浙江省杭州市七年级数学下学期段考试题(含解析)新人教版
浙江省杭州市七年级 下 期中数学试卷 含答案
浙江省杭州市七年级下期中数学试卷含答案杭州市萧山城区2012-2013学年第二学期期中考试七年级数学试卷请同学们注意:1、考试卷分试题卷和答题卷两部分。
满分120分,考试时间为90分钟。
2、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
3、考试结束后,只需上交答题卷。
祝同学们取得成功!卷一》(满分100分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案。
1、下列计算正确的是()A、a+2a=3aB、a×a=a^2C、a÷a=1D、(-a)^2=a^2答案:A2、如图,下列说法错误的是()A、∠C与∠1是内错角B、∠A与∠B是同旁内角C、∠2与∠3是内错角D、∠A与∠3是同位角答案:C3、已知2x+3y=6,用y的代数式表示x得()A、x=3-yB、y=(6-2x)/3C、x=(6-3y)/2D、y=(6-x)/3答案:C4、如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()A、30°B、25°C、20°D、15°答案:B5、下列计算正确的是()A、(a+2)(a-2)=a^2-4B、(x-y)^2=x^2-2xy+y^2C、(x+1)(x-2)=x^2-x-2D、(1+a)/(1-b)=1-a^2/b^2答案:A6、关于x、y的方程组{3x-y=m,x=1,y=1}的解是{x=2,y=3},则|m-n|的值是(。
)A、5B、3C、2D、1答案:D7、如图,将周长为8的△ABC沿BC方向平移1个单位得△DEF,则四边形ABFD的周长为()A、6B、8C、10D、12答案:C8、若(x-3)-2(3x-6)有意义,那么x的取值范围是()A、x>3B、x<2C、x≠3或x≠2D、x≠3且x≠2答案:A9、《九章算术》是我国东汉初年编订的一部数学经典著作。
(人教版)杭州市七年级数学下册第四单元《二元一次方程组》测试题(含答案解析)
一、选择题1.已知二元一次方程组2513377x yx y+=⎧⎨-=-⎩①②,用加减消元法解方程组正确的()A.①×5-②×7B.①×2+②×3C.①×7-②×5D.①×3-②×2 2.如图,周长为78cm的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为()A.232cm B.235cm C.236cm D.240cm3.若关于x、y的方程组228x yax y+=⎧⎨+=⎩的解为整数,则满足条件的所有a的值的和为()A.6 B.9 C.12 D.164.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或55.下列四组数值中,方程组2534a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A.11abc=⎧⎪=⎨⎪=-⎩B.121abc=-⎧⎪=⎨⎪=-⎩C.112abc=-⎧⎪=⎨⎪=-⎩D.123abc=⎧⎪=-⎨⎪=⎩6.由方程组71x my m+⎧⎨-⎩==可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=-1 D.x+y=-87.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.2210002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩B.1000222.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩C.10002.5%0.5%22x yx y-=⎧⎨+=⎩D.10002.5%0.5%22x yx y+=⎧⎨-=⎩8.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y 个,根据题意可得方程组( )A .x y 66 x 2y 3+=⎧⎨=-⎩ B .x y 66x 2y 3+=⎧⎨=+⎩ C .x y 66 y 2x 3+=⎧⎨=-⎩D .x y 66 y 2x 3+=⎧⎨=+⎩9.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .19610.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y +=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y +=⎧⎨=⎩D .22103x y x y +=⎧⎨=⎩11.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩12.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元二、填空题13.若关于x ,y 的方程组4,44ax by cx dy -=⎧⎨+=⎩的解是8,4,x y =⎧⎨=⎩则关于x ,y 的方程组()()()()214,2144a x b y c x d y ⎧+--=⎪⎨++-=⎪⎩的解是______. 14.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.15.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % . 16.若2(321)4330x y x y -++--=,则x y -=_____.17.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ . 18.某超市促销活动,将车厘子、波罗蜜、山竹三种水果采用三种不同方式搭配成礼盒,分别是蒸蒸日上礼盒、独占鳌头礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中车厘子、波罗蜜、山竹三种水果成本之和,盒子成本忽略不计,蒸蒸日上每盒分别装有车厘子、波罗蜜、山竹三种水果8千克,4千克,3千克;独占鳌头每盒装有车厘子、波罗蜜、山竹三种水果3千克,8千克,6千克;蒸蒸日上每盒的总成本是每千克车厘子水果成本的14倍,每盒蒸蒸日上的销售利润是60%,每盒独占鳌头的售价是成本的43倍,每盒吉祥如意在成本上提高60%标价后打八折出售,获利为每千克车厘子水果成本的2.8倍,当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,则销售的总利润率为______.19.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax cby x d -=⎧⎨-=⎩的解为______.20.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.三、解答题21.通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g ;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.(1)设其中蛋白质含量是(g)x ,脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量.22.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?23.对于平面直角坐标系xOy 中的点P (),a b 和图形W ,给出如下定义:如果图W 上存在一点Q (),c d 使得,,a c b d k =⎧⎨+=⎩,那么点P 是图形W 的“k 阶关联点” ()1若点P 是原点O 的“1-阶关联点”,则点P 的坐标为 ;()2如图,在ABC ∆中,()1,1A -,()2,4B --,()0,6C -.①若点P 是ABC ∆的“0阶关联点”,把所有符合题意的点P 都画在图中; ②若点P 是ABC ∆的“k 阶关联点”,且点P 在ABC ∆上,求k 的取值范围.24.已知α∠与β∠互为补角,且β∠比α∠的一半大15︒,求β∠的余角.25.解方程组(1)()() 322 3553x yx y⎧-=+⎪⎨+=-⎪⎩.(2)1 32321x yx y⎧-=-⎪⎨⎪-=⎩.26.阅读小林同学数学作业本上的截图内容并完成任务.任务:(1)这种解方程组的方法称为________;(2)小林的解法正确吗?________(填“正确”或“不正确”),如果不正确,错在第________步,并选择恰当的方法解该方程组.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】方程组利用加减消元法变形,判断即可.【详解】解:用加减消元法解方程组2513377x yx y+=⎧⎨-=-⎩①②,用①×3-②×2可以消去x,选项A,B, C无法消去方程组中的未知数,故选:D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.2.C解析:C【分析】设小长方形的长为x ,宽为y ,列出二元一次方程组并求解,即可得出结论. 【详解】解:设小长方形的长为x ,宽为y ,根据图形可得: 45678x yx y =⎧⎨+=⎩, 解得123x y =⎧⎨=⎩,∴一个小长方形的面积为212336cm ⨯=, 故选:C . 【点睛】本题考查二元一次方程组的实际应用,根据图形找出等量关系是解题的关键.3.C解析:C 【分析】先把a 看作已知数求出42x a =-,然后结合方程组的解为整数即可求出a 的值,进而可得答案. 【详解】解:对方程组2{28x y ax y +=+=①②, ②-①×2,得()24a x -=,∴42x a =-, ∵关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,∴21,2,4a -=±±±,即a =﹣2、0、1、3、4、6,∴满足条件的所有a 的值的和为﹣2+0+1+3+4+6=12. 故选:C . 【点睛】本题考查了二元一次方程组的解法,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.4.C解析:C 【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6. ∵x ,y 均为正整数, ∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴x +y =4或5.5.B解析:B 【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0?25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.6.A解析:A 【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.A解析:A 【分析】根据在“吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”即可解答. 【详解】 解:由题意可得,22+10002.5%0.5%x y xy -=⎧⎪⎨=⎪⎩, 故选:A .【点睛】本题主要考查是二元一次方程的应用,正确的理解题意,列出方程是解题的关键.8.B解析:B【分析】根据题中的等量关系列方程组即可【详解】解:依题意,得:x y66 x2y3+=⎧⎨=+⎩.故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.C解析:C【解析】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.10.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.B解析:B 【分析】将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解. 【详解】 A 项,当0x =,12y 时,1202()12x y -=-⨯-=,所以0,12x y =⎧⎪⎨=-⎪⎩是方程21x y -=的解;B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解; C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,0x y =⎧⎨=⎩是方程21x y -=的解; D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,1x y =-⎧⎨=-⎩是方程21x y -=的解, 故选B. 【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.12.C解析:C 【分析】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y 的值. 【详解】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意得53523544x y x y +⎧⎨+⎩==,解得8x+8y=96, 即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元, 故选C . 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.