广州数学轴对称解答题单元测试与练习(word解析版)
北师大版八年级上册数学 轴对称解答题单元综合测试(Word版 含答案)
北师大版八年级上册数学 轴对称解答题单元综合测试(Word 版 含答案)一、八年级数学 轴对称解答题压轴题(难)1.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ayx aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.2.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.已知:等边ABC∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN =即3AN BN=.(2)如下图:过点M 作ME ∥BC 交AC 于E∴∠CME=∠MCB ,∠AEM=∠ACB∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB ∠=∠=︒,120MBN =︒∠∴120CEM MBN ∠==︒∠,60AEM A ∠=∠=︒∴AM=ME∵MNB MCB ∠=∠∴∠CME=∠MNB ,MN=MC∴在MEC ∆与NBM ∆中CME MNB CEM MBN MC MN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS ∆∆≌∴ME BN =∴AM BN=(3)如下图:过点P 作PM ∥BC 交AB 于M∴AMP ABC =∠∠∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC ==∴60AMP A ==︒∠∠∴AP MP =,180120EMP AMP =︒-=︒∠∠,180120FCP ACB =︒-=︒∠∠ ∴AMP ∆是等边三角形,120EMP FCP ==︒∠∠∴AP MP AM ==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS∆∆≌∴ME FC=∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.4.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC =BC ,DC =EC ,∠ACB =∠DCE =60°,由等式的性质就可以∠BCE =∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出△ACD ≌△BCE 而有∠CBE =∠CAD =30°而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出△ACD ≌△BCE 同样可以得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC =60°.∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE . 在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ); (3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE . 在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD和△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD.由(1)得:∠CAM=30°,∴∠CBE=∠CAD=150°,∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上所述:当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC是等腰三角形,90BAC∠=︒,D是BC的中点,以AD为腰作等腰ADE,且满足90DAE∠=︒,连接CE并延长交BA的延长线于点F,试探究BC与CF之间的数量关系.图1发现:(1)BC与CF之间的数量关系为 .探究:(2)如图2,当点D是线段BC上任意一点(除B、C外)时,其他条件不变,试猜想BC与CF之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.6.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=- 解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.7.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE+AE=BE.【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE=BE,如图,在BE上取点M使ME=AE,连接AM,设∠EAC=∠DAE=x,类比(2)的方法求得∠AEB=60°,从而得到△AME为等边三角形,根据等边三角形的性质和SAS即可判定△AEC≌△AMB,根据全等三角形的性质可得CE=BM,由此即可证得CE +AE=BE.【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°. ∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC中,30B∠=︒,AD和DE是ABC的三分线,点D在BC边上,点E在AC边上,且AD BD=,DE CE=,设c x∠=︒,则x所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE时,则∠EAD=∠EDA=1802(90)2xx-=-,∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.9.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=.(1)如图1,当点E在AC的延长线上且CD CE=时,AD是ABC的中线吗?请说明理由;(2)如图2,当点E在AC的延长线上时,写出,,AB BD AE之间的数量关系,请说明理由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出,,AB BD AE的数量关系.【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE+=,理由详见解析;(3)AB AE BD=+.【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF=∠DAF,∵DF=DF,AF=EF,在△AFD和△EFD中,AD DEDF DFAF EF=⎧⎪=⎨⎪=⎩,∴△AFD≌△EFD(SSS)∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.10.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.。
(人教版)广州市八年级数学上册第三单元《轴对称》检测题(包含答案解析)
一、选择题1.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .1282.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个4.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形5.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上D . : 1:3DAC ABD S S ∆∆= 6.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 7.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ). A .0 B .1 C .2 D .38.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个 9.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .12 10.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个11.如图,在△ABC中,∠C=84°,分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧分别交于点M,N,作直线MN交AC于点D;以点B为圆心,适当长为半径画弧,分别交BA,BC于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点P.若此时射线BP恰好经过点D,则∠A的大小是()A.30°B.32°C.36°D.42°12.如图,在Rt ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,如果AB=3,AC=4,那么线段AE的长度是()A.125B.95C.85D.75二、填空题13.如图,点C在线段AB上(不与点A,B重合),在AB的上方分别作△ACD和△BCE,且AC=DC,BC=EC,∠ACD =∠BCE=α,连接AE,BD交于点P.下列结论:①AE=DB;②当α=60°时,AD=BE;③∠APB=2∠ADC;④连接PC,则PC平分∠APB.其中正确的是__________.(把你认为正确结论的序号都填上)14.如图,△ABC≌△ADE,点D落在BC上,且∠BAD=70°,则∠EDC=_____°.15.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.16.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .17.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________18.如图,在等腰三角形ABC 中,AB =AC ,∠B =50°,D 为BC 的中点,点E 在AB 上,∠AED =70°,若点P 是等腰三角形ABC 的腰上的一点,则当DEP 是以∠EDP 为顶角的等腰三角形时,∠EDP 的度数是_____.19.如图,∠AOB =45°,OC 平分∠AOB ,点M 为OB 上一定点,P 为OC 上的一动点,N 为OB 上一动点,当PM +PN 最小时,则∠PMO 的度数为___________.20.如图,在△ABC 中,AB =AC ,D 为BC 的中点,∠BAD =20°,且AE =AD ,则∠CDE 的度数是______.三、解答题21.如图1,点C 在线段AB 上,∠A =∠B ,AD =BC ,AC =BE .(1)判断△CDE 的形状并说明理由;(2)若∠A=58°,求∠DCE 的度数;(3)根据解决问题(1)(2)的经验,请你继续解答下列问题:如图2,在如图所示的正方形网格中,点P 是BC 边上的一个格点(小正方形的顶点),请你在AB 边上作一点M ,在CD 边上作一点N ,使△MPN 是等腰直角三角形,并说明理由.(不写作法,保留作图痕迹)22.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DHFB FH =+.23.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在线段BC 上,连接AD ,过点C 作CE AD ⊥交AD 于点E ,过点B 作BF CE ⊥,交CE 的延长线于点F ,点G 是AB 的中点,连接GE ,GF .(1)若30CAD ∠=︒,5AD =,求DE 的长度;(2)求证:GE GF =.24.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ), (3)求出'''A B C ∆的面积25.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.''';(1)作出ABC关于y轴的对称图形A B C(2)写出点A',B',C'的坐标;+最短(不写作法).(3)在y轴上找一点P,使PA PC26.如图,在12×10的正方形网格中,△ABC是格点三角形,点B的坐标为(﹣5,1),点C的坐标为(﹣4,5).(1)请在方格纸中画出x轴、y轴,并标出原点O;(2)画出△ABC关于直线l对称的△A1B1C1;C1的坐标为(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的外角性质以及等边三角形的判定和性质得出OA 1=B 1A 1=1,OA 2=B 2A 2=2,OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而得出答案.【详解】如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠2=60°,∵∠MON=30°,∴∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1= A 1A 2=1,∵△A 2B 2A 3是等边三角形,同理可得:OA 2=B 2A 2=2,同理;OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,OA 5=B 5A 5=4216=,…,以此类推:所以OA 7=B 7A 7=6264=,故选:C .【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA 2=B 2A 2=2, OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而发现规律是解题的关键.2.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.3.C解析:C【分析】根据三角形内角和定理求出∠CAB ,求出∠CAD=∠BAD=∠B ,推出AD=BD ,AD=2CD 即可.【详解】解:∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 平分∠CAB ,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B ,∴AD=BD ,AD=2CD ,②正确;∴BD=2CD ,③正确;根据已知不能推出CD=DE ,故④错误;故选:C .【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.4.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A 、B ,根据对顶角的定义判断C ,根据等边三角形的判定判断D .【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B .已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL 可以得出两个三角形全等,故本选项是真命题;C 、相等的角不一定是对顶角,故错误,是假命题;D 、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C .【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.5.D解析:D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S ⋅=,12ABD DB AC S ⋅=,∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D .【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.6.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A 、全等三角形的对应边相等,是真命题;B 、面积相等的两个三角形不一定全等,原命题是假命题;C 、两个全等三角形不一定成轴对称,原命题是假命题;D 、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A .【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.7.D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD≌△ACE;命题1:若AB=AC,AD=AE,则BD=CE,此命题为真命题;命题2:若AB=AC,BD=CE,则AD=AE,此命题为真命题;命题3:若AD=AE,BD=CE,则AB=AC,此命题为真命题.故选:D.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.8.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.9.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.10.C解析:C【分析】分三种情况:当AB=AC时,当BA=BC时,当AC=AB时,根据等腰三角形两边相等的性质分别作图即可得解.【详解】当AB=AC时,点C与点O重合;当BA=BC时,以点B为圆心,AB长为半径画弧,与x轴有两个交点;当AC=AB时,作线段AB的垂直平分线,与x轴有一个交点,共有4个点C,故选:C..【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.11.B解析:B【分析】根据题中作图知:DM垂直平分AB,BD平分∠ABC,利用三角形内角和定理计算即可.【详解】由题意得:DM垂直平分AB,BD平分∠ABC,∵DM垂直平分AB,∴AD=BD,∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠A+∠ABD+∠CBD+∠C=180︒,∠C=84°,∴∠A=32︒,故选:B.【点睛】此题考查线段垂直平分线作图及性质,角平分线作图及性质,三角形的内角和定理,根据题意得到DM垂直平分AB,BD平分∠ABC是解题的关键.12.A解析:A【分析】根据作图过程可得AP是BD的垂直平分线,根据勾股定理可得BC的长,再根据等面积法求出AE的长即可.【详解】解:∵∠BAC=90°,AB=3,AC=4,∴BC225AB AC+=,根据作图过程可知:AP是BD的垂直平分线,∴BE=DE,AE⊥BD,∴△ABC的面积:12AB•AC=12BC•AE,∴5AE =12,∴AE =125. 故选:A .【点睛】 本题考查垂直平分线和勾股定理,需要有一定的数形结合能力,熟练掌握垂直平分线的定义,结合题意进行解题是解决本题的关键.二、填空题13.①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD 根据全等三角形的解析:①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形,但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD ,根据全等三角形的面积相等,从而证得AE 和BD 边上的高相等,即CH=CG ,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC ,故可判断④.【详解】解:①∵∠ACD=∠BCE ,∴∠ACD+∠DCE=∠DCE+∠BCE ,∴∠ACE=∠DCB ,在△ACE 和△DCB 中CA CD ACE DCB CE CB ⎧⎪∠∠⎨⎪⎩===,∴△ACE ≌△DCB (SAS ),∴AE=DG ,故①正确;②∵AC =DC ,BC=EC ,∠ACD =∠BCE =60°,∴△ACD 和△BCE 是等边三角形,∴AD=AC =DC ,BE=BC=EC ,但AC 不一定等于BC ,故AD 不一定等于BE ,所以②错误;③∵∠APB 是△APD 的外角,∴∠APD=∠ADP+∠DAP由①得△ACE ≌△DCB∴∠CAE=∠CDB∵AC=DC∴∠CAD=∠CDA∴∠APD=∠ADC+∠DAC=2∠ADC,故③正确;④如图,分别过点C作CH⊥AE于H,CG⊥BD于G,∵△ACE≌△DCB,∴AE=BD,S△ACE=S△DCB,∴AE和BD边上的高相等,即CH=CG,∴∠APC=∠BPC,故④正确;故答案为:①③④.【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定和性质,角的平分线定理及其逆定理,本题的关键是借助三角形的面积相等求得对应高相等.14.70【分析】根据全等三角形的性质可得对应角和对应边相等再根据等腰三角形的性质即可解答【详解】解:∵△ABC≌△ADE∴AB=AD∠B=∠ADE∴∠ADB=∠B∵∠BAD=70°∴∠B=∠ADB=(1解析:70【分析】根据全等三角形的性质可得对应角和对应边相等,再根据等腰三角形的性质,即可解答.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠ADB=∠B,∵∠BAD=70°,∴∠B=∠ADB =(180°-70°)÷2=55°,∴∠EDC=180°-2×55°=70°.故答案是:70.【点睛】本题考查了全等三角形的性质,等腰三角形的性质以及平角的定义,熟记性质并准确识图是解题的关键.15.【分析】先根据折叠的性质求出∠B′EM根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN【详解】解:根据折叠可知:EM平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'【分析】先根据折叠的性质求出∠B′EM,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN.【详解】解:根据折叠可知:EM平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′,故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.16.【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm的边为腰时底边长=24-6-6=12(cm)∵6+6=12故不能构成三角形;当6cm的边为底边时腰长=(cm)解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm的边为腰时,底边长=24-6-6=12(cm),∵6+6=12,故不能构成三角形;当6cm的边为底边时,腰长=1(246)92⨯-=(cm),由于6+9>9,故能构成三角形,故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.17.25°【分析】先根据AB=AD利用三角形内角和定理求出∠B和∠ADB的度数再根据三角形外角的性质即可求出∠C的大小【详解】解:∵AB=AD∴∠B=∠ADB∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD,利用三角形内角和定理求出∠B和∠ADB的度数,再根据三角形外角的性质即可求出∠C的大小.【详解】解:∵AB=AD,∴∠B=∠ADB,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.18.40°或100°或140°【分析】根据△DEP 是以∠EDP 为顶角的等腰三角形可知DP =DE 所以可以分两种情况考虑:①点P 在AB 上;②点P 在AC 上分别画出符合条件的图形根据等腰三角形的性质和全等三角形解析:40°或100°或140°【分析】根据△DEP 是以∠EDP 为顶角的等腰三角形,可知DP = DE ,所以可以分两种情况考虑: ①点P 在AB 上;②点P 在AC 上.分别画出符合条件的图形,根据等腰三角形的性质和全等三角形的判定和性质定理解答即可.【详解】解:∵AB =AC ,∠B =50°,∠AED =70°,∴∠EDB =20°,∵当△DEP 是以∠EDP 为顶角的等腰三角形,∴DP = DE ,①如图,当点P 在AB 上时,记为P 1,∵DE =DP 1,∴∠DP 1E =∠AED =70°,∴∠EDP 1=180°﹣70°﹣70°=40°,②如图,当点P 在AC 上时,有两个点P 2、 P 3符合条件,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,2DE DP DG DH=⎧⎨=⎩, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =70°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=140°,同理证得Rt △DEG ≌Rt △D P 3H (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =100°,故答案为:40°或100°或140°.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,分类讨论画出符合条件的图形是解题的关键.19.45°【分析】找到点M 关于OC 对称点M′过点M′作M′N ⊥OB 于点N 交OC 于点P 则此时PM+PN 的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M 关于OC 对称点M′过点M解析:45°【分析】找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M 与点M′关于OC 对称,OC 平分∠AOB ,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P及点N的位置是关键.20.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE=∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.(1)等腰三角形,理由见解析;(2)58°;(3)见解析【分析】(1)利用SAS判定△ADC≌△BCE即可判定结论;(2)利用三角形内角和定理,平角的定义,推理得证;(3)构造一对全等的直角三角形,利用上面的结论即可.【详解】(1)∵AD =BC,∠A=∠B,AC=BE,∴△ADC≌△BCE,∴CD=CE,∴△CDE是等腰三角形;(2)∵△ADC≌△BCE,∴∠ADC=∠BCE,∵∠ADC+∠ACD+∠A=180°,∠ADC+∠BCE+∠DCE=180°,∴∠A=∠DCE,∵∠A=58°,∴∠DCE=58°;(3)如图,根据作图,得△PBM ≌△NCP ,∴PM=PN ,∴△PMN 是等腰三角形;∵∠B=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形.【点睛】本题考查了三角形的全等,等腰三角形的判定,等腰直角三角形的判定,三角形内角和定理,平角的定义,熟记三角形全等原理,基本作图是解题的关键.22.(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.23.(1)54;(2)见详解 【分析】 (1)先求出∠DCE=30°,根据直角三角形的性质,可得CD=12AD ,DE =12CD ,进而即可求解;(2)连接CG ,先证明∆BFC ≅∆CEA ,从而得BF=CE ,结合等腰直角三角形的性质,得CG=BG ,CG ⊥AB ,进而证明∆GCE ≅∆GBF ,即可得到结论.【详解】(1)∵CE AD ⊥,30CAD ∠=︒,∴∠ACE=90°-30°=60°,∵90ACB ∠=︒,∴∠DCE=30°,∵5AD =,∴CD=12AD=52,DE =12CD=54; (2)连接CG ,∵CE AD ⊥,∴∠ACE+∠CAE=90°,∵90ACB ∠=︒,∴∠ACE+∠BCF=90°,∴∠CAE=∠BCF ,∵BF CE ⊥,∴∠BFC=∠CEA=90°,又∵AC BC =,∴∆BFC ≅∆CEA (AAS ),∴BF=CE ,∵点G 是AB 的中点,∴CG=BG ,CG ⊥AB ,∴∠CGB=∠BFC=90°,∴∠GCE=∠GBF ,∴∆GCE ≅∆GBF ,∴GE GF =.【点睛】本题主要考查全等三角形的判定和性质以及等腰直角三角形的性质,熟练掌握AAS 证明全等三角形以及等腰直角三角形的性质,是解题的关键.24.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形 1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)见解析;(2)(1,5)A ',(1,0)B ',3)(4,C ';(3)见解析【分析】(1)根据轴对称的性质确定点,,A B C ''',顺次连线即可得到图形;(2)根据点的位置直接得解;(3)连接AC '与y 轴交于一点即为点P ,连接PC ,此时AP+PC 最短.【详解】解:(1)如图所示,A B C '''为所求作.(2)由图可得,(1,5)A ',(1,0)B ',4,3)C '.(3)如图所示,点P 即为所求作.【得解】此题考查轴对称的性质,轴对称作图,点的坐标,最短路径问题,正确理解轴对称的性质作出图形是解题的关键.26.(1)见解析;(2)见解析;(0,5);(3)(﹣a﹣4,b)【分析】(1)利用A、C点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A、B、C关于直线l的对称点A1、B1、C1即可;(3)先把P点向右平移2个单位(a+2,b)(相当于把直线l右平移2个单位),点(a+2,b)关于y轴的对称点为(-a-2,b),然后把(-a-2,b)向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A1B1C1为所作的三角形;C1的坐标为:(0,5);(3)先把P点向右平移2个单位(a+2,b)(相当于把直线l右平移2个单位),点(a+2,b)关于y轴的对称点为(-a-2,b),然后把(-a-2,b)向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).∴P1的坐标是(﹣a﹣4,b).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,。
【精选】北师大版八年级上册数学 轴对称解答题单元测试卷附答案
