运筹学一般单纯形法
运筹学单纯形法
运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。
它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。
单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。
在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。
单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。
传统的单纯性法分为有界单纯性和无界单纯性两种情形。
无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。
有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。
单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。
使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。
运筹学单纯形法的计算步骤
b2
0… 0
a2,m+1
…
a2n
2
…
…
…
…
cm xm
bm
0… 1
am,m+1
…
amn
m
-z -z 值 0 … 0
m+1
…
n
XB 列——基变量, CB 列——基变量的价值系数(目标函数系数) cj 行——价值系数,b 列——方程组右侧常数 列——确定换入变量时的比率计算值
下面一行——检验数, 中间主要部分——约束方程系数
(4).根据max(j > 0) =k,拟定xk为换入变量,按 规则计算 =min{bi/aik\aik>0}
可拟定第l行旳基变量为换出变量。转入下一步。
(5).以 alk 为主元素进行迭代(即用高斯消去法或称为旋转变 换),把 xk 所对应的列向量变换为(0,0,…,1,…,0)T,将
XB 列中的第 l 个基变量换为 xk,得到新的单纯形表,返回(2)。
b
x1
x2
x3
x4
x5
2 x1 2 0 x4 8 3 x2 3
1
0
1
0 -1/2 -
0 0 -4 1 (2 ) 4
0 1 0 0 1/4 12
-z
-13
0
0 -2
0 1/4
X(2)=(2,3,0,8,0)T, z2 =13
cj
2 30 0 0
CB XB
b
x1
x2
x3
x4
x5
2 x1 4 0 x5 4 3 x2 2
量,给出第一阶段的数学模型为:
min = x6+x7
x1-2x2+x3+x4
运筹学-第一章-单纯形法基本原理
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,
运筹学单纯形法
单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4
3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1
运筹学5-单纯形法
保持可行性 保持可行性 保持可行性
保持可行性
X1
X2
X3
...
Xk
保持单调增 保持单调增 保持单调增
Z1
Z2
Z3
...
保持单调增
Zk
当Zk 中非基变量的系数的系数全为负值时,这时的基 本可行解Xk 即是线性规划问题的最优解,迭代结束。
(2) 线性规划的典则形式
标准型
Max Z CX AX b
s.t X 0
j 1
j 1
j 1
j 1
与X 0 相比,X 1 的非零分量减少1个,若对应的k-1个 列向量线性无关,则即为基可行解;否则继续上述步
骤,直至剩下的非零变量对应的列向量线性无关。
几点结论
❖ 若线性规划问题有可行解,则可行域是一个凸多边形或 凸多面体(凸集),且仅有有限个顶点(极点);
❖ 线性规划问题的每一个基可行解都对应于可行域上的 一个顶点(极点);
10
令 x1 0 x2 0
则 x3 15
X 0 0 15 24T
x4 24
为基本可行解,B34为可行基
B
0
X 24
3
108
A
0
X 34
0
15 24
0
0
X 23
12
45 0
1 基本解为边界约束方程的交点; 2 基对应于可行解可行域极点; 3 相邻基本解的脚标有一个相同。
1 0
1 0
B23 1 0 B24 1 1 B34 0 1
C42
2!
4! 4
2
!