二、填空题13.【分析】利用已知方程组的解和换元法求解即可;【详解】设则原方程组可化为∵关于的方程组的解是∴∴即∴关于的方程组的解是;故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算是解题的关键解析:65x y =⎧⎨=⎩【分析】利用已知方程组的解和换元法求解即可; 【详解】设2x m +=,1y n -=, 则原方程组可化为4,44am bn cm dn -=⎧⎨+=⎩,∵关于x ,y 的方程组4,44ax by cx dy -=⎧⎨+=⎩的解是84x y =⎧⎨=⎩,∴84m n =⎧⎨=⎩, ∴2814x y +=⎧⎨-=⎩,即65x y =⎧⎨=⎩,∴关于x ,y 的方程组()()()()214,2144a x b y c x d y ⎧+--=⎪⎨++-=⎪⎩的解是65x y =⎧⎨=⎩;故答案是65x y =⎧⎨=⎩.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.14.5【分析】根据两个方程系数的关系将两个方程相加即可得到答案【详解】解:①+②得:4x+4y =20则x+y =5故答案为:5【点睛】此题考查解二元一次方程组—特殊法根据所求的式子中各系数与方程组的关系将解析:5 【分析】根据两个方程系数的关系将两个方程相加即可得到答案. 【详解】解:612328x y x y +=⎧⎨-=⎩①②,①+②得:4x +4y =20, 则x +y =5, 故答案为:5.【点睛】此题考查解二元一次方程组—特殊法,根据所求的式子中各系数与方程组的关系,将原方程组对应相加或相减即可得到答案的方法更为简便.15.140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键. 16.4【分析】根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出xy 的值再代入原式中即可【详解】解:∵∴①×3-②×2得把代入①得解得∴故答案为:4【点睛】本题考查了非负数的性质及二元一次方解析:4【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值,再代入原式中即可.【详解】解:∵2(321)4330x y x y -++--=,∴32104330x y x y -+=⎧⎨--=⎩①②, ①×3-②×2得,9x =-,把9x =-代入①得,27210y --+=,解得13y =-,∴9134x y -=-+=.故答案为:4.【点睛】本题考查了非负数的性质及二元一次方程组的解法.注意:几个非负数的和为零,则每一个数都为零.17.【分析】将代入方程组求出a 和b 的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值解析:0【分析】 将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,求出a 和b 的值,即可求解. 【详解】 将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,得: 121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩, 解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴11022a b +=-+=. 故答案为:0.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.44【分析】分别设每千克车厘子菠萝蜜山竹三种水果的成本价分别为xyz 再由题意分别求出每一种礼盒的成本利润则可求解【详解】设设每千克车厘子菠萝蜜山竹三种水果的成本价分别为xyz 由题意可得:∴蒸蒸日上的解析:44%【分析】分别设每千克车厘子、菠萝蜜、山竹三种水果的成本价分别为x 、y 、z ,再由题意分别求出每一种礼盒的成本、利润则可求解.【详解】设设每千克车厘子、菠萝蜜、山竹三种水果的成本价分别为x 、y 、z ,由题意可得:84314x y z x ++=∴436y z x +=蒸蒸日上的总成本为:84314x y z x ++=, 每盒的利润是:342(843)55x y z x ++=; 独占鳌头的总成本为:38632615x y z x x x ++=+⨯=, 每盒的售价是:4(386)3x y z ++, 每盒的利润是:()()41(386)386386533x y z x y z x y z x ++-++=++= 每盒吉祥如意的销售利润是2.8x ,则成本为:()2.810160%80%1x x =+⨯-, 当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,总成本是:51425510150x x x x ⨯+⨯+⨯=, 总利润是:425255 2.8665x x x x ⨯+⨯+⨯= ∴总利润是6644%150x x= 故答案为:44%【点睛】本题考查了三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.19.【分析】用换元法求解即可【详解】解:∵∴∵方程组的解为∴∴故答案为:【点睛】此题考查利用换元法解二元一次方程组注意要根据方程的特点灵活选用合适的方法解数学题时把某个式子看成一个整体用一个变量去代替它解析:12x y =-⎧⎨=⎩【分析】用换元法求解即可.【详解】解:∵y ax c by x d -=⎧⎨-=⎩, ∴()()()()a x y c x b y d ⎧---=⎪⎨---=⎪⎩, ∵方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩, ∴12x y -=⎧⎨-=-⎩, ∴12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】此题考查利用换元法解二元一次方程组,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.20.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10【分析】根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.三、解答题21.(1)碳水化合物:255-x ;矿物质:2y ;(2)蛋白质质量为135g ,碳水化合物质量为120g ,脂肪质量为15g ,矿物质质量为30g【分析】(1)根据“矿物质的含量是脂肪含量的2倍,蛋白质和碳水化合物含量占85%”解答; (2)由题意得等量关系:蛋白质的质量+脂肪的质量=300×50%,四种成分含量之和=300,列出方程组,再解即可.【详解】解:(1)由题可知,矿物质的质量为2y (g ).碳水化合物的质量为300×85%-x=255-x (g ).(2)由题意可得:30050%2552300x y x y x y +=⨯⎧⎨-+++=⎩,解得13515x y =⎧⎨=⎩, ∴蛋白质质量为135g ,碳水化合物质量为255-135=120g ,脂肪质量为15g ,矿物质质量为2×15=30g .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,表示出碳水化合物的质量,矿物质的质量,脂肪的含量,蛋白质的质量,再列方程. 22.(1)甲;(2)625;(3)丙商场先打了8.8折后再参加活动.【分析】(1)分别计算在甲,乙商场的费用,比较后可得答案;(2)设商品的标价为x 元,判断:600<x <800,再根据最后付款额是一样的列方程,解方程可得答案;(3)先求解同种商品在丙商场付款350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,可得方程625100350,10y n ⨯-= 由n 为正整数,进行讨论并检验,从而得到答案.【详解】解:(1)张丽在甲商场购买所花:85052%442⨯=(元),在乙商场购买所花:8504100450-⨯=(元),由442<450,张丽应该选择甲商场购买.(2)设商品的标价为x 元,由题意可得:600<x <800,则 52%3100,x x =-⨯0.48300,x ∴=625x ∴=答:此商品的标价是625元.(3)由(2)得:625元的商品在乙商场付款6253100325-⨯=元,所以同种商品在丙商场付款325+25=350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,则 625100350,10y n ⨯-= 整理得:5828,y n -=8528,n y ∴=-5288y n -∴= , 又n 为正整数,当5288y -=时,7.2,1,y n == 经检验:7.2625=45010⨯元,此时2n =,不合题意,舍去, 当52816y -=时,8.8,2,y n == 经检验:8.862555010⨯=元,此时2n =,符合题意, 当52824y -=时,10.4,y = 此时不符合题意,故舍去, 综上:丙商场先打了8.8折后再参加活动.【点睛】本题考查的是一元一次方程的应用,二元一次方程的正整数解的应用,分类讨论的数学思想,掌握以上知识是解题的关键.23.(1)()0,1-;(2)①见解析;②122k -≤≤-【分析】(1)根据“k 阶联点”的公式代入数值计算即可;(2)①根据公式求出点P 分别是点A 、B 、C 的“0阶关联点”时的坐标,画出三点构成的图形即可;②由公式可知:点P 是某点的 “k 阶关联点”时,两点的横坐标相同,设点P 的坐标为(m ,n ),由点P 分别是点A 、B 、C 的“k 阶关联点”时得到点P 的坐标,即可求出k 值,由此得到答案.【详解】(1)设点P 的坐标为(k ,c ),由题意得01k c =⎧⎨=-⎩, ∴点P 的坐标为(0,-1),故答案为:(0,-1);(2)设点P 的坐标为(a ,b ),①若点P 是点A (1,-1)的“0阶关联点”,∴110a b =⎧⎨-=⎩,解得11a b =⎧⎨=⎩, ∴P 1(1,1);若点P 是点B (-2,-4)的“0阶关联点”,∴240a b =-⎧⎨-=⎩,解得24a b =-⎧⎨=⎩, ∴P 2(-2,4);若点P 是点C (0,-6)的“0阶关联点”,∴060a b =⎧⎨-=⎩,解得06a b =⎧⎨=⎩, ∴P 3(0,6);故点P 的坐标为P 1(1,1)或P 2(-2,4)或P 3(0,6);则△P 1P 2P 3是所求P 点的图形.②由公式可知:点P 是某点的 “k 阶关联点”时,两点的横坐标相同,设点P 的坐标为(m ,n ),∵点P 在ABC ∆上,∴当点P 是点()1,1A -的 “k 阶关联点”,则点P 的坐标为(1,-1)∴k =-1-1=-2,若2k >-,则根据题意有1n >-,即P 的纵坐标大于-1,此时无法满足P 在ABC ∆上; 当点P 是()2,4B --的 “k 阶关联点”,则点P 的坐标为(-2,-4),∴k =-4-4=-8,当点P 是()0,6C -的 “k 阶关联点”,则点P 的坐标为(0,-6),∴k =-6-6=-12,若12k <-,则根据题意有6n <-,即P 的纵坐标小于-6,此时无法满足P 在ABC ∆上; ∴综上所述,k 的取值范围122k -≤≤-.【点睛】此题考查点与坐标,新定义坐标,二元一次方程组的应用,正确理解新定义列得方程求解坐标是解题的关键.24.20°.【分析】根据补角的概念和题意列出二元一次方程组,解方程组求出∠α的值,根据余角的概念计算即可.【详解】 解:由题意得,1801152αββα∠+∠︒⎧⎪⎨∠-∠︒⎪⎩== , 解得11070αβ∠︒⎧⎨∠︒⎩==, 90°-β∠=20°.答:β∠的余角为20°.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.同时还考查了解二元一次方程组.25.(1)57x y =⎧⎨=⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)先将两个方程分别整理,再利用加减法解方程组;(2)先将方程①化简,再利用加减法解方程组.【详解】(1)3(2)2355(3)x y x y -=+⎧⎨+=-⎩①②, 整理得38x y -=③,3520x y -=-④,③-④,得7y =,将7y =代入③,得5x =,所以原方程的解是57x y =⎧⎨=⎩. (2)132321x y x y ⎧-=-⎪⎨⎪-=⎩①②,由①整理得236x y -=-③,23⨯-⨯②③,得4y =,将4y =代入②,得3x =,所以原方程的解是34x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法、加减法,根据二元一次方程组的特点选用恰当的解法是解题的关键.26.(1)代入消元法;(2)不正确,二,39x y =-⎧⎨=-⎩【分析】(1)由解二元一次方程的的方法,即可得到答案;(2)由代入消元法的步骤进行计算,即可得到答案.【详解】解:()1这种解方程组的方法叫代入消元法.故答案为:代入消元法.()2小林的解法不正确,错在第二步,正确解法:由①得,23y x =-③,把③代入②得,(23)12x x +-=-,解得:3x =-,把3x =-代入③,解得:9y =-;则方程组的解为:39.x y =-⎧⎨=-⎩, 【点睛】本题考查了解二元一次方程组的方法,解题的关键是熟练掌握解二元一次方程组的方法进行解题.。
【3套打包】杭州市七年级下册数学期末考试试题(含答案)(3)