【精选】北师大版八年级上册数学轴对称解答题单元测试卷附答案一、八年级数学轴对称解答题压轴题(难)1.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.2.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB=AC,∴BF=AC;(2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90º,∴∠AEB=90°-2x,∵EF=EC,∴∠EFC=∠ECF,∵∠EFC+∠ECF=∠AEB=90°-2x,∴∠EFC=(90°-2x)÷2=45°-x,∵BF=AB,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x,∴∠EFD=∠BFA=90°-x,∴∠CFD=∠EFD-∠EFC=(90°-x)-(45°-x)=45°;(3)由(2)可知:EF=EC,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.3.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C 为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .(1)如图 1,求BFC ∠的度数;(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:2EAC EDF ∠=∠;(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.【解析】【分析】(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.【详解】(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以CAE CGE ∠=∠,由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,所以2AR MR x y ==+,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,因为226DF x y =+=,所以3x y +=,所以2y =,1x =,因为AF AF =,ANF AEF ∠=∠,所以AEF ANF ≌,所以FN EF =,因为AR AT =,所以AEF ANF ADM S S S ∆∆∆==,因为142ADM S DM AR ∆=⋅⋅=, 所以20ADM ADN ANF AEF AMFE S S S S S ∆∆∆∆=+++=四边形.【点睛】本题是三角形综合题,考查了等腰三角形的性质、三角形内角和定理、全等三角形的判定和性质等知识点,解题的难点在于学会添加常用辅助线,构造三角形全等解决问题,属于中考压轴题.5.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CBACD ECBCD CE=⎧⎪∠=∠⎨⎪=⎩,∴EACD BC∆∆≌,∴ADC BEC∠∠=.∵点A、D、E在同一直线上,∴180********ADC BEC CDE∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED∠=︒-∠=︒-︒=︒.②∵CDA CEB∆∆≌,∴BE AD=.∵CD CE=,CM DE⊥,∴DM ME=.又∵90DCE∠=︒,∴2DE CM=,∴2AE AD DE BE CM=+=+.故填:①90°;②2AE BE CM=+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.6.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC=∠ACB=60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠BAC =∠ACB =60°,∴∠BAD =60°﹣∠DAE ,∠EDC =60°﹣∠E ,又∵DE =DA ,∴∠E =∠DAE ,∴∠BAD =∠EDC .(2)由轴对称可得,DM =DE ,∠EDC =∠MDC ,∵DE =DA ,∴DM =DA ,由(1)可得,∠BAD =∠EDC ,∴∠MDC =∠BAD ,∵△ABD 中,∠BAD +∠ADB =180°﹣∠B =120°,∴∠MDC +∠ADB =120°,∴∠ADM =60°,∴△ADM 是等边三角形,∴AD =AM .【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.7.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.8.如图,在等边ABC∆中,点D,E分别是AC,AB上的动点,且AE CD=,BD 交CE于点P.(1)如图1,求证120BPC︒∠=;(2)点M是边BC的中点,连接PA,PM.①如图2,若点A,P,M三点共线,则AP与PM的数量关系是;②若点A,P,M三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM=;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM=;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC=∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP (SAS),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以60A ACB∠=∠=︒∵AC BCA ACBAE CD=⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS≌,∴AEC CDB∠=∠,在四边形AEPD中,∵360AEC EPD PDA A∠+∠+∠+∠=︒,∴18060360AEC EPD CDB∠+∠+︒-∠+︒=︒,∴120EPD ∠=︒,∴120BPC ∠=︒;(2)①如图2,∵△ABC 是等边三角形,点M 是边BC 的中点,∴∠BAC =∠ABC =∠ACB =60°,AM ⊥BC ,∠CAP =12∠BAC =30°,∴PB =PC , ∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM =;②AP =2PM 成立,理由如下:延长BP 至D ,使PD =PC ,连接AD 、CD ,如图4所示:则∠CPD =180°﹣∠BPC =60°, ∴△PCD 是等边三角形,∴CD =PD =PC ,∠PDC =∠PCD =60°,∵△ABC 是等边三角形,∴BC =AC ,∠ACB =60°=∠PCD ,∴∠BCP =∠ACD ,∴△ACD ≌△BCP (SAS ),∴AD =BP ,∠ADC =∠BPC =120°,∴∠ADP =120°﹣60°=60°,延长PM 至N ,使MN =MP ,连接CN ,∵点M 是边BC 的中点,∴CM =BM ,∴△CMN ≌△BMP (SAS ),∴CN =BP =AD ,∠NCM =∠PBM ,∴CN ∥BP ,∴∠NCP +∠BPC =180°,∴∠NCP =60°=∠ADP ,在△ADP 和△NCP 中,∵AD=NC ,∠ADP =∠NCP ,PD=PC ,∴△ADP ≌△NCP (SAS ),∴AP =PN =2CM ;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.9.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动秒后,△AMN是等边三角形?(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形△AMN?(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【解析】【分析】(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴2AM=AN∴4t=12﹣3t∴t=127;③当M、N都在BC上,∠ANM=90°时,如图CN=3t﹣24=6解得t=10;④当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,如图此时2t=12+6解得t=9;综上所述,点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.10.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=.(1)如图1,当点E在AC的延长线上且CD CE=时,AD是ABC的中线吗?请说明理由;(2)如图2,当点E在AC的延长线上时,写出,,AB BD AE之间的数量关系,请说明理由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出,,AB BD AE的数量关系.【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE+=,理由详见解析;(3)AB AE BD=+.【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF=∠DAF,∵DF=DF,AF=EF,在△AFD和△EFD中,AD DEDF DFAF EF=⎧⎪=⎨⎪=⎩,∴△AFD≌△EFD(SSS)∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.。
八年级上册轴对称解答题易错题(Word版 含答案)
八年级上册轴对称解答题易错题(Word版含答案)一、八年级数学轴对称解答题压轴题(难)1.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠A BC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.2.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.3.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB ∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.5.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC是等腰三角形,90BAC∠=︒,D是BC的中点,以AD为腰作等腰ADE,且满足90DAE∠=︒,连接CE并延长交BA的延长线于点F,试探究BC与CF之间的数量关系.图1发现:(1)BC与CF之间的数量关系为 .探究:(2)如图2,当点D是线段BC上任意一点(除B、C外)时,其他条件不变,试猜想BC与CF之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.6.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=【解析】【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,通过ASA 证明CDO CEF ∆∆≌,得到,CD CE OD EF ==,所以OE OD OE EF OF OC +=+==;②图4:以OC 为一边,作∠OCF=60°与OB 交于F 点,利用ASA 证得△COD ≌△CFE ,即有CD=CE ,OD=EF得到OE=OF+EF=OC+OD ;图5:以OC 为一边,作∠OCG=60°与OA 交于G 点,利用ASA 证得△CGD ≌△COE ,即有CD=CE ,OD=EF ,得到OE=OF+EF=OC+OD.【详解】解:(1)OC 平分AOB ∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC ∴=又456590︒∠+∠=∠+∠=在CDO ∆与CEF ∆中,1346OC FC ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA ∴∆∆≌CD CE ∴=(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形 O DCE 中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形ODCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵60120180AOB DCE∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO ∠=∠+∠=︒,∴46∠=∠,在CDO ∆与CEF ∆中,1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA ∆∆≌,∴,CD CE OD EF ==.∴OE OD OE EF OF OC +=+==.-=.②在图4中,(1)中的结论成立,OE OD OC如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD ≌△COE (ASA )∴CD=CE ,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE+AE=BE.【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D的度数,再由三角形外角的性质即可求得∠AEB的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°.∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB AC BAM CAE AM AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AMB ≌△AEC .∴CE =BM .∴CE +AE =BE .【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE 转化到BE 上,再证明CE =BM 即可得结论.9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解;(2)延长BD至Q,使DQ=AB,连结EQ,就可以得出BE=BQ,得出△BEQ是等边三角形,就可以得出BE=QE,得出△BCE≌△QDE就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC∆是等边三角形,∴∠ABC=∠A=60°,∵FP∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF∆是等边三角形,∴PF=AF,∵FH AB⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI∆和BGI∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论; (3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠= 120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+ (2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠= 180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠= ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+737276222PQ ∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
广州执信中学八年级数学上册第十三章《轴对称》测试(含答案解析)
一、选择题1.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④C解析:C【分析】 根据翻折的性质可得∠AEF =∠CEF ,根据两直线平行,内错角相等可得∠AFE =∠CEF ,然后求出∠AEF =∠AFE ,根据等角对等边可得AE =AF ;根据HL 即可得到△ABE ≌AGF .根据等量代换即可得到AF =CE ;根据△AEF 是等腰三角形,不一定是等边三角形,即可得到∠AEF 不一定为60°.【详解】解:由翻折的性质得,∠AEF =∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE =∠CEF ,∴∠AEF =∠AFE ,∴AE =AF ,故①正确,在Rt △ABE 和Rt △AGF 中,AE AF AB AG =⎧⎨=⎩, ∴Rt △ABE ≌Rt △AGF (HL ),故②正确,∵CE =AE ,AE =AF ,∴CE =AF ,故③正确;∵AE =AF ,∴△AEF 是等腰三角形,不一定是等边三角形,∴∠AEF 不一定为60°,故④错误;故选C .【点睛】本题考查了翻折变换的性质,等腰三角形的判定与性质,解题时注意:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°B解析:B【分析】 根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60B .40或60C .25或40D .40C 解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 5.如图,在ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 平分∠BAC ;②∠ADC =60°;③点D 在AB 的垂直平分线上;④2ABD ACD S S .A .1B .2C .3D .4D解析:D【分析】 先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断. 利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:∵∠C =90°,∠B =30°,∴∠BAC =60°,由作法得AD 平分∠BAC ,所以①正确;∴∠BAD =∠CAD =30°,∴∠ADC =90°﹣∠CAD =60°,所以②正确;∵∠B =∠BAD ,∴DA =DB ,∴点D 在AB 的垂直平分线上,所以③正确;∵如图,在直角△ACD 中,∠CAD =30°,∴CD =12AD ,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=14AC•AD:34AC•AD=1:3,∴S△DAC:S△ABD=1:2.即S△ABD=2S△ACD,故④正确.故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.6.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=()A.22017B.22018C.22019D.22020B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a 2=2a 1=2,a 3=4a 1=22,a 4=8a 1=32,a 5=16a 1=42,,以此类推:a 2019=22018.故选:B .【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a 3=4a 1=4,a 4=8a 1=8,a 5=16…进而发现规律是解题关键.7.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .103B 解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x =,则2x-3=113,不合题意; (4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x 的值为4.故答案为:B【点睛】本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键. 8.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B 等于( )A .25︒B .30︒C .35︒D .40︒A解析:A【分析】 利用AD=AC ,求出∠ADC=∠C=50︒,利用AD=AB ,即可求得∠B=∠BAD 1252ADC ==∠︒. 【详解】∵AD=AC ,∴∠ADC=∠C ,∵80CAD ︒∠=,∴∠ADC=∠C=50︒,∵AD=AB ,∴∠B=∠BAD 1252ADC ==∠︒, 故选:A .【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键.9.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤D解析:D【分析】 ①由等腰直角三角形的性质可得出结论;②证明△ADE ≌△BCE ,可得∠AEC=∠DEB ,即可求得∠AED=∠BEG ,即可解题; ③证明△AEF ≌△BED 即可;④AE≠DE ,故④不正确;⑤易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE ,故①正确②在△DAE 和△CBE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS );∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AE≠DE,∴△ADE不是等腰三角形,⑤∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故⑤正确;故选:D.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.10.如图,在Rt ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,如果AB=3,AC=4,那么线段AE的长度是()A.125B.95C.85D.75A解析:A【分析】根据作图过程可得AP是BD的垂直平分线,根据勾股定理可得BC的长,再根据等面积法求出AE的长即可.【详解】解:∵∠BAC=90°,AB=3,AC=4,∴BC225AB AC+=,根据作图过程可知:AP是BD的垂直平分线,∴BE =DE ,AE ⊥BD ,∴△ABC 的面积:12AB•AC =12BC•AE , ∴5AE =12, ∴AE =125. 故选:A .【点睛】 本题考查垂直平分线和勾股定理,需要有一定的数形结合能力,熟练掌握垂直平分线的定义,结合题意进行解题是解决本题的关键.二、填空题11.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.12.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B = 解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.13.在平面直角坐标系中,O 为坐标原点,()1,1A ,在x 轴上确定一点P ,使AOP 为等腰三角形,则符合条件的等腰三角形的顶角度数为______.90°45°135°【分析】此题应该分情况讨论以OA 为腰或底分别讨论当A 是顶角顶点时P 是以A 为圆心以OA 为半径的圆与x 轴的交点共有1个当O 是顶角顶点时P 是以O 为圆心以OA 为半径的圆与x 轴的交点共有2解析:90°,45°,135°【分析】此题应该分情况讨论.以OA 为腰或底分别讨论.当A 是顶角顶点时,P 是以A 为圆心,以OA 为半径的圆与x 轴的交点,共有1个,当O 是顶角顶点时,P 是以O 为圆心,以OA 为半径的圆与x 轴的交点,共有2个,若OA 是底边时,P 是OA 的中垂线与x 轴的交点,有1个,进而求出对应等腰三角形的顶角度数,即可.【详解】(1)若AO 作为腰时,有两种情况,①当A 是顶角顶点时,P 是以A 为圆心,以OA 为半径的圆与x 轴的交点,此时,顶角度数为:90°;②当O 是顶角顶点时,P 是以O 为圆心,以OA 为半径的圆与x 轴的交点,此时,顶角度数为:45°或135°;(2)若OA 是底边时,P 是OA 的中垂线与x 轴的交点,此时,顶角度数为:90°. 综上所述,符合条件的等腰三角形的顶角度数为:90°,45°,135°,故答案是:90°,45°,135°.【点睛】此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 14.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.【分析】过点M 作MP ⊥ACMQ ⊥AB 首先证明MP=MQ 求出AC 的长度运用S △ABC =S △ABM +S △ACM 求出MP 即可解决问题【详解】如图设点B 的对应点为N 由题意得:∠BAM =∠CAMAB =AN =2解析:4 3【分析】过点M作MP⊥AC,MQ⊥AB,首先证明MP=MQ,求出AC的长度,运用S△ABC=S△ABM+S△ACM,求出MP即可解决问题.【详解】如图,设点B的对应点为N,由题意得:∠BAM=∠CAM,AB=AN=2;过点M作MP⊥AC,MQ⊥AB,则MP=MQ,设MP=MQ=x,∵AN=NC,∴AC=2AN=4;∵S△ABC=S△ABM+S△ACM,∴12AB•AC=12AB•MQ+12AC•MP,∴2×4=2x+4x,解得:x=43,故答案为43.【点睛】该题主要考查了翻折变换的性质、角平分线的性质、三角形的面积公式及其应用,解题的关键是作辅助线,灵活运用三角形的面积公式来解答.15.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________.【分析】题中没有指明长为的边长是腰还是底则分两种情况进行分析还应验证是否满足三角形的三边关系【详解】当腰长是时底边长不能构成三角形;当底长是时三角形的腰能构成三角形其他两边长为故答案为:【点睛】本题解析:9,9【分析】题中没有指明长为6的边长是腰还是底,则分两种情况进行分析,还应验证是否满足三角形的三边关系.【详解】当腰长是6时,底边长246612=--=,6、6、12不能构成三角形;当底长是6时,三角形的腰()24629=-÷=,6、9、9能构成三角形,其他两边长为9、9.故答案为:9,9.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目—定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.如图,在ABC 中,AB AC =,36ABC ∠=︒,DE 是线段AC 的垂直平分线,连接AE ,若BE a =,EC b =,则用含有a ,b 的代数式表示ABC 的周长是______.【分析】根据等腰三角形的性质∠BAC =108°由线段垂直平分线的性质可得AE=CE ∠EAD=∠ECD=36°进而根据角的和差可得∠BAE =∠BEA 进而可得BA =BE =AC 然后问题可求解【详解】∵AB解析:3a b +【分析】根据等腰三角形的性质∠BAC =108°,由线段垂直平分线的性质可得AE=CE ,∠EAD=∠ECD=36°,进而根据角的和差可得∠BAE =∠BEA ,进而可得BA =BE =AC 然后问题可求解.【详解】∵AB=AC ,∠ABC=36°,∴∠C=∠ABC=36°,∠BAC =108°,∵DE 是AC 的垂直平分线,∴AE=CE ,∴∠EAD=∠ECD=36°,∴∠AEC=108°=∠BAC ,∴∠BAE =∠BAC -∠CAE =108°-36°=72°∵∠BEA =180°-∠AEC =180°-108°=72°即∠BAE =∠BEA∴BA =BE∴BA =BE =AC =a∴△ABC 的周长=AB +BE +EC +AC =3a +b故答案为:3a+b .【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质与判定,熟练掌握垂直平分线的性质定理及等腰三角形的性质与判定是解题的关键.17.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB ≌△CEB 得CE=AD=b 即BF+EF=b 再根据等边三角形的性质可得BE=a 从而可得结论【详解】解:过C 作CE ⊥AB 于E 交AD解析:+a b【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=b ,即BF+EF=b ,再根据等边三角形的性质可得BE=a ,从而可得结论.【详解】解:过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,∵△ABC 是等边三角形,∴BE=12AB a = ∵等边△ABC 中,BD=CD ,∴AD ⊥BC ,∴AD 是BC 的垂直平分线(三线合一),∴C 和B 关于直线AD 对称,∴CF=BF ,即BF+EF=CF+EF=CE ,∴∠ADB=∠CEB=90°,在△ADB 和△CEB 中,∵ADB CEB ABD CBE AB CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB ≌△CEB (AAS ),∴CE=AD=b ,即BF+EF=b ,∴BEF 的周长的最小值为BE+CF=a+b ,故答案为:a+b .【点睛】 本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.18.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .6【分析】先求得∠ABD=∠CBD=30°进而得AD=BD 设AD=BD=x(cm)列出关于x 的方程即可求解【详解】∵在中∴∠ABC=60°∵BD 平分∴∠ABD=∠CBD=30°∴∠ABD=∠A ∴AD解析:6【分析】先求得∠ABD=∠CBD=30°,进而得AD=BD ,设AD=BD=x(cm),列出关于x 的方程,即可求解.【详解】∵在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,∴∠ABC=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=30°,∴∠ABD=∠A ,∴AD=BD ,设AD=BD=x(cm),∵AC=9cm ,∴CD=(9-x)cm , ∴912x x -=,即:x=6,∴AD =6.故答案是:6【点睛】本题主要考查等腰三角形的判定定理以及含30°角的直角三角形的性质,熟练掌握“直角三角形中,30°角所对的直角边是斜边的一半”是解题的关键.19.如图,ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE CF =,BD CE =,如果44A ∠=︒,则EDF ∠的度数为__.56°【分析】根据AB=AC 可证明又因为∠A=44°可求出∠ABC=∠ACB=68°根据利用三角形内角和定理即可求出∠EDF 的度数;【详解】解:∵BE=CFBD=CE ∴在和中是等腰三角形;∴∠BDE解析:56°【分析】根据AB=AC 可证明DBE CEF ∆≅∆,又因为∠A=44°,可求出∠ABC=∠ACB=68°,根据DBE CEF ∆≅∆,利用三角形内角和定理即可求出∠EDF 的度数;【详解】解:AB AC =,ABC ACB ∴∠=∠,∵BE=CF ,BD=CE ,∴在DBE ∆和CEF ∆中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE CEF SAS ∴∆≅∆,DE EF ∴=,DEF ∴∆是等腰三角形;DBE CEF ∆≅∆,∴∠BDE=∠CEF ,∠DEB=∠CFE ,180A B C ∠+∠+∠=︒,∠A=44°,1(18044)682B ∴∠=︒-︒=︒ ∴∠BDE+∠DEB=112°∴∠CEF +∠DEB=112°180112=68DEF ∴∠=︒-︒︒,18068562EDF ︒-︒∴∠==︒. 故答案为:56︒.