测要求 (83)第5章投资估算与经济评价 (85)5.1 投资估算 (85)5.1.1 依据 (85)5.1.2 原则 (85)5.1.3 价格选取 (85)5.1.4 投资估算项目划分 (85)5.1.5 投资计算 (86)5.2 经济评价 (91)5.2.1 评价模式及原则 (91)5.2.2 评价指标与评价方法 (91)5.2.3 评价结果 (97)5.2.4 敏感性分析 (97)第6章职业卫生、安全和环境保护 (101)6.1 总体原则 (101)6.2 健康与安全 (101)6.3 环保要求 (102)概述MM油藏含油面积为 3.988km2,油层平均有效厚度为4.467m,有效孔隙度值为11.4%,平均含水饱和度为43.88%。
2020(技术规范标准)钻井工程技术规范
Q/YCZJ延长石油油气勘探公司企业标准钻井工程技术规范油气勘探公司钻井工程部目录前言 (V)1 范围 (1)2 规范性引用文件 (1)3 钻前基建工程 (2)3.1 井位勘定 (2)3.2 井场布置 (3)3.3 井场土建工程 (3)4 公路工程 (4)5 验收 (4)6 钻井设备的安装与调试 (5)6.1 水电安装 (5)6.2 机械设备安装 (5)6.3 井架安装与起升 (7)6.4 电气设备的安装及调试 (8)6.5 气控系统安装要求 (9)6.6 顶驱安装、调试、使用 (9)7 钻井环境安全要求 (11)8 钻进作业 (12)8.1 钻进 (12)8.2 井身质量控制 (13)8.3 取心 (15)8.4 起下钻、接单根 (16)8.5 钻头 (18)8.6 钻具 (20)8.7 钻具探伤、试压、倒换、错扣检查制度 (20)8.8 螺杆钻具 (21)8.9 钻井仪表的使用与维护 (21)9 固井 (21)9.1 固井设计 (21)9.2 固井准备 (23)9.3 下套管 (26)9.4 注水泥施工 (27)II9.5 尾管固井 (27)9.6 分级固井 (28)9.7 环空蹩回压候凝 (28)9.8 固井后期工作 (29)9.9 套管试压 (29)9.10 固井质量标准 (29)10 钻井液 (30)10.1井场钻井液实验室 (30)10.2 钻井液材料存放场所 (31)10.3 容器、设备 (32)10.4 钻井液性能 (32)10.5 钻井液的配制及维护处理 (33)10.6 钻井液固相控制 (34)10.7 井漏的防治措施 (35)10.8 储层保护 (35)10.9 钻井液材料使用及管理 (35)11 井控 (36)11.1 井控设计 (36)11.2 井控装置安装、试压、使用及管理 (38)11.3 钻开油气层前的准备和检查验收 (43)11.4 钻井及完井过程中的井控作业 (48)11.5 溢流的处理和压井作业 (51)11.6 防硫化氢安全措施 (52)11.7 井喷失控的处理 (55)12 定向井、丛式井、水平井 (55)12.1 设计原则 (55)12.2 钻具组合 (56)12.3 定向钻进 (57)13 欠平衡钻井 (58)13.1 适用条件 (58)13.2 设计原则 (58)13.3 井口装置及设备要求 (58)13.4 施工准备 (58)13.5 施工作业 (59)13.6 欠平衡钻井作业终止条件 (60)14 气体钻井 (61)14.1 适用条件 (61)14.2 设计原则 (61)14.3 设备及场地要求 (61)14.4 施工准备 (61)14.5 施工作业 (62)14.6 气体钻井作业终止条件 (64)14.7 安全注意事项 (64)15 中途测试 (64)15.1 测试原则 (64)15.2 施工设计 (65)15.3 施工准备 (65)15.4 施工作业 (66)15.5 资料录取与处理 (68)15.6 HSE要求 (68)16 井下事故的预防和处理 (69)16.1 卡钻 (69)16.2 防断、防顿 (71)16.3 防掉、防碰天车 (72)16.4 防止人身事故 (72)16.5 其它 (73)17 完井和交井 (73)17.1 完井质量要求 (73)17.2 交井程序 (74)17.3 交井资料 (74)附录 A (75)(规范性附录) (75)井口装置基本组合图 (75)附录 B (82)(规范性附录) (82)井控管汇布置图 (82)图B.1 闸阀编号及开关状态示意图A (82)图B.2 闸阀编号及开关状态示意图B (83)图B.4闸阀编号及开关状态示意图D (85)附录 C (86)压井作业单格式 (86)C.1压井作业单封面格式见图C.1,内容见图C.2、表C.1和表C.2。
实用石油工程俄语词汇对照
一. 岩石岩性nopoga J!XuTOJoruqecka 刃apa KT e p uc T uKa1.沉积岩o cag oH H a 刃nopoga2 石灰岩u 3Be cT H 刃K3.砂岩n ecH aH u K4.塑性泥岩n Jac Tu H H be rjuHbi5.泥板岩 a pru Ju Tc 1_*■亠' l-J-[6.石膏岩a Hru Tp u g7.泥岩r JuH a8.砾岩r paB un9.盐岩 c OJb0.碳酸岩K ap6 oH a T1.粉砂岩 a JeB po J u T2.泥灰岩M epr eJ b3.白云岩g oJo Mu T4.夹层n poc Jo H5.断层 c 6po c6.圈闭J OBy mk a7.盖层n oKp bim K a8.地层厚度M omH oc T b n JacTb9.储层粘土含量r JuH uc T o cT b nJacTa 0.产层n pog yK T u BH b H nJacT1.大陆架K oHT uH e H Ta J bHbH meJb2.地层非均质性H eog Ho p o gH o cTb3.油气圈闭H e©T er a 3 oB a H jOBymka4.地应力 3 eMH oe Ha n p刃冰eHue5.油壬 E PC 1 { 6 ] b c Tp o pa3^eMHoe6.磨阻K 0 9©©u u u eH T TpeHuh7.海拔 a JbT uT y g a ©coeguHeHue二. 钻头gO J O T O刮刀钻头 JI O n a C T H O eg O JO TO镶齿牙轮钻头 3 y 6q a T O emapOm eq H OegOJOTO金刚石钻头 a J M a 3 H O egO J OT O钢齿牙轮钻头 ©p e 3 e p O B a HHO egOJ OT O喷嘴 H a C a gk a牙轮 m a pO m k a钻头进尺 n pO X O gk agOJ OT a钻头寿命 C T O H k O C THgaOpJaO6TOaTk a ) gOJOTa钻头磨损 Cp a 6 O T k agO J OTa钻头牙齿 3y6gO J O Ta a钻头泥包 CaJbHH kH a ( dO J OHUkOO6pa 3( C BajiHuuk — pacmupuTejb)三. 钻具 本体 cnupa 刃 eBbi 茴 r^agkun腐蚀 6e 茴 ueBaT03u 刃 Kopp 磨损 坚固性 CTOHKOCTb 剪切U3HOCcpe3aHue冲刷pB3MbITOCTb螺旋式 平滑式 四.设备 1)探伤设备 磁粉探伤仪 超声波探伤仪 超声波测壁仪 五.钻进技术 1)正常钻进 1. 钻进 井史 CB MaH-nTHpomKOBbi 茴Tpa3 Tpa3BykOBOH BykOBOHge^ekTOCKOn ge^ekTOCKOnTO 刃 mUHOMep2. 3. 4. 5. 钻井施工大表 井段 泥浆指数 6ypeHue Ogka(6gyepjieoHH(a k )a 冰 UHb 日扌报 PTKUHTepBa 刃 工程大表 钻井参数CyTOHH「THBogKape 冰UM6ypeHue6. 纯钻进q ucTOe 6ypeHue7. 钻压 OCe Ba 刃Ha rpy3ka Ha 泵压i g Te jeHue Ha HaCOCe8. 转盘转数 q UCJ O O 6OpOTapOT 泵排量nagaqaHaCOCa 9.井斜角3eH UTH b HyrOJ测斜仪UHk JUHOMeTp10.方位角 a3u M yT11.井底 3a6 O H CkBa 冰 Hbl 钻具组合KHEK KOMnOHOBka12.井身结构 kOH C Tpyy KUU 刃CkBa 冰 UHbl13.起下钻eno辅助工作 BCn BcnOMaraTeibHO14.上下活动钻具pacxa 冰UBaHuepanapaMeTpbi paCTBopCTpy 茴 Hoe 6ypeHue npuxBaT uHCTpyMeHTa nuxBamaa u®u 孔enaHun uHCTpyMeHTa KnpuxBaTa npu o6pa3oBaHun 冰e 孔 o6a npuxBam a o 冠Ba 孔a CTeHoknpuxBa -3a nugeHun npegMeTa nocagka uHCTpyMeHTa3ape3ky 6OKOBO 「O CTBO 刃 a憋电占 nogk 刃uHka , koHTpuTb套铳 o6ypuBaHue四. 完井工程 1)完井 3akaHnuBaHue 1. 洗井 2. 完井电测 3. 上覆地层压力 4. 静液压力15. 倒划眼 o6paTHa 刃 (nnpoogjbaedMOTkca BbiKpy 耳 uBaHueM)16.通井 17.随钻测量 u 3 M ep e H u eB npouecce6ypeHue18.接单跟 H a pam u B a H u eoguHonku 19.平衡钻井 6 y p eHu en pupaBHoBecHoMgaB^eHuu20.探伤 g e © ekT o c k o n un21.井眼轨迹 Tpa ekT opu nCTBo^aCkBa 冰 Hbl2)定向井22.侧钻 6y peH u eB T po roCTBo^a23 .狗腿严重度 k o©©u u e H TkpuBu3HbICTBo^aCkBa 冰 uHbl24. 定向工具 HanpaB^HM^un uHCTpyMeHT25.增斜段 ynacTok Ha6opa yr 刃a Hak^oHa26.降斜段 ynacTok yMeHMmeHUHyr 刃 a Hak^oHa27. 弯接头 KpuBon nepeBogHUk28.优化钻井 onTUMa^bHoe 6y 定向井ueHaK 刃 o H HnpaB 刃 eHHaHcKBa 冰UH29. 水平井 刃垂直 井30.大斜度定向井 CKBa 冰uHa - HHaanKpjiaoBHiHeoHoro 6ypeHunc 6o^bmuM31.造斜点 Tonka uCKpeB 刃 eHHH3)事故 32. 喷射钻井 33. 卡钻 34. 粘卡 35. 键巢卡钻 36. 垮塌卡钻 39. 解卡 40. 循环 41.加深 43.环空 o c B o 6 o 比ge H u enpuxB a TaU u pk yj n U u ny r JI y6 j e H u e6 a JI a H cpa 6 onoro Bp eMeHu k o J b U e B o enpocTpaHcTBo44.开泵nyck Hacoca侧钻 套上ogeBaTbHa ro 刃 oBkynpo M bl T bc k Ba 冰 uHyBMPgaB j e H u eB bime jie^amuxrug pa B j une c koegaBjeHuemad^OHupOB kanpopm^o maa3aTpy6Hoe npocTpacTBoc kBa 冰HHbl5. 