【3套打包】杭州市七年级下册数学期末考试试题(含答案)(3)最新七年级下册数学期末考试试题(含答案)⼈教版七年级下学期期末考试数学试题试卷⼀、选择题(每⼩题2分,共16分)1. 16的平⽅根是()A.2± D.4± B.2 C.43.下列命题是真命题的是()A.相等的⾓是对顶⾓B.互补的两个⾓是邻补⾓C.同位⾓相等D.若|y|=2,则y=±24.点P位于y轴右侧,距y轴3个单位长度,位于x轴下⽅,距x轴4个单位长度,则点P的坐标是()A.(3,-4) B.(-3,4)C.(4,-3)D.(-4,3)5.如图,已知AB//CD,直线EF分别与AB、CD相交于E、F两点,EG ⊥EF,已知∠AEF=480,则∠EGF=( ) A.320 B.420C.480D.5208. 我市某九年⼀贯制学校共有学⽣3000⼈,计划⼀年后初中在校⽣增加8%,⼩学在校⽣增加11%,这样全校在校⽣将增加10%,设这所学校现初中在校⽣x ⼈,⼩学在校⽣y ⼈,由题意可列⽅程组()A. =+=+%103000%11%83000y x y xB.+=+=+%)101(3000%11%83000y x y x B. ()()=+++=+%103000%111%813000y x y x D.?=+=+%10%11%83000y x y x⼆、填空题(每⼩题2分,共16分)9.把⽅程2x+5y=7改写成⽤x 含的式⼦表⽰y 的形式是_______________10.将命题“邻补⾓的平分线相互垂直”改写成“如果...那么...”形式是_____________-,-3最⼩的数是__________12.如图①,在边长为a 的⼤正⽅形中剪去⼀个边长为b 的⼩正⽅形,再将图中的阴影部分剪拼成⼀个长⽅形,如图②,这个拼成的长⽅形的长为24,宽为12,则图②中Ⅱ部分的⾯积为 .13.不等式412332-≤-+x x 的⾮负整数解为__________ 14.已知4x 2m-1y m+n 与15x 3n y3是同类项,那么mn 的值为________ 15.()()_______,18308.02______7.6131:,8308.1137.6,477.2137.6;33=====x x 则若填空观察16.如图,都是边长为1的⼩正⽅形拼成,按此规律,第四个图形共有______个 ...........图图图3三.解答题(17题8分,18题4分,19题5分,共17分) 17.计算:()3336441871271----+-())922(8|21|23--+-18. 解⽅程:?=+=+132645y x y x19.12x x x四.解答题(20题8分,21题6分,22题7分,共21分) 20.如图,在平⾯直⾓坐标系中,△ABC 的三个顶点的坐标分别为A (? 2,5)B (?4,3)C (?1,1)(1)作出△ABC 向右平移5个单位长度得到的△A 1B 1C 1,并写出A 1、B 1、C 1的坐标。
浙江省杭州市 七年级数学下学期教学质量检测试题一新人教版含答案
2017学年第二学期七年级数学教学质量检测(一)一、选择题:本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的.1. 如图所示,下列说法错误的是(▲) A .∠1和∠3是同位角 B .∠1和∠5是同位角 C .∠1和∠2是同旁内角 D .∠5和∠6是内错角2. 二元一次方程组2102x y y x +=⎧⎨=⎩的解是(▲)A .43x y =⎧⎨=⎩B .36x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .42x y =⎧⎨=⎩3. 利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,下列做法正确的是(▲)A .要消去y ,可以将52⨯+⨯①②B .要消去x ,可以将()35⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将()52⨯-+⨯①②4. 在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是(▲) A .北偏西52° B .南偏东52° C .西偏北52° D .北偏西38° 5. 方程41ax y x -=-是二元一次方程,则a 的值为(▲) A .0a ≠ B .1a ≠- C .1a ≠D .2a ≠第1题图第6题图A .50°B .55°C .60°D .65°7. 若关于x ,y 的二元一次方程37x y -=,231x y +=,9y kx =-有相同的解,则k 的值为(▲)A .3B .-3C .-4D .48. 我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为(▲)A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩9. 如图所示,AB 、CD 、EF 、MN 均为直线,∠∠2=3=70°,∠GPC =80°,GH 平分∠MGB ,则∠1=(▲) A .35° B .40° C .45° D .50°10.关于x ,y 的二元一次方程()()12520a x a y a -+++-=,当a每取一个值时就有一个方程,而这些方程有一个公共解,则这个公共解是(▲)A .31x y =⎧⎨=-⎩B .20x y =⎧⎨=⎩C .31x y =-⎧⎨=⎩D .12x y =⎧⎨=⎩二、填空题:本题有6小题,每小题4分,共24分.11.在方程1354x y -=中,用含x 的代数式表示y = ▲ ,当x =3时,y = ▲ .12.如图,若∠∠1=2,∠A =55°16′,则∠ADC = ▲ .13.若12x y =⎧⎨=-⎩是关于x 、y 的方程1ax by -=的一个解,且3a b +=-,则52a b -= ▲ .14.如图,m ∥n ,直角三角板ABC 的直角顶点C 在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=▲. 15.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,第12题图 第14题图 第16题图 第9题图价分别为x 元、y 元,则可列方程组为 ▲ .16.如图,直角三角形AOB 的周长为100,在其内部有n 个小直角三角形,则这n 个小直角三角形的周长之和为 ▲ .三、解答题:本题有7小题,共66分.解答应写出文字说明,证明过程或推演步骤. 17.(本小题满分6分)解方程组:4143314312x y x y +=⎧⎪--⎨-=⎪⎩.18.(本小题满分8分)如图,∠AOB 和OB 上的一点P .(1)求作直线MN ,使直线MN 过点P 且MN ∥OA . (2)写出一对相等的同位角和一对互补的同旁内角.19.(本小题满分8分)已知关于x 、y 的二元一次方程组26322x y m x y m+=⎧⎨-=⎩的解满足二元一次方程435x y-=,求m的值.20.(本小题满分10分)如图,∠1和∠D 互余,CF ⊥DF 于点F ,问AB 与CD 平行吗?为什么?OB第18题图第20题图21.(本小题满分10分)某校举办七年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68 乙 66 60 80 68 丙66809068(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问:甲能否获得这次比赛的一等奖?22.(本小题满分12分)如图所示,已知BD ∥AC ,AB ∥CE ,且点D ,A ,E 在一条直线上,设∠BAC =x ,∠D ∠+E =y .(1)试用含x 的代数式表示y .(2)当x =90°,且∠D ∠=2E 时,求∠D 与∠E 的度数,并说明DB 与CE 具有怎样的位置关系?23.(本小题满分12分)某铁件加工厂用如图所示的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片 ▲ 张,正方形铁片 ▲ 张;(2)现有长方形铁片2017张,正方形铁片1178张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板裁出1个长方形铁片和2个正方形铁片.若充分利用这些铁板加工成铁盒,则最多可以加工成多少个铁盒?第22题图2017学年第二学期七年级数学教学质量检测(一)参考答案及评分建议1—10.BCDAC BDCDA11.y =12x -20、1612.124°44′ 13.-4314.90° 15.()()()100110%140%100120%x y x y +=⎧⎪⎨-++=+⎪⎩16.10017.3114x y =⎧⎪⎨=⎪⎩18.(1)如图O(2)一对相等的同位角为∠O 与∠BPN ,一对互补的同旁内角为∠O 与∠OPN .19.由题意得:26322435x y m x y m x y ⎧⎪+=⎪-=⎨⎪⎪-=⎩ 化简得263225360x y m x y m x y +=⎧⎪-=⎨⎪-=⎩①②③①+②-③得:2860y m =-,y =4m -30④②×2-①×3得:7y =14m ,y =2m ⑤ 由④⑤得:4m -30=2m ,2m =30 ∴m =1520.∵CF ⊥DF ,∴∠CFD =90°.∵∠1+∠CFD +∠2=180°, ∴∠1+∠2=90. ∵∠1与∠D 互余, ∴∠1+∠D =90°, ∴∠2=∠D ,∴AB ∥CD (内错角相等,两直线平行).21.(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8(2)设趣题巧解所占的百分比为x ,数学运用所占的百分比为y ,由题意,得2060807020809080x y x y ++=⎧⎨++=⎩,解得:0.30.4x y =⎧⎨=⎩ ∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖22.(1)如图,∵BD ∥AC ,CE ∥BA ,∴∠1=∠D ,∠2=∠E ,∵D 、A 、E 在同一条直线上, ∴∠1+∠BAC +∠2=180°, ∵∠BAC =x ,∠D +∠E =y , ∴x +y =180°, ∴y =180°-x (2)当x =90°时,y =180°-90°=90°,即∠D +∠E =90°,∵∠D =2∠E , ∴∠D =60°,∠E =30° ∵∠1+∠E =90°, ∴∠ACE =180°-(∠1+∠E )=180°-90°=90°, ∴AC ⊥CE ,∵BD ∥AC , ∴DB ⊥EC .23.(1)7 3(2)设加工的竖式容器有x 个,横式容器有y 个.43201721178x y x y +=⎧⎨+=⎩解得,100539x y =⎧⎨=⎩(3)设做长方形铁片的铁板为m 块,做正方形铁片为铁板为n 块35324m n m n +=⎧⎨=⨯⎩,解得525116911m n ⎧=⎪⎪⎨⎪=⎪⎩∵在这35块铁板中,25块做长方形铁片可做25×3=75张,9块做正方形铁片可做 9×4=36张,剩下1块可裁出1张长方形铁片和2张正方形铁片, ∴共做长方形铁片75+1=76张,正方形铁片36+2=38张, ∴可做铁盒76÷4=19个,最多可做19个.。
新人教版七年级数学下册期末考试(含答案)
新人教版七年级数学下册期末考试(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.下列图形具有稳定性的是( )A .B .C .D .5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+27.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④ 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.2的相反数是________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x y x y --=⎧⎨-=⎩2.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.光华中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天. (1)若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅?(2)若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?(3)学校需要每天支付甲修理组、乙修理组修理费分别为80元,120元.任务完成后,两修理组收到的总费用为1920元,求甲修理组修理了几天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、B6、D7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、203、0.4、205、﹣2.6、7三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、149299 ab⎧=⎪⎪⎨⎪=⎪⎩3、50°.4、36平方米5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)需8天可以修好这些套桌椅;(2)甲修理组离开6天;(3)甲修理组修理了6天.。
杭州市七年级下学期数学全册单元期末试卷及答案-百度文库
A.13B.9C. D.