【点睛】本题主要考查了等腰三角形的判定和性质的掌握,以及三角形的内角和定理和平角是180°,因此有一定的难度,属于中档题;20.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.50°或80°或65°【分析】由已知条件根据题意分三种情况讨论:①∠A 是顶角;②∠A 是底角∠B =∠A 时③∠A 是底角∠B =∠A 时利用三角形的内角和进行求解【详解】①∠A 是顶角∠B =(180°−∠A )÷解析:50°或80°或65°【分析】由已知条件,根据题意,分三种情况讨论:①∠A 是顶角;②∠A 是底角,∠B =∠A 时,③∠A 是底角,∠B =∠A 时,利用三角形的内角和进行求解.【详解】①∠A 是顶角,∠B =(180°−∠A )÷2=65°;②∠A 是底角,∠B =∠A =50°.③∠A 是底角,∠A =∠C =50°,则∠B =180°−50°×2=80°,∴当∠B 的度数为50°或65°或80°时,△ABC 是等腰三角形.故答案为:50°或65°或80°.【点睛】本题考查了等腰三角形的判定及三角形的内角和定理;分情况讨论是正确解答本题的关键.三、解答题21.如图1,在直角△ABC 中,∠C=90°,分别作∠CAB 的平分线AP 和AB 的垂直平分线DP ,交点为P .(1)如图2,若点P 正好落在BC 边上.①求∠B 的度数;②求证:BC=3PC .(2)如图3,若点C 、P 、D 恰好在一条直线上,线段AD 、PD 、BC 之间的数量关系是否满足AD +PD=BC ?若满足,请给出证明;若不满足,请说明理由.解析:(1)①∠B 的度数是30°;②见解析;(2)满足,理由见解析【分析】(1)①由垂直平分线与角平分线的性质证明:∠PAD=∠PAC=∠B,再利用直角三角形的内角和定理即可得到答案;②先利用角平分线的性质证明PC=PD,再用∠B=30°证明BP=2PD,进而即可得到结论;(2)过点P作PE⊥AC于点E,由垂直平分线的性质可知AC=BC,∠ACD=∠BCD=45°,进而证明PE=CE,由角平分线的性质可知PE=PD,即可证明Rt△AEP≌Rt△ADP(HL),可得AE=AD,再利用线段的和差性质即可证明AD+PD=BC.【详解】(1)①∵DP是AB的垂直平分线,∴PA=PB,∴∠PAD=∠B,又∵AP平分∠CAB,∴∠PAD=∠PAC,∴∠PAD=∠PAC=∠B,设∠B=x°,则∠CAB=∠PAD+∠PAC=2x°,∵在Rt ABC中,∠C=90°,∴∠B+∠BAC=90°,即3x=90,x=30,∴∠B的度数是30°.②∵AP平分∠CAB,∠C=90°,DP⊥AB,∴PC=PD,∵在Rt△BDP中,∠B=30°,∴BP=2PD,∴BC=BP+PC=3PC.(2)如图,过点P作PE⊥AC于点E,∵CD是AB的垂直平分线,∴AC=BC,∴∠ACD=∠BCD=1∠ACB=45°.2∵PE⊥AC,∴∠CPE=90°−∠PCE=90°−45°=45°=∠PCE,∴PE=CE,又∵AP平分∠CAB,PD⊥AB,PE⊥AC,∴PE=PD,∴在Rt △AEP 和Rt △ADP 中,,,AP AP PE PD =⎧⎨=⎩ ∴Rt △AEP ≌Rt △ADP (HL ),∴AE=AD ,∴AC=AE+EC=AD+PE=AD+PD ,又∵AC=BC ,∴AD+PD=BC .【点睛】本题考查了角平分线的性质、垂直平分线的性质、三角形的内角和定理、锐角三角函数、等腰直角三角形的性质、直角三角形全等的判定与性质、含30°的直角三角形的性质、线段的和差性质,解答本题的关键是掌握并熟练运用以上知识.22.如图,在△ABC 中,AB 边的中垂线PQ 与△ABC 的外角平分线交于点P ,过点P 作PD ⊥BC 于点D ,PE ⊥AC 于点E .(1)求证:BD =AE ;(2)若BC =6,AC =4.求CE 的长度.解析:(1)见解析;(2)CE =1【分析】(1)连接PA 、PB ,根据角平分线的性质得到PD=PE ,根据线段垂直平分线的性质得到PA=PB ,证明Rt △AEP ≌Rt △BDP ,根据全等三角形的性质得到AE=BD ;(2)结合图形计算得到答案.【详解】(1)连接PA 、PB ,∵CP 是∠BCE 的平分线,PD ⊥BC ,PE ⊥AC ,∴PD =PE ,在Rt △CDP 和Rt △CEP 中,PD PE PC PC =⎧⎨=⎩, ∴Rt △CDP ≌Rt △CEP (HL )∴CD =CE ,∵PQ 是线段AB 的垂直平分线,∴PA =PB ,在Rt △AEP 和Rt △BDP 中,PE PD PA PB =⎧⎨=⎩, ∴Rt △AEP ≌Rt △BDP (HL ),∴AE =BD ;(2)AC +CE +CD =BD +CD =BC =6, ∴1(64)12CE CD ==⨯-=. 【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.如图,BD 是ABC 的角平分线,点E 在边AB 上,且//DE BC ,AE BE =. (1)若5BE =,求DE 的长;(2)求证:AB BC =.解析:(1)DE=5;(2)证明见解析.【分析】(1)根据角平分线和平行线的性质可得∠ABD=∠EDB ,从而可得DE= BE=5;(2)根据等边对等角得出∠A=∠ADE ,根据平行线的性质可得∠C=∠ADE ,从而可得∠A=∠C ,根据等角对等边可证得结论.【详解】解:(1)∵BD 是ABC 的角平分线,∴∠ABD=∠DBC ,∵DE//BC ,∴∠EDB=∠DBC ,∴∠ABD=∠EDB ,∴BE=DE ,∵BE=5,∴DE=5;(2)∵AE=BE ,BE=DE ,∴AE=DE ,∴∠A=∠ADE ,∵DE//BC ,∴∠C=∠ADE ,∴∠A=∠C ,∴AB=BC .【点睛】本题考查等腰三角形的性质和判定,平行线的性质.解决此题的关键是借助等腰三角形的性质和判定完成边相等与角相等之间的互相转化.24.如图,ABC 中,90BAC ∠=︒,AB AC =,AD 是高,E 是AB 上一点,连接DE ,过点D 作DF DE ⊥,交AC 于点F ,连接EF ,交AD 于点G .(1)若6AB =,2AE =,求线段AF 的长;(2)求证:AGF AED ∠=∠.解析:(1)4;(2)见解析【分析】(1)证△ADE ≌△CDF (ASA ),得AE=CF=2,即可得出答案;(2)由全等三角形的性质得DE=DF ,则△DEF 是等腰直角三角形,得∠DEF=∠DFE=45°,再由三角形的外角性质即可得出结论.【详解】(1)解:∵△ABC 中,∠BAC=90°,AB=AC ,AD 是高,∴BD=CD=AD=12BC ,∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°, ∵DF ⊥DE ,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中, ADE CDF AD CDBAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CDF (ASA ),∴AE=CF=2,∵AC=AB=6,∴AF=AC-CF=6-2=4;(2)证明:由(1)得:△ADE ≌△CDF ,∴DE=DF ,又∵∠EDF=90°,∴△DEF 是等腰直角三角形,∴∠DEF=∠DFE=45°,∵∠AGF=∠DAE+∠AEG=45°+∠AEG ,∠AED=∠DEF+∠AEG=45°+∠AEG ,∴∠AGF=∠AED .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.25.如图,在Rt ABC △中,90ACB ∠=︒,CAP 和CBQ △都是等边三角形,BQ 和CP 交于点H ,求证:BQ CP ⊥.解析:见解析【分析】由已知条件证得∠BHC=90°即可得到解答.【详解】∵CAP 和CBQ △都是等边三角形;∴60ACP CBQ ∠=∠=︒, ∵90ACB ∠=︒,∴30BCP ACB ACP ∠=∠-∠=︒在BCH 中,18090BHC BCH CBH ∠=︒-∠-∠=︒∴BQ CP ⊥【点睛】本题考查等边三角形和直角三角形的综合运用,熟练掌握等边三角形、直角三角形的性质并灵活运用是解题关键.26.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.解析:15°【分析】根据等边三角形的性质可得∠ACB 的度数,并证得 AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE=CE ,再由等腰三角形的性质可求得∠ECB 的度数,即可求得结论.【详解】解:∵△ABC 是等边三角形,AD BC ⊥ ,∴60ACB ∠=︒,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上∴BE CE =.∵45EBC ∠=︒,∴45ECB EBC ∠=∠=︒,∴6045=15ACE ACB ECB ∠=∠-∠=︒-︒︒.【点睛】此题考查了等边三角形的性质、线段垂直平分线的性质等知识,掌握相关的性质定理并能灵活应用所学知识是解题的关键.27.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.28.小红发现,任意一个直角三角形都可以分割成两个等腰三角形.已知:在ABC 中,90ACB ∠=︒.求作:直线CD ,使得直线CD 将ABC 分割成两个等腰三角形.下面是小红设计的尺规作图过程.作法:如图,①作直角边CB 的垂直平分线MN ,与斜边AB 相交于点D ;②作直线CD .所以直线CD 就是所求作的直线.根据小红设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵直线MN 是线段CB 的垂直平分线,点D 在直线MN 上,∴DC DB =.(_______)(填推理的依据)∴∠_______=∠__________.∵90ACB ∠=︒,∴90ACD DCB ∠=︒-∠,90A ∠=︒-∠_________.∴ACD A ∠=∠.∴DC DA =.(_______)(填推理的依据)∴DCB 和DCA △都是等腰三角形.解析:(1)见解析;(2)线段垂直平分线上的点到线段两个端点的距离相等;DCB,DBC;DBC;等角对等边.【分析】(1)根据题意,按照尺规作图的基本要求,完成作图即可;(2)根据证明过程可分析得出:此题的证明思路是利用线段垂直平分线的性质与等腰三角形的判定,则可根据推理过程补充相应的内容即可.【详解】解:(1)补全的图形如下:(2)证明:∵直线MN是线段CB的垂直平分线,点D在直线MN上,∴DC=DB.(线段垂直平分线上的点到线段两个端点的距离相等)∴∠DCB=∠DBC.∵∠ACB=90°,∴∠ACD=90°−∠DCB,∠A=90°−∠DBC.∴∠ACD=∠A.∴DC=DA.(等角对等边)∴△DCB和△DCA都是等腰三角形.故答案为:线段垂直平分线上的点到线段两个端点的距离相等;DCB,DBC;DBC;等角对等边.【点睛】本题考查了作图−应用与设计作图、线段垂直平分线的性质、等腰三角形的判定,解决本题的关键是掌握线段垂直平分线的性质与等腰三角形的判定.。
【试题】八年级数学上册第12章轴对称图形单元综合检测试题含解析新版新人教版
【关键字】试题第12章《轴对称图形》一、选择题1.下列标志中,可以看作是轴对称图形的是()2.正方形对称轴的条数是()A.1B.1C.1D.13.点P(2,-5)关于x轴对称的点的坐标为A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)4.如图,直线CD是线段AB的笔直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A.6B.5C.4D.35.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()6.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°7.在等腰△ABC中,AB=AC,其周长为,则AB边的取值范围是()A.<AB<B.<AB<C.<AB<D.<AB<10cm8.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于()A.72°B.C.144°D.72°,或9.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA 的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()cmB.5.5C.6.5D.710.如图所示,已知△ABC和△ADE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AG与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论个数()A.1个B.2个C.3个D.4个二、填空题11.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=___cm.12.如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B=___.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为___.14.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E,∠A=30°,AB=8,则DE的长度是___.15.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=___.16.如图,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于BC的长为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为___.17.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距___m.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是___.三、解答题19.在平面直角坐标系中,已知点A(-3,1),B(-1,0),C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.20.如图,△ABC与△DEF关于直线l对称,请用无刻度的直尺,在下面两个图中分别作出直线l.21.如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,求当BP的长等于多少时,点P与点Q重合?22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC 的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)若CD=2,求DF的长.26.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点.(2)将如图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形.(3)将如图1中△BCE绕点旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.27.如图,△ABC 中,AB =AC ,∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC ) (1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是___度和___度. (2)在图2中画2条线段,使图中有4个等腰三角形.(3)继续按以上操作发现:在△ABC 中画n 条线段,则图中有___个等腰三角形,其中有___个黄金等腰三角形.28.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连结DC ,以DC 为边在BC 上方作等边△DCF ,连结AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其它作法与(1)相同.猜想AF 与BD 在(1)中的结论是否仍然成立? (3)深入探究: Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在其上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何等量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 运动至等边△ABC 边BA 的延长线上运动时,其它作法与图③相同.Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.参考答案: 一、1.D.点拨:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、不是轴对称图形,不符合题意;D 、是轴对称图形,符合题意.故应选D .2.D.3.B.点拨:把点P (2,-5)的纵坐标-5改成它的相反数5,即可得到点P 关于x 轴对称点的坐标.4.B.点拨:由根据线段垂直平分线性质可以直接判断线段PA 与线段PB 的长度相等.5.B.点拨:按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到图形B .故应选B .6.B.点拨:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,∴∠ADE =∠B =50°,∵∠A =26°,∴∠ADE =180°-50°-26°=104°;再由折叠可知:∠AED =∠A ′ED =104°,∴∠AEA ′=360°-104°-104°=152°.7.B.点拨:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB =AC =x ,则BC =20-2x cm ,∴2x >20-2x ,且20-2x >0,解得5cm <x <10cm.故应选B .8.D.点拨:如图,等腰三角形ABC 中,因为AB =AC ,所以∠ABC =∠C ,设顶角为α、底角为β,则根据三角形三内角和为180°,得α+2β=180.此时,由于过B 点画直线交AC 于D ,则△ADB 与△BDC 都是等腰三角形,若AD =DB =BC ,则β=2α,α+2β=180°,解得α=36°,β=72°;若AD =DB ,BC =DC ,则β=3α,α+2β=180°,解得α=7180,β=7540 .所以原等腰三角形纸片的底角等于72°,或5407⎛⎫ ⎪⎝⎭.故应选D . F D C B A 图① F D C B A 图② F D C B A 图③ F ′ F AC F ′D 图④B D A DC B A E M N图1 D C B A E M N 图2 DC B A E M N 图3 图1 C B A E F 图2 C B A E 图3C B A9.A.点拨:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM =MQ ,PN =NR .∵PM =2.5cm ,PN =3cm ,MN =4cm ,∴RN =3cm ,MQ =2.5cm ,NQ =MN -MQ =4-2.5=1.5(cm ),则线段QR 的长为:RN +NQ =3+1.5=4.5(cm ).故应选A .10.D.点拨:因为BC =AC ,∠BCD =∠ACE =120°,CD =CE ,所以△BCD ≌△ACE ,从而得①AE =BD 是正确的;又因为△BCD ≌△ACE ,所以∠FBC =∠GAC ,根据BC =AC ,∠BCF =∠ACG =60°,得△BCF ≌△ACG ,所以②AG =BF 是正确的;由△BCF ≌△ACG ,得CF =CG ,而∠FCG =60°,所以∠CGF =∠CFG =∠FCG =60°,所以③FG ∥BE 是正确的;如图,过C 作CM ⊥BD 于M ,CN ⊥AE 于N ,易得△BCM ≌△CAN ,所以CM =CN ,所以④∠BOC =∠EOC 是正确的.故应选D .二、11.5. 12.90°.点拨:因为△ABC 与△A ′B ′C ′关于直线l 对称,∠C ′=60°,所以∠C ′=∠C =60°,在△ABC 中,因为∠A =30°,所以∠B =180°-30°-60°=90°. 13.10.点拨:由角平分线的性质及题中已知条件可得PD =PE ,又因为PD =10,所以PE =10.14.2.点拨:∵D 为AB 的中点,AB =8,∴AD =4,∵ DE ⊥AC 于点E ,∴∠DEA =90°,∵∠A =30°,∴DE =12AD =2; 15.15°.点拨:∵折叠该纸片,使点A 落在点B 处,折痕为DE ,∴EA =EB ,∴∠EBA =∠A .又∵AB =AC ,∠A =50°,∴∠B =65°,∠EBA =50°,∴∠CBE =15°.16.105°.点拨:由①的作图可知CD =BD ,∴∠DCB =∠B =25°,∴∠ADC =50°.又∵CD =AC ,∴∠A =∠ADC =50°,∴∠ACD =80°,∴∠ACB =80°+25°=105°.17.200.点拨:由条件,得∠ABC =90°+30°=120°,∠BAC =90°-60°=30°,所以∠ACB =180°-∠ABC -∠BAC =180°-120°-30°=30°,所以∠ACB =∠BAC ,所以BC =AB =200,即B 、C 两地相距200m.18.(12)n -1·75°.点拨:∵A 1B =CB ,∠B =30°,∴∠C =∠BA 1C =12(180°-∠B )=75°,又∵A 1A 2=A 1D ,∴∠A 1A 2D =∠A 1DA 2=12∠DA 1C =12×75°(三角形外角等于不相邻两内角之和)=2112-×75°=2112-⎛⎫ ⎪⎝⎭×75°;同样,∵A 2A 3=A 2E ,∴∠A 2A 3E =∠A 2EA 3=12∠DA 2A 1=12×12×75°=14×75°=3112-×75°=3112-⎛⎫ ⎪⎝⎭×75°;同理,∠A 3A 4F =∠A 3FA 4=12∠EA 3A 2=4112-⎛⎫ ⎪⎝⎭×75°;…第n 个三角形中以A n 为顶点的内角度数是112n -⎛⎫ ⎪⎝⎭×75°. 三、19.如图,△ABC 就是所求的三角形,A ,B ,C 三点关于y 轴的对称点分别为A ′(3,1),B ′(1,0),C ′(2,-1),△A ′B ′C ′就是△ABC 关于y 轴对称的图形. 20.如图1和2所示中的直线l 21.设BP =x ,在Rt △PBE 中,∠BPE Rt △G F O D C B AE M NEFC中,∠FEC=30°,所以FC=12EC=1-14x,所以AF=2-FC=2-(1-14x)=1+14x,同理,AQ=12AF=12+18x,当点P与点Q重合时,有BP+AQ=2,即x+(12+18x)=2,解得x=43,故当BP=43时,点P与点Q重合.22.(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12AC.(2)∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM =CD.又∵CD=CB,∴AM+DM=BC.23.(1)∠ABC=90°时,PR=7.证明:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=312,RB=OB=312,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×312=7.(2)PR的长度是小于7.理由:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×312=7,∴PR<7.24.(1)①②、①③.(2)选①②证明如下:在△BOE和△COD中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,∴△BOE≌△COD(AAS),∴BO=CO,∠OBC=∠OCB,∴∠EOB+∠OBC =∠DOC+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.25.(1)∵三角形ABC为等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.26.(1)∵点M为DE的中点,∴DM=ME.∵AD∥EN,∴∠ADM=∠NEM,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点.(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠CAN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45+∠MEN+∠BED=∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN 为等腰直角三角形,∴(2)中的结论是否仍然成立.27.(1)如图1所示.∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度.(2)画法不惟一.如,如图2所示.四个等腰三角形分别是:△ABE,△BCE,△BEF,△CEF.(3)如图3所示.当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.28.(1)AF=BD.证明:因为△ABC和△DCF均是等边三角形,所以∠ACB=∠DCF,所以∠ACB-∠ACD=∠DCF-∠ACD,即∠BCD=∠ACF.在△BDC和△AFC中,BC=AC,∠BCD=∠ACF,DC=FC,所以△BDC≌△AFC,所以AF=BD.(2)仍然成立.证法同(1).(3)Ⅰ:AF+BF′=AB.证明:由(1)可证AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,所以AF+BF′=AB.Ⅱ.在Ⅰ中的结论不成立,新结论是:AF-BF′=AB.证明:同(1)可证△BDC≌△AFC,所以AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,因为BD-AD=AB,所以AF-BF′=AB.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
轴对称解答题单元复习练习(Word版 含答案)
轴对称解答题单元复习练习(Word 版 含答案)一、八年级数学 轴对称解答题压轴题(难)1.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;【详解】解:(1)∵AB=AC ,∴∠ABC=∠C ,∵BD=BC=AD ,∴∠A=∠ABD ,∠C=∠BDC ,设∠A=∠ABD=x ,则∠BDC=2x ,∠C=°180-2x 可得°180-22x x = ∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时,∵2x+x=27°+27°,∴x=18°;②当AD=DE 时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C 为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.3.在等边△ABC 中,点D 在BC 边上,点E 在AC 的延长线上,DE =DA (如图1).(1)求证:∠BAD =∠EDC ;(2)若点E 关于直线BC 的对称点为M (如图2),连接DM ,AM .求证:DA =AM .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC =∠ACB =60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA ,然后结合(1)可得∠MDC =∠BAD ,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠BAC =∠ACB =60°,∴∠BAD =60°﹣∠DAE ,∠EDC =60°﹣∠E ,又∵DE =DA ,∴∠E =∠DAE ,∴∠BAD =∠EDC .(2)由轴对称可得,DM =DE ,∠EDC =∠MDC ,∵DE =DA ,∴DM =DA ,由(1)可得,∠BAD =∠EDC ,∴∠MDC =∠BAD ,∵△ABD 中,∠BAD +∠ADB =180°﹣∠B =120°,∴∠MDC +∠ADB =120°,∴∠ADM =60°,∴△ADM 是等边三角形,∴AD =AM .【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.4.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠; (2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠ BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.5.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE与△AEC为等腰三角形求解即可;(3)根据题意分当BD为特异线、AD为特异线以及CD为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD 是特异线时,如果AB=BD=DC ,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC ,DB=DC ,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB ,DC=DB ,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD 是特异线时,AB=BD ,AD=DC ,则:∠ABC=180°−20°−20°=140°;当CD 为特异线时,不符合题意;综上所述,∠B 度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.6.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】 解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.7.已知等边△ABC 的边长为4cm ,点P ,Q 分别是直线AB ,BC 上的动点.(1)如图1,当点P 从顶点A 沿AB 向B 点运动,点Q 同时从顶点B 沿BC 向C 点运动,它们的速度都为lcm /s ,到达终点时停止运动.设它们的运动时间为t 秒,连接AQ ,PQ . ①当t =2时,求∠AQP 的度数.②当t 为何值时△PBQ 是直角三角形?(2)如图2,当点P 在BA 的延长线上,Q 在BC 上,若PQ =PC ,请判断AP ,CQ 和AC 之间的数量关系,并说明理由.【答案】(1)①∠AQP =30°;②当t =43秒或t =83秒时,△PBQ 为直角三角形;(2)AC =AP +CQ ,理由见解析.【解析】【分析】(1)①由△ABC是等边三角形知AQ⊥BC,∠B=60°,从而得∠AQB=90°,△BPQ是等边三角形,据此知∠BQP=60°,继而得出答案;②由题意知AP=BQ=t,PB=4﹣t,再分∠PQB=90°和∠BPQ=90°两种情况分别求解可得.