43 21 21 21
6
由于所有|B|≠ 0, 所以有6个基阵和 6个基本解。
运筹学单纯形法
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
运筹学单纯形法各个步骤详解
运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
运筹学单纯形法例题求解过程
运筹学单纯形法例题求解过程(原创版)目录一、运筹学单纯形法的基本概念二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解下一个使目标函数更优的基本可行解5.重新计算机会费用和检验数三、运筹学单纯形法的应用实例正文一、运筹学单纯形法的基本概念运筹学单纯形法是一种求解线性规划问题的方法,它是基于数学和统计学的理论基础,通过逐步优化算法,寻找线性规划问题中最优解的一种方法。
线性规划问题是指在一定约束条件下,寻求目标函数的最小值或最大值的问题。
而单纯形法是线性规划问题中最常用的求解方法之一,它通过迭代计算,不断优化基变量,从而得到问题的最优解。
二、运筹学单纯形法的求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定问题的基变量,即在所有变量中选择若干个变量作为基变量。
基变量的选取可以通过寻找单位矩阵的方法来确定。
确定基变量后,可以求出初始基本可行解,即满足所有约束条件的变量值组合。
2.编制初始单纯形表根据初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表是一个包含基变量、非基变量、目标函数系数、约束条件常数项和检验数等元素的矩阵表。
3.判断基本可行解是否为最优解在求解过程中,需要判断基本可行解是否为最优解。
这可以通过检验数来进行。
检验数是指非基变量与对应约束条件的乘积,如果所有非基变量的检验数都小于等于 0,说明已经达到最优解。
否则,需要继续迭代求解。
4.迭代求解下一个使目标函数更优的基本可行解如果基本可行解不是最优解,需要通过迭代求解来寻找下一个使目标函数更优的基本可行解。
迭代过程中,需要确定换入变量和换出变量,然后根据换入变量和换出变量生成新的单纯形表,并重新计算机会费用和检验数。
5.重新计算机会费用和检验数在迭代过程中,需要重新计算机会费用和检验数,以便判断新的基本可行解是否更优。
如果新的基本可行解的检验数满足条件,说明已经找到最优解,可以结束迭代求解过程。
(完整word版)运筹学单纯形法
=0
σj=Cj- Zj
2
-1
1
0
0
0
1
S1
0
0
4
-5
1
-3
0
30
30/4
X1
2
1
-1
2
0
1
0
10
10/-1
S3
0
0
2
-3
0
-1
1
10
10/2
Zj
2
-2
4
0
2
0
Z=Z0=0*30+
2*10+0*10
=20
σj=Cj- Zj
0
1
-3
0
-2
0
2
S1
0
0
0
1
1
-1
-2
10
X1
2
1
0
1/2
0
s.t.
5x1+6x2-4x3-4x4+S1=20
3x1-3x2+2x3+8x4+S2=25
4x1-2x2+x3+3x4+S3=10
x1,x2,x3,x4,S1,S2,S3>=0
迭代次数
基变量
CB
(Ci)
X1
X2
X3
X4
S1
S2
S3
b
比值
bi/aij
6
2
10
8
0
0
0
0
S1
0
5
6
-4
-4
1
0
0
20
运筹学---单纯形法
运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。
在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。
单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。
单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。
在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。
具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。
新的基变量将替换原来的非基变量,并且目标函数的值将被更新。
关键是如何选择入基变量和出基变量。
为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。
单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。
通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。
一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。
但是,在实际应用中,单纯形法往往比其他算法更快和更有效。
此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。
单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。
它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。
在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。
这些方法可以提供更好的性能和结果。
但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。
在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。
运筹学02-单纯形法
反之,若经过迭代,不能把人工变量都变
为非基变量,则表明原LP问题无可行解。
19
第2章
单纯形法
2.3 人工变量法
2.3.1 大M法
在原问题的目标函数中添上全部人工变量,并令其系数 都为-M,
而M是一个充分大的正数。即
max z = c1x1 + c2x2 + c3x3 + … + cnxn – M( xn+1 + xn+2 +…+ xn+m )