地层压力n^acTO B Oe gaB^eHue6. 地层破裂压力gaB^eH u e p a3pbiBa n^;7. 异常高压ABn几8. 异常低压AHn几9. d c 指数d e 9Kcno H eHT10.压力梯度rpague H T g aB^eHun11.自喷井©OHTaH H a刃CKBa 冰UHbl12.压井r^ymeH u e c KBa 冰UHbl13.关井OcTaHO B ka CKBa 冰UHbl14.水泥浆ueMeHT H bin pacTBOp15.水泥塞ueMeHT H bin MOcT16.冲洗液npOMbIB O HHan 冰UgKOCTb17.隔离液6y©epH>auigKOc Tb a cTa1, 胶塞p a 3 geJuT eJbHan npO6Ka2. 套管鞋 6 a m MaK3. 通井规m a 6 JOH4. 水泥返高 B b c OTa nogbeMa ueMeHTHoro5. 稠化时间 B p Mn 3 arycTeB aHun6. 配浆时间 B p e Mn 3 aTBOpeH un7. 自由水 c B O 6OgHa n BOg a8. 缓凝剂 3 a M egHuT eJb9. 固井K p e nJeHu e cKB a冰uHbi10. 水泥窜槽K a H aJOO6 pa3OBaH ue11. 导管H a n paBJe Hue12. 候凝O3U13. 套管O 6 c agHan Tpy6a a14. 套管程序K O M nOHOB Ka O6 cagHbX KOJOH15. 表层套管K O H gyKTO p16. 技术套管T e X Huqec Kan K OJOHHa17. 油层套管m K c nJyaT auuoHHa n KOJOHHa18. 活动套管p a c ca冰UB aHue Tpy619. 声幅测井AKU20. 胶结质量K a q ecTBO cuenjeHun21. 油气侵n p u TOK He©Tu u ra3a K CKBa冰22. 压井管汇 6 JI O K rjy meHun23. 节流管汇 6 JI O K gpOcceJupO BaHun24. 井口装置y c T beBOe O6Opy gOBaHue25. 取芯O T 6 Op K epHa26. 射孔完井 3 a K aHquB aHue nep^opauuu27. 油气水显示H r B n28. 酸化K u c JOTOH an O6 pa6OTKa29. 溢流n e p eJuB30. 地层测试u c n bTaHu e nJa cTapacTBOpa UHe2) 固井31. 油管 哈立波特固井: 开孔压力(开窗压力) 销钉破裂压力(座封压力) 座封 充满五. 钻井液与完井液 1. 钻井液 2. 完井液 6 比 ypOBO 茴 P acTB0PqUBaHUHCKBa 冰 UHblU gK 0cTU gj H3aKaH3. 密度 n j 0T H0cT b4. 粘度 B 刃 3K 0cTb5. 失水 B 0 g0 0Tgaqa6. 静切力 CHC7. 泥饼厚 T 0 j^UHaK 0PK U8. 固相含量 CT ①9. 水基钻井液 6 y P0B0n Pa c T B0P H a B0gH0 n 0cH0Be10.油基钻井液 6 y P0 B0nP a c T B0PH a He©THH0n0cH0Be11.配方 Pe ue nT12,试剂 X U Ma a reH T13 配制剂 n Pen aPaT12.胶液 K j encT 砥P je)13.均匀 P0 BH 0cTU14.稀释 P a 36 aBje HU e15.稀释剂 P a 3冰 UTej b16.暂堵剂 BPeM eH0 U 3 0 j HUUOHHbin ar eHT17.降失水剂 n 0 HU3UTe jbB0g00TgaqU18.抑制剂 Pe nPeccU 刃19.触变性 T U cK 0TP0 nH0 ecB0n cTB020.两性离子 a M ©U 0H21.重晶石 6 a PUT22.造壁 K 0 PK 006P a3 0 B a HUe23.除硫剂 H U TP 0jU3 0T 0PceP0B0g0P0ga24.硫化氢 c e P0 B0g0 P0 g25.絮凝 K 0 aK yjHH UU刃26.淀粉 K PaXMaj27.分子量M 0 je KyjH PH a HMacc ag a B Je H U e 0 T K P b T U 刃 0KHa g a Be H U en a K eP0 B KUn a Ke P 0 B K aH a c b i T U T bH 「T28.拔活塞29.胶凝强度30.润滑性31.久饱和32.造浆能力33.增粘剂34.聚合物35.表面活性剂36.控制固相37.水溶性38.油溶性39.屏蔽暂堵40.黏土稳定剂41.地层损害42.携砂43.表皮效应44.泥浆漏失45.保护油层46.试压47 防喷器试压台48.膨胀49.湍流CU©OH u nopmHeBaHue npOHHormMieo6pa3OBaHu刃a 3 bi B a e M0 c T bg 0 H a c b me H H OCTbc n 0 c0 6 H0 c T b rjUHU3auuuy c u J u T eJ b B 刃3KOCTUn 0J!u M e PnABK 0 H T P0 J b B T B e p g0 H ©a3eB 0 g0 P a c T B 0 p u M 0 c T bM a c J 0 p a C T B 0 p u M 0 c T bB P e M -esHKOpaHUpy / romee geH CTBU eC T a 6 u J u 3 a T 0 p r J u H bH a P y m e H u e nJy / aTauu oHHb X n j ac TaB b H 0 c m J a M aC K u--H ©© e K Tn 0 r J 0 m e H u e p a c T B 0 p0 XP a H a K0 J J e K T 0p c K o ro c B OHC TB o nJa0 nP e c c0 B K a0 nP e c c0 B 0 q H b H c T e Hg nBOH a 6 y X a H u ejp a 36y X a HueT y P 6 y J e H T H b H n 0 T 0 K六. 钻井设备、工具与耗材1)钻机6y 厂pOBa刃I CT aHOBKa1. 井场 6 y pOBa 刃nJ OmagKa2. 井架 6 ypOBa 刃BbmKa3. 转盘p OTOp4. 游车T a JeBbH 6J OK5. 天车K p OH6JOK6. 绞车J e6egKa7. 循环系统□,C — uupKyj u p yroma 刃8. 水龙头 B e pTjror9. 水龙带r p H3eBOH m jaHr10.大钩K p roKO6JOK11.磙子方补芯T e Je6ym12. 卡瓦K J UHb 刃13. 平行线n a paJJeJb14.刹车鼓T O pMO3HOH mKuB15.变数箱K O pO6Ka ne pegaqu16.管架台 c T ejja冰17.鼠洞m y p©c ucTeMa18.联顶节 H a K o H e q H U K19.沉砂池 o T c T o H H U K20.泥浆槽 比e J ! o 6 H a 刃c U cTeMa 21.方钻杆 K B a g PBa e T gym a HTPy6a22.钻铤 y ET23.除砂器 n e c K o o T ge J U T ejb24.离心机 u e H TP U ©yr a25.防喷器 n P e B e H T e P26.套管头 K o J o H H a 刃r o JoBKa27.空压机 K o M n Pe c co P28.柴油发电机 A B c29.气动绞车 n H e B M a T U q e c K anJe6egka30 .低压配电系统 K o M M y T a u U 刃HU3KoroHanpn 冰eHUH31.绷绳 o T T刃K a32. 喷淋泵 no 刃 uBO^Hbi 茴 Hacoc33. 离合器 mnM --50 34.液压大钳 r U gPaBJUqecKUHKjoq35 .机械大钳 M a mUHHblH KJTOH36.气动大钳 n H eBMaTUqecKUH Kjoq37.套管钳 K J IOH gjHcnyck ao6cag38.旋塞 m a PoBoH KPaH39.氧气 K U cJoPog40.乙炔 nPonaH41.焊条 m J eKTPog42.丝扣 P e 3b6a43.缸套 B T yJKa44.活塞 n o pmeHb45.胶囊 gU a©pa 「Ma46.磨鞋 T o PUO BO H ©pe347.水泥车 UA —ueMeHTHbiH arperaT48.联轴器 K yJaqKoBaH My ©Ta 49.高压油泵 T o nJUBHoH Hacoc 50.齿轮箱 m e cTePeHHaH K oPo6Ka51.万向轴 K a pgaHHbiH Baj52.四通 K PecToBUHa53.闸门 3 a gBU 冰Ka54.猫头 K a TymKa55.压力表 M a HoMeTP56.销子 n a jeu57.营房 比 U JOHBarOH58.扣规 K a jU6P59.电瓶 a K KyMyjHToP60.挖沟机 m K cKaBaToP61.吊环 m T Pona4) rHB 指重表死绳固定器ycmp OHCTB gi 刃 3aKpenieHU 刃 MepTBoro KaHaTa 记录表 Uacbi ©ukcauuu 记录笔尖 nepo ©ukcauuu 圆记录纸几uarpaMMbi Kpyribie 指重表机芯(连锁计时机构)Tpu6o cekTopHue MexaHU3Mbi抗震压力表 MaHoMCT p egopa3geiuTeieM13. 轴承n o gm U n H U K14. 启动器 nyc K a T e i b15. 真空表 B aK y yM Me T p16. 空气切断开关 p a 3壬 egU H U Teib17. 倒大绳n epe T .比K aTaieBoroKaHaTa62.吊索 63.吊卡 64.防爆灯 65.防碰天车 66.扶正器 67 安全帽 67.钳牙 68.设备检修 69.安全带 c Tpo nm i e B a T opB 3 p bl B o 3 a U T Hbl 旬o rpa H U q U T e i bK J] G K ai U T o pK a c K ac y x a p bnp o © U i a K T U K aB e px o B o r ono.CBeTU 畀 bHUK2)打捞工具 AW- 1. 胀管器2. 公锥3. 母锥i o B U i b H binUHc T pyMeHTo npa B K aM e T q U KK o i o K o io T B o gH b n KpTOH e k3)9ieKTpU 电ec<U n1. 电缆 K a 6 e i b2. 