(2)过点Q作QF∥AC,交AB于F,知△BQF是等边三角形,证∠QFP=∠PAC=120°、∠BPQ=∠ACP,从而利用AAS可证△PQF≌△CPA,得AP=QF,据此知AP=BQ,根据BQ+CQ=BC=AC可得答案.【详解】解:(1)①根据题意得AP=PB=BQ=CQ=2,∵△ABC是等边三角形,∴AQ⊥BC,∠B=60°,∴∠AQB=90°,△BPQ是等边三角形,∴∠BQP=60°,∴∠AQP=∠AQB﹣∠BQP=90°﹣60°=30°;②由题意知AP=BQ=t,PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得:4﹣t=2t,解得t=43;当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),解得t=83;∴当t=43秒或t=83秒时,△PBQ为直角三角形;(2)AC=AP+CQ,理由如下:如图所示,过点Q作QF∥AC,交AB于F,则△BQF是等边三角形,∴BQ=QF,∠BQF=∠BFQ=60°,∵△ABC为等边三角形,∴BC=AC,∠BAC=∠BFQ=60°,∴∠QFP=∠PAC=120°,∵PQ=PC,∴∠QCP=∠PQC,∵∠QCP=∠B+∠BPQ,∠PQC=∠ACB+∠ACP,∠B=∠ACB,∴∠BPQ=∠ACP,在△PQF和△CPA中,∵BPQ ACPQFP PAC PQ PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PQF≌△CPA(AAS),∴AP=QF,∴AP=BQ,∴BQ+CQ=BC=AC,∴AP+CQ=AC.【点睛】考核知识点:等边三角形的判定和性质.利用全等三角形判定和性质分析问题是关键.8.如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC ,DC=EC ,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)补全图形,由△ADC ≌△BEC 得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM 的度数;(4)画出相应图形,可知当点D 在线段AM 的延长线上且在BC 下方时,如图,可以得出△ACD ≌△BCE ,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB=60°;∴线段AM 为BC 边上的高,∴∠CAM=12∠BAC=30°, 故答案为60,30°; (2)∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE ,∴∠ACD=∠BCE.在△ADC 和△BEC 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC ≌△BEC ,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D 在射线AM 上,且在BC 下方时,画出图形如下:∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO ,∴∠AOB=∠ACB=60°.即动点D 在射线AM 上时,∠AOB 为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.9.如图,在等边三角形ABC 右侧作射线CP ,∠ACP =α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)求∠DBC 的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB 的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB 的大小;(3)用等式表示线段AE ,BD ,CE 之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°.理由:设AC、BD相交于点H,如图2,∵点A关于射线CP的对称点为点D,∴AC=DC,AE=DE,又∵CE=CE,∴△ACE≌△DCE(SSS),∴∠CAE=∠CDE,∵∠DBC=∠BDC,∴∠DBC=∠CAE,又∵∠BHC=∠AHE,∴∠AEB=∠BCA=60°,即∠AEB的大小不会发生变化,且∠AEB=60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.10.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC中,当B只有一个度数时,A∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC中,∠A=100°,∴∠A为顶角,∠B为底角,∴∠B=1801002-=40°;变式2: ∵等腰三角形ABC中,∠A= 45°,∴当AB=BC 时,∠B =90°,当AB=AC 时,∠B =67.5°,当BC=AC时∠B =45°;(2)等腰三角形ABC中,设A x∠=,当90°≤x<180°,∠A为顶角,此时,B只有一个度数,当x=60°时,三角形ABC是等边三角形,此时,B只有一个度数,综上所述:90°≤x<180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.。
第3章轴对称单元测试(培优卷)同步培优题典(解析版)
专题3.8第3章轴对称单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•禅城区期末)室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()A.3:20B.3:40C.4:40D.8:20【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面对称,分析并作答.【解析】根据镜面对称的性质,分析可得题中所显示的时刻与3:40成轴对称,所以此时实际时刻为3:40.故选:B.2.(2020•文成县二模)如图,在△ABC中,BD平分∠ABC,E是BC的中点,过点E作BC的垂线交BD 于点F,连结CF.若∠A=50°,∠ACF=40°,则∠CFD的度数为()A.30°B.45°C.55°D.60°【分析】设∠ABD=∠CBD=x°,则∠CFD=2x°,根据线段垂直平分线性质求出BF=CF,推出∠FCB =∠CBD,根据三角形内角和定理得出方程,求出方程的解即可.【解析】∵BD平分∠ABC,∴∠ABD=∠CBD,设∠ABD=∠CBD=x°,则∠CFD=2x°,∵EF是BC的垂直平分线,∴BF=CF,∴∠FCB=∠CBD=x°,∵∠A=50°,∠ACF=40°,∴50°+40°+x°+2x°=180°,解得:x=30,∴∠CFD=2x°=60°,故选:D.3.(2020•洪山区模拟)如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个【分析】依据对称轴的不同位置,即可得到位置不同的三角形.【解析】如图所示:与△ABC成轴对称,顶点在格点上,且位置不同的三角形有8个,故选:D.4.(2019秋•海淀区校级期中)如图,△ABC中,点D在BC边上,将点D分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,可得∠EAF的度数为()A.108B.115C.122D.130【分析】连接AD,利用轴对称的性质解答即可.【解析】连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠F AC=∠CAD,∵∠B=61°,∠C=54°,∴∠BAC=∠BAD+∠DAC=180°﹣61°﹣54°=65°,∴∠EAF=2∠BAC=130°,故选:D.5.(2019•唐山二模)如图所示,平面上有两条相等的线段AB和CD,李明用尺规作轴对称,经过几次轴对称变换之后两条线段重合,其具体作法如下:①作线段AB关于直线n的对称线段DA';②连接BD,作线段BD的垂直平分线n;③作∠A'DC的平分线m;④A'D沿着直线m对折即可得到CD;下列正确的作图步骤是()A.①②③④B.④③②①C.④③①②D.②①③④【分析】连接BD,作线段BD的垂直平分线n;作线段AB关于直线n的对称线段DA';作∠A'DC的平分线m;A'D沿着直线m对折即可得到CD.【解析】如图所示,连接BD,作线段BD的垂直平分线n;作线段AB关于直线n的对称线段DA';作∠A'DC的平分线m;A'D沿着直线m对折即可得到CD;即正确的作图步骤是②①③④,故选:D.6.(2019•藁城区二模)如图,△ABC三个顶点的坐标分别为A(2,2),B(1,0),C(4,2),直线m是过点B且与y轴平行的直线,△ABC关于直线m对称的三角形为△A'B'C',则点C'的坐标为()A.(﹣2,2)B.(﹣4,2)C.(﹣4,﹣2)D.(0,2)【分析】分别作出A,B,C的对应点A′,B′,C′,进而解答即可.【解析】如图所示:点C'的坐标为(﹣2,2),故选:A.7.(2020春•锦江区期末)如图是5×5的正方形方格图,点A,B在小方格的顶点上,要在小方格的项点确定一点C,连接AC和BC,使△ABC是等腰三角形,则方格图中满足条件的点C的个数是()A.4B.5C.6D.7【分析】根据等腰三角形的判定找出符合的所有点即可.【解析】如图所示:C在C1,C2,C3,C4位置上时,AC=BC;C在C5,C6位置上时,AB=BC;即满足点C的个数是6,故选:C.8.(2020春•蕲春县期中)已知在平面直角坐标系xOy中,O(0,0),A(4,3)点B在x轴或y轴上移动,若O、A、B三点可构成等腰三角形,则符合条件的B点有()A.9个B.8个C.7个D.6个【分析】分三种情况说明:①以点O为圆心,OA长为半径画圆,与x轴、y轴有4个交点,②以点A为圆心,OA 长为半径交x 轴和y 轴的正半轴有2个点,③作OA 的垂直平分线交x 轴和y 轴的正半轴有2个点,即可得符合条件的B 点个数.【解析】分三种情况说明:①以点O 为圆心,OA 长为半径画圆,与x 轴、y 轴有4个交点,这4个交点分别与点O 、A 构成4个等腰三角形;②以点A 为圆心,OA 长为半径交x 轴和y 轴的正半轴有2个点,这2个交点分别与点O 、A 构成2个等腰三角形;③作OA 的垂直平分线交x 轴和y 轴的正半轴有2个点,这2个交点分别与点O 、A 构成2个等腰三角形;综上所述:符合条件的B 点有:4+2+2=8(个).故选:B .9.(2020•浙江自主招生)如图,在等边△ABC 中,BD =2DC ,DE ⊥BE ,CE ,AD 相交于点P ,则()A .AP >AE >EPB .AE >AP >EPC .AP >EP >AED .EP >AE >AP【分析】根据全等三角形的判定得出△BEC 与△DCA 全等,进而利用全等三角形的性质解答即可.【解析】∵等边△ABC 中,∴∠B =∠ACD =60°,BC =AC ,∵DE ⊥BE ,∠B =60°,∴BD =2BE ,∵BD =2DC ,∴BE =CD ,在△BEC 与△CDA 中{BE =DC ∠B =∠DCA BC =CA ,∴△BEC≌△CDA(SAS),∴∠BCE=∠CAD,∵∠ADC=∠PDC,∴∠DPC=∠DCA=60°,∴∠APE=∠DPC=60°,∵∠AEP>60°,∠EAP<60°,∴AP>AE>EP,故选:A.10.(2019秋•新泰市期末)如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个【分析】根据角平分线的定义得到∠DBF=∠CBF,根据平行线的性质得到∠DFB=∠CBF,推出△BDF 是等腰三角形;故①正确;同理,EF=CE,于是得到DE=DF+EF=BD+CE,故②正确;根据三角形的内角和和角平分线的定义得到∠BFC=180°﹣65°=115°,故③正确;推出DF不一定等于EF,故④错误.【解析】∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°,∴∠ABC+∠ACB=130°,∵BF平分∠ABC,CF平分∠ACB,∴∠FBC=12∠ABC,∠FCB=12∠ACB,∴∠FBC+∠FCB=12(∠ABC+∠ACB)=65°,∴∠BFC=180°﹣65°=115°,故③正确;当△ABC为等腰三角形时,DF=EF,但△ABC不一定是等腰三角形,∴DF不一定等于EF,故④错误;故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•惠城区校级二模)顶角为锐角的等腰三角形一腰上的高与另一腰的夹角为50°,则该三角形的底角为70°或20°.【分析】根据题意,等腰三角形一腰上的高与另一腰的夹角为50°,分两种情况讨论:①如图1,当一腰上的高在三角形内部时,即∠ABD=50°时,②如图2,当一腰上的高在三角形外部时,即∠ABD=50°时;根据等腰三角形的性质,解答出即可.【解析】①如图1,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠A=90°﹣50°=40°,∴∠C=∠ABC=180°−40°2=70°;②如图2,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠BAD=90°﹣50°=40°,又∵∠BAD=∠ABC+∠C,∠ABC=∠C,∴∠C=∠ABC=12∠BAD=12×40°=20°.故答案为:70°或20°.12.(2020•延边州二模)如图,∠AOB=40°,点P在∠AOB的内部,点C,D分别是点P关于直线OA,OB的对称点,连接CD分别交OA,OB于点E、F.则∠EPF=100°.【分析】要求∠EPF的度数,要在△EPF中进行,根据轴对称的性质和等腰三角形的性质找出与∠MPN 的关系,利用已知∠AOB=40°可求出∠EPF,答案可得.【解析】如图,∵点M、N分别是点P关于直线0A、OB的对称点,∴OA垂直平分PM,OB垂直平分PN,∴ME=PE,PF=NF,∴∠PEF=2∠M,∠PFE=2∠N,∵∠PRE=∠PTF=90°,∴在四边形OTPR中,∴∠MPN+∠AOB=180°,∵∠EPF+2∠M+2∠N=180°,即∠MPN+∠M+∠N=180°,∴∠M+∠N=∠AOB=40°∴∠EPF=180°﹣40°×2=100°.故答案为100°.13.(2019秋•连山区期末)如图,点P是∠AOB内任意一点,OP=10cm,点P关于射线OA对称点为点P1,点P关于射线OB对称点为点P2,连接P1P2,交OA于点C,交OB于点D,当△PCD的周长是10cm 时,∠AOB的度数是30°.【分析】根据轴对称得出OA为PP1的垂直平分线,OB是PP2的垂直平分线,根据线段垂直平分线性质得出∠P1OA=∠AOP=12∠P1OP,∠P2OB=∠DOB=12∠POP2,PC=CP1,OP=OP1=10cm,DP1=PD,OP=OP2=10cm,求出△P1OP2是等边三角形,即可得出答案.【解析】连接OP1,OP2,∵点P关于射线OA对称点为点P1,点P关于射线OB对称点为点P2,∴OA为PP1的垂直平分线,OB是PP2的垂直平分线,∴∠P1OA=∠AOP=12∠P1OP,∠P2OB=∠DOB=12∠POP2,∴PC=CP1,OP=OP1=10cm,DP1=PD,OP=OP2=10cm,∴△P1OP2是等边三角形,∴∠P1OP2=60°,∴∠AOB=30°,故答案为:30°14.(2020•常州二模)如图,在△ABC中,DE是AC的垂直平分线且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD的度数为70°.【分析】根据线段垂直平分线的性质得出AD=CD,求出∠DAC的度数,根据三角形内角和定理求出∠BAC,即可得出答案.【解析】∵DE是AC的垂直平分线且分别交BC,AC于点D和E,∴AD=CD,∴∠C=∠DAC,∵∠C=25°,∴∠DAC=25°,∵在△ABC中,∠B=60°,∠C=25°,∴∠BAC=180°﹣∠B﹣∠C=95°,∴∠BAD=∠BAC﹣∠DAC=95°﹣25°=70°,故答案为:70°.15.(2019秋•罗湖区校级期末)如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC于点D,BD=1,则AC的长3.【分析】证明BD=AD,CD=2BD,由于BD的长度已知,则可分别求得AD和DC的长度,两者相加即可.【解析】∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵DB⊥BC,∴∠DBC=90°,∴∠ABD=∠ABC﹣∠DBC=30°,∴∠A=∠ABD,∵BD=1,∴AD=BD=1,∵CD=2BD=2,∴AC=AD+DC=1+2=3,故答案为3.16.(2020•海淀区二模)如图,在平面直角坐标系xOy中,已知点C(3,2),将△ABC关于直线x=4对称,得到△A1B1C1,则点C的对应点C1的坐标为(5,2);再将△A1B1C1向上平移一个单位长度,得到△A2B2C2,则点C1的对应点C2的坐标为(5,3).【分析】根据轴对称,平移的性质画出三角形即可.【解析】如图△A1B1C1,△A2B2C2,即为所求.C1(5,2),C2(5,3).故答案为(5,2),(5,3).17.(2019秋•曹县期末)如图,△ABC中,AB=AC,∠BAC=120°,DE⊥AC,交AC于点D,交BC于点E,F是CE上一点,ED=EF,连接DF,DE=2cm,则CE的长为4cm.【分析】利用直角三角形30度角的性质解决问题即可.【解析】∵AC=AB,∠A=120°,∴∠C=∠B=30°,∵DE⊥AC,∴∠CDE=90°,∴EC=2DE=4,故答案为4.18.(2019秋•咸安区期末)如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当∠BAD=30°时,BD=CE;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的结论是①②③(把你认为正确结论的序号都填上).【分析】①根据等腰三角形的性质得到∠B=∠C=40°,根据三角形的内角和和平角的定义即可得到∠BAD=∠CDE;故①正确;②根据等腰三角形的性质得到AD⊥BC,根据三角形的内角和即可得到DE⊥AC,故②正确;③根据全等三角形的性质得到BD=CE;故③正确;④根据三角形外角的性质得到∠AED>40°,求得∠ADE≠∠AED,根据等腰三角形的性质和三角形的内角和得到∠BAD=60°,故④错误.【解析】①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故②正确;③∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴AD=AC,∵AB=AC,∴AD=AB,∴△ABD≌△DCE(ASA),∴BD=CE;故③正确;④∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,故④错误,故答案为:①②③.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•南岸区校级月考)如图,在△ABC中,∠BAD=∠C,BE平分∠ABC.(1)求证:AE=AF;(2)若AC=BC,∠C=32°,求∠AEF的度数.【分析】(1)根据角平分线的定义得出∠ABE=∠CBE,根据三角形的外角性质得出∠AFE=∠ABE+∠BAD,∠AEB=∠CBE+∠C,求出∠AFE=∠AEB即可;(2)根据等腰三角形的性质和三角形的内角和定理求出∠BAC和∠ABC的度数,根据角平分线的定义求出∠CBE的度数,根据三角形的外角性质求出即可.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠BAD=∠C,∴∠ABE+∠BAD=∠CBE+∠C,∵∠AFE=∠ABE+∠BAD,∠AEB=∠CBE+∠C,∴∠AFE=∠AEB,∴AE=AF;(2)解:∵∠C=32°,∴∠CBA+∠CAB=180°﹣∠C=148°,∵AC=BC,∴∠CBA=∠CAB=12×148°=74°,∵BE平分∠ABC,∴∠CBE=12∠ABC=37°,∴∠AEF=∠C+∠CBE=32°+37°=69°.20.(2019秋•岱岳区期末)在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,则BE=CE吗?说明理由;(2)若∠BAC=45°,BE的延长线与AC垂直相交于点F时,如图2,BD=12AE吗?说明理由.【分析】(1)成立,根据等腰三角形的性质就可以求出∠BAE=∠CAE,再证明△ABE≌△ACE就可以得出结论;(2)成立,由BF⊥AC,∠BAC=45°就可以求出AF=BF,在由条件证明△AEF≌△BCF就可以得出结论.【解析】(1)成立.理由:∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.在△ABE和△ACE中,{AB=AC∠BAE=∠CAE AE=AE,∴△ABE≌△ACE(SAS),∴BE=CE;(2)成立.理由:∵∠BAC=45°,BF⊥AF.∴△ABF为等腰直角三角形∴AF=BF,由(1)知AD⊥BC,∴∠EAF=∠CBF在△AEF和△BCF中,{∠EAF=∠CBF AF=BF∠AFE=∠BFC,∴△AEF≌△BCF(ASA),∴AE=BC,∵BD=12BC,∴BD=12AE.21.(2019秋•抚州期末)如图,三角形ABC中,AC=BC,D是BC上的一点,连接AD,DF平分∠ADC 交∠ACB的外角∠ACE的平分线于F.(1)求证:CF∥AB;(2)若∠DAC=40°,求∠DFC的度数.【分析】(1)根据三角形的性质得到∠B=∠BAC,由三角形外角的性质得到∠ACE=∠B+∠BAC,求得∠BAC=12,由角平分线的定义得到∠ACF=∠ECF=12,等量代换得到∠BAC=∠ACF,根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和三角形的内角和即可得到结论.【解答】(1)证明:∵AC=BC,∴∠ABC=∠CAB,∴∠ACE=∠ABC+∠CAB=2∠ABC∵CF是∠ACE的平分线,∴∠ACE=2∠FCE∴2∠ABC=2∠FCE,∴∠ABC=∠FCE,∴CF∥AB;(2)∵CF是∠ACE的平分线,∴∠ACE=2∠FCE=∠ADC+∠DAC∵DF平分∠ADC,∴∠ADC=2∠FDC;∴2∠FCE=∠ADC+∠DAC=2∠FDC+∠DAC,∴2∠FCE﹣2∠FDC=∠DAC∵∠DFC=∠FCE﹣∠FDC∴2∠DFC=2∠FCE﹣2∠FDC=∠DAC=40°∴∠DFC=20°.22.(2019秋•永城市期末)如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.【分析】(1)根据角平分线的定义得到∠ABF=∠CBF=12∠ABC.根据平行线的性质得到∠ABF=∠E,推出△BCE是等腰三角形.根据等腰三角形的性质即可得到结论.(2)根据平行线的性质待定的∠ABC+∠BCD=180°.根据角平分线的定义即可得到结论.【解答】(1)证明:∵BE平分∠ABC,∴∠ABF=∠CBF=12∠ABC.∵AB∥CD,∴∠ABF=∠E,∴∠CBF=∠E,∴BC=CE,∴△BCE是等腰三角形.∵F为BE的中点,∴CF平分∠BCD,即CG平分∠BCD.(2)解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABC=52°,∴∠BCD=128°.∵CG平分∠BCD,∴∠GCD=12∠BCD=64°.∵∠ADE=110°,∠ADE=∠CGD+∠GCD,∴∠CGD=46°.23.(2019秋•临洮县期末)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E 是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?【分析】过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.【解析】过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=12∠ACB=30°.24.(2019秋•苍溪县期末)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.【分析】(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;②当点P与M重合时,△PBC周长的值最小,于是得到结论.【解析】(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.25.(2019秋•河东区期末)如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接即可;(2)根据对称的性质写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(2)作出点C关于y轴的对称点,然后连接AC1,与y轴的交点即为点P.【解析】(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.26.(2019春•成都期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.【分析】(1)利用“三边相等”的三角形是等边三角形证得△EBC是等边三角形;(2)延长ED使得DW=DM,连接MN,即可得出△WDM是等边三角形,利用△WGM≌△DBM即可得出BD=WG=DG+DM,再利用AD=BD,即可得出答案;(3)利用等边三角形的性质得出∠H=∠2,进而得出∠DNG=∠HNB,再求出△DNG≌△HNB即可得出答案.【解答】(1)证明:如图1所示:在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=12 AB.∵BD平分∠ABC,∴∠1=∠DBA=∠A=30°.∴DA=DB.∵DE⊥AB于点E.∴AE=BE=12 AB.∴BC=BE.∴△EBC是等边三角形;(2)结论:AD=DG+DM.证明:如图2所示:延长ED使得DW=DM,连接MW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,又∵DM=DW,∴△WDM是等边三角形,∴MW=DM,在△WGM和△DBM中,∵{∠W=∠MDB MW=DM∠WMG=∠DMB∴△WGM≌△DBM,∴BD=WG=DG+DM,∴AD=DG+DM.(3)结论:AD=DG﹣DN.证明:延长BD至H,使得DH=DN.由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,{∠DNG=∠HNB DN=HN∠H=∠2∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.。
(北师大版)广州市七年级数学下册第五单元《生活中的轴对称》测试卷(有答案解析)
一、选择题1.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 2.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm 3.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 4.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在D′处,则重叠部分AFC 的面积是( )A .8B .10C .20D .32 5.如图,若ABC ∆与A B C '''∆关于直线MN 对称,BB '交MN 于点O ,则下列说法不一定正确的是 ( )A .AC AC ''=B .BO B O '=C .AA MN '⊥D .AB B C ''=6.如图,AC BC =,AD BD =,这个图形叫做“筝形”,数学兴趣小组几名同学探究出关于它的如下结论:①ACD BCD △≌△;②AO BO =;③AB CD ⊥;④AOC BOC ≌△△;⑤“筝形”是轴对称图形.其中正确的结论有( )A .2个B .3个C .4个D .5个7.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40°8.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( ) A . B .C .D .9.下列图形是轴对称图形的是( )A .B .C .D .10.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE ,则∠GFH 的度数是( )A .110°B .100°C .90°D .80°11.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线 AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .1012.下面汉字的书写中,可以看做轴对称图形的是( )A .B .C .D .二、填空题13.如图,将一张长方形的纸片沿折痕EF 翻折,使点B 、C 分别落在点M 、N 的位置,且∠AFM =12∠EFM ,则∠AFM =_____°.14.如图,将一张长方形纸片分别沿着EP 、FP 对折,使点A 落在点A ′,点B 落在点B ′,若点P ,A ′,B ′在同一直线上,则两条折痕的夹角∠EPF 的度数为_____.15.在ABC ∆中,将B ,C ∠按如图所示方式折叠,点B ,C 均落于边BC 上一点Q 处,线段MN ,EF 为折痕,若82A ∠=︒,则MQE ∠=______.16.如图,有一张长方形纸片ABCD,点E.F 分别在边AB 、CD 上,连接EF,将∠BEF 对折,点B 落在直线EF 上的点B /处,得折痕EM;将∠AEF 对折,点A 落在直线EF 上的点A’处,得折痕EN,则∠MEN 的度数为__________.17.如图,在Rt ABC ∆中,沿ED 折叠,点C 落在点B 处,已知ABE ∆的周长是15,6BD =,则ABC ∆的周长为__________.18.如图△ABC 中,AB =AC ,∠BAC =58°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,使C 与点O 恰好重合,则∠OEB =_______19.生活中,将一个宽度相等的纸条按图所示折叠一下, 如果∠1=140º,那么∠2=_____.20.如图,在□ABCD 中,点E 在边AD 上,以BE 为折痕将△ABE 向上 翻折,点A 正好落在CD 的点F 处,若△FDE 的周长为8,△FCB 的周长为22,则□ABCD 的周长为 .三、解答题 21.如图,ABC 的顶点A ,B ,C 都在小正方形的顶点上,利用网格线按下列要求画图.(1)画111A B C △,使它与ABC 关于直线l 成轴对称;(2)在直线l 上找一点P ,使点P 到点A ,点B 的距离之和最短;(3)在直线l 上找一点Q ,使点Q 到边AC ,BC 的距离相等.22.如图,在平面直角坐标系中,(1,3),(2,1),(4,4)A B C .(1)在平面直角坐标系中作出ABC 关于y 轴的对称图形111A B C △;(2)计算111A B C △的面积.23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,7),(﹣1,5). (1)请在如图所示的网格平面内画出平面直角坐标系;(2)请画出△ABC 关于y 轴对称的△A 1B 1C 1;(3)直接写出点B 1的坐标.24.如图,邮递员小王的家在两条公路OM 和ON 相交成的角(MON )的内部A 处,小王每天都要到开往OM 方向的车上取下快件,然后再送到开往ON 方向的车上,这样他就可以回家了,为使小王每天接送快件时的行程最短,请帮助他找出在公路OM 和ON 上的等车地点.