思路:由一个基本可行解转化为另一个基本可行解。 等价改写为 目标方程 max z max z = 3x1+5x2 z -3x1 -5x2 = 0 z -3x1 -5x2 x1 +x3 x1 +x3 = 8 2x2 +x4 2x2 +x4 = 12 s.t. s.t. 3x1+4x2 +x5 3x1 + 4x2 +x5 = 36 x1 , x2 ,x3,x4,x5 x1 , x2 ,x3,x4,x5 ≥ 0
以主列中正值元素为分母,同行右端常数为分子,求比值;
6
第2章
单纯形法
2.1 单纯形法的基本思想
(Ⅰ)
用换基运算 将X0 转化为 另一个基本 可行解 X1。
z- 3x1 -5x2 = 0 0 换基运算—— x1 +x3 = 8 ① 方程组的初等变换 目的是把主列变为 22x2 +x4 = 12 ② 单位向量:主元变 3x1 + 4x2 +x5 = 36 ③ 为1,其余变为0。 X0 = ( 0, 0, 8, 12, 36 )T z0 = 0
⑴ 当前基:m阶排列阵
运筹学-第1章 3-单纯形法
解就是原问题的最优解
若变化后的问题中含有非零的人工变量则元问题无可行
解
7
2.最优性检验和解的判别
x i bi a im 1 x m 1 , ,a in x n i 1, , m代入目标函数 Z
c1 x1 c2 x 2 c n x n c1 (b1 a1m 1 x m 1 a1n x n ) c2 (b2 a 2 m 1 x m 1 a 2 n x n ) cm (bm a mm 1 x m 1 a mn x n ) c m 1 x m 1 c n x n ci bi
(1)因为所有 Xj ≥0,当所有σ j<0 时,则 Z≤Z0,则该基可行解 对应最优解; (2)因为所有 Xj ≥ 0 ,当 σ j≤ 0 且存在 σ j =0 ( j=m+1,„,n) 时,则该线性规划问题有无穷多最优解; ( 3 )对基可行解 X0, 若存在某个 σ k>0, 且所有 aik≤0(Pj≤0), i=1,2,„,m,则该问题无界(无界解); (4)因为所有Xj≥0,当存在σ j>0时,则该基可行解不是最优 解,需要寻找另一个基可行解;
9
3.基变换
• 变换目的:使目标函数Z值得到改善,接近最优解,一次基变换, 是从该顶点到相邻顶点,即一次基变换仅变换一个基变量。 换入变量的确定(入基变量)
σk>0,aik 至少一个大于0,若σk=Max{σj| σj>0},则xk为换入变量。
换出变量的确定(出基变量)
bi bl bi , i 1,, m, min | aik 0 aik aik alk
13
一.求初始基可行解
1.当约束条件为“≤”时,直接在约束不等式左边加上非负的松弛 变量,使约束方程的系数矩阵很容易找到一个单位矩阵,求出一 个初始基可行解。
运筹学第2章单纯形法
① ② ③
-2X4+X5 =12
得到新的基本可行解 X1 =(0,6,8,0,12)T
(1)、决定进基变量:1=--3, X1进基 (2)、决定离基变量:最小比值规则来确定主 元与离基变量.
则Xl为进基变量。 MIN(8/1,-,12/3)=12/3 此时可以确定X5为离基变量
Z
X(0) =(0, 0, 10, 15 )T
Z0 =0
Z-30X1-20X2 =0 选中X1从0↗,X2 =0 X3=10-(-X1 )0
X4=15-(-3X1 )0 求X1, X1→+ ,Z→+
2.2.3 单纯形法计算之例
2-3 人工变量法 (Artificial Variable)
+1/2X4
+X5 =42 =6
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4
X1 -2/3X4+1/3X5=4 令X4 =X5 =0 X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2,
Z值不 再增大了,X值是最优基本解
5
=1,
* T * 即:X =(4,6) ,Z =42
检验数
当目标方程中基变量系数全为0时,非基 变量的系数可以作为检验当前的基本可 行解是否最优的标志,称之为检验数。
(2)、判定解是否最优 Z-3X1-5X2 =0 当X1从0↗或X2从0↗ Z从0↗ ∴ X0 不是最优解
(3)、由一个基可行解→另一个基可行解。 ∵ -5<-3 选X2从0↗,X1 =0 X3 =8 X4 =12-2X2 0 X2 12/2
N
沿边界找新 的基本可行解
结束
运筹学一般单纯形法
1
0 0 0 1
0
1 0 0 0
0
0 1 0 -2
3
6 2 →
Cj-Zj
0
2
0
4
x4
x2 →
8
15
3 P1
10 P2
0 P3
0 P4
θi
注
3
-1
4
5
1
0
0
1
段 1 cj-zj
cj ↓ 0 0
→
0
3
10
0
0
基
x3 x4 →
b
24 15
P1
3 -1 3
P2
4 5 10
P3
1 0 0
P4
0 1 0
θi
注
步骤4.2:判断
(1)若所有检验数均≤0时,即得到最优解和 最优值; (2)若检验数存在正值,继续下一步。
3
0 3 1 3
2
(1) 4 0 0
0
0 0 1 0
1
0 0 0 1
0
1 0 -2 -2
6
2 →
Cj-Zj
0 2 0
4
x2
→
2
0
1
0
0
1
Cj-Zj
Cj 段 ↓
→ 基
0 b
3 P1
4 P2
0 P3
0 P4
0 Qi P5 注
0
1 0 0
x3
x4 x5 → x3
6
12 2 0 2
1
3 0 3 1
2
2 (1) 4 0
用主元列对应的变量(入基变量/调入变量)代替之,进入 下一段。
运筹学1-4单纯型法的计算步骤
2 X1 1 3 X2 2
Z8
1 0 -1 4/3 -1/3 0 1 2 -1/3 1/3 0 0 -1 -5/3 -1/3
从最优表可知: 该LP的
最优解是X*=(1, 2, 0, 0, 0)T 相应的目标函数最优值是Zmax=8
表格单纯形法求解步骤
第一步:将LP化为标准型,并加以整理。
引入适当的松驰变量、剩余变量和人工变量 ,使约束条件化为等式,并且约束方程组的系数 阵中有一个单位阵。
(这一步计算机可自动完成)
确定初始可行基,写出初始基本可行解
第二步:最优性检验
计算检验数,检查: 所有检验数是否≤ 0?