分线盒p ac npege i U TKop o 6KU3. 继电器pe i e4. 开关 B b K i IO q a T e i b5. 电钻 m i e K Tp o g pe ib6. 走线槽 n i a cT M a c c c oBbeioTK 7. 吸顶灯 n o T o i o q H b ecB e T UibHU 8. 外用开关 B b K i O q a T e i b 6 b ToBbe9. 空开柜(室内配电柜) mUTo c B e meH U .Hapy 冰Horoucnoi配电柜(大的,一般在外)11. 应急电机12. 闸刀10. pacnpege^uum U rnibHMn aBapUHHan py6uibHUK9刃eKTpogBuraTe 刃bU U18. 冲管rpH 3eBaH Tp y6ka BepT^rora19. 双公短节OTT O prOB aHHb H nogpy6OK gByx20. 卡盘cna n gep21. 插入头Han p aB^H romaH r O^OBKa22. 保温棚ykp b iTue23. 黄油枪mnp u ubi g刃H cMa3 Ku24. 报警器cur H a^u3 aTOp25. 齿轮mec T epHH26. 循环接头npO M biBaq Hbl茴ne peBOgHuK27. 固井水缸ueM e HTup OBOH HaH eMKOcTb28. 密封胶带QyM k a29. 防喷器nBO30. 双通阀2- X X O gOBO H K paH31. 指重表r H BHunne^bH32.七验收整改工作调度室验收长城公司验收政府验收nHP nyckanOCTO 刃HHOn几K " BC"Ha刃ago^Hbi茴gencTByro^aHn^K ueHTpa刃bHaHpa6oTaKOMUCCU刃KOMUCCUHUMTC八财务盘库,清查KOMn^e iKHCBHeaHHrapu3auu 固定资产ocoHHoe cpegcTBO u MaTepu。
石油钻机钻头ZGOCr13Ni4Mo铸件焊补工艺
石油钻机钻头ZGOCr13Ni4Mo铸件焊补工艺一、背景在石油钻机钻头中,ZGOCr13Ni4Mo是一种常用的铸件材料。
然而,由于钻头在使用过程中受到高温、高压和强磨损的影响,会出现焊接缺陷或磨损导致钻头寿命缩短的问题。
因此,开发合适的焊补工艺对于提高钻头的寿命和性能非常重要。
二、目标本文旨在介绍一种适用于ZGOCr13Ni4Mo钻头铸件的焊补工艺,以提高钻头寿命和性能。
三、焊补工艺流程1. 准备工作- 检查钻头表面的缺陷和磨损情况- 清理钻头表面并确保其干净无油污2. 焊接方法选择- 针对不同的焊补情况,可选择电弧焊、氩弧焊或其他合适的焊接方法。
- 根据钻头铸件材料特性和要求,选择合适的焊接材料。
3. 焊前准备- 使用磨削工具清除焊补区域的表面氧化层或污垢- 清理并预热焊接区域,以提高焊接质量和可靠性4. 焊补操作- 按照焊接方法的要求进行焊补,确保焊缝均匀、牢固- 控制焊接温度、时间和气氛,以防止过热和氧化5. 后续处理- 对焊缝进行磨削和打磨,以提高表面光洁度和平整度- 清理焊接区域,确保无焊渣和其它污染物四、质量控制1. 根据焊接工艺规程,对焊接过程进行质量控制和检测2. 对焊缝进行无损检测,如超声波检测、X射线检测等,以确保焊补质量和完整性五、安全事项1. 使用适当的防护设备,如手套、面罩等,以保护焊接操作人员的安全2. 确保焊接区域通风良好,以排除有害气体和烟尘六、总结通过采用适当的焊补工艺,可以有效提高ZGOCr13Ni4Mo钻头铸件的寿命和性能。
然而,在实际应用中,仍需针对具体情况进行工艺参数的优化和调整,以满足不同工况和要求。
请注意:本文中的内容仅供参考,不作为法律建议或具体工程实施依据。
在应用本文中提到的任何工艺时,应先经过充分的评估和测试,并在专业人员的指导下进行操作。
油田井下装备中含Cr_金属材料的应用
Science and Technology &Innovation ┃科技与创新2023年第24期·123·文章编号:2095-6835(2023)24-0123-03油田井下装备中含Cr 金属材料的应用肖祖印1,那宇2,郭江保1,于明1,苗杰1(1.中海油能源发展股份有限公司工程技术分公司,天津300450;2.中海油能源发展(中东)有限公司,天津300450)摘要:由于油田井下环境恶劣,除了存在油水混合物外,还广泛含有碳酸根离子、硫酸根离子、硫氢酸根离子等,井下装备往往采用含Cr 离子的金属材料进行加工,如2Cr13、1Cr13、42CrMo 等材料。
1Cr13属于马氏体不锈钢,相较于常规结构钢,焊接位置存在有淬硬的现象出现,焊缝位置存在较大的焊接残余应力。
从1Cr13马氏体不锈钢概述、焊接工艺中焊接电流与焊接电弧长度选择、焊接工艺中坡口形状和尺寸、焊接工艺中焊接过程工艺要点4个方面,介绍了1Cr13的焊接工艺,对1Cr13后续焊接工艺的选择起到了借鉴和指导作用。
关键词:油田井下装备;Cr ;金属;焊接中图分类号:TE984文献标志码:ADOI :10.15913/ki.kjycx.2023.24.036由于油田井下环境恶劣,除了存在油水混合物外,还广泛含有碳酸根离子、硫酸根离子、硫氢酸根离子等,对井下装备的耐腐蚀能力提出了更高的要求,相较于常规机械设备采用碳钢或合金钢,井下装备往往采用含Cr 离子的金属材料进行加工,如2Cr13、1Cr13、42CrMo 等材料[1]。
在油田地面设备的材料选用中,无需采用2Cr13、1Cr13、42CrMo 等兼具防腐等级要求和强度的材料,主要选用材料有Q235钢、槽钢或冷轧钢板。
Q235材质,其中Q 代表材质的屈服强度,235代表该材质的屈服强度为235MPa 。
在碳钢材质中,由于其含碳量适中,兼具强度可靠、便于焊接、可塑性强的特点,被广泛采用于机柜生产制造。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Reservoirs containing only free gas are termed gas reservoirs. Such a reservoir contains a mixture of hydrocarbons, which exists wholly in the gaseous state. The mixture may be a dry, wet,or condensate gas, depend-ing on the composition of the gas, along with the pressure and tempera-ture at which the accumulation exists.Gas reservoirs may have water influx from a contiguous water-bearing portion of the formation or may be volumetric (i.e., have no water influx).Most gas engineering calculations involve the use of gas formation volume factor B g and gas expansion factor E g. Both factors are defined in Chapter 2 by Equations 2-52 through 2-56. Those equations are summa-rized below for convenience:• Gas formation volume factor B g is defined is defined as the actual vol-ume occupied by n moles of gas at a specified pressure and tempera-ture, divided by the volume occupied by the same amount of gas at standard conditions. Applying the real gas equation-of-state to both conditions gives:• The gas expansion factor is simply the reciprocal of B g, or:ETppzTpzTgscsc==3537.(13-2)BpTzTpzTpgscsc==002827.(13-1)827C H A P T E R13GAS RESERVOIRSwhere B g=gas formation volume factor, ft3/scfE g=gas expansion factor, scf/ft3This chapter presents two approaches for estimating initial gas in place G, gas reserves, and the gas recovery for volumetric and water-drive mechanisms:• V olumetric method• Material balance approachTHE VOLUMETRIC METHODData used to estimate the gas-bearing reservoir PV include, but are not limited to, well logs, core analyses, bottom-hole pressure (BH P) and fluid sample information, along with well tests. This data typically is used to develop various subsurface maps. Of these maps, structural and stratigraphic cross-sectional maps help to establish the reservoir’s areal extent and to identify reservoir discontinuities, such as pinch-outs, faults, or gas-water contacts. Subsurface contour maps, usually drawn relative to a known or marker formation, are constructed with lines connecting points of equal elevation and therefore portray the geologic structure. Subsurface isopachous maps are constructed with lines of equal net gas-bearing formation thickness. With these maps, the reservoir PV can then be estimated by planimetering the areas between the isopachous lines and