8.下列各式从左到右的变形中,是因式分解的为( )
A.ab+ac+d=a(b+c)+dB.(x+2)(x﹣2)=x2﹣4
C.6ab=2a⋅3bD.x2﹣8x+16=(x﹣4)2
9.下列运算正确的是( )
A.a2+a2=a4B.(﹣b2)3=﹣b6
7.A
解析:A
【分析】
先解方程组 求出该方程组的解,然后把这个解分别代入 与 即可求出a、b的值,进一步即可求出答案.
【详解】
解:解方程组 ,得 ,
把 代入 ,得 ,解得:a=2,
把 代入 ,得 ,解得:b=﹣11,
A.∠C=∠1B.∠A=∠2
C.∠C=∠3D.∠A=∠1
4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )
A.65°B.70°C.75°D.80°
5.下列图形中,不能通过其中一个四边形平移得到的是()
A. B. C. D.
6.若 , ,则 的值为( )
A.12B.20C.32D.256
【详解】
解:如图,延BA,CD交于点E.
∵直尺为矩形,两组对边分别平行
∴∠1+∠4=180°,∠1=115°
∴∠4=180°-∠1=180°-115°=65°
∵∠EDA与∠4互为对顶角
∴∠EDA=∠4=65°
∵△EBC为等腰直角三角形
∴∠E=45°
∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°
∵∠2与∠EAD互为对顶角
∴∠2=∠EAD =70°
杭州市人教版七年级下册数学期末考试试卷及答案
杭州市人教版七年级下册数学期末考试试卷及答案一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a 2.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 123.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩4.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭5.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 26.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米. A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10117.x 2•x 3=( ) A .x 5B .x 6C .x 8D .x 98.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒9.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠; A .①B .②C .③D .④10.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题11.分解因式:m 2﹣9=_____.12.若24x mx ++是完全平方式,则m =______.13.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.14.已知22a b -=,则24a b ÷的值是____.15.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ .16.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________. 17.计算:x (x ﹣2)=_____18.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS =,则图中阴影部分的面积是 ________.19.若2a x =,5b x =,那么2a b x +的值是_______ ; 20.已知:()521x x ++=,则x =______________.三、解答题21.已知a +b =5,ab =-2.求下列代数式的值: (1)22a b +;(2)22232a ab b -+. 22.四边形ABCD 中,∠A=140°,∠D=80°. (1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数; (3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.23.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ; (2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.24.解下列二元一次方程组:(1)70231x y x y +=⎧⎨-=-⎩①②;(2)239345x y x y -=⎧⎨+=⎩①②.25.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值. 解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值; (3)若248200m n mn t t =++-+=,,求2m t n -的值. 26.已知有理数,x y 满足:1x y -=,且221x y,求22x xy y ++的值.27.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+...+22020,将等式两边同时乘以2得, 2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1. 即1+2+22+23+24+…+22020=22021﹣1 仿照此法计算: (1)1+3+32+33+…+320; (2)2310011111 (2222)+++++. 28.如图,一个三角形的纸片ABC ,其中∠A=∠C ,(1)把△ABC 纸片按 (如图1) 所示折叠,使点A 落在BC 边上的点F 处,DE 是折痕.说明 BC ∥DF ;(2)把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内时 (如图2),探索∠C 与∠1+∠2之间的大小关系,并说明理由;(3)当点A 落在四边形BCED 外时 (如图3),探索∠C 与∠1、∠2之间的大小关系.(直接写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系. 【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BCa AB a BC ABb BCAB b22(5)(3)15a b BC b a AB a b .AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b,5ba .故选:A . 【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.A解析:A 【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解. 【详解】A 、a 4÷a 3=a ,故本选项正确;B 、a 4和a 3不能合并,故本选项错误;C 、 (-a 3)2=a 6,故本选项错误;D 、a 4⋅a 3=a 7,故本选项错误. 故选:A . 【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.解析:C 【解析】试题解析:A. 的解是51x y =⎧⎨=⎩,故A 不符合题意; B. 的解是06x y =⎧⎨=⎩,故B 不符合题意;C. 的解是51x y =-⎧⎨=⎩,故C 符合题意;D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意;故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.4.B解析:B 【分析】根据因式分解的意义求解即可. 【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.C解析:C 【分析】直接利用图形面积求法得出等式,进而得出答案. 【详解】梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2, 故a 2-b 2=(a +b )(a -b ). 故选:C . 【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:100nm =100×10﹣9m =1×10﹣7m , 故选:C . 【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.7.A解析:A 【分析】根据同底数幂乘法,底数不变指数相加,即可. 【详解】 x 2•x 3=x 2+3=x 5, 故选A. 【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.C解析:C 【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可. 【详解】解:∵AB ∥CD ,115C ∠=︒, ∴115EFB C ∠=∠=︒, ∵EFB A E ∠=∠+∠,25A ∠=︒ ∴1152590E ∠=︒-︒=︒. 故选:C . 【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.9.B解析:B 【分析】根据平行线的判定定理求解,即可求得答案. 【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.10.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A、属于分式方程,不符合题意;B、有三个未知数,为三元一次方程组,不符合题意;C、未知数x是2次方,为二次方程,不符合题意;D、符合二元一次方程组的定义,符合题意;故选:D.【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题11.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.12.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,m=±,故4±.故答案为:4【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.13.【分析】先连接BE,则BE∥AM,利用△AME的面积=△AMB的面积即可得出,,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE,∵在线段AC 同侧作 解析:40392【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n =,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF , ∴BE ∥AM ,∴△AME 与△AMB 同底等高, ∴△AME 的面积=△AMB 的面积, ∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键.14.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可. 【详解】 解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.15.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.【点睛】本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;【详解】解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=,解得:1 a4 .故答案为:14.【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.18.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.19.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.20.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x +2≠0时,x +5=0,解得:x =﹣5.当x +2=1时,x =﹣1,当x +2=﹣1时,x =﹣3,x +5=2,指数为偶数,符合题意. 故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.三、解答题21.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.22.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 23.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.24.(1)43xy=⎧⎨=⎩;(2)31xy=⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x=7﹣y③,把③代入②得:2(7﹣y)﹣3y=﹣1,解得:y=3,把y=3代入③得:x=4,所以这个二元一次方程组的解为:43 xy=⎧⎨=⎩;(2)①×4+②×3得:17x=51,解得:x=3,把x=3代入①得:y=﹣1,所以这个方程组的解为31 xy=⎧⎨=-⎩.【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.25.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.26.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.27.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-. 【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.28.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A ,由已知得∠A=∠C ,于是得到∠DFE=∠C ,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED(设为α),∠A′DE=∠ADE(设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C,∴∠DFE=∠C,∴BC∥DF;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1+∠2+2(∠ADE+∠AED)=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED+∠1=180°,2∠ADE-∠2=180°,∴2(∠ADE+∠AED)+∠1-∠2=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.。