(画草图,保留作图痕迹)25.在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为()()()2,4,0,4,2,1--A B C ,DEF ∆与ABC ∆关于x 轴对称,A 与,D B 与,E C 与F 对应.(1)在平面直角坐标系中画出ABC ∆;(2)在平面直角坐标系中作出DEF ∆,并写出D E F 、、的坐标.26.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A、全等三角形的对应边相等,是真命题;B、面积相等的两个三角形不一定全等,原命题是假命题;C、两个全等三角形不一定成轴对称,原命题是假命题;D、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A.【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.2.B解析:B【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB=10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在Rt△DEB中,∵222+=,DE EB DB∴()222+=-,48x x∴x=3,∴CD=3.故答案为:B.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.3.B解析:B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.5.D解析:D【分析】根据轴对称的性质解答.【详解】∵ABC ∆与A B C '''∆关于直线MN 对称,BB '交MN 于点O ,∴AC AC ''=,BO B O '=,AA MN '⊥,AB A B ''=,BC B C ''=,故选:D .【点睛】此题考查了轴对称的性质:关于轴对称的两个图形的对应边相等,对应角相等,对应点的连线垂直于对称轴.6.D解析:D【分析】运用“SSS”可证明ACD BCD △≌△,从而可判断①,由ACD BCD △≌△得∠ACO=∠BCO ,从而可判断ACO BCO △≌△,进一步判断②③④;根据轴对称图形的概念可判断⑤.【详解】解:在△ACD 与△BCD 中,AD BD AC BC DC DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BCD (SSS ),故①正确;∴∠ACO=∠BCO ,在△ACO 与△BCO 中,AC BC ACO BCO OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△ACO ≌△BCO (SSS ),故④正确;∴AO=BO ,故②正确;∴∠AOC=∠BOC=90°,即AB CD ⊥,故③正确;∴“筝形”是轴对称图形,故⑤正确;所以,正确的是①②③④⑤,故选:D .【点睛】此题考查全等三角形的判定和性质,以及轴对称图形的判断,熟练掌握有关判定是解答此题的关键.7.B解析:B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】,解:∵∠A′BC=20°,DC BC∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵AD//BC,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∠ABA′=25°.∴∠A′BD=12故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.8.C解析:C【解析】【分析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.B解析:B【解析】【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可.【详解】根据轴对称图形定义,图形A 、C 、D 中不是轴对称图形,而B 是轴对称图形.故选B【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念. 10.C解析:C【分析】根据折叠求出∠CFG =∠EFG =12∠CFE ,根据角平分线定义求出∠HFE =12∠BFE ,即可求出∠GFH =∠GFE+∠HFE =12∠CFB .根据平角的定义即可得答案. 【详解】∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =12∠CFE , ∵FH 平分∠BFE ,∴∠HFE =12∠BFE , ∴∠GFH =∠GFE+∠HFE =12(∠CFE+∠BFE )=12×180°=90°, 故选:C .【点睛】本题考查折叠的性质及角平分线的定义,根据翻折的性质得到∠CFG=∠EFG 是解题关键. 11.D解析:D【分析】过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值.【详解】如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.12.D解析:D【解析】【分析】根据轴对称图形的概念判断即可.【详解】鹏、程、万都不是轴对称图形,里是轴对称图形,故选D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.二、填空题13.36【分析】由折叠的性质可得∠EFM=∠EFB设∠AMF=x°由∠AFM=∠EFM可得∠EFM=∠BFE=2x°然后根据平角的定义列方程求出x的值即可得答案【详解】∵将一张长方形的纸片沿折痕EF翻折解析:36【分析】由折叠的性质可得∠EFM=∠EFB,设∠AMF=x°,由∠AFM=12∠EFM可得∠EFM=∠BFE=2x°,然后根据平角的定义列方程求出x的值即可得答案.【详解】∵将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,∴∠EFM=∠EFB,设∠AFM=x°,∵∠AFM=12∠EFM,∴∠EFM=∠BFE=2x°,∴x°+2x°+2x°=180°,解得:x=36,∴∠AFM=36°.故答案为:36【点睛】此题考查了折叠的性质与平角的定义.解题的关键是注意方程思想与数形结合思想的应用.14.90°【分析】根据翻折的性质得到∠APE=∠APE∠BPF=∠BPF根据平角的定义得到∠APE+∠BPF =90°即可求得答案【详解】解:如图所示:∵∠APE =∠APE ∠BPF =∠BPF ∠APE+∠A解析:90°【分析】根据翻折的性质得到∠APE =∠A'PE ,∠BPF =∠B'PF ,根据平角的定义得到∠A 'PE +∠B 'PF =90°,即可求得答案.【详解】解:如图所示:∵∠APE =∠A 'PE ,∠BPF =∠B 'PF ,∠APE +∠A 'PE +∠BPF +∠B 'PF =180°,∴2(∠A 'PE +∠B 'PF )=180°,∴∠A 'PE +∠B 'PF =90°,又∴∠EPF =∠A 'PE +∠B 'PF ,∴∠EPF =90°,故答案为:90°.【点睛】此题考查折叠的性质,平角的定义.15.【分析】由折叠的性质得到∠MQN=∠B ∠EQF=∠C 由三角形内角和定理得到∠B+∠C=98°根据平角的定义即可得到答案【详解】解:由折叠的性质得到∠MQN=∠B ∠EQF=∠C ∵∠A+∠B+∠C=18解析:82︒【分析】由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C ,由三角形内角和定理,得到∠B+∠C=98°,根据平角的定义,即可得到答案.【详解】解:由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C ,∵∠A+∠B+∠C=180°,∴∠B+∠C=180°82-︒=98°,∴∠MQN+∠EQF=98°,∴1809882MQE ∠=︒-︒=︒;故答案为:82︒.【点睛】本题考查了折叠的性质,三角形内角和定理,以及平角的定义,解题的关键是熟练掌握折叠的性质进行解题.16.90°【分析】根据折叠的性质可知∠MEB=∠MEB/∠NEA=∠NEA/即可求得∠MEN 的度数【详解】∵∠BEF 对折点B 落在直线EF 上的点B/;将∠AEF 对折点A 落在直线EF 上的点A/∴∠MEB=∠解析:90°【分析】根据折叠的性质,可知,∠MEB=∠MEB /,∠NEA=∠NEA /,即可求得∠MEN 的度数.【详解】∵∠BEF 对折,点B 落在直线EF 上的点B /;将∠AEF 对折,点A 落在直线EF 上的点A / ∴∠MEB=∠MEB /,∠NEA=∠NEA /,∴∠MEN=∠MEB /+∠NEA /=°°111809022AEB ∠=⨯=. 【点睛】本题主要考查折叠的性质,掌握角的和差倍分运算,是解题的关键. 17.【分析】由折叠可得依据的周长是可得进而得到的周长【详解】由折叠可得的周长是的周长故答案为:27【点睛】本题主要考查了折叠问题折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和 解析:27【分析】由折叠可得,BE CE =,6BD CD ==,依据ABE △的周长是15,可得+15AB AE BE AB AE CE +=++=,进而得到ABC △的周长AB AE CE BD CD =++++.【详解】由折叠可得,BE CE =,6BD CD ==,ABE △的周长是15,∴+15AB AE BE AB AE CE +=++=,∴ABC △的周长151227AB AE CE BD CD =++++=+=.故答案为:27..【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.64°【分析】作辅助线首先求出∠BAO=29°;进而求出∠OBC=37°;求出∠COE=∠OCB=37°问题即可解决【详解】如图:连接OBOC ∵∠BAC=58°AO 为∠BAC 的平分线∴∠BAO=∠B解析:64°【分析】作辅助线,首先求出∠BAO=29°;进而求出∠OBC=37°;求出∠COE=∠OCB=37°问题即可解决.【详解】如图:连接OB、OC,∵∠BAC=58°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×58°=29°.又∵AB=AC,∴∠ABC=∠ACB=18058()2o=61o.∵DO是AB的垂直平分线,∴OA=OB;∴∠ABO=∠BAO=29°.∴∠OBC=∠ABC-∠ABO=61°-29°=32°.∵DO是AB的垂直平分线,AO为∠BAC的平分线,∴点O是△ABC的外心,∴OB=OC;∴∠OCB=∠OBC=32°;∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=32°;在△OCE中,∠OEB=∠COE+∠OCB=32°+32°=64°,故答案是:64°.【点睛】考查了翻折变换及其应用问题;解题的关键是根据翻折变换的性质找出图中隐含的等量关系,灵活运用有关性质定理来分析、判断、推理或解答.19.110°【解析】【分析】如图因为AB∥CD所以∠BEM=∠1(两直线平行内错角相等);根据折叠的性质可知∠3=∠4可以求得∠4的度数;再根据两直线平行同旁内角互补即可求得∠2的度数【详解】∵AB∥C解析:110°【解析】【分析】如图,因为AB∥CD,所以∠BEM=∠1(两直线平行,内错角相等);根据折叠的性质可知∠3=∠4,可以求得∠4的度数;再根据两直线平行,同旁内角互补,即可求得∠2的度数.【详解】∵AB ∥CD ,∴∠BEM=∠1=140°,∠2+∠4=180°,∵∠3=∠4,∴∠4=12∠BEM=70°, ∴∠2=180°−70°=110°.故答案为:110°【点睛】 此题考查翻折变换(折叠问题),平行线的性质,解题关键在于根据折叠的性质得到∠3=∠420.30【分析】根据折叠的性质可得EF=AEBF=BA 从而□ABCD 的周长可转化为:△FDE 的周长+△FCB 的周长结合题意条件即可得出答案【详解】解:由折叠的性质可得EF=AEBF=BA ∴□ABCD 的周解析:30【分析】根据折叠的性质可得EF=AE 、BF=BA ,从而□ABCD 的周长可转化为:△FDE 的周长+△FCB 的周长,结合题意条件即可得出答案.【详解】解:由折叠的性质可得EF=AE 、BF=BA ,∴□ABCD 的周长=DF+FC+CB+BA+AE+DE=△FDE 的周长+△FCB 的周长=30.故答案为30.三、解答题21.(1)答案见解析;(2)答案见解析;(3)答案见解析【分析】(1)根据轴对称的性质,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11A C 、11B C ,即可得到答案;(2)根据轴对称的性质,得1PB PB ;再根据两点之间线段最短的性质,即可得到答案;(3)结合题意,根据角平分线的性质分析,即可得到答案.【详解】(1)如图所示,在网格上分别找到点A 、点B 、点C 的对称点点1A 、点1B 、点1C ,连接11A B 、11A C 、11B C;(2)根据(1)的结论,点B 、点1B 关于直线l 成轴对称∴1PB PB =∴1PA PB PA PB +=+如下图,连接1AB∴当点P 在直线l 和1AB 的交点处时,11PA PB AB +=,为最小值,∴当点P 在直线l 和1AB 的交点处时,PA PB +取最小值,即点P 到点A 、点B 的距离之和最短;(3)如图所示,连接1CC根据题意的:11ACC BCC ∠=∠∴点Q 在直线l 和1CC 的交点处时, 点Q 到边AC ,BC 的距离相等.【点睛】本题考查了轴对称、两点之间线段最短、角平分线的知识;解题的关键是熟练掌握轴对称、两点之间线段最短、角平分线的性质,从而完成求解.22.(1)见解析;(2)72【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可;(2)利用割补法求解即可. 【详解】解:(1)111A B C △如图所示,(2)111A B C △的面积为1117331223132222. 【点睛】 本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.(1)见解析;(2)见解析;(3)(2,3)【分析】(1)根据A ,C 两点坐标确定平面直角坐标系即可.(2)分别作出A ,B ,C 的对应点A 1,B 1,C 1的位置即可.(3)根据B 1的位置写出坐标即可.【详解】(1)平面直角坐标系如图所示:(2)如图,△A 1B 1C 1即为所求.(3)根据作图得,B 1(2,3).【点睛】本题考查作图-轴对称变换,平面直角坐标系等知识,解题的关键是灵活运用所学知识解决问题.24.图见解析【分析】如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,则根据轴对称的性质可知B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.【详解】解:如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,连接AB 、AC . 根据轴对称的性质可得AB EB =、AC FC =,此时ABC 的周长最小,则B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.【点睛】本题考查了轴对称—路径最短问题,属于常考题型,正确理解题意、掌握解答的方法是解题的关键.25.(1)详见解析;(2)图详见解详, ()()()2,4,0,4,2,1---D E F【分析】(1)根据三点的坐标,在直角坐标系中分别标出位置即可;(2)关于x 轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出D 、E 、F 的坐标.【详解】(1)如图所示:(2)如图所示:()()()2,4,0,4,2,1---D E F【点睛】考查了坐标与图形性质、轴对称作图,解答本题的关键是正确的找出三点的位置,另外要掌握关于x轴对称的点的坐标的特点.26.(1)详见解析;(2)详见解析.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【详解】(1)点D及四边形ABCD的另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点睛】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移.。
(人教版)广州市八年级数学上册第三单元《轴对称》测试卷(有答案解析)
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm2.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A .13B .32C .40D .20 3.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm4.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .11 5.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 6.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm 7.如图,在ABC 中,34B ∠=︒,BCA ∠的平分线CD 交AB 于点D ,若DE 垂直平分BC 交BC 于点E ,则A ∠的度数为( )A .90°B .68°C .78°D .88° 8.平面直角坐标系中,点A (3,2)与点B 关于y 轴对称,则点B 的坐标为( ) A .(3,-2) B .(-3,-2) C .(-3,2) D .(-2,3) 9.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.510.如图,在ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 平分∠BAC ;②∠ADC =60°;③点D 在AB 的垂直平分线上;④2ABD ACD S S =.A .1B .2C .3D .411.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .10312.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线二、填空题13.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.14.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,P 是BC 上一点,且∠BAP =90°,CP =4cm .则BP 的长=________.16.如图,在锐角△ABC 中,AB =62 ,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_____________.17.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.18.如图,在ABC 中,AB=AC ,40A ∠=,CD //AB ,则BCD ∠的度数是______°.19.如图,P 是等边三角形ABC 内一点,∠APB ,∠BPC ,∠CPA 的大小之比为5:6:7,则以PA ,PB ,PC 为边的三角形三内角大小之比(从小到大)是_________________.20.如图,在△ABC 中,AB =AC ,D 为BC 的中点,∠BAD =20°,且AE =AD ,则∠CDE 的度数是______.三、解答题21.在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP AQ =,20BAP ∠=︒,求AQB ∠的度数; (2)点P ,Q 是BC 边上的两个动点(不与B ,C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②求证:PA PM =.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点,A C 的坐标分别为()()3,5,0,3.A C -(1)请在如图所示的网格内作出平面直角坐标系并作出ABC ∆关于y 轴对称的111A B C ∆ (2)写出点1B 的坐标并求出111A B C ∆的面积.23.如图,在ABC 中,50B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,连接DE ,且ADE AED ∠=∠,当60BAD ∠=︒时,求CDE ∠的度数.24.如图,在ABC 中,90C ∠=︒.(1)用尺规作出BAC ∠的平分线,并标出它与边BC 的交点D (保留作图痕迹,不写作法);(2)若30B ∠=︒,1CD =,求BD 的长.25.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.26.已知:如图,//AC BD ,AE ,BE 分别平分CAB ∠和ABD ∠,点E 在CD 上.用等式表示线段AB、AC、BD三者之间的数量关系,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN垂直平分线段AD,∴AC=DC,AE+ED=AD=10cm,∵AB+BC+AC=15cm,∴AB+BC+DC=15cm,∴△ABD的周长=AB+BC+DC+AD=15+10=25cm,故选:C.【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.A解析:A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】交AB于点E,解:∵D是AC的中点,ED AC∴ED垂直平分AC,∴AE=CE,∴∠ECD=∠A,∵∠A=36°,∴∠ECD=36°,∵AB=AC,∠A=36°,∴∠B=1(180°-36°)=72°,2∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC,∴BC=CE,∵AE=CE,ED⊥AC,∴CD=1AC=3,2在Rt△CED中,∴故选A.【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.3.D解析:D【分析】根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB即可.【详解】解:∵AB=AC,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD⊥AC,∴∠BDA=90°,∴AB=2BD,点B到边AC的距离是3cm,即BD=3cm,∴AB=2BD=6cm,故选:D.【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.4.B解析:B【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.5.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A 、全等三角形的对应边相等,是真命题;B 、面积相等的两个三角形不一定全等,原命题是假命题;C 、两个全等三角形不一定成轴对称,原命题是假命题;D 、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A .【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.6.B解析:B【分析】由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可.【详解】解:∵OD ∥AB ,OE ∥AC ,∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,∴∠ABO=∠OBD ,∠ACO=∠OCE ;∴∠OBD =∠BOD ,∠EOC=∠OCE ;∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm ,∴BC=9cm .故选:B .【点睛】 此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.7.C解析:C【分析】由垂直平分线的性质,可得∠DCB=34B ∠=︒,由角平分线的定义得∠ACB=2∠DCB=68°,进而即可求解.【详解】∵DE 垂直平分BC 交BC 于点E ,∴DB=DC ,∴∠DCB=34B ∠=︒,∵CD 是BCA ∠的平分线,∴∠ACB=2∠DCB=68°,∴∠A=180°-34°-68°=78°,故选C .【点睛】本题主要考查垂直平分线的性质,等腰三角形的性质,角平分线的定义以及三角形内角和定理,熟练垂直平分线的性质定理,是解题的关键.8.C解析:C【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点A (3,2)关于y 轴对称点的坐标为B (−3,2).故选:C .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.C解析:C【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=6,BC=4,即可推出BD的长度.【详解】解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=6,BC=4,∴CE=4,∴AE=AC-EC=6-4=2,∴BE=2,∴BD=1.故选:C.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.10.D解析:D【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD得到DA=DB,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解:∵∠C =90°,∠B =30°,∴∠BAC =60°,由作法得AD 平分∠BAC ,所以①正确;∴∠BAD =∠CAD =30°,∴∠ADC =90°﹣∠CAD =60°,所以②正确;∵∠B =∠BAD ,∴DA =DB ,∴点D 在AB 的垂直平分线上,所以③正确;∵如图,在直角△ACD 中,∠CAD =30°,∴CD =12AD , ∴BC =CD+BD =12AD+AD =32AD ,S △DAC =12AC•CD =14AC•AD . ∴S △ABC =12AC•BC =12AC•32AD =34AC•AD , ∴S △DAC :S △ABC =14AC•AD :34AC•AD =1:3, ∴S △DAC :S △ABD =1:2.即S △ABD =2S △ACD ,故④正确.故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.11.B解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x =,则2x-3=113,不合题意; (4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x 的值为4.故答案为:B本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键.12.D解析:D【分析】对每个选项一一分析即可得到正确答案.【详解】解:A、错误,正确的说法是:含30°的直角三角形中 30°的对边等于最长边的一半;B、错误,例如a =1,b=2,满足a +b = 3 ,ab = 2,但不满足a -b = 1;C、错误,到三角形三边所在直线距离相等的点有4个,在三角形内部的有一个,是三个内角角平分线的交点,在三角形的外部还有三个,是三角形的外角角平分线的交点;D、正确,等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线,都在等腰三角形的底边的垂直平分线上,故选:D.【点睛】本题考查了含30°的直角三角形的性质,等腰三角形的性质,三角形的角平分线的性质,熟练掌握相关图形的性质是解决本题的关键.二、填空题13.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A1B2//x轴,∴∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=12A1B2=1,即A2的横坐标为12+1=2212-,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=12A2B3=2,即A3的横坐标为12+1+2=3212-,同理可得,A4的横坐标为12+1+2+4=4212-,由此可得,A n的横坐标为21 2n-,∴点A6的横坐标是62163==31.5 22-,故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A的系列点的规律.14.25°【分析】由角平分线和平行线的性质证明则是等腰三角形由顶角的度数算出底角的度数即可得出结果【详解】解:∵BD平分∴∵∴∴∴是等腰三角形∵∴∴故答案是:【点睛】本题考查等腰三角形的性质和判定解题的 解析:25°【分析】由角平分线和平行线的性质证明EBG EGB ∠=∠,则BEG 是等腰三角形,由顶角的度数算出底角EGB ∠的度数,即可得出结果.【详解】解:∵BD 平分ABC ∠,∴EBG CBG ∠=∠,∵//EF BC ,∴CBG EGB ∠=∠,∴EBG EGB ∠=∠,∴BEG 是等腰三角形,∵130BEG ∠=︒, ∴180130252EGB ︒-︒∠==︒, ∴25DGF EGB ∠=∠=︒.故答案是:25︒.【点睛】 本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定定理. 15.8cm 【分析】先根据已知条件求得PA=PC 再含30度直角三角形的性质求得BP 的长即可【详解】解:∵AB=AC ∠BAC=120°∴∠B=∠C=30°∵∠BAC=120°∠BAP=90°∴∠PAC=30 解析:8cm【分析】先根据已知条件求得PA=PC ,再含30度直角三角形的性质求得BP 的长即可.【详解】解:∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,∵∠BAC=120°,∠BAP=90°,∴∠PAC=30°,∴∠C=∠PAC ,∴PA=PC=4cm ,∵∠BAP=90°,∠B=30°,∴BP=2AP=8cm .故答案为:8cm【点睛】本题考查了含30度直角三角形的性质,等腰三角形的性质,解题关键是根据已知条件求得PA=PC=4cm ,再根据含30度直角三角形的性质求得BP 的长.16.6【分析】作BH⊥AC垂足为H交AD于M′点过M′点作M′N′⊥AB垂足为N′则BM′+M′N′为所求的最小值再根据AD是∠BAC的平分线可知M′H=M′N′再由锐角三角函数的定义即可得出结论【详解解析:6【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2∠BAC=45°,∴BH=AH∴222AH BH AB+=∴BH=6.