using an approximate volume calculation technique, such as the pyrami-dal or trapezoidal method.The volumetric equation is useful in reserve work for estimating gas in place at any stage of depletion. During the development period before reservoir limits have been accurately defined, it is convenient to calculate gas in place per acre-foot of bulk reservoir rock. Multiplication of this unit figure by the best available estimate of bulk reservoir volume then gives gas in place for the lease, tract, or reservoir under consideration. Later in the life of the reservoir, when the reservoir volume is defined and performance data are available, volumetric calculations provide valuable checks on gas in place estimates obtained from material balance methods. The equation for calculating gas in place is:GAh SBwigi=-435601,()f(13-3)828Reservoir Engineering Handbookwhere G =gas in place, scfA =area of reservoir, acresh =average reservoir thickness, ftf =porosityS wi =water saturation, andB gi =gas formation volume factor, ft 3/scfThis equation can be applied at both initial and abandonment condi-tions in order to calculate the recoverable gas.Gas produced =Initial gas -Remaining gasorwhere B ga is evaluated at abandonment pressure. Application of the volu-metric method assumes that the pore volume occupied by gas is constant.If water influx is occurring, A, h, and S w will change.Example 13-1A gas reservoir has the following characteristics:A =3000 acresh =30 ft f =0.15S wi =20%T =150°F p i =2600 psip z26000.8210000.884000.92Calculate cumulative gas production and recovery factor at 1000 and 400 psi.G Ah S B B p wi gi ga =--ÊËÁˆ¯˜43560111,()f (13-4)Gas Reservoirs 829SolutionStep 1.Calculate the reservoir pore volume P.VP.V=43,560 Ah fP.V=43,560 (3000) (30) (0.15) =588.06 MMft3Step 2.Calculate B g at every given pressure by using Equation 13-1.p z B g, ft3/scf26000.820.005410000.880.01524000.920.0397Step 3.Calculate initial gas in place at 2600 psiG=588.06 (106) (1 -0.2)/0.0054=87.12 MMMscfStep 4.Since the reservoir is assumed volumetric, calculate the remain-ing gas at 1000 and 400 psi.• Remaining gas at 1000 psiG1000 psi=588.06(106) (1 -0.2)/0.0152=30.95 MMMscf• Remaining gas at 400 psiG400 psi=588.06(106) (1 -0.2)/0.0397=11.95 MMMscfStep 5.Calculate cumulative gas production G p and the recovery factor RF at 1000 and 400 psi.• At 1000 psi:G p=(87.12-30.95)¥109=56.17 MMM scfRF=¥¥= 5617108712106459...%830Reservoir Engineering Handbook• At 400 psi:G p =(87.12-11.95) ¥109=75.17 MMMscfThe recovery factors for volumetric gas reservoirs will range from 80to 90%. If a strong water drive is present, trapping of residual gas at higher pressures can reduce the recovery factor substantially, to the range of 50 to 80%.THE MATERIAL BALANCE METHODIf enough production-pressure history is available for a gas reservoir,the initial gas in place G, the initial reservoir pressure p i , and the gas reserves can be calculated without knowing A, h, f , or S w . This is accom-plished by forming a mass or mole balance on the gas as:n p =n i -n f(13-5)where n p =moles of gas producedn i =moles of gas initially in the reservoirn f =moles of gas remaining in the reservoirRepresenting the gas reservoir by an idealized gas container, as shown schematically in Figure 13-1, the gas moles in Equation 13-5 can be replaced by their equivalents using the real gas law to give:where p i =initial reservoir pressureG p =cumulative gas production, scfp =current reservoir pressureV =original gas volume, ft 3z i =gas deviation factor at p i z =gas deviation factor at pT =temperature, °RW e =cumulative water influx, ft 3W p =cumulative water production, ft 3p G R T p V z RT p V W W zRT sc psc i i e p =---[()](13-6)RF =¥¥=75171087121086399...%Gas Reservoirs 831Equation 13-6 is essentially the general material balance equation (MBE). Equation 13-6 can be expressed in numerous forms depending on the type of the application and the driving mechanism. In general, dry gas reservoirs can be classified into two categories:• V olumetric gas reservoirs• Water-drive gas reservoirsThe remainder of this chapter is intended to provide the basic back-ground in natural gas engineering. There are several excellent textbooks that comprehensively address this subject, including the following:• Ikoku, C., Natural Gas Reservoir Engineering,1984• Lee, J. and Wattenbarger, R., Gas Reservoir Engineering,SPE, 1996Volumetric Gas ReservoirsFor a volumetric reservoir and assuming no water production, Equa-tion 13-6 is reduced to:p G T p z T V p zT V sc pi =ÊËÁˆ¯˜-Êˈ¯(13-7)Figure 13-1.Idealized water-drive gas reservoir.Figure 13-2.Gas material balance equation.The original gas volume V can be calculated from the slope and used to determine the areal extend of the reservoir from:V =43,560 Ah f (1-S wi )(13-10)where A is the reservoir area in acres.