杭州市人教版七年级下册数学全册单元期末试卷及答案-百度文库
杭州市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.对于算式20203﹣2020,下列说法错误的是( ) A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.下列运算正确的是( ) A .236a a a ⋅=B .222()ab a b =C .()325a a = D .623a a a ÷=3.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD4.若a >b ,则下列结论错误的是( ) A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b5.下列方程组中,解是-51x y =⎧⎨=⎩的是( ) A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩7.已知,()()212x x x mx n +-=++,则m n +的值为( ) A .3- B .1- C .1D .38.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线9.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .10.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题11.分解因式:m 2﹣9=_____.12.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.13.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.14.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.15.已知30m -=,7m n +=,则2m mn +=___________.16.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________. 17.计算:2020(0.25)-×20194=_________.18.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 19.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).(结论应用)(2)如图2,已知△CDE的面积为1,14 CD AC=,13CECB=,求△ABC的面积.(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点(13AM AB=),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.22.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,若∠A=65°,∠B=45°,求∠AGD的度数.23.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239345x yx y-=⎧⎨+=⎩①②.24.已知m2,3na a==,求①m na+的值;②3m-2na的值25.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知) ∴∠1=∠3,( ) 又∵∠1=∠2,(已知) ∴ =∠2,( ) ∴ ∥ ,( ) ∴∠AED = .( )26.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.27.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆. (1)补全'''A B C ∆,利用网格点和直尺画图; (2)图中AC 与''A C 的位置关系是: ; (3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 解:20203﹣2020 =2020×(20202﹣1) =2020×(2020+1)×(2020﹣1) =2020×2021×2019,故能被2020、2021、2019整除, 故选:D .2.B解析:B 【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确; C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
浙江省杭州市2023-2024学年七年级下学期数学开学考试模拟试卷(含解析)
浙江省杭州市2023-2024学年七年级下学期数学开学考试模拟试卷一、单选题1.﹣ 的相反数是( )A .﹣5B .5C .﹣D.2.-2的相反数等于( )A B .C .D .3.电流通过导线时会产生热量,满足 ,其中Q 为产生的热量(单位:J ),I 为电流(单位:A ),R 为导线电阻(单位:Ω),t 为通电时间(单位:s ).若导线电阻为5Ω,1s 时间导线产生30J 的热量,则通过的电流I 为( ) A .2.4AB C .4.8AD .4.据光明日报网,中国科学技术大学的潘建伟、陆朝阳等人构建了一台76个光子100个模式的量子计算机“九章”.它处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍.也就是说,超级计算机需要一亿年完成的任务,“九章”只需一分钟.其中一百万亿用科学记数法表示为( ) A .B .C .D .5. 下列计算正确的是( )A .B .C .D .6.若x =2是方程4x+2m ﹣14=0的解,则m 的值为( )A .10B .4C .﹣3D .37.关于 的一元一次方程 的解为 ,则 的值为( )A .9B .8C .5D .48.如图,是直角,是射线,则图中共有锐角( ) A .28个B .27个C .24个D .22个15151512-122--2Q I Rt =121010⨯141010⨯14110⨯15110⨯2323a a a +=333x 4x 3x -=-2222235xy x y x y +=222x 2x 3x --=x 224a x m -+=1x =a m +AOB ∠()123456i OP i =,,,,,9.如图,点 在直线 上, ,那么下列说法错误的是( )A . 与 相等B . 与 互余C . 与 互补D . 与 互余10.某同学在计算时,把3写成后,发现可以连续运用两数和乘以这两数差公式计算:.请借鉴该同学的经验,计算:( )A .B .C .1D .2二、填空题11.绝对值小于4的所有非负整数有 个.12.单项式﹣ 的系数与次数的乘积为 .13.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .14.下列说法:;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 O AB 90COB EOD ∠=∠=︒1∠2∠AOE ∠2∠AOD ∠1∠AOE ∠COD ∠()23(41)41++41-()()()222223(41)41(41)(41)41(41)41161255++=-++=-+=-=2481511111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭16122-16122+2325x y -10=15.若方程2x 3﹣2m +5(m ﹣2)=0是关于x 的一元一次方程,则这个方程的解是 .16.如图,下图中的两个四边形关于某直线对称,根据图形提供的条件,则x= 度,y= .三、解答题17.计算:2×[5+(﹣2)2]﹣(﹣6)÷3.18.已知(m+1)x |m|+2=0是关于x 的一元一次方程.(1)求m 的值;(2)求该方程的解.19.先化简,再求值: ,其中 , .20.如图,已知AB=6,BC=4,D 为AC 的中点,求线段BD 的长.21.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m ,小华的身高MN=1.5m ,他们的影子恰巧等于自己的身高,即BF=1.8m ,CN=1.5m ,且两人相距4.7m ,求路灯AD 的高度是多少?22.如图,已知 是数轴上的三点,点C 表示的数是6, .(1)写出数轴上点A ,点B 表示的数;(2)点M 为线段 的中点, ,求 的长;(3)动点 分别从 同时出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动,求t 为何值时,原点O 恰好为线段 的中点.23.某城市对用户的自来水实行阶梯水价,收费标准如表所示:月用水量不超过吨的部分超过12吨不超过吨的部超过十八吨的部分()()()22242x y x y x y x y xy y ⎡⎤---+-+÷⎣⎦2x =-2y =,,A B C 4,12BC AB ==AB 3CN =MN ,P Q ,A C PQ 1218分收费标准(元/吨)2.002.503.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是 吨.(2)某用户想月所缴水费控制在元至元之间,则该用户的月用水量应该如何控制?答案解析1.【答案】D 【解析】【解答】﹣的相反数是 .故答案为:D .【分析】符号相反,数值相同的两个数互为相反数.2.【答案】A【解析】【解答】解;-2的相反数是2,=2,-|-2|=-2。
人教版七年级(下)学期 第二次段考数学试卷含答案
人教版七年级(下)学期 第二次段考数学试卷含答案一、选择题1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .86 2.若()2320m n -++=,则m n +的值为( ) A .5- B .1- C .1 D .53.下列计算正确的是( )A .42=±B .1193±=C .2(5)5-=D .382=±4.下列结论正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .带根号的数都是无理数D .实数包括正实数、负实数5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >06.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣57.已知无理数7-2,估计它的值( )A .小于1B .大于1C .等于1D .小于08.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0a b> 9.下列说法中正确的个数有( )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④相反数等于本身的数是0;⑤绝对值等于本身的数是正数;A .2个B .3个C .4个D .5个10.若一个数的平方根与它的立方根完全相同.则这个数是() A .1 B .1- C .0 D .10±,二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.13.a 10的整数部分,b 的立方根为-2,则a+b 的值为________.142(2)-的平方根是 _______ ;38a 的立方根是 __________.15116的算术平方根为_______. 16.已知:103<157464<1003;43=64;53<157<63,则315746454=,请根据上面的359319=_________.17.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.18.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.19.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.20.若实数x ,y (2230x y ++=,则22x y --的值______.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①3310001000000100==,又1000593191000000<<,31059319100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.22.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;23.(1)观察下列式子:①100222112-=-==;②211224222-=-==;③322228442-=-==;……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字.24.定义☆运算:观察下列运算:两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.25.探究:()()()211132432222122222222-=⨯-⨯=-==-== …… (1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.26.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q n p n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n个图呢,能求出这个即可解得本题。