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.17.3cm【分析】过点P作PF⊥OB于F根据角平分线上的点到角的两边距离相等可得PF=PE根据角平分线的定义可得∠AOC=∠BOC根据两直线平行内错角相等可得∠AOC=∠OPD两直线平行同位角相等可得∠解析:3cm【分析】过点P作PF⊥OB于F,根据角平分线上的点到角的两边距离相等可得PF=PE,根据角平分线的定义可得∠AOC=∠BOC,根据两直线平行,内错角相等可得∠AOC=∠OPD,两直线平行,同位角相等可得∠PDF=∠AOB,再求出∠BOC=∠OPD,根据等角对等边可得PD=OD,然后根据直角三角形30°角所对的直角边等于斜边的一半可得PF=12PD,进而即可求解.【详解】如图,过点P 作PF ⊥OB 于F ,∵OC 平分∠AOB ,PE ⊥OA ,∴PE =PF ,∵OC 平分∠AOB ,∴∠AOC =∠BOC ,∵PD ∥OA ,∴∠AOC =∠OPD ,∠PDF =∠AOB =30°,∴∠BOC =∠OPD ,∴PD =OD =6cm ,∴PF =12PD =12×6=3cm , ∴PE =PF =3cm .故答案为:3cm .【点睛】本题考查了角平分线的性质,平行线的性质,等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并作辅助线是解题的关键.18.110【分析】根据等腰三角形的性质求出∠B=70º再根据平行线的性质求出的度数【详解】解:∵AB=AC ∴∠B=∠ACB==70º∵//∴+∠B=180º∴=110º故答案为:110【点睛】本题考查了解析:110【分析】根据等腰三角形的性质,求出∠B=70º,再根据平行线的性质,求出BCD ∠的度数.【详解】解:∵AB=AC ,40A ∠=,∴∠B=∠ACB=180402︒-︒=70º, ∵CD //AB ,∴BCD ∠+∠B=180º,∴BCD ∠=110º,故答案为:110.【点睛】本题考查了等腰三角形的性质和平行线的性质,熟练运用已知条件,准确推理计算,是解决这类题的关键.19.2:3:4【分析】将△APB绕A点逆时针旋转60°得△AP′C显然有△AP′C≌△APB连PP′证△AP′P是等边三角形PP′=AP所以△P′CP的三边长分别为PAPBPC;由∠APB:∠BPC:∠解析:2:3:4.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,证△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;由∠APB:∠BPC:∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,5x+6x+7x=360,x=20,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=40°,∠P′PC=80°,∠PCP′=60°即可.【详解】如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,∴5x+6x+7x=360,∴18x=360,∴x=20,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=40°:60°:80°=2:3:4.故答案为:2:3:4.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.利用方程来解角成比例问题,三角形的内角和,用角度的和差计算解决问题.20.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B =∠C =x ∠EDC =y ∵AD =AE ∴∠ADE =∠AED =x +y ∵∠DAE =180°−2(x +y )=解析:10°【分析】设∠B =∠C =x ,∠CDE =y ,分别表示出∠DAE ,构建方程解方程即可求解.【详解】解:设∠B =∠C =x ,∠EDC =y ,∵AD =AE ,∴∠ADE =∠AED =x +y ,∵∠DAE =180 °−2(x +y )=180 °−20 °−2x ,∴2y =20 °,∴y =10 °,∴∠CDE =10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.三、解答题21.(1)80°;(2)①见解析;②见解析【分析】(1)根据等边三角形的性质求解即可;(2)①根据题意画图即可;②过点A 作AH BC ⊥于点H ,根据等边三角形的性质得到PAB QAC ∠=∠,再根据点Q ,M 关于直线AC 对称,得到AP=AM ,得到APM ∆为等边三角形,即可得到答案;【详解】(1)ABC ∆为等边三角形,60B ∴∠=︒,80APC BAP B ∴∠=∠+∠=︒, AP AQ =,80AQB APC ∴∠=∠=︒;(2)①补全图形如图所示,②证明:过点A 作AH BC ⊥于点H ,如图.ABC ∆为等边三角形,AP AQ =,BAH CAH ∴∠=∠,PAH QAH ∠=∠,PAB QAC ∴∠=∠,点Q ,M 关于直线AC 对称,QAC MAC ∴∠=∠,AQ AM =,60MAC PAC PAB PAC ∴∠+∠=∠+∠=︒,AP AM =,APM ∴∆为等边三角形,PA PM ∴=.【点睛】本题主要考查了等边三角形的判定与性质,准确分析判断是解题的关键. 22.(1)见解析;(2)()11,1B ;面积4【分析】(1)根据A ,C 两点的坐标确定坐标系,分别作出A ,B ,C 关于y 轴对称的对应点A 1,B 1,C 1′即可;(2)由平面直角坐标系可得B 1的坐标,运用分割法可得111A B C ∆的面积.【详解】解:(1)如图所示,(2)点1B 的坐标为(1,1)111A B C ∆的面积=11134122324222⨯-⨯⨯-⨯⨯-⨯⨯ =12-1-3-4=4【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键. 23.30∠=︒CDE .【分析】根据等腰三角形的性质,求得DAE ∠,利用ADE AED ∠=∠,确定AED ∠的度数,在三角形DEC 中,利用三角形外角性质计算即可.【详解】∵50B C ∠=∠=︒,∴18080BAC B C ∠=︒-∠-∠=︒.∵60BAD ∠=︒,∴20DAE BAC BAD ∠=∠-∠=︒, ∴18020802ADE AED ︒-︒∠=∠==︒. ∵AED CDE C ∠=∠+∠, ∴805030CDE AED C ∠=∠-∠=︒-︒=︒.【点睛】本题主要考查了等腰三角形的顶角计算,底角的计算,熟记等腰三角形的性质和三角形外角性质是解题的关键.24.(1)见解析;(2)2【分析】(1)根据尺规作图的基本步骤进行画图,即可得到答案;(2)过点D 作DE AB ⊥,垂足为E ,由角平分线的性质定理,得到1DE CD ==,再由含30度直角三角形的性质,即可求出答案.【详解】(1)解:如图所示:(2)过点D 作DE AB ⊥,垂足为E .AD 为BAC ∠的平分线,90C AED ∠=∠=︒.1DE CD ∴==.在Rt BED △中,30B ∠=︒,22BD DE ∴==.【点睛】本题考查了尺规作图——作角平分线,角平分线的性质,以及含30度的直角三角形的性质,解题的关键是掌握所学的知识,正确的作出图形.25.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论;(2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,∴ED CD 4==. ∵120QDP EDC ∠=∠=︒,,QDE EDP EDP PDC ∴∠+∠=∠+∠∴QDE PDC ∠=∠.∵,60ED CD AED C =∠=∠=︒,∴QDE PDC ≌,∴EQ PC =,∴4AQ PC AQ QE AE +=+==.【点睛】本题考查的是等腰三角形的判定,等边三角形的性质与判定,三角形的全等的判定与性质,掌握以上知识是解题的关键.26.AB=AC+BD ,证明见详解.【分析】延长AE ,交BD 的延长线于点F ,先证明AB=BF ,进而证明△ACE ≌△FDE ,得到AC=DF ,问题得证.【详解】解:延长AE,交BD的延长线于点F,AC BD,∵//∴∠F=∠CAF,∠,∵AE平分CAB∴∠CAF=∠BAF,∴∠F=∠BAF,∴AB=BF,∠,∵BE平分ABF∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△ACE≌△FDE,∴AC=DF,∴AB=BF=BD+DF=BD+AC.【点睛】本题考查了等腰三角形的判断与性质,全等三角形的判定与性质,根据题意添加辅助线构造等腰三角形和全等三角形是解题关键.。
小学四年级数学轴对称专项练习(word版,含答案)
小学四年级数学轴对称专项练习(word版,含答案)XXX四年级数学轴对称专项练姓名:__________班级:__________考号:__________一、单选题(共10题;共20211.下列不是轴对称图形的是()A.平行四边形B.正方形C.长方形D.半圆2.下面这些图形中,不是轴对称图形的是()。
XXX.下面只有两条对称轴的图形是()。
A.平行四边形B.等腰梯形C.等边三角形D.长方形4.下面图形中,对称轴最多的图形是()。
A.等边三角形B.长方形C.正方形D.半圆5.下列图形中,()的对称轴数量最少.A.圆B.等边三角形C.长方形D.正方形6.正方形的对称轴有()条.A。
1.B。
2.C。
4.D。
67.下列图形中,只有一条对称轴的图形是()A.等边三角形B.等腰三角形C.直角三角形8.如图,将一张长方形纸对折,并剪下一个三角形和一个圆,余下的局部睁开后的形状是(XXX下列各种图形中,是轴对称图形的是()。
A。
B。
C.10.一个三角形任意一条边上的高都是对称轴,这个三角形是()。
A.等腰三角形B.等腰直角三角形C.等边三角形二、判断题(共10题;共202111.国旗上的五角星是轴对称图形。
()12.英笔墨母S是轴对称图形。
()13.圆是轴对称图形,每条直径地点的直线都是圆的对称轴。
()14.圆有没有数条对称轴,所以半圆也有没有数条对称轴。
()15.六边形有6条对称轴。
()16.长方形、正方形、三角形都是轴称轴图形。
()17.汉字“田”“日”“国”都是轴对称图形。
()18.圆是轴对称图形,它有没有数条对称轴。
()19.圆只有一条对称轴。
()2021意一条直径所在的直线都是圆的对称轴。
()三、填空题(共5题;共10分)21.轴对称图形沿着________对折后能够完全重合。
22.圆的对称轴有________条,半圆形的对称轴有________条23.下列图形中对称轴条数最多的是________A、正方形B、长方形C、等腰三角形D、等腰梯形E、等边三角形F、角G、线段H、圆I、正五角星24.等腰梯形有________条对称轴,等腰三角形有________条对称轴。
人教版八年级上册数学 轴对称解答题单元测试卷 (word版,含解析)
人教版八年级上册数学 轴对称解答题单元测试卷 (word 版,含解析)一、八年级数学 轴对称解答题压轴题(难)1.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.2.如图,在等边△ABC 中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边△CDE ,连结BE .(1)求∠CAM 的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【详解】(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线,∴∠CAM12=∠BAC,∴∠CAM=∠BAM=30°.(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD =∠BCE.在△ADC和△BEC中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)∠AOB是定值,∠AOB=60°.理由如下:①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°.∵△ABC是等边三角形,线段AM为BC边上的中线,∴AM平分∠BAC,即11603022BAM BAC∠∠==⨯︒=︒,∴∠BOA=90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD .由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.3.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G .(1)求证:AE CG =.(2)如图2,直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M,求证:BE CM=.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.4.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH=10°,CH 交 BD 的延长线于 H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD=∠CBD=40°,∴∠CBD=∠DCB,∠OBD=40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32 则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.5.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC 和△ADE 均为等边三角形(如图1),∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴ ∠BAC-∠DAC=∠DAE-∠DAC ,∴ ∠BAD=∠CAE.∴ △BAD ≌△CAE (SAS )∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n︒,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n.∴∠AEC=90°+12n︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.6.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.(1)如图①,当点E为AB的中点时,DE=;(2)如图②,点E在运动过程中,DE与EC满足什么数量关系?请说明理由;(3)如图③,F是AC的中点,连接EF.在AB边上是否存在点E,使得DE+EF值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)32)DE=CE,理由见解析;(3)这个最小值为7;【解析】【分析】(1)如图①,过点E作EH⊥BC于H,由等边三角形的性质可得BE=DB=AE=2,由直角三角形的性质可求BH=1,EH3(2)如图②,过E作EF∥BC交AC于F,可证△AEF是等边三角形,AE=EF=AF=BD,由“SAS”可证△DBE≌△EFC,可得DE=CE;(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H,由“SAS”可证△ACE'≌△AC'E',可得C'E'=CE',可得当点C',点E',点F三点共线时,DE+EF的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E作EH⊥BC于H,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=BH 3=,∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23.故答案为:23;(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=AH 3=,∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27,∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.7.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD ∆中,30D CAO ∠=∠=︒∴180120AOD D CAO ∠=︒-∠-∠=︒∴30COD AOD AOC ∠=∠-∠=︒(2)过O 作//OE AB ,OE 交AD 于E∵//OE AB∴60EOC ABC ∠=∠=︒60CEO CAB ∠=∠=︒∴COE ∆为等边三角形∴OE OC CE ==180120AEO CEO ∠=︒-∠=︒180120DCO ACB ∠=︒-∠=︒又∵OA OD =∴EAO CDO ∠=∠在AOE ∆和COD ∆中AOE DOC EAO CDO OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS ∆≅∆∴CD EA =∵EA AC CE =-BO BC CO =-∴EA BO =∴BO CD =,∵AB AC =,AD AC CD =+∴AD AB BO =+(3)AOP ∆为等边三角形证明过程如下:连接,PC PD ,延长OC 交PD 于F∵P D 、关于OC 对称∴,90PF DF PFO DFO =∠=∠=︒在ODF ∆与OPF ∆中,PF DF PFO DFO OF OF =⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS ∆≅∆∴OP OD =,POC DOC ∠=∠∵OA OD =∴AO=OP∴AOP ∆为等腰三角形过O 作//OE AB ,OE 交AD 于E由(2)得AOE DOC ∆≅∆∴AOE DOC ∠=∠又∵POC DOC ∠=∠∴AOE POF ∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.8.如图,在等边△ABC 中,线段AM 为BC 边上的高,D 是AM 上的点,以CD 为一边,在CD 的下方作等边△CDE ,连结BE .(1)填空:∠ACB =____;∠CAM =____;(2)求证:△AOC ≌△BEC ;(3)延长BE 交射线AM 于点F ,请把图形补充完整,并求∠BFM 的度数;(4)当动点D 在射线AM 上,且在BC 下方时,设直线BE 与直线AM 的交点为F .∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM 的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC ,DC=EC ,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)补全图形,由△ADC ≌△BEC 得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM 的度数;(4)画出相应图形,可知当点D 在线段AM 的延长线上且在BC 下方时,如图,可以得出△ACD ≌△BCE ,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB=60°;∴线段AM 为BC 边上的高,∴∠CAM=12∠BAC=30°, 故答案为60,30°; (2)∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE ,∴∠ACD=∠BCE.在△ADC 和△BEC 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC ≌△BEC ,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D 在射线AM 上,且在BC 下方时,画出图形如下:∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO ,∴∠AOB=∠ACB=60°.即动点D 在射线AM 上时,∠AOB 为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.9.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC 中,AB=AC ,∠A=45°,请把△ABC 分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C ,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP ,BQ=PQ ,PQ=CQ 时,∴∠PQC=∠C=2∠PBQ ,∴12∠C+∠C=30°, 解得:∠C=20°.综上所述:∠C 所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°. 【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.10.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值.【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数.(2)根据三角形ABC 的面积可得出CE 的长(3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1)AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=,37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2)CE AB ⊥, 1122ABC S BC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =, 245CE ∴=. (3) 245【点睛】 本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.。
轴对称解答题单元测试与练习(word解析版)
轴对称解答题单元测试与练习(word 解析版)一、八年级数学 轴对称解答题压轴题(难)1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20综上,当△APQ 为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.2.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥, ∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.3.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x a y x a β⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0, ∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴y x a y a x β⎧=+⎨+=+⎩①②,②-①得,α=β﹣α, ∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y a x x y a β︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0, ∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.4.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF△和DCF中,H DCFHF CFAFH DFC∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF≅∴AH=DC∵,CF a EF b==∴HF CF a==,由①得AE HE HF EF a b==-=-,BE CE a b==+∵//AH BC∴AH AE a bBC BE a b-==+∴CD a bBC a b-=+∴2BD bCD a b=-.故答案为:2ba b-.【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.5.已知△ABC.(1)在图①中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD OE、求证:OD OE=;(3)如图②,在(1)的条件下,点E、F分别是AB、BC边上的点,且△BEF的周长等于BC边的长,试探究ABC∠与EOF∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC的平分线;利用基本作图作BC的垂直平分线,即可完成;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,用角平分线的性质证明OH=OG,BH=BG,继而证明EH =DG,然后可证明OEH ODG∆≅∆,于是可得到OE=OD;(3)作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,利用(2)得到 CD=BE,OEH ODG∆≅∆,OE=OD,EOH DOG∠=∠,180ABC HOG∠+∠=,可证明EOD HOG∠=∠,故有180ABC EOD∠+∠=,由△BEF的周长=BC可得到DF=EF,于是可证明OEF OGF∆≅∆,所以有EOF DOF∠=∠,然后可得到ABC∠与EOF∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,∵BO平分∠ABC,OH⊥AB,OG垂直平分BC,∴OH=OG,CG=BG,∵OB=OB,∴OBH OBG∆≅∆,∴BH=BG,∵BE=CD,∴EH=BH-BE=BG-CD=CG-CD=DG,在OEH∆和ODG∆中,90OH OGOHE OGDEH DG=⎧⎪∠=∠=⎨⎪=⎩,∴OEH ODG∆≅∆,∴OE=OD.(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH⊥AB于H ,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为 CD=BE,所以OEH ODG∆≅∆且OE=OD,∴EOH DOG∠=∠,180ABC HOG∠+∠=,∴EOD EOG DOG EOG EOH HOG∠=∠+∠=∠+∠=∠,∴180ABC EOD∠+∠=,∵△BEF的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF和△OGF中,OE ODEF FDOF OF=⎧⎪=⎨⎪=⎩,∴OEF OGF∆≅∆,∴EOF DOF∠=∠,∴2EOD EOF∠=∠,∴2180ABC EOF∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.6.如图,已知ABC∆()AB AC BC<<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC上找一点M,使得:将ABC∆沿着过点M的某一条直线折叠,点B与点C能重合,请在图①中作出点M;(2)在边BC上找一点N,使得:将ABC∆沿着过点N的某一条直线折叠,点B能落在,请在图②中作出点N.边AC上的点D处,且ND AC【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC的垂直平分线,交BC于点M,即可;(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即可.【详解】(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.7.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°. ∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中, AB AC BAM CAE AM AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AMB ≌△AEC .∴CE =BM .∴CE +AE =BE .【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE 转化到BE 上,再证明CE =BM 即可得结论.8.已知ABC 为等边三角形,E 为射线AC 上一点,D 为射线CB 上一点,AD DE =. (1)如图1,当点E 在AC 的延长线上且CD CE =时,AD 是ABC 的中线吗?请说明理由;(2)如图2,当点E 在AC 的延长线上时,写出,,AB BD AE 之间的数量关系,请说明理由;(3)如图3,当点D 在线段CB 的延长线上,点E 在线段AC 上时,请直接写出,,AB BD AE 的数量关系.【答案】(1)AD 是ABC 的中线,理由详见解析;(2)AB BD AE +=,理由详见解析;(3)AB AE BD =+.【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF=∠DAF,∵DF=DF,AF=EF,在△AFD和△EFD中,AD DEDF DFAF EF=⎧⎪=⎨⎪=⎩,∴△AFD≌△EFD(SSS)∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.9.(1)操作:如图,在已知内角度数的三个三角形中,请用直尺从某一顶点画一条线段,把原三角形分割成两个等腰三角形,并在图中标注相应的角的度数(2)拓展,△ABC中,AB=AC,∠A=45°,请把△ABC分割成三个等腰三角形,并在图中标注相应的角的度数.(3)思考在如图所示的三角形中∠A=30°.点P和点Q分别是边AC和BC上的两个动点.分别连接BP和PQ把△ABC分割成三个三角形.△ABP,△BPQ,△PQC若分割成的这三个三角形都是等腰三角形,求∠C的度数所有可能值直接写出答案即可.【答案】(1)见解析;(2)见解析;(3)∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【解析】【分析】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,根据垂直平分线的性质及外角的性质求出各角度数即可;(2)分别作AB、BC的垂直平分线,交于点O,连接OA、OB、OC可得三角形OAB、OAC、OBC为等腰三角形,根据等腰三角形的性质及外角性质求出各角度数即可;(3)分PB=PA、AB=AP、BA=BP时,PB=PQ、BP=BQ、QB=QP,PQ=QC、PC=QC、PQ=PC等10种情况,根据等腰三角形的性质分别求出∠C的度数即可.【详解】(1)在图1、图2、图3中,分别作AB、AB、BC的垂直平分线,如图1,∵∠ABC=23°,∠BAC=90°,∴∠C=90°-23°=67°,∵MN垂直平分AB,∴BD=AD,∴△ABD是等腰三角形,∴∠BAD=∠ABC=23°,∴∠ADC=2∠ABC=46°,∵∠BAC=90°,∴∠DAC=∠BAC-∠BAD=67°,∴∠DAC=∠C,∴△DAC是等腰三角形,同理:图2中,∠ADC=46°,∠DAC=88°,∠C=46°,△ABD和△ACD是等腰三角形,图3中,∠BCD=23°,∠ADC=46°,∠ACD=46°,△BCD和△ACD是等腰三角形.(2)作AB、BC的垂直平分线,交于点O,连接OA、OB、OC,∵点O是三角形垂直平分线的交点,∴OA=OB=OC,∴△OAB、△OAC、△OBC是等腰三角形,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∴AD是BC的垂直平分线,∴∠BAD=∠CAD=22.5°,∴∠OBA=∠OAB=22.5°,∠OCA=∠OAC=22.5°,∴∠OBC=∠OCB=45°.(3)①如图,当PB=PA,PB=PQ,PQ=CQ时,∵∠A=30°,PB=PQ,∴∠ABP=∠A=30°,∴∠APB=120°,∵PB=PQ,PQ=CQ,∴∠PQB=∠PBQ,∠C=∠CPQ,∴∠PBQ=2∠C,∴∠APB=∠PBQ+∠C=3∠C=120°,解得:∠C=40°.②如图,当PB=PA,PB=BQ,PQ=CQ时,∴∠PQB=2∠C,∠PQB=∠BPQ,∴∠PBQ=180°-2∠PQB=180°-4∠C,∴180°-4∠C+∠C=120°,解得:∠C=20°,③如图,当PA=PB,BQ=PQ,CQ=CP时,∵∠PQC=2∠PBQ,∠PQC=12(180°-∠C),∴∠PBQ=14(180°-∠C),∴14(180°-∠C)+∠C=120°,解得:∠C=100°.④如图,当PA=PB,BQ=PQ,PQ=CP时,∵∠PQC=∠C=2∠PBQ,又∵∠C+∠PBQ=120°,∴∠C=80°;⑤如图,当AB=AP,BP=BQ,PQ=QC时,∵∠A=30°,∴∠APB=12(180°-30°)=75°,∵BP=BQ,PQ=CQ,∴∠BPQ=∠BQP,∠QPC=∠QCP,∴∠BQP=2∠C,∴∠PBQ=180°-4∠C,∴∠C+180°-4∠C=75°,解得:∠C=35°.⑥如图,当AB=AP,BQ=PQ,PC=QC时,∴∠PQC=2∠PBC,∠PQC=12(180°-∠C),∴∠PBC=14(180°-∠C),∴14(180°-∠C)+∠C=75°,解得:∠C=40°.⑦如图,当AB=AP,BQ=PQ,PC=QP时,∵∠C=∠PQC=2∠PBC,∠C+∠PQC=75°,∴∠C=50°;⑧当AB=AP,BP=PQ,PQ=CQ时,∵AB=BP,∠A=30°,∴∠ABP=∠APB=75°,又∵∠PBQ=∠PQB=2∠C,且有∠PBQ+∠C=180°-30°-75°=75°,∴3∠C=75°,∴∠C=25°;⑨当AB=BP,BP=PQ,PQ=CQ时,∵AB=BP,∴∠BPA=∠A=30°,∵∠PBQ=∠PQB=2∠C,∴2∠C+∠C=30°,解得:∠C=10°.⑩当AB=BP,BQ=PQ,PQ=CQ时,∴∠PQC=∠C=2∠PBQ,∴12∠C+∠C=30°,解得:∠C=20°.综上所述:∠C所有可能的值为10°、20°、25°,35°、40°、50°、80°、100°.【点睛】本题考查复杂作图及等腰三角形的性质,熟练掌握等腰三角形的性质是解题关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC =+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