• Intercept at G p =0 gives p i /z i • Intercept at p/z =0 gives the gas initially in place G in scf• Cumulative gas production or gas recovery at any pressure Example 13-21A volumetric gas reservoir has the following production history.Time, tReservoir pressure, p Cumulative production, G pyears psia zMMMscf 0.017980.8690.000.516800.8700.961.015400.880 2.121.514280.890 3.212.013350.900 3.92The following data is also available:f =13%S wi =0.52A =1060 acresh =54 ft.T =164°FCalculate the gas initially in place volumetrically and from the MBE.SolutionStep 1.Calculate B gi from Equation 13-1B ft scf gi =+=002827086916446017980008533.(.)()./834Reservoir Engineering Handbook1After Ikoku, C., Natural Gas Reservoir Engineering,John Wiley & Sons, 1984.Figure 13-3.Relationship of p/z vs. G p for Example 13-2.Figure 13-4.Effect of water drive on p/z vs. G p relationship.Figure 13-5.An energy plot.l o g 1–z i p p i z ÊËÁˆ¯˜since the increasing slope would imply that the gas-occupied pore vol-ume was increasing with time.Form 2. In terms of B gFrom the definition of the gas formation volume factor, it can be expressed as:Combining the above expression with Equation 13-1 gives:where V =volume of gas originally in place, ft 3G =volume of gas originally in place, scf p i =original reservoir pressure z i =gas compressibility factor at p iEquation 13-13 can be combined with Equation 13-7, to give:Equation 13-14 suggests that to calculate the initial gas volume, the only information required is production data, pressure data, gas specific gravity for obtaining z-factors, and reservoir temperature. Early in the producing life of a reservoir, however, the denominator of the right-hand side of the material balance equation is very small, while the numerator is relatively large. A small change in the denominator will result in a large discrepancy in the calculated value of initial gas in place. There-fore, the material balance equation should not be relied on early in the producing life of the reservoir.Material balances on volumetric gas reservoirs are simple. Initial gas in place may be computed from Equation 13-14 by substituting cumula-tive gas produced and appropriate gas formation volume factors at corre-sponding reservoir pressures during the history period. If successive cal-culations at various times during the history give consistent values for initial gas in place, the reservoir is operating under volumetric controlG G B B B p g g gi=-(13-14)p T z T p VGsc sc i i =(13-13)B V Ggi =Figure 13-6.Graphical determination of the gas initially in place G.b. Recalculate the gas initially in place assuming that the pressure mea-surements were incorrect and the true average pressure is 2900 psi.The gas formation volume factor at this pressure is 0.00558 ft 3/scf.Solutiona. Using Equation 13-14, calculate G.b. Recalculate G by using the correct value of B g .Thus, an error of 100 psia, which is only 3.5% of the total reservoir pressure, resulted in an increase in calculated gas in place of approxi-mately 160%, a 21⁄2-fold increase. Note that a similar error in reservoir pressure later in the producing life of the reservoir will not result in an error as large as that calculated early in the producing life of the reservoir.Water-Drive Gas ReservoirsIf the gas reservoir has a water drive, then there will be two unknowns in the material balance equation, even though production data, pressure,temperature, and gas gravity are known. These two unknowns are initial gas in place and cumulative water influx. In order to use the material bal-ance equation to calculate initial gas in place, some independent method of estimating W e , the cumulative water influx, must be developed as dis-cussed in Chapter 11.Equation 13-14 can be modified to include the cumulative water influx and water production to give:The above equation can be arranged and expressed as:G W B B G B W B B B eg gi p g p w g gi+-=+-(13-16)G G B W W B B B p g e p w g gi=---()(13-15)G MMMscf=¥-=36010000668000558000527866526(.)...G MMMscf =¥-=360100005390005390005278173256(.)...Figure 13-7.Effect of water influx on calculating the gas initially in place.MATERIAL BALANCE EQUATIONAS A STRAIGHT LINEHavlena and Odeh (1963) expressed the material balance in terms of gas production, fluid expansion, and water influx as:Underground Gas Water expansion/Water =++withdrawal expansionpore compactioninfluxorUsing the nomenclature of Havlena and Odeh, as described in Chapter 11, gives:F =G (E g +E f,w )+W e B w(13-18)with the terms F, E g , and E f,w as defined by:• Underground fluid withdrawal F:F =G p B g +W p B w (13-19)• Gas expansion E g :E g =B g -B gi(13-20)• Water and rock expansion E f,w :Assuming that the rock and water expansion term E f,w is negligible in comparison with the gas expansion E g , Equation 13-18 is reduced to:F =G E g +W e B w(13-22)E B c S c S f w giw