新七年级下册数学第七章平面直角坐标系测试题(含答案解析)
人教版七年级下册数学第七章平面直角坐标系单元达标练习题一、选择题(每小题只有一个正确答案)1.如果7年2班记作,那么表示()A. 7年4班B. 4年7班C. 4年8班D. 8年4班2.在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)3.在平面直角坐标系中,点M(-1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A. (-3,-1)B. (-3,7)C. (1,-1)D. (1,7)4.如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A. (2,6)B. (2,5)C. (6,2)D. (3,6)5.如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()A. A处B. B处C. C处D. D处6.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A. (4,2)B. (5,2)C. (6,2)D. (5,3)7.观察下列数对:(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1), (1,5), (2,4)...那么第32个数对是()A. (4,4)B. (4,5)C. (4,6)D. (5,4)8.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A. 原点上B. x轴上C. y轴上D. x轴上或y轴上(除原点)9.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (-4,3)B. (4,-3)C. (-3,4)D. (3,-4)10.P点横坐标是-3,且到x轴的距离为5,则P点的坐标是( )A. (-3,5)或(-3,-5)B. (5,-3)或(-5,-3)C. (-3,5)D. (-3,-5)11.若点P(a﹣2,a)在第二象限,则a的取值范围是()A. 0<a<2B. ﹣2<a<0C. a>2D. a<012.在如图的方格纸上,若用(-1,1)表示A点,(0,3)表示B点,那么C点的位置可表示为()A. (1,2)B. (2,3)C. (3,2)D. (2,1)二、填空题13.点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为________.14.如果点P在第二象限内,点P到轴的距离是4,到轴的距离是3,那么点P的坐标为________.15.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,嘴唇C点的坐标为、,则此“QQ”笑脸右眼B的坐标________.16.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为________.17.三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合,则B、C两点的坐标分别为________,________.18.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-`2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.19.如下图,五间亭的位置是________,飞虹桥的位置是________,下棋亭的位置是________,碑亭的位置是________.20.如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是________21.已知线段MN平行于x轴,且MN的长度为5,若M的坐标为(2,-2),那么点N的坐标是________;22.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P(,)在第四象限,则m的值为________;三、解答题23.如下图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?24.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?25.王林同学利用暑假参观了幸福村果树种植基地如图,他出发沿的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.26.如图,已知火车站的坐标为,文化宫的坐标为.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市、医院的坐标.27.如图,这是某市部分简图,为了确定各建筑物的位置请完成以下步骤.(1)请你以火车站为原点建立平面直角坐标系;(2)写出市场的坐标是________;超市的坐标为________;(3)请将体育场为A、宾馆为C和火车站为B看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.参考答案一、选择题D D C A B B B D C A A A二、填空题13. (0,4) 14.(﹣3,4)15. 16. (-505,-505)17.(-3,-6);(-4,-1)18. (5,4)19.(0,0);(-2,0);(-3,-1);(-2,-2)20.(-1,2)21.(7,-2)或(-3,-2)22.0三、解答题23.解:有6种走法分别为:①(2,4)→(3,4)→(4,4)→(4,3)→(4,2);②(2,4)→(3,4)→(3,3)→(4,3)→(4,2);③(2,4)→(3,4)→(3,3)→(3,2)→(4,2);④(2,4)→(2,3)→(3,3)→(4,3)→(4,2);⑤(2,4)→(2,3)→(3,3)→(3,2)→(4,2);⑥(2,4)→(2,3)→(2,2)→(3,2)→(4,2)24.解:如下图所示,可知小明与小刚相距3个格.25.解:由各点的坐标可知他路上经过的地方:葡萄园杏林桃林梅林山楂林枣林梨园苹果园.如图所示:26.(1)解:如图所示(2)解:体育场、市场、超市、医院.27.(1)解:如图所示:(2)(4,3);(2,﹣3)(3)解:如图所示:△A1B1C1的面积=3×6﹣×2×2﹣×4×3﹣×6×1=7.人教版七年级数学下册单元综合卷:第七章平面直角坐标系一、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.如图是小刚画的一张脸,他对妹妹说,如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成__________.2.如图,△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是__________.3. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.4.点P(-3,-5)到x轴距离为______,到y轴距离为_______.5.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),平行于X轴,则点C的坐标为___.6.已知点(a+1,a-1)在x轴上,则a的值是。
2022届浙江省杭州市初一下期末综合测试数学试题含解析
2022届浙江省杭州市初一下期末综合测试数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.下列各式中,与()2a 1?-相等的是( ) A .2a 1-B .2a 2a 1-+C .2a 2a 1--D .2a 1+ 【答案】B【解析】【分析】根据完全平方公式求出(a-1)1=a 1-1a+1,即可选出答案.【详解】∵(a-1)1=a 1-1a+1,∴与(a-1)1相等的是B ,故选:B .【点睛】本题考查了运用完全平方公式进行计算,注意:(a-b )1=a 1-1ab+b 1.2.如图,数轴所表示的不等式的解集是( )A .1x >B .1x <C .1x ≥D .1x ≤ 【答案】D【解析】【分析】根据不等式的解集在数轴上表示方法即可求出不等式的解集.【详解】解:如图所示,数轴所表示的不等式的解集是,x≤1.故选:D .【点睛】本题考查了不等式的解集在数轴上表示的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.3.若关于x,y的方程组24232x yx y m+=⎧⎨+=-+⎩的解满足32x y->-,则m的最小整数解为()A.﹣3 B.﹣2 C.﹣1 D.0【答案】B【解析】【分析】方程组中的两个方程相减得出x-y=3m+2,根据已知得出不等式,求出不等式的解集即可.【详解】解:24232x yx y m+⎧⎨+-+⎩=①=②,①-②得:x-y=3m+2,∵关于x,y的方程组24232x yx y m==+⎧⎨+-+⎩的解满足x-y>-32,∴3m+2>-32,解得:m>76 -,∴m的最小整数解为-1,故选B.【点睛】本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.4.下列图形中,由∠1=∠2≠90°,能得到AB∥CD的是()A. B. C. D.【答案】B【解析】试题分析:根据平行线的判定定理分别进行分析即可.解:A、∠1和∠2互补时,可得到AB∥CD,故此选项错误;B、∠1=∠2,可得∠1=∠2的对顶角,根据同位角相等两直线平行可得AB∥CD,故此选项正确;C、∠1=∠2,根据内错角相等两直线平行可得AD∥CB,故此选项错误;D、∠1=∠2不能判定AB∥CD,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.不等式组104xx x+≥⎧⎨->⎩的所有整数解的和是()A.0B.1C.2D.3【答案】A【解析】【分析】分别求出各不等式的解集,再求出其公共解集即为此不等式组的解集,在此解集范围内得出符合条件的x 的整数值即可.【详解】解:104xx x+≥⎧⎨->⎩①②,解不等式①得x≥-1.解不等式②得x<2,所以原不等式组的解集为-1≤x<2,所以原不等式组的整数解为:-1,0,1,则所有整数解的和=-1+0+1=0.【点睛】本题考查的是解一元一次不等式组,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).6.下列实数中,是无理数的为()A.0B .-C .D.3.14【答案】C【解析】试题分析:根据无理数是无限不循环小数,可得答案.试题解析:A.0是有理数,故A错误;B.-是有理数,故B错误;C .是无理数,故C正确;D.1.14是有理数,故D错误;故选C.考点:无理数.7.如图,直线,,则()A.B.C.D.【答案】C【解析】【分析】根据平行线的性质即可求解.【详解】∵,∴∠2=∠3,∵∠1+∠3=180°,∴∠2=∠3=180°-∠1=120°,故选C.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨-=⎩C.7385y xy x=+⎧⎨+=⎩D.7385y xy x=+⎧⎨=+⎩【答案】A【解析】【分析】根据关键语句“若每组7人,余3人”可得方程7y+3=x;“若每组8人,则缺5人.”可得方程8y-5=x,联立两个方程可得方程组.【详解】设运动员人数为x 人,组数为y 组,由题意得:7385y x y x =-⎧⎨=+⎩. 故选A .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程. 9.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=,∵153C ∠=,∴27DBC ∠=,则99.ABC ABD DBC ∠=∠+∠=故选B.10.若不等式组213{x x a ->≤的整数解共有三个,则a 的取值范围是( ) A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤ 【答案】A【解析】解不等式组得:2<x ⩽a ,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5⩽a<6.故选A.二、填空题11.计算()1327-=__________. 【答案】13【解析】【分析】根据乘方的运算,即可得到答案.【详解】解:()131273-==; 故答案为:13. 【点睛】 本题考查了乘方的运算,解题的关键是熟练掌握乘方的运算法则进行解题.12.观等察式:223941401⨯=-,224852502⨯=-,225664604⨯=-,226575705⨯=-,228397907⨯=-…请你把发现的规律用字母表示出来ab=_______________________. 【答案】22()()22a b a b ab +-=- .【解析】【分析】【详解】 试题分析:因为223941401⨯=-,22394140()2+=,2239411()2-= 224852502⨯=-,22485250()2+=,2248522()2-= 225664604⨯=-,22566460()2+=,2256644()2-= 226575705⨯=-,22657570()2+=,2265755()2-= 所以22()()22a b a b ab +-=-. 考点:找规律-式子的变化.13.如图,A 、B 两点分别位于一个池塘的两端,点C 是AD 的中点,也是BE 的中点,若DE =20米,则AB =_____米;【答案】20【解析】【分析】根据题目中的条件可证明△ACB ≌△DCE ,再根据全等三角形的性质可得AB=DE ,进而得到答案.