轴对称解答题单元练习(Word版 含答案)
轴对称解答题单元练习(Word版含答案)一、八年级数学轴对称解答题压轴题(难)1.如图,在ABC△中,已知AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于点F,求证:AF EF=.【答案】证明见解析【解析】【分析】延长AD到点G,使得AD DG=,连接BG,结合D是BC的中点,易证△ADC和△GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG .∵AD是BC边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC≌GDB△(SAS).∴CAD G∠=∠,BG AC=.又BE AC=,∴BE BG=.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.2.如图,△ABC 中,∠ABC=∠ACB ,点D 在BC 所在的直线上,点E 在射线AC 上,且AD=AE ,连接DE .⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE 的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD 的度数;⑶当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究∠BAD 与∠CDE 的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD ,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论; (2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论; (3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110° ,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18° ,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y xy xααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴+y xy xααβ=+⎧⎨=+⎩①②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y xy xαβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.3.如图,ABC中,AABC CB=∠∠,点D在BC所在的直线上,点E在射线AC 上,且AD AE=,连接DE.(1)如图①,若35B C∠=∠=︒,80BAD∠=︒,求CDE∠的度数;(2)如图②,若75ABC ACB∠=∠=︒,18CDE∠=︒,求BAD∠的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究BAD∠与CDE∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.4.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC∆是等腰锐角三角形,()AB AC AB BC=>,若ABC∠的角平分线BD交AC于点D,且BD是ABC∆的一条特异线,则BDC∠=度.(2)如图2,ABC∆中,2B C∠=∠,线段AC的垂直平分线交AC于点D,交BC于点E,求证:AE是ABC∆的一条特异线;(3)如图3,若ABC∆是特异三角形,30A∠=,B为钝角,不写过程,直接写出所有可能的B的度数.【答案】(1)72;(2)证明见解析;(3)∠B度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE与△AEC为等腰三角形求解即可;(3)根据题意分当BD为特异线、AD为特异线以及CD为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD 是特异线时,如果AB=BD=DC ,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC ,DB=DC ,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB ,DC=DB ,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD 是特异线时,AB=BD ,AD=DC ,则:∠ABC=180°−20°−20°=140°;当CD 为特异线时,不符合题意;综上所述,∠B 度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.5.如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P .(1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM .①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ; ②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论.【详解】(1)证明:因为△ABC 为等边三角形,所以60A ACB ∠=∠=︒∵AC BC A ACB AE CD =⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS ≌ ,∴AEC CDB ∠=∠, 在四边形AEPD 中,∵360AEC EPD PDA A ∠+∠+∠+∠=︒,∴18060360AEC EPD CDB ∠+∠+︒-∠+︒=︒,∴120EPD ∠=︒,∴120BPC ∠=︒;(2)①如图2,∵△ABC 是等边三角形,点M 是边BC 的中点,∴∠BAC =∠ABC =∠ACB =60°,AM ⊥BC ,∠CAP =12∠BAC =30°,∴PB =PC , ∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM =;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.6.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN=即3ANBN=.(2)如下图:过点M作ME∥BC交AC于E∴∠CME=∠MCB,∠AEM=∠ACB∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MECNBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP ∆是等边三角形,120EMP FCP ==︒∠∠∴AP MP AM ==∵P 点是AC 的中点 ∴111222AP PC MP AM AC AB BC ====== ∴12AM MB AB == 在EMP ∆与FCP ∆中EMP FCP AEP PFC MP PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS ∆∆≌∴ME FC = ∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+= ∴3322BC BF BE BC BC -==. 【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.7.如图,在平面直角坐标系中,A (﹣3,0),点 B 是 y 轴正半轴上一动点,点C 、D 在 x 正半轴上.(1)如图,若∠BAO =60°,∠BCO =40°,BD 、CE 是△ABC 的两条角平分线,且BD 、CE 交于点F ,直接写出CF 的长_____.(2)如图,△ABD 是等边三角形,以线段BC 为边在第一象限内作等边△BCQ ,连接 QD 并延长,交 y 轴于点 P ,当点 C 运动到什么位置时,满足 PD =23DC ?请求出点C 的坐标; (3)如图,以AB 为边在AB 的下方作等边△ABP ,点B 在 y 轴上运动时,求OP 的最小值.【答案】(1)6;(2)C 的坐标为(12,0);(3)32. 【解析】【分析】 (1)作∠DCH =10°,CH 交 BD 的延长线于 H ,分别证明△OBD ≌△HCD 和△AOB ≌△FHC ,根据全等三角形的对应边相等解答;(2)证明△CBA ≌△QBD ,根据全等三角形的性质得到∠BDQ =∠BAC =60°,求出 CD ,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.8.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=- 解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.9.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)【答案】(1)4cm;(2)PB=PC,理由见解析;(3)4【解析】【分析】(1)根据AAS定理证明△ABP≌△PCD,可得BP=CD;(2)延长线段AP、DC交于点E,分别证明△DPA≌△DPE、△APB≌△EPC,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【详解】解:(1)∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,B CBAP CPDAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD,∴BP=CD=4cm;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DPA=∠DPE=90°,在△DPA和△DPE中,ADP EDPDP DPDPA DPE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPA≌△DPE(ASA),∴PA=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB和△EPC中,ABP ECPAPB EPCPA PE∠=∠⎧⎪∠=⎨⎪=⎩,∴△APB≌△EPC(AAS),∴PB=PC;(3)∵△PDC 是等腰三角形,∴△PCD 为等腰直角三角形,即∠DPC =45°,又∵DP ⊥AP ,∴∠APB =45°,∴BP =AB =1cm , ∴PC =BC ﹣BP =4cm ,∴CD =CP =4cm ,故答案为:4.【点睛】本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)262. 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD == ()ABD ACE SAS ∴≅,AD AE BAD CAE∴=∠=∠90DAE BAC︒∴∠=∠=222DA AE DE∴+=222()DA DB DC∴=+2DA DB DC∴=+(3)连接PQ,14,30MN QMN︒=∠=172QN MN∴==根据勾股定理得222214714773MQ MN QN=-=-==由(22PQ QN QM=+773727622PQ++∴===【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。
北师大版八年级上册数学 轴对称解答题单元测试题(Word版 含解析)
北师大版八年级上册数学 轴对称解答题单元测试题(Word 版 含解析)一、八年级数学 轴对称解答题压轴题(难)1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM), ∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.2.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.3.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE ≌△ADF (SAS ),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF 为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D 为BC 中点 ,∴AD=BD ,AD ⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF ≌△DBE (SAS ),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF 为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.4.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠ BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.5.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CFAFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅∴AH=DC∵ ,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+∵ //AH BC∴AH AE a b BC BE a b -==+ ∴CD a b BC a b -=+ ∴2BD b CD a b=-. 故答案为:2b a b -. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.6.如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P .(1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM .①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ; ②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC=∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP (SAS),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以60A ACB∠=∠=︒∵AC BCA ACBAE CD=⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS≌,∴AEC CDB∠=∠,在四边形AEPD中,∵360AEC EPD PDA A∠+∠+∠+∠=︒,∴18060360AEC EPD CDB∠+∠+︒-∠+︒=︒,∴120EPD∠=︒,∴120BPC∠=︒;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=12∠BAC=30°,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,∴AP=PC,∴AP=2PM;故答案为:2AP PM=;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN ≌△BMP (SAS ),∴CN =BP =AD ,∠NCM =∠PBM ,∴CN ∥BP ,∴∠NCP +∠BPC =180°,∴∠NCP =60°=∠ADP ,在△ADP 和△NCP 中,∵AD=NC ,∠ADP =∠NCP ,PD=PC ,∴△ADP ≌△NCP (SAS ),∴AP =PN =2CM ;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.7.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.8.如图,已知DCE ∠与AOB ∠,OC 平分AOB ∠.(1)如图1,DCE ∠与AOB ∠的两边分别相交于点 D 、E ,90AOB DCE ∠=∠=︒,试判断线段CD 与CE 的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE =.理由如下:如图1,过点 C 作 C F OC ⊥,交 O B 于点 F ,则90OCF ∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB ∠=︒,60DCE ∠=︒.①如图3,DCE ∠与AOB ∠的两边分别相交于点 D 、E 时,(1)中的结论成立吗?为什么?线段 O D 、OE 、OC 有什么数量关系?说明理由.②如图4,DCE ∠的一边与 AO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系;如图5,DCE ∠的一边与 BO 的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段 O D 、OE 、OC 有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC -=.在图5中,(1)中的结论成立,OD OE OC -=【解析】【分析】(1)通过ASA 证明CDO CEF ∆∆≌即可得到CD=CE ;(2)过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,通过AAS 证明CMD CNE ∆∆≌同样可得到CD=CE ;(3)①方法一:过点 C 作 C M OA ⊥,CN OB ⊥垂足分别为 M ,N ,通过AAS 得到CMD CNE ∆∆≌,进而得到,CD CE DM EN ==,利用等量代换得到=OE OD ON OM ++,在 Rt CMO ∆中,利用30°角所对的边是斜边的一半得12OM OC =,同理得到1 2ON OC =,所以OE OD OC +=;方法二:以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,通过ASA 证明CDO CEF ∆∆≌,得到,CD CE OD EF ==,所以OE OD OE EF OF OC +=+==;②图4:以OC 为一边,作∠OCF=60°与OB 交于F 点,利用ASA 证得△COD ≌△CFE ,即有CD=CE ,OD=EF得到OE=OF+EF=OC+OD ;图5:以OC 为一边,作∠OCG=60°与OA 交于G 点,利用ASA 证得△CGD ≌△COE ,即有CD=CE ,OD=EF ,得到OE=OF+EF=OC+OD.【详解】解:(1)OC 平分AOB ∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC ∴=又456590︒∠+∠=∠+∠=在CDO ∆与CEF ∆中,1346OC FC ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA ∴∆∆≌CD CE ∴=(2)如图2,过点 C 作CM OA ⊥,CN OB ⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形 O DCE 中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形ODCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵60120180AOB DCE∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+. 在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F , ∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO ∠=∠+∠=︒,∴46∠=∠,在CDO ∆与CEF ∆中,1346CO CF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA ∆∆≌,∴,CD CE OD EF ==.∴OE OD OE EF OF OC +=+==.-=.②在图4中,(1)中的结论成立,OE OD OC如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.9.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE+AE=BE.【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC=AD,∠PAC=∠PAD=20°,根据等边三角形的性质可得AC=AB,∠BAC=60°,即可得AB=AD,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=-∴∠AEB =60-x +x =60°.∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB AC BAM CAE AM AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AMB ≌△AEC .∴CE =BM .∴CE +AE =BE .【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE 转化到BE 上,再证明CE =BM 即可得结论.10.如图,△ABC 中,AB =BC =AC =12cm ,现有两点M 、N 分别从点A .点B 同时出发,沿三角形的边运动,已知点M 的速度为2cm /s ,点N 的速度为3cm /s .当点N 第一次到达B 点时,M 、N 同时停止运动.(1)点M 、N 运动 秒后,△AMN 是等边三角形?(2)点M 、N 在BC 边上运动时,运动 秒后得到以MN 为底边的等腰三角形△AMN ?(3)M 、N 同时运动几秒后,△AMN 是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M 、N 运动3秒或127秒或10秒或9秒后,△AMN 为直角三角形.【解析】【分析】(1)当AM =AN 时,△MNA 是等边三角形.设运动时间为t 秒,构建方程即可解决问题;(2)点M 、N 在BC 边上运动时,满足CM =BN 时,可以得到以MN 为底边的等腰三角形△AMN .构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴2AM=AN∴4t=12﹣3t∴t=127;③当M、N都在BC上,∠ANM=90°时,如图CN=3t﹣24=6解得t=10;④当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,如图此时2t=12+6解得t=9;综上所述,点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.。
广州市八年级数学上册第三单元《轴对称》检测(答案解析)
一、选择题1.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .1282.以下尺规作图中,点D 为线段BC 边上一点,一定能得到线段AD BD =的是( ) A . B .C .D .3.下列命题中,假命题是( )A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形4.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm5.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .56.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .118 7.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .12 8.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60 B .40或60 C .25或40D .40 9.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( )A .3-B .1-C .1D .3 10.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°11.如图,AC AD =,BC BD =,则有( )A .AB 与CD 互相垂直平分B .CD 垂直平分ABC .CD 平分ACB ∠ D .AB 垂直平分CD12.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒二、填空题13.如图,∠C=90°,CB=CO ,且点B 坐标为(-2,0),则点C 坐标为_________.14.若等腰三角形的顶角为30°,腰长为10,则此等腰三角形的面积为_________. 15.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.16.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.17.在△ABC 中,按以下步骤作图:①分别以A ,C 为圆心,以大于12AC 的同样长为半径画弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连结CD .请回答:若BC=DC ,∠B=100°,则∠ACB 的度数为____. 18.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .19.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ;(3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ; (5)直线MN 与直线HL 相交于点O ;(6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.20.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =8cm ,DE =3cm ,AE =2,求AC 的长为_____cm .三、解答题21.如图,ABC 中,,90,AB AC BAC =∠=︒点D 是直线AB 上的一动点(不和A B 、重合),BE CD ⊥交CD 所在的直线于点,E 交直线AC 于F .()1点D 在边AB 上时,证明:AB FA BD =+;()2点D 在AB 的延长线或反向延长线上时,()1中的结论是否成立?若成立,请给出证明;若不成立,请画出图形,并直接写出,,AB FA BD 三者之间数量关系.22.(1)问题:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,AB BP BC +=.求证:90APD ∠=︒;(2)问题:如图②,在三角形ABC 中,45B C ∠=∠=︒,P 是AC 上一点,PE PD =,且90EPD ∠=︒.求AE AP PC+的值.23.如图,在ABC ∆中,,36,AB AC BAC BD =∠=︒平分ABC ∠交AC 于点,D 过点A 作//,AE BC 交BD 的延长线于点E .()1求ADB ∠的度数﹔()2求证:ADE ∆是等腰三角形.24.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在线段BC 上,连接AD ,过点C 作CE AD ⊥交AD 于点E ,过点B 作BF CE ⊥,交CE 的延长线于点F ,点G 是AB 的中点,连接GE ,GF .(1)若30CAD ∠=︒,5AD =,求DE 的长度;(2)求证:GE GF =.25.