是——结束,写出最优解和目标函数最优值; 还有正检验数——检查相应系数列≤ 0?
是——结束,该LP无“有限最优解”! 不属于上述两种情况,转入下一步—基变换。
确定是停止迭代还是转入基变换?
0 1 0
0
0
1
0
0
0
1 c1 c2
0 a1,m1 a1,m2 0 a2,m1 a2,m2
1 a a m,m1 m,m2 cm cm1 cm2
a1,n b1
a2,n
b2
am,n bm
cn 0
-Z,x1,…,xm所对应的系数 列向量构成一个基
用矩阵的初等行变换将该基变成单位阵,这时
c1, c2 , , cm 变成0,相应的增广矩
第四步:判断检验数、入基、出基变量。 …….
三、表格单纯形法:
1、 初始单纯形表的建立 (1)表格结构:
Cj 2 3 3 0 0
CB
XB
b xj
x1 x2 x3 x4 x5
j
0 X4
3
运筹学单纯形法讲解
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cj → 0 3 10 0
0
段↓基 b
P1 P2 P3
P4
Qi 注
1
0
x3 24 3
4
1
0
6
0 x4 15 -1 (5) 0
1
3 调出
Cj-Zj →
3 10 0
0
2
0
x3 12 (19/5) 0
10 x2 3 -1/5 1
P4
θi 注
1
cj-zj →
例
cj → 0 3 10 0 段 ↓ 基 b P1 P2 P3
0 P4
θi 注
1 0 x3 24 3 4 1 0 0 x4 15 -1 5 0 1
cj-zj →
步骤4.1
c j z j c j cB p j
▪ 计算检验数Cj-Zj:其中Zj等于Pj中各分 量与相应的左边各Cj的乘积之和,Cj-Zj等 于Pj上面对应的Cj减去Zj;
步骤1
▪ 引入松弛变量等,将问题化成标准形式;
max F 3x1 10x2 0x3 0x4 s.t. 3x1 4x2 x3 24 x1 5x2 x4 15 x j 0, j 1,2,3,4
步骤2
▪ 具体写出各系数矩阵A,B,Pj和C; ▪ 特别注意:A矩阵中有否完全单位向量组。
第三章 单纯形法
▪ 单纯形法适用于任何线性规划问题的求解。
▪ 单纯形法的一般解法 ▪ 大M法和两阶段法 ▪ 修正单纯形法 ▪ 单纯形法的数学原理
第一节 单纯形法的一般解法
▪ 例:
max F 3x1 10x2 s.t. 3x1 4x2 24 x1 5x2 15 x1 0, x2 0
pi* j*
将原主元行上的元素,分别除以主元素,使主元素
为“1”。即:
Cj → 0
3 10 0
0
段↓基
b
P1
P2
P3
P4
θi 注
1
0
x3 24
3
Байду номын сангаас
4
1
0
6
0
x4 15
-1 (5)
0
1
3 调出
Cj-Zj →
3 10 0
0
2
0
x3
10 x2
Cj-Zj →
例:
Cj → 0 3 10 0
0
段↓基
b
P1 P2
cj → 0 3 10 0
0
段 ↓ 基 b P1 P2 P3
P4
θi 注
1
0 x3 24 3
4
1
0
0 x4 15 -1 5 0
1
cj-zj
→
cj → 0 3 10 0
0
段 ↓ 基 b P1 P2 P3
P4
θi 注
1
0 x3 24 3
4
1
0
0 x4 15 -1 5 0
1
cj-zj
→
3 10 0 0
步骤4.2:判断
其余均为0。
Cj
→
0
3
10
0
0
段
↓基
b
P1
P2
P3
P4
θi
注
1
0
x3
24
3
4
1
0
6
0
x4
15
-1
(5)
0
1
3 调出
Cj-Zj
→
3
10
0
0
2
0
x3
0
10
x2
3 -1/5 1
0
1/5
Cj-Zj
→
则:A=-4
Cj → 0 3 10 0
0
段↓基
b
P1
P2
P3
P4
θi 注