wi f wi,()=+-1(13-21)G B W B G B B G B c S c S pW B p g p w g gi giw wi f wie w+=-++-+()()1D (13-17)Figure 13-8.Defining the reservoir-driving mechanism.Figure 13-9.Havlena-Odeh MBE plot for a gas reservoir.say, at six monthly intervals, should plot as a straight line parallel to the abscissa—whose ordinate value is the GIIP.Alternatively, if the reservoir is affected by natural water influx then the plot of F/E g will usually produce a concave downward shaped arc whose exact form is dependent upon the aquifer size and strength and the gas off-take rate. Backward extrapolation of the F/E g trend to the ordi-nate should nevertheless provide an estimate of the GIIP(W e~ 0); how-ever, the plot can be highly nonlinear in this region yielding a rather uncertain result. The main advantage in the F/E g versus G p plot is that it is much more sensitive than other methods in establishing whether the reservoir is being influenced by natural water influx or not.The graphical presentation of Equation 13-23 is illustrated by Figure 13-9. A graph of F/E g vs.SD p W eD/E g yields a straight line, provided the unsteady-state influx summation, SD p W eD, is accurately assumed. The resulting straight line intersects the y-axis at the initial gas in place G and has a slope equal to the water influx constant B.Nonlinear plots will result if the aquifer is improperly characterized. A systematic upward or downward curvature suggests that the summationterm is too small or too large, respectively, while an S-shaped curve indi-cates that a linear (instead of a radial) aquifer should be assumed. The points should plot sequentially from left to right. A reversal of this plot-ting sequence indicates that an unaccounted aquifer boundary has been reached and that a smaller aquifer should be assumed in computing the water influx term.A linear infinite system rather than a radial system might better repre-sent some reservoirs, such as reservoirs formed as fault blocks in salt domes. The van Everdingen-H urst dimensionless water influx W eD is replaced by the square root of time as:where C =water influx constant ft 3/psit =time (any convenient units, i.e., days, year)The water influx constant C must be determined by using the past pro-duction and pressure of the field in conjunction with H avlena-Odeh methodology. For the linear system, the underground withdrawal F is plotted versus [S D p n Z t -t n /(B -B gi )] on a Cartesian coordinate graph.The plot should result in a straight line with G being the intercept and the water influx constant C being the slope of the straight line.To illustrate the use of the linear aquifer model in the gas MBE as expressed as an equation of straight line, i.e., Equation 13-23, H avlena and Odeh proposed the following problem.Example 13-4The volumetric estimate of the gas initially in place for a dry-gas reservoir ranges from 1.3 to 1.65 ¥1012scf. Production, pressures and pertinent gas expansion term, i.e., E g =B g -B gi , are presented in Table 13-1. Calculate the original gas in place G.SolutionStep 1.Assume volumetric gas reservoir.Step 2.Plot (p/z) versus G p or G p B g /(B g -B gi ) versus G p .Step 3.A plot of G p B g /(B g -B gi ) vs. G p B g showed an upward curvature,as shown in Figure 13-10, indicating water influx.W Cp t t e nn=-ÂD (13-24)Figure 13-10.Indication of the water influx.ABNORMALLY PRESSURED GAS RESERVOIRS Hammerlindl (1971) pointed out that in abnormally high-pressure vol-umetric gas reservoirs, two distinct slopes are evident when the plot of p/z versus G p is used to predict reserves because of the formation and fluid compressibility effects as shown in Figure 13-12. The final slope of the p/z plot is steeper than the initial slope; consequently, reserve esti-mates based on the early life portion of the curve are erroneously high. The initial slope is due to gas expansion and significant pressure mainte-nance brought about by formation compaction, crystal expansion, and water expansion. At approximately normal pressure gradient, the forma-tion compaction is essentially complete and the reservoir assumes the characteristics of a normal gas expansion reservoir. This accounts for the second slope. Most early decisions are made based on the early life extrapolation of the p/z plot; therefore, the effects of hydrocarbon pore volume change on reserve estimates, productivity, and abandonment pressure must be understood.Figure 13-11.Havlena-Odeh MBE plot for Example 13-4.All gas reservoir performance is related to effective compressibility, not gas compressibility. When the pressure is abnormal and high, effec-tive compressibility may equal two or more times that of gas compress-ibility. If effective compressibility is equal to twice the gas compressibili-ty, then the first cubic foot of gas produced is due to 50% gas expansion and 50% formation compressibility