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形.(2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.26.在如图所示的平面直角坐标系中,完成下列任务.(1)描出点(1,1)A ,(3,1)B ,(3,2)C -,(1,2)D -,并依次连接A ,B ,C ,D ; (2)画出四边形ABCD 关于y 轴对称的四边形1111D C B A ,并写出顶点1A ,1C 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的外角性质以及等边三角形的判定和性质得出OA1=B1A1=1,OA2=B2A2=2,OA3=B3A3=224=,…进而得出答案.=,OA4=B4A4=328【详解】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=60°,∵∠MON=30°,∴∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1= A1A2=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,同理;OA3=B3A3=224=,OA4=B4A4=328=,OA5=B5A5=4216=,…,以此类推:=,所以OA7=B7A7=6264故选:C.【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA2=B2A2=2,OA3=B3A3=224=,…进而发现规律是解题的关键.=,OA4=B4A4=3282.D解析:D【分析】点D到点A、点B的距离相等可知点D在线段AB的垂直平分线上,据此可得答案.【详解】解:∵点D到点A、点B的距离AD=BD,∴点D在线段AB的垂直平分线上,故选择:D.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.3.C解析:C【分析】利用全等三角形的判定和等腰三角形的性质判断A、B,根据对顶角的定义判断C,根据等边三角形的判定判断D.【详解】解:A.两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是真命题;B.已知等腰三角形的两腰相等,且顶角的平分线即为底边上的高,则可根据为HL可以得出两个三角形全等,故本选项是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、有一个角为60°的等腰三角形是等边三角形,正确,是真命题;故选C.【点睛】本题考查了命题和定理,解题的关键是明确题意,可以判断题目中的命题的真假,对于假命题能举出反例或者说明理由.4.B解析:B【分析】过P作PC垂直于MN,由等腰三角形三线合一性质得到MC=CN,求出MC的长,在直角三角形OPC中,利用30度角所对的直角边等于斜边的一半求出OC的长,由OC-MC求出OM的长即可.【详解】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC= 1MN=1,2在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC= 12OP=4, 则OM=OC-MC=4-1=3cm ,故选:B .【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.5.B解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD , ∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.6.B【分析】由等边三角形的性质,得到AC=BC ,CE=CD ,∠ACB=∠ECD=60°,然后证明△ACE ≌△BCD ,则∠CAE=∠CBD ,由角的关系,求出∠ABE+∠BAE=58°,即可得到答案.【详解】解:如图:∵ABC ∆和CDE ∆都是等边三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,∴∠ACE+∠BCE=∠BCD+∠BCE=60°,∴∠ACE=∠BCD ,∴△ACE ≌△BCD ,∴∠CAE=∠CBD ,即6062BAE EBC ︒-∠=︒-∠,∵60EBC ABE ∠=︒-∠,∴6062(60)BAE ABE ︒-∠=︒-︒-∠,∴58ABE BAE ∠+∠=︒,∴18058122AEB ∠=︒-︒=︒;故选:B .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,以及角的和差关系,解题的关键是掌握所学的知识,正确求出58ABE BAE ∠+∠=︒. 7.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B .【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解. 8.C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 9.C解析:C【分析】根据关于坐标轴对称的规律,关于谁对称谁不变,另一个坐标变为相反数即可获得a 和b 的值,然后即可得解.【详解】∵点(),3M a ,点()2,N b 关于x 轴对称∴2a =,3b =-∴()()20182018231a b +=-= 故选:C . 【点睛】本题考查了在坐标平面直角坐标系中关于x 轴对称的点的坐标的变化规律,点(),x y 关于x 轴对称的点的坐标为()x y -,,熟记规律即可得到正确答案.10.A解析:A【分析】根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.11.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵AC AD =,BC BD =,∴AB 垂直平分CD ,故D 正确,A 、B 错误,OC 不平分∠ACB ,故C 错误,故选:D .【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.12.C解析:C【分析】根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C .【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键.二、填空题13.(-11)【分析】过点C作CD⊥y轴于点D根据等腰三角形的性质得出OD=CD=1得出结果【详解】解:过点C作CD⊥y轴于点D∵∠ACB=90°CB=CO∴∠CBO=∠COB=45°∵CD⊥y轴∴∠C解析:(-1,1)【分析】过点C作CD⊥y轴于点D,根据等腰三角形的性质得出OD=CD=1,得出结果.【详解】解:过点C作CD⊥y轴于点D,∵∠ACB=90°,CB=CO,∴∠CBO=∠COB=45°,∵CD⊥y轴,∴∠CDO=90°,∴∠COD=∠DOC,∴OD=CD,∵CD⊥y轴,CB=CO,∴OD=1OB,2∵点B坐标为(-2,0),∴OB=2,∴OD=CD=1,∴点C坐标为(-1,1),故答案为(-1,1).【点睛】本题考查了等腰三角形的性质,解题的关键是正确作出辅助线.14.25【分析】依据含30°角的直角三角形的性质即可得到该等腰三角形腰上的高再根据三角形面积计算公式进行计算即可【详解】解:如图所示AB=AC=10∠A=30°过B作BD⊥AC于D∵∠A=30°AB=1解析:25【分析】依据含30°角的直角三角形的性质,即可得到该等腰三角形腰上的高,再根据三角形面积计算公式进行计算即可.【详解】解:如图所示,AB=AC=10,∠A =30°,过B 作BD ⊥AC 于D ,∵∠A =30°,AB =10,∴BD =12AB =5, ∴S △ABC =12AC ×BD =12×10×5=25, 故答案为:25.【点睛】本题主要考查了等腰三角形的性质以及含30°角的直角三角形的性质,作出腰上的高并根据30°角求出高是解题关键.15.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.16.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.17.30°【分析】依据等腰三角形的性质即可得到∠BDC 的度数再根据线段垂直平分线的性质即可得出∠A 的度数进而得到∠ACB 的度数【详解】解:根据题意如图:∵BC=DC ∠ABC=100°∴∠BDC=∠CBD解析:30°【分析】依据等腰三角形的性质,即可得到∠BDC 的度数,再根据线段垂直平分线的性质,即可得出∠A 的度数,进而得到∠ACB 的度数.【详解】解:根据题意,如图:∵BC=DC,∠ABC=100°,∴∠BDC=∠CBD=180°-100°=80°,根据题意得:MN是AC的垂直平分线,∴CD=AD,∴∠ACD=∠A,∴∠A=1(18080)50⨯︒-︒=︒,2∴∠ACB=∠CBD-∠A=80°-50°=30°.故答案为:30°.【点睛】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.18.10【分析】因为等腰三角形的两边分别为5cm和10cm但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm为底时其它两边都为10cm5cm10cm10cm可以构成三角形;当5cm为腰时解析:10【分析】因为等腰三角形的两边分别为5cm和10cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm为底时,其它两边都为10cm,5cm、10cm、10cm可以构成三角形;当5cm为腰时,其它两边为5cm和10cm,因为5+5=10,所以不能构成三角形,故舍去.所以三角形三边长只能是5cm、10cm、10cm,所以第三边是10cm.故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.19.①③④【分析】根据题意可得点O是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O为等边三角形ABC三边中垂线的交点即:MN⊥ABHL⊥AC∴根据等边三角形解析:①③④【分析】根据题意可得点O是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O为等边三角形ABC三边中垂线的交点,即:MN⊥AB,HL⊥AC,∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE,∴△ADO≌△AEO,∴OD=OE,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt△COE中,OC=2OE,∴OC=2OD,故①正确;在Rt△ABE中,显然AB=2AE,而OA>AE,∴AB≠2OA,故②错误;根据中垂线性质可得OA=OB,OA=OC,∴OA=OB=OC,故③正确;在四边形ADOE中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.20.7【分析】根据已知条件BFCF分别平分∠ABC∠ACB的外角且DE∥BC可得∠DBF=∠DFB∠ECF=∠EFC根据等角对等边得出DF=BDCE=EF根据BD-CE=DE即可求得【详解】解:∵BFC解析:7【分析】根据已知条件,BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,可得∠DBF=∠DFB,∠ECF=∠EFC,根据等角对等边得出DF=BD,CE=EF,根据BD-CE=DE即可求得.【详解】解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD-CE=FD-EF=DE,∴EF=DF-DE=BD-DE=8-3=5cm,∴EC=5cm,∴AC=AE+EC=2+5=7cm ,故答案为:7.【点睛】本题主要考查了等腰三角形的性质以及平行线的性质,利用边角关系并结合等量代换来推导证明是本题的特点.三、解答题21.(1)证明见解析;(2)结论不成立.图见解析,三者关系为AF AB BD +=或,BD AB AF +=【分析】(1)易证∠FBA=∠FCE ,结合条件容易证到△FAB ≌△DAC ,从而有FA=DA ,就可得到AB=AD+BD=FA+BD .(2)如图2中,当D 在AB 延长线上时,AF=AB+BD .如图3中,当D 在AB 反向延长线上时,BD=AB+AF .证明方法类似(1).【详解】解:(1)证明:如图1,∵BE ⊥CD ,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE .∵∠FAB=180°-∠DAC=90°,∴∠FAB=∠DAC .∵AB=AC ,∴△FAB ≌△DAC .∴FA=DA .∴AB=AD+BD=FA+BD .(2)如图2,当D 在AB 延长线上时,AF=AB+BD ,理由是:∵BE ⊥CD 即∠BEC=90°,∠BAC=∠BAF=90°∴∠F+∠FBA=90°,∠F+∠FCE=90°∴∠FBA=∠FCE ,∵∠FAB=180°-∠DAC=90°∴∠FAB=∠DAC在△FAB 和△DAC 中,FAB DAC AB ACFBA DCA ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△FAB ≌△DAC (ASA ),∴FA=DA ,∴AF=AD=BD+AB .如图3,当D 在AB 反向延长线上时,BD=AB+AF ,理由是:∵BE ⊥CD 即∠BEC=90°,∠BAC=∠CAD=90°∴∠AFB+∠FBA=90°,∠EFC+∠FCE=90°,∵∠AFB=∠EFC ,∴∠FBA=∠FCE ,在△FAB 和△DAC 中,90FAB DAC AB ACFBA DCA ∠∠=︒⎧⎪⎨⎪∠∠⎩=== ∴△FAB ≌△DAC (ASA ),∴AF=AD ,∴BD=AB+AD=AB+AF .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质等知识,当条件没有改变仅仅是图形的位置发生变化时,常常可以通过借鉴已有的解题经验来解决问题.22.(1)见解析;(2)1【分析】(1)先证明()ABP PCD HL ≅△△,从而得APB PDC ∠∠=,进而即可得到结论;(2)过D 点做DF AC ⊥于点F ,易证()APE FDP AAS ≅△△,DPC △是等腰直角三角形,进而即可求解.【详解】(1)∵BP PC BC +=,BP AB BC +=,∴PC AB =,在t R ABP △与t R PCD 中∵AP PD AB PC =⎧⎨=⎩, ∴()ABP PCD HL ≅△△,∴APB PDC ∠∠=,∴180APD APB DPC ∠=︒-∠-∠180()PDC DPC =︒-∠+∠18090=︒-︒90=︒; (2)过D 点做DF AC ⊥于点F ,在ABC 中,18090A B C ∠=︒-∠-∠=︒,∴A PFD ∠∠=,∵90APE DPF +=︒∠∠ ,90AEP APE ∠+∠=︒,∴DPF AEP ∠∠=,在APE 与FDP 中 A DFP DPE AEP PE PD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()APE FDP AAS ≅△△,∴AE PF =,AP DF =,∵在DPC △中,90904545FDC C ∠∠︒︒︒︒=-=-=,∴DF FC =,∴AP FC =,∴PC PF FC AE AP =+=+, ∴1AE AP PC+=.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的判定和性质,熟练掌握“一线三等角”模型,添加合适的辅助线,构造全等三角形,是解题的关键.23.(1)108ADB ∠=︒;(2)证明见解析【分析】(1)根据角平分线的定义和三角形的外角性质求解;(2)根据平行线的性质和三角形的内角和定理求解 .【详解】()1解:,36AB AC BAC =∠=︒,()1180722ABC C BAC ∴∠=∠=︒-∠=. BD 平分,ABC ∠136,2DBC ABC ∴∠=∠=︒ 7236108ADB C DBC ∴∠=∠+∠=︒+︒=()2证明://,AE BC72,EAC C ∴∠=∠=︒72,36C DBC ∠=︒∠=︒,180723672,ADE CDB ∴∠=∠=︒-︒-︒=︒,EAD ADE ∴∠=∠,AE DE ∴=ADE ∴∆是等腰三角形.【点睛】本题考查等腰三角形的综合运用,熟练掌握等腰三角形的判定与性质、平行线的性质、三角形的内角和定理和外角性质是解题关键.24.(1)54;(2)见详解 【分析】(1)先求出∠DCE=30°,根据直角三角形的性质,可得CD=12AD ,DE =12CD ,进而即可求解;(2)连接CG ,先证明∆BFC ≅∆CEA ,从而得BF=CE ,结合等腰直角三角形的性质,得CG=BG ,CG ⊥AB ,进而证明∆GCE ≅∆GBF ,即可得到结论.【详解】(1)∵CE AD ⊥,30CAD ∠=︒,∴∠ACE=90°-30°=60°,∵90ACB ∠=︒,∴∠DCE=30°,∵5AD =,∴CD=12AD=52,DE =12CD=54; (2)连接CG ,∵CE AD ⊥,∴∠ACE+∠CAE=90°,∵90ACB ∠=︒,∴∠ACE+∠BCF=90°,∴∠CAE=∠BCF ,∵BF CE ⊥,∴∠BFC=∠CEA=90°,又∵AC BC =,∴∆BFC ≅∆CEA (AAS ),∴BF=CE ,∵点G 是AB 的中点,∴CG=BG ,CG ⊥AB ,∴∠CGB=∠BFC=90°,∴∠GCE=∠GBF ,∴∆GCE ≅∆GBF ,∴GE GF =.【点睛】本题主要考查全等三角形的判定和性质以及等腰直角三角形的性质,熟练掌握AAS 证明全等三角形以及等腰直角三角形的性质,是解题的关键.25.(1)(0,3)A ,(3,0)B ,等腰直角;(2)①见解析;②点 (0,3)G -;(3)AP AN PM =+,证明见解析.【分析】(1)根据偶次方与绝对值的非负性,解得a b 、的值,即可解得点A 、B 的坐标,继而根据等腰直角三角形的判定方法解题;(2)①由等角的余角相等,解得BAD ACE =∠∠,结合(1)中结论,进而证明AEC BDA ≌△△(AAS),即可解题;②由AEC BDA ≌△△可证CAE ABD ∠=∠,继而得到GAE CBD ∠=∠,设CF 交y 轴于点H ,根据等角的余角相等,得到HGE OCH ∠=∠,继而证明AGE BCD ≌△△(AAS)解得AG 、OG 的长即可解题;(3)在AP 上截取AH AN =,连接MH ,设NMO α∠=,分别解得45AMO α∠=︒+,=45NAM α∠︒-,由角平分线的性质解得2APO α∠=,45HAM α∠=︒-,进而得到NAM HAM ∠=∠,即可证明AMN AMH ≌(SAS),继而证明PMH PHM ∠=∠,PH PM =即可解题.【详解】(1)269||0a a a b -++-=2(3)||0a a b ∴-+-=3,3a b a ∴===(0,3)A ∴,(3,0)B ,(3,0)C -,AO OB CO AO ∴==90AOB AOC ∠=∠=︒45ACO ABO ∴∠=∠=︒90CAB ∴∠=︒()AOC AOB SAS ∴≅AC AB ∴=ABC ∴为等腰直角三角形,故答案为:(0,3)A ,(3,0)B ,等腰直角;(2)①BD l ⊥,CE l ⊥90BDA AEC ∴∠=∠=︒90,90BAD CAE CAE ACE ∠+∠=︒∠+∠=︒BAD ACE ∴∠=∠AC AB =AEC BDA ∴≌(AAS),∴BD AE =.②AEC BDA ≌ CAE ABD ∴∠=∠45CAO ABO ∠=∠=︒GAE CBD ∴∠=∠,设CF 交y 轴于点HEF DC ⊥90CFG ∴∠=︒90FGH FHG ∴∠+∠=︒90COH ∠=︒90OCH CHO ∴∠+∠=︒∴CHO FHG ∠=∠HGE OCH ∴∠=∠又∵AE BD =∴AGE BCD ≌△△(AAS)∴6AG BC ==又∵3AO =,∴3OG =∴点(0,3)G -.(3)AP AN PM =+.证明过程如下:在AP 上截取AH AN =,连接MH ,设NMO α∠=,45AMN ∠=︒45AMO α∴∠=︒+,∴()904545NAM αα∠=︒-︒+=︒-,又∵//MN PQ∴QPO NMO α∠=∠=,∵PQ 平分APO ∠∴2APO α∠=∴45245HAM ααα∠=︒+-=︒-∴NAM HAM ∠=∠又∵AN AH =,AM AM =∴AMN AMH ≌(SAS)∴45AMH AMN ∠=∠=︒∴90PMH α∠=︒-, 又∵()454590PHM αα∠=︒+︒-=︒-∴PMH PHM ∠=∠∴PH PM =∴AP AH PH AN PM =+=+.【点睛】本题考查全等三角形的判定与性质、等腰直角三角形、角平分线的性质、平行线的性质、绝对值的非负性、偶次方的非负性等知识,是重要考点,难度一般,掌握相关知识是解题关键.26.(1)见解析;(2)见解析,1(1,1)A -,1(3,2)C --【分析】(1)直接利用已知点坐标在坐标系中描出各点得出答案;(2)画出四边形ABCD 关于y 轴对称的对称点,顺次连接对称点即可得到四边形1111D C B A ,再写出顶点1A ,1C 的坐标即可.【详解】解:(1)四边形ABCD 即为所求作的图形.(2)四边形1111D C B A 即为所求作的图形.此时1(1,1)A -,1(3,2)C --【点睛】本题考查了作图中的轴对称变换,熟练掌握对称的作图方法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州数学轴对称解答题单元测试与练习(word解析版)一、八年级数学轴对称解答题压轴题(难)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.2.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .(1)如图 1,求BFC ∠的度数;(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:2EAC EDF ∠=∠;(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.【解析】【分析】(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.【详解】(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以CAE CGE ∠=∠,由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,所以2AR MR x y ==+,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,因为226DF x y =+=,所以3x y +=,所以2y =,1x =,因为AF AF =,ANF AEF ∠=∠,所以AEF ANF ≌,所以FN EF =,因为AR AT =,所以AEF ANF ADM S S S ∆∆∆==,因为142ADM S DM AR ∆=⋅⋅=, 所以20ADM ADN ANF AEF AMFE S S S S S ∆∆∆∆=+++=四边形.【点睛】本题是三角形综合题,考查了等腰三角形的性质、三角形内角和定理、全等三角形的判定和性质等知识点,解题的难点在于学会添加常用辅助线,构造三角形全等解决问题,属于中考压轴题.3.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC 中,∠A=36°,直线BD 平分∠ABC 交AC 于点D ,求证:△ABD 和△DBC 都是等腰三角形;(2)如图,在△ABC 中,AB=AC ,∠A=36°,请你设计三种不同的方法,将△ABC 分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.4.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A ,D ,E 在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE ,CM ⊥DE ,∴CM=DM=EM ,∴DE=DM+EM=2CM ,∵△ACD ≌△BCE (已证),∴BE=AD ,∴AE=AD+DE=BE+2CM ,故答案为:AE=BE+2CM .【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.5.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M作ME∥BC交AC于E,先证明AM=ME,再证明MEC∆与NBM∆全等,最后转化边即得;(3)过点P作PM∥BC交AB于M,先证明M是AB的中点,再证明EMP∆与FCP∆全等,最后转化边即得.【详解】(1)∵ABC∆为等边三角形,点M是BC的中点∴AM平分∠BAC,AM BC⊥,60B BAC∠=∠=︒∴30BAM∠=︒,90AMB∠=︒∵60AMN∠=︒∴90AMNBAM∠+=︒∠,30∠=︒BMN∴90ANM∠=︒∴18090BNM ANM=︒-=︒∠∠∴在Rt BNM∆中,2BM BN=在Rt ABM∆中,2AB BM=∴24AB AN BN BM BN=+==∴3AN BN=即3ANBN=.(2)如下图:过点M作ME∥BC交AC于E∴∠CME=∠MCB,∠AEM=∠ACB∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS∆∆≌∴ME FC=∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.6.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.7.如图1,在△ABC 中,∠ACB =90°,AC =12BC ,点D 为BC 的中点,AB =DE ,BE ∥AC . (1)求证:△ABC ≌△DEB ;(2)连结AD 、AE 、CE ,如图2.①求证:CE 是∠ACB 的角平分线;②请判断△ABE 是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB ∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.8.在等边ABC∆中,点O在BC边上,点D在AC的延长线上且OA OD=.(1)如图1,若点O为BC 中点,求COD∠的度数;(2)如图2,若点O为BC上任意一点,求证AD AB BO=+.(3)如图3,若点O为BC上任意一点,点D关于直线BC的对称点为点P,连接,AP OP,请判断AOP∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC∠=∠=︒且,90AO BC AOC⊥∠=︒,根据OA OD=,等腰三角形的性质得到D∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD ∆中,30D CAO ∠=∠=︒∴180120AOD D CAO ∠=︒-∠-∠=︒∴30COD AOD AOC ∠=∠-∠=︒(2)过O 作//OE AB ,OE 交AD 于E∵//OE AB∴60EOC ABC ∠=∠=︒60CEO CAB ∠=∠=︒∴COE ∆为等边三角形∴OE OC CE ==180120AEO CEO ∠=︒-∠=︒180120DCO ACB ∠=︒-∠=︒又∵OA OD =∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F ∵P D、关于OC对称∴,90 PF DF PFO DFO=∠=∠=︒在ODF∆与OPF∆中,PF DFPFO DFOOF OF=⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS∆≅∆∴OP OD=,POC DOC∠=∠∵OA OD=∴AO=OP∴AOP∆为等腰三角形过O 作//OE AB ,OE 交AD 于E由(2)得AOE DOC ∆≅∆∴AOE DOC ∠=∠又∵POC DOC ∠=∠∴AOE POF ∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.9.如图,在等边△ABC 中,线段AM 为BC 边上的高,D 是AM 上的点,以CD 为一边,在CD 的下方作等边△CDE ,连结BE .(1)填空:∠ACB =____;∠CAM =____;(2)求证:△AOC ≌△BEC ;(3)延长BE 交射线AM 于点F ,请把图形补充完整,并求∠BFM 的度数;(4)当动点D 在射线AM 上,且在BC 下方时,设直线BE 与直线AM 的交点为F .∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM 的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC ,DC=EC ,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)补全图形,由△ADC ≌△BEC 得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM 的度数;(4)画出相应图形,可知当点D 在线段AM 的延长线上且在BC 下方时,如图,可以得出△ACD ≌△BCE ,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB=60°;∴线段AM 为BC 边上的高,∴∠CAM=12∠BAC=30°, 故答案为60,30°; (2)∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE ,∴∠ACD=∠BCE.在△ADC 和△BEC 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC ≌△BEC ,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D 在射线AM 上,且在BC 下方时,画出图形如下:∵△ABC 与△DEC 都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO ,∴∠AOB=∠ACB=60°.即动点D 在射线AM 上时,∠AOB 为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.10.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC中,当B只有一个度数时,A∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC中,∠A=100°,∴∠A为顶角,∠B为底角,∴∠B=1801002-=40°;变式2: ∵等腰三角形ABC中,∠A= 45°,∴当AB=BC 时,∠B =90°,当AB=AC 时,∠B =67.5°,当BC=AC时∠B =45°;(2)等腰三角形ABC中,设A x∠=,当90°≤x<180°,∠A为顶角,此时,B只有一个度数,当x=60°时,三角形ABC是等边三角形,此时,B只有一个度数,综上所述:90°≤x<180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.。