1
0 x3 24 3
4
1
0
6
0 x4 15 -1 (5) 0
▪ 5.1决定主元素 ▪ 5.2换基迭代 ▪ 5.3计算新元素
5.1 决定主元素:
▪ 当表中出现正检验数时,找出其中绝对值最大的一个所在的列作为主元 列,记为Pj*,然后用主元列中各正分量去除b列中相应的分量,得到θ i,接 着取θ i中最小的分量所在的行为主元行,记为Pi*;主元行与主元列相交处 的元素即主元素,记为Pi*j*;找到主元素后,打上一个圈以示区别。
主元素
6 主元行
3
5.2:换基
▪ 把主元行对应的变量(出基变量/调出变量)从基底调出,
用主元列对应的变量(入基变量/调入变量)代替之,进入
下一段。
例中:x4调出,x2调入。
Cj → 0 3 10 0 0
段 ↓基 b
P1 P2 P3
P4
θi 注
1
0 x3 24 3
4
1
0
6
0 x4 15 -1 (5) 0
P3
P4
θi 注
1
0
x3 24 3
4
1
0
6
0 x4 15 -1 (5) 0
1
3 调出
Cj-Zj →
3 10 0
0
2
0
x3
10 x2 3 -1/5 1 0 1/5
Cj-Zj →
5.3 计算新元素
▪ 5.3.2 原非主元行上元素的计算:
先将原主元行上的新元素乘以某一数A后,分别加上原非主
元行上的元素,使原主元列上各元素除了原主元素为“1”外,
计算检验数,判断检验数
Cj → 0 3 10 0
0
段↓基 b
P1 P2 P3
P4
Qi 注
1
0
x3 24 3
4
1
0
6
0 x4 15 -1 (5) 0
1
3 调出
Cj-Zj →
3 10 0
0
2
0
x3 12 19/5 0
10 x2 3 -1/5 1
Cj-Zj →
1 -4/5 0 1/5
计算检验数,判断检验数
1
3 调出
Cj-Zj →
3 10 0
0
2
0
x3 12 19/5 0
1
-4/5
10 x2 3 -1/5 1 0 1/5
Cj-Zj →
步骤6:回到第4步
▪ 步骤4:计算检验数、判断检验数
➢ 计算检验数Cj-Zj:
(1)若所有检验数均≤0时,即得到最优解和最优值; (2)若检验数存在正值,继续下一步。
▪ (1)若所有检验数均≤0时,即得到最优解和 最优值;
▪ (2)若检验数存在正值,继续下一步。
Cj → 0 3 10 0
0
段↓基 b
P1 P2 P3
P4
θi 注
1
0 x3 24 3
4
1
0
0 x4 15 -1 5 0
1
cj-zj
→
3 10 0 0
▪ 本例中:c1-z1>0,c2-z2>0
步骤5:换基迭代
1
3
Cj-Zj →
3 10 0 0
换基后
Cj → 0 3 10 0
0
段
↓基 b
P1 P2 P3
P4
1
0 x3 24 3
4
1
0
0 x4 15 -1 (5) 0
1
Cj-Zj →
3 10 0
0
2
0 x3
10 x2
Cj-Zj →
θi 注
6 3
5.3:计算新元素
5.3.1 原主元行上元素的计算:
pi*t p i*t '
A
3 1
4 5
1 0
0 1
B 1254
3
4
1
0
P1 1 P2 5 P3 0 P4 1
C 3 10 0 0
步骤3
▪ 形成初始表如下,表中基变量为A矩阵中完 全单位向量组对应的变量。
段 cj → ↓基
C
b
p1 p2 … pn
θi
注
基变 基 1 量对 变
应的 量
cj
例
cj → 段 ↓ 基 b P1 P2 P3
Cj → 0 3 10 0 0
段↓基
b
P1 P2 P3
P4
θi 注
1
0 x3 24 3
4
1
0
0 x4 15 -1 5 0
1
Cj-Zj →
3 10 0 0
例: 主元列
Cj → 0 3 10 0
0
段↓基
b
P1
P2
P3
P4
θi 注
0 1
0 Cj-Zj
x3 24 3 4
x4 15 -1 (5)
→
3 10
10 01 00