and water expansion. As the pressure is lowered in the reservoir, the contribution due to gas expansion becomes greater because gas compressibility is approaching effective compressibility. Using formation compressibility, gas production, and shut-in bottom-hole pressures, two methods are presented for correcting the reserve estimates from the early life data (assuming no water influx). Roach (1981) proposed a graphical technique for analyzing abnormal-ly pressured gas reservoirs. The MBE as expressed by Equation 13-17 may be written in the following form for a volumetric gas reservoir:whereDefining the rock expansion term E R as:Equation 13-26 can be expressed as:c t =1-E R (p i -p)(13E c c S S R f w wiwi =+-1(13-c c c S p p S t f w wi i wi =-+--11()()(13-(/)(/)p z c p z G G t i i p =--ÈÎ͢˚˙1(13-Figure 13-12.P/z versus cumulative production. North Ossum Field, Laf ayette Parish, Louisiana NS2B Reservoir. (After Hammerlindl.)Figure 13-13.Mobil-David Anderson “L” p/z versus cumulative production. (AfterRoach.)To avoid the trial-and-error procedure, Roach proposed that Equations 13-25 and 13-28 can be combined and expressed in a linear form by:withwhere G =initial gas in place, scfE R =rock expansion term, psi -1S wi =initial water saturationRoach (1981) shows that a plot of a versus b will yield a straight line with slope 1/G and y-intercept =-E R . To illustrate his proposed method-ology, he applied Equation 13-29 to the Mobil-David gas field as shown in Figure 13-14. The slope of the straight line gives G =75.2 MMMscf and the intercept gives E R = 18.5¥10-6.Begland and Whitehead (1989) proposed a method to predict the per-cent recovery of volumetric, high-pressured gas reservoirs from the ini-tial pressure to the abandonment pressure with only initial reservoir data.The proposed technique allows the pore volume and water compressibili-ties to be pressure-dependent. The authors derived the following form of the MBE for a volumetric gas reservoir:where r =recovery factorB g =gas formation volume factor, bbl/scfc f =formation compressibility, psi -1B tw =two-phase water formation volume factor, bbl/STBB twi =initial two-phase water formation volume factor, bbl/STBr G G B B B B S S B B c p p S B p g gi g gi wi wi tw twi f i wi g==-+--+-ÈÎ͢˚˙11()(13-32)b =-(/)(/)()p z p z p p i i i (13-31)a =--[(/)/(/)]()p z p z p p i i i 1(13-30)a b =Êˈ¯-1G E R (13-29)Figure 13-14.Mobil-David Anderson “L” gas material-balance. (After Roach. The water two-phase FVF is determined from:=B w+B g(R swi-R sw)where R sw=gas solubility in the water phase, scf/STBB w=water FVF, bbl/STBThe following three assumptions are inherent in Equation 13-32:volumetric, single-phase gas reservoir• No water productionThe formation compressibility c f remains constant over the pressure drop (p i-p).The authors point out that the changes in water compressibility c w are implicit in the change of B tw with pressure as determined by Equation 13-33.Begland and Whitehead suggest that because c f is pressure dependent, Equation 13-32 is not correct as reservoir pressure declines from the ini-tial pressure to some value several hundred psi lower. The pressure dependence of c f can be accounted for in Equation 13-32 is solved in an incremental manner.Effect of Gas Production Rate on Ultimate RecoveryV olumetric gas reservoirs are essentially depleted by expansion and, therefore, the ultimate gas recovery is independent of the field produc-tion rate. The gas saturation in this type of reservoir is never reduced; only the number of pounds of gas occupying the pore spaces is reduced. Therefore, it is important to reduce the abandonment pressure to the low-est possible level. In closed-gas reservoirs, it is not uncommon to recover as much as 90 percent of the initial gas in place.Cole (1969) points out that for water-drive gas reservoirs, recovery may be rate dependent. There are two possible influences which produc-ing rate may have on ultimate recovery. First, in an active water-drive reservoir, the abandonment pressure may be quite high, sometimes only a few psi below initial pressure. In such a case, the number of pounds of gas remaining in the pore spaces at abandonment will be relatively great. The encroaching water, however, reduces the initial gas saturation. Therefore, the high abandonment pressure is somewhat offset by the reduction in initial gas saturation. If the reservoir can be produced at a rate greater than the rate of water influx rate, without water coning, then a high producing rate could result in maximum recovery by taking advantage of a combination of reduced abandonment pressure and reduc-tion in initial gas saturation. Second, the water coning problems may be very severe in gas reservoirs, in which case it will be necessary to restrict withdrawal rates to reduce the magnitude of this problem.Cole suggests that