【详解】∵点C 是AD 的中点,也是BE 的中点,∴AC=DC ,BC=EC ,∵在△ACB 和△DCE 中,AC DC ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DCE (SAS ),∴DE=AB=20米,故答案为:20米.【点睛】此题主要考查了全等三角形的应用,关键掌握全等三角形的判定定理和性质定理.14.如图,在Rt ABC ∆中,各边的长度如图所示,90,C AD ∠=︒平分CAB ∠交BC 于点D ,则点D 到AB 的距离是_____.【答案】3【解析】【分析】先过点D 作DE ⊥AB 于E ,再利用角平分线的性质,求得点D 到AB 的距离.【详解】解:过点D 作DE ⊥AB 于E ,∵∠C=90°,AD 平分∠CAB 交BC 于点D ,∴DC=DE=3,即点D 到AB 的距离是3,故答案为:3.【点睛】本题主要考查了角平分线的性质,解决问题的关键是作辅助线,利用角平分线的性质进行求解. 15.定义新运算“※”:a ※b=2a+b 则下列结论:①(-2)※5=1;②若x ※(x-6)=0,则x 2=;③存在有理数y ,使y ※(y+1)=y ※(y-1)成立;④若m ※n=5,m ※(-n )=3,则m 2=,n 1.=其中正确的是 _______________(把所有正确结论的序号都选上).【答案】①②④【解析】【分析】①根据新运算“※”的运算公式进行运算即可得出结论;②根据新运算“※”的运算公式将方程进行变形,解出关于x 的一元一次方程;③分别求出y ※(y+1)和y ※(y-1)即可得出答案;④根据新运算“※”的运算公式将方程进行变形,即可得出关于m 、n 的二元一次方程,解之即可得出结论.【详解】解:①(-2)※5=2×(-2)+5=1;②x ※(x-6)=2x+x-6=3x-6=0,解得x=2;③∵y ※(y+1)=2y+y+1=3y+1,y ※(y-1)=2y+y-1=3y-1,∵y ※(y+1)=y ※(y-1)∵3y+1=3y-1无解,∴y ※(y+1)=y ※(y-1)不成立;④∵m ※n=2m+n=5,m ※(-n )=2m-n=3,∴2523m n m n +=⎧⎨-=⎩解得21m n =⎧⎨=⎩. 故答案为:①②④.【点睛】本题考查了实数的运算,解一元一次方程和二元一次方程组,解题的关键是会根据新运算“※”的运算公式进行运算.16.如图,将周长为16的三角形ABC 沿BC 方向平移3个单位得到三角形DEF ,则四边形ABFD 的周长等于______.【答案】1【解析】【分析】【详解】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF.∵△ABC的周长等于16,∴AB+BC+AC=16,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=16+3+3=1.故答案为1.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.若一个正多边形的周长是63,且内角和1260,则它的边长为______.【答案】7【解析】【分析】先根据多边形的内角和公式求出多边形的边数,再用周长63除以边数求解即可.【详解】设多边形的边数是n,则(n-2)•180°=1260°,解得n=9,∵多边形的各边相等,∴它的边长是:63÷9=7cm.故答案为7.【点睛】主要考查了多边形的内角和公式,熟记公式求出多边形的边数是解题的关键.三、解答题18.解下列方程组(1)28114x yy x-=⎧⎪⎨=+⎪⎩(2)2()13410216x y x yy x-+⎧-=-⎪⎨⎪-=⎩【答案】 (1)206xy=⎧⎨=⎩;(2)22xy=⎧⎨=⎩【解析】分析:(1)利用代入消元法求解即可即可;(2)先整理成二元一次方程组的一般形式,然后利用加减消元法求解;详解:(1)28114x yy x①②-=⎧⎪⎨=+⎪⎩将②代入①,得12184x x⎛⎫-⨯+=⎪⎝⎭,解得x=20,把x=20代入②,得12014y=⨯+解得y=6所以这个方程组的解是206xy=⎧⎨=⎩;(2)()213410216x y x yy x⎧-+-=-⎪⎨⎪-=⎩化简整理,得5111221016x yx y-=-⎧⎨-+=⎩①②①×2+②×5,得,28y=56 y=2把y=2 ②,得-2x+10×2=16x=2所以这个方程组的解是22xy=⎧⎨=⎩.点睛:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.19.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?【答案】(1)20°;(2)12α;(3)∠AOE=2∠BOD.【解析】【分析】(1)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(2)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(3)由(1)(2)即可得出答案.【详解】(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=12∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);而∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=12∠AOF=90°﹣12α,∴∠EOD=∠FOC=90°﹣12α(对顶角相等);而∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=12α;(3)从(1)(2)的结果中能看出∠AOE=2∠BOD.【点睛】本题考查了邻补角、对顶角、角平分线定义等知识点,求出∠BOE和∠EOD的度数是解答此题的关键.20.先化简(2x-1)2-(3x+1)(3x-1)+5x(x-1),再选取一个你喜欢的数代替x,并求原代数式的值.【答案】﹣9x+1,当x=0时,原式=﹣9×0+1=1.【解析】试题分析:先算乘法,再合并同类项,最后代入求出即可.解:(1x﹣1)1﹣(3x+1)(3x﹣1)+5x(x﹣1)=4x1﹣4x+1﹣9x1+1+5x1﹣5x=﹣9x+1,当x=0时,原式=﹣9×0+1=1.21.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【答案】(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)6600元【解析】【分析】(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可;(2)总利润=甲的利润+乙的利润.【详解】解:(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得500243313800x y x y ⎧⎨⎩+=+= , 解得:300200x y ⎧⎨⎩== 答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36−24)+200×(48−33)=3600+3000=6600(元).答:该商场共获得利润6600元.【点睛】本题考查了二元一次方程组的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.因式分解:(1)2()()a b a a b +-+(2)22222()4x y x y +-【答案】(1)(a+b )(1- a )(1+a );(1)(x+y )1(x-y )1.【解析】【分析】(1)先提公因式,再用平方差公式因式分解;(1)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.【详解】解:(1)2()()a b a a b +-+=(a+b )(1- a 1)=(a+b )(1- a )(1+a );(1)22222()4x y x y +- =(x 1+y 1+1xy )(x 1+y 1-1x y )=(x+y )1(x-y )1.故答案为:(1)(a+b )(1- a )(1+a );(1)(x+y )1(x-y )1.【点睛】本题考查提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 23.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥,垂足为O ,求:(1)求∠BOE 的度数.(2)求EOF ∠的度数.【答案】(1)36︒;(2)54︒【解析】【分析】(1)首先根据对顶角相等得出∠BOD ,然后根据角平分线即可得出∠BOE ;(2)首先由OF CD ⊥得出∠BOF ,然后由(1)中结论即可得出∠EOF.【详解】(1)∵直线AB 和CD 相交于点O ,∴72BOD AOC ∠=∠=︒∵OE 平分BOD ∠, ∴1362BOE BOD ∠=∠=︒; (2)∵OF CD ⊥,∴907218BOF ∠=︒-︒=︒,∵EOF BOF BOE ∠=∠+∠,∴361854EOF ∠=︒+︒=︒.【点睛】此题主要考查利用角平分线、直角的性质求角度,熟练掌握,即可解题.24.某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【答案】(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.25.已知//AB CD .(1)如图1,BP 、DP 分别平分ABE ∠、EDC ∠.试说明:12BPD BED ∠=∠; (2)如图2,若133BMN ∠=︒,145MND ∠=︒,BP 、DP 分别平分ABM ∠、CDN ∠,那么BPD ∠= º(只要直接填上正确结论即可).【答案】 (1)见解析;(2) 49°.【解析】【分析】(1)首先作FG ∥AB ,根据直线AB ∥CD ,可得EF ∥CD ,据此推得∠ABF+∠CDF=∠BFD 即可,再根据BF ,DF 分别平分∠ABE ,∠CDE ,推得∠ABF+∠CDF=12(∠ABE+∠CDE );然后由(1),可得∠BFD=∠ABF+∠CDF ,∠BED=∠ABE+∠CDE ,据此推得∠BFD=12∠BED; (2) 连接BD ,先求出∠MBD+∠NDB 的度数,再求出∠PBM+∠PDN 的度数,再利用三角形内角和定理即可解决;(3)连接BD ,先求出∠MBD+∠NDB 的度数,再求出∠PBM+∠PDN 的度数,再利用三角形内角和定理即可解决.【详解】(1)如图1,作FG ∥AB ,∵直线AB ∥CD ,∴FG ∥CD ,∴∠ABF=∠BFG ,∠CDF=∠GFD ,∴∠ABF+∠CDF=∠BFG+∠GFD=∠BFD ,即∠ABF+∠CDF=∠BFD,∵BF ,DF 分别平分∠ABE ,∠CDE ,∴∠ABF=12∠ABE ,∠CDF=12∠CDE ,∴∠ABF+∠CDF=12∠ABE+12∠CDE=12(∠ABE+∠CDE)∴∠BFD=∠ABF+∠CDF=12(∠ABE+∠CDE)∠BED=∠ABE+∠CDE,∴∠BFD=12∠BED.(2)连接BD,∵∠BMN=133°,∠MND=145°,∴∠MBD+∠NDB=360°-(133°+145°)=82°,∵BP、DP分别平分∠ABM、∠NDC,∴∠PBM=12∠ABM,∠PDN=12∠CDN,∴∠PBM+∠PDN=12(180°-82°)=49°,∴∠BPD=180°-(∠MBD+∠NDB)-(∠PBM+∠PDN)=49°.故答案为49°.【点睛】本题考查了平行线的性质,角平分线的性质,三角形、四边形内角和定理,解题的关键是这些知识的灵活应用,学会添加辅助线,把问题转化为三角形或四边形.。
新七年级数学下册第十章数据的收集、整理与描述题测试题(含答案解析)(1)
人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.10.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图人教版七年级下册十章《数据的收集整理和描述》单元测试卷一、选择题(每小题5分,共25分)1、下列调查中,适宜采用全面调查的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件2、以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解一批灯泡的使用寿命D.了解全校学生的课外读书时间3、每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况4、中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A.该校约有90%的家长持反对态度B.调查方式是普查C.该校只有360个家长持反对态度样D.本是360个家长5、右图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多 B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多二、填空题(每小题5分,共25分)6、要了解一批炮弹的杀伤力情况,适宜采取(选填“全面调查”或“抽样调查”).7、一组数据的最大值与最小值的差为23,若确定组距为3,则分成的组数是_________.8、为了考察某市初中35 000名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是_________.9、有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6.第5组的频率是0.1,则第6组的频数是________.10、某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有__________名学生是骑车上学的.三、解答题(共50分)11、我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如下:根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃______个塑料袋;(2)这天,丢弃3个塑料袋的家庭户数占总户数的________;(3)该居民区共有居民0.8万户,则该区一天丢弃的塑料袋有_________个.12、我国体育健儿在最近六届奥运会上获得奖牌的情况如图所示.