the recovery from water-drive gas reservoirs is sub-stantially less than recovery from closed-gas reservoirs. As a rule of thumb, recovery from a water-drive reservoir will be approximately 50 to 80percent of the initial gas in place. The structural location of producing wells and the degree of water coning are important considerations in determining ultimate recovery.A set of circumstances could exist—such as the location of wells very high on the structure with very little coning tendencies—where water-drive recovery would be greater than depletion-drive recovery. Abandon-ment pressure is a major factor in determining recovery efficiency, and permeability is usually the most important factor in determining the mag-nitude of the abandonment pressure. Reservoirs with low permeability will have higher abandonment pressures than reservoirs with high perme-ability. A certain minimum flow rate must be sustained, and a higher per-meability will permit this minimum flow rate at a lower pressure.PROBLEMS1. The following information is available on a volumetric gas reservoir: Initial reservoir temperature, T i=155°FInitial reservoir pressure, p i=3500 psiaSpecific gravity of gas, g g=0.65 (air =1)Thickness of reservoir, h=20 ftPorosity of the reservoir, f=10%Initial water saturation, S wi=25%After producing 300 MMscf, the reservoir pressure declined to 2500 psia. Estimate the areal extent of this reservoir.2. The following pressures and cumulative production data2are available for a natural gas reservoir:Reservoir Gas deviation Cumulativepressure,factor,production,psia z MMMscf20800.759018850.767 6.87316200.78714.00212050.82823.6878880.86631.0096450.90036.207a. Estimate the initial gas in place.b. Estimate the recoverable reserves at an abandonment pressure of500 psia. Assume z a=1.00.2Ikoku, C., Natural Gas Reservoir Engineering,John Wiley and Sons, 1984.c. What is the recovery factor at the abandonment pressure of 500psia?3. A gas field with an active water drive showed a pressure decline from 3000 to 2000 psia over a 10-month period. From the following produc-tion data, match the past history and calculate the original hydrocarbon gas in the reservoir. Assume z =0.8 in the range of reservoir pressures and T=140°F.Datat, months0 2.5 5.07.510.0 p, psia30002750250022502000G p, MMscf097.6218.9355.4500.04. A volumetric gas reservoir produced 600 MMscf of 0.62 specific grav-ity gas when the reservoir pressure declined from 3600 to 2600 psi. The reservoir temperature is reported at 140°F. Calculate:a. Gas initially in placeb. Remaining reserves to an abandonment pressure of 500 psic. Ultimate gas recovery at abandonment5. The following information on a water-drive gas reservoir is given: Bulk volume=100,000 acre-ftGas Gravity=0.6Porosity=15%S wi=25%T=140°Fp i=3500 psiReservoir pressure has declined to 3000 psi while producing 30 MMMscf of gas and no water production. Calculate cumulative water influx.6. The pertinent data for the Mobil-David field is given below.G=70 MMMscf p i=9507 psi f=24%S wi=35% c w=401¥10-6psi-1c f=3.4¥10-6psi-1g g=0.94T=266°FFor this volumetric abnormally-pressured reservoir, calculate and plot cumulative gas production as a function of pressure.7. The Big Butte field is a volumetric dry-gas reservoir with a recorded initial pressure of 3,500 psi at 140°F. The specific gravity of the pro-duced gas is measured at 0.65. The following reservoir data are avail-able from logs and core analysis:Reservoir area= 1500 acresThickness= 25 ftPorosity= 15%Initial water saturation= 20%Calculate:a. Initial gas in place as expressed in scfb. Gas viscosity at 3,500 psi and 140°FREFERENCES1. Begland, T., and Whitehead, W., “Depletion Performance of VolumetricH igh-Pressured Gas Reservoirs,” SPE Reservoir Engineering,August 1989, pp. 279–282.2. Cole, F. W., Reservoir Engineering Manual.H ouston: Gulf Publishing Co., 1969.3. Dake, L., The Practice of Reservoir Engineering.Amsterdam: Elsevier Pub-lishing Company, 1994.4. Duggan, J. O., “The Anderson ‘L’—An Abnormally Pressured Gas Reservoir in South Texas,” Journal of Petroleum Technology,February 1972, Vol. 24, No. 2, pp. 132–138.5. Hammerlindl, D. J., “Predicing Gas Reserves in Abnormally Pressure Reser-voirs.” SPE Paper 3479 presented at the 46th Annual Fall Meeting of SPE, New Orleans, October 1971.6. H avlena, D., and Odeh, A. S., “The Material Balance as an Equation of a Straight Line,” Trans. AIME, Part 1: 228 I-896 (1963); Part 2: 231 I-815 (1964).7. Ikoku, C., Natural Gas Reservoir Engineering.John Wiley & Sons, Inc., 1984.8. Roach, R. H., “Analyzing Geopressured Reservoirs—A Material Balance Technique,” SPE Paper 9968, Society of Petroleum Engineers of AIME, Dal-las, December 1981.9. Van Everdingen, A. F., and Hurst, W., “Application of Laplace Transform to Flow Problems in Reservoirs,” Trans. AIME,1949, Vol. 186, pp. 305–324B.。