⑴最近六届奥运会上,我国体育健儿共获得枚奖牌;⑵用条形图表示折线图中的信息.13、为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)求第二小组的频数是;(2)所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是.14、2015年6月28日,“合福高铁”正式开通,对南平市的旅游产业带来了新的发展机遇.某旅行社抽样调查了2015年8月份该社接待来南平市若干个景点旅游的人数,并将调查(1)此次共调查__________人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,则“天成奇峡”所对扇形的圆心角为°;(3)该旅行社预计今年8月份将要接待来以上景点的游客约2 500人,根据以上信息,请你估计去“九曲溪”的游客大约有人.15、某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂中发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图(如图所示).已知A、B两组发言人数直方图高度比为1∶5,请结合图中相关的数据回答下列问题:(1) A组的人数是,本次调查的样本容量是;(2) C组的人数是,并补全直方图;(3) 该校七年级共有500人,估计全年级每天在课堂中发言次数不少于15次的人数是多少?《数据的收集整理和描述》单元测试卷参考答案一、选择题1、D2、C3、B4、A5、D二、填空题6、抽样调查7、88、6009、4 10、1 240三、解答题11、解:(1)5 (2)40% (3)28800.12、解:(1) 我国体育健儿共获得286枚奖牌; (2) 图略.13、解:(1)第二小组的频数和频率是:15 . (2)60% .14、解:(1)400 ,补全图形;(2)75.6 ;(3)72529.02500=⨯(人)答:估计去九曲溪的游客约有725人.15、解:(1)∵B 组有10人,A 组发言人数∶B 发言人数=1∶5,∴A 组发言人数为2人.本次调查的样本容量为:2÷4%=50(人);(2) C 组的人数有:50×40%=20(人),图略.(3) ∵D 、E 、F 三组总人数为:50-2-10-20=18(人),∴发言次数不少于15次的人数为人教版七年级下册第十章 数据的收集、整理与描述单元练习题(解析版) 人教版七年级数学下册 第十章 数据的收集、整理与描述 单元测试题一、选择题 1.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是( )A . 400名学生的体重B . 被抽取的50名学生C . 400名学生D . 被抽取的50名学生的体重2.下列调查中,调查方式选择合理的是( )A . 为了了解某一品牌家具的甲醛含量,选择全面调查B . 为了了解某公园的游客流量,选择抽样调查C . 为了了解神州飞船的设备零件的质量情况,选择抽样调查D . 为了了解一批袋装食品是否有防腐剂,选择全面调查调查3.墨墨对他所住小区的100户居民2月份天然气的使用量(单位:m 3)进行统计,其结果如图所示,图中36-38段因不小心洒上水而看不清,则2月份天然气的使用量在36-38段的居民有( )A.18户B.20户C.22户D.24户4.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可5.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测6.水库中放养鲤鱼8 000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9 000条B.9 600条C.10 000条D.12 000条7.老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%8.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少二、填空题9.为了考察某区3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是________.10.我国泰山,华山等五座名山的海拔高度如下表.若根据表中的数据作出统计图,以便能更清楚地对几座名山的高度进行比较,则应选用________统计图.11.为了掌握我校初中二年级女同学身高情况,从中抽测了60名女同学的身高,这个问题中的总体是____________________,样本是____________________.12.某市2016年将有九万名考生参加中考,为了了解这九万名考生的视力情况,从中抽取了2 000名考生的视力情况进行统计分析,得出①这种调查采用了抽样抽样调查的方式;②九万名考生是总体;③2 000名考生的视力情况是总体的一个样本;④每一名考生是个体;⑤样本容量为1 000名,则以上5个结论正确的是________.13.为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1 200名中,随机抽查了80名学生,结果显示有2名学生“不知道”,由此,估计该校全体学生中对“世界环境日”约有________名学生“不知道”.14.下列调查中,适合用抽样调查的为________.(填序号)①了解全班同学的视力情况;②了解某地区中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④日光灯管厂要检测一批灯管的使用寿命.15.调查市场上某种食品的色素含量是否符合国家标准,这种调查适用________________.(填全面调查或者抽样调查)16.如图是某班50名学生身高(精确到1 cm)的频率分布直方图,从左起第一、二、三、四个小长方形的高的比是1∶3∶5∶1,那么身高是160 cm及160 cm以上的学生有________人.三、解答题17.某市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是________株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?(4)请通过计算说明理由.18.请指出下列样本是否具有代表性:(1)在全县范围内随意选择十个幼儿园,对其中每个孩子的情况进行调查,以了解该县幼儿园的身体发育等情况;(2)到省城一所中学进行调查,以便了解全省中学生上网的情况;(3)在每个省任意确定两名房地产开发商,让他们每人填写一张内容详尽的调查表,包括他们负责的工程质量,所盖楼房中使用的涂料、门窗、地板是不是合格,以及建房的利润情况等,以了解全国各地的房地产开发商的工作情况.19.2016年3月,某中学以“每天阅读1小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)请把折线统计图(图1)补充完整;(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.20.某高校学生会在食堂发现同学们就餐时剩余饭菜较多,浪费严重,为了让同学们珍惜粮食,养成节约的好习惯,校学生会随机抽查了午餐后部分同学饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有________名.(2)把条形统计图补充完整.(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?21.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?答案解析1.【答案】A【解析】本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.2.【答案】B【解析】A.为了了解某一品牌家具的甲醛含量,因为全面调查工作量大,适合抽样调查,故本选项错误;B.为了了解某公园的游客流量,选择抽样调查,故本项正确;C.为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D.为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误.3.【答案】B【解析】100-16-24-22-18=20(户).4.【答案】D【解析】根据题意,要求把这个班的植树情况清楚地反映出来,即体现数字间的关系,使用条形统计图、扇形统计图均可.5.【答案】D【解析】A.选项样本容量不够大,5天太少,故A选项错误.B.选项的时间没有代表性,集中一个月没有普遍性,故B选项错误;C.选项的时间没有代表性,集中春节7天没有普遍性选项一年四季各随机选中一个星期也是样本容量不够大,故C选项错误.D.样本正好合适,故D选项正确.6.【答案】C【解析】估计塘中原来放养了鲢鱼400÷×100%=10 000(条).7.【答案】D【解析】A.×100%=80%,故正确;B.“优秀”学生为2人,所以培训前成绩“合格”的学生是“优秀”学生的4倍,故正确;C.×100%=80%,故正确;D.培训后优秀率:×100%=30%,培训前优秀率:×100%=4%,30%-4%=26%,所以培训后优秀率提高了26%,故错误.8.【答案】D【解析】因为七、八、九年级的人数不确定,所以无法求得七、八、九年级的合格率.所以A错误、C错误;由统计表可知八年级合格人数是262人,故B错误;因为270>262>254,所以九年级合格人数最少.故D正确.9.【答案】600【解析】10.【答案】条形【解析】根据题意,要求清楚地对几座名山的高度进行比较,结合统计图各自的特点,应选用条形统计图.11.【答案】我校初中二年级女同学身高情况我校60名女同学的身高【解析】所以我校初中二年级女同学身高情况是总体,我校60名女同学的身高是样本.12.【答案】①③【解析】①这种调查采用了抽样抽样调查的方式,说法正确;②九万名考生的视力是总体;③2 000名考生的视力情况是总体的一个样本,说法正确;④每一名考生的视力是个体;⑤样本容量为2 000,不能带单位.13.【答案】30【解析】因为80名学生中有2名学生“不知道”,所以“不知道”所占的比例为=,所以估计该校全体学生中对“世界环境日”“不知道”的学生数为1 200×=30(名).14.【答案】②④【解析】①了解全班同学的视力情况,适合全面调查;②了解某地区中学生课外阅读的情况,适合用抽样调查;③了解某市百岁以上老人的健康情况,必须全面调查;④日光灯管厂要检测一批灯管的使用寿命,适合抽样调查.15.【答案】抽样调查【解析】由于食品数量庞大,且抽测具有破坏性,适用抽样调查.16.【答案】30【解析】50÷(1+3+5+1)=5,5×5=25,5×1=5,25+5=3017.【答案】解:(1)500×(1-25%-25%-30%)=100(株).故答案为100.(2)500×25%×89.6%=112(株),补全统计图如图:(3)应选择丁种品种进行推广.(4)甲种树苗成活率为×100%=90%,乙种果树苗成活率为×100%=85%,丁种果树苗成活率为×100%=93.6%,因为93.6%>90%>89.6%>85%,所以应选择丁种品种进行推广,它的成活率最高,为93.6%.【解析】(1)根据扇形统计图可得乙种树苗所占的百分比,再用总数×乙种树苗所占的百分比,即可计算其株数;(2)根据扇形统计图求得丙种树苗的株数,再根据其成活率是89.6%,进行计算其成活数,再进一步补全条形统计图;(3)应选择丁种品种进行推广;(4)通过计算每一种的成活率,进行比较其大小即可.18.【答案】(1)具有代表性;(2)不具有代表性,因为偏远地区可能没有电脑;(3)不具有代表性,因为开发商不一定说真话.【解析】在抽取样本时,所抽取的样本必须能够代表所有的调查对象,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现,必须是随机抽样,据此即可判断.19.【答案】解:(1)一共调查了45÷30%=150(名),艺术的人数:150×20%=30(名),其它的人数:150-(40+45+20+30)=15(名);补全折线图如图:(2)最喜爱科普类书籍的学生人数为×900=240(人),答:估算最喜爱科普类书籍的学生有240人.【解析】(1)用文学的人数除以所占的百分比计算即可得总人数,根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(2)用总人数乘以科普所占的百分比,计算即可得解.20.【答案】解:(1)这次被调查的同学共有400÷40%=1 000(名);故答案为1 000.(2)剩少量的人数是1 000-400-250-150=200(人),补图如下:(3)18 000×=3 600(人).答:该校18 000名学生一餐浪费的食物可供3 600人食用一餐.【解析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18 000人,列式计算即可.21.【答案】(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.【解析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)首先判断圆圆的说法错误,然后说明原因即可解答本题.。
2022-2023学年浙江省杭州市西湖区七年级(下)期末数学试卷及答案解析
2022-2023学年浙江省杭州市西湖区七年级(下)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)下列方程中,属于二元一次方程的是()A.x+2y=3z B.x2+2y=3C.D.x+2y=3 2.(3分)下列运算结果为m5的是()A.m3+m2B.m3•m2C.(m3)2D.m3÷m2 3.(3分)在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等4.(3分)如图是703班学生最喜欢的一项球类运动的扇形统计703班学生最喜欢的,其中表示最喜欢排球的扇形圆心角是()A.36°B.72°C.216°D.288°5.(3分)计算的结果是()A.1B.﹣1C.2D.﹣26.(3分)下列多项式因式分解的结果中不含因式(x﹣2)的是()A.x2﹣2x B.x2﹣4C.x2﹣4x+4D.x2+4x+4 7.(3分)如图,AB∥DE,∠ABC=α,∠CDE=β,则∠BCD的度数为()A.α+βB.β﹣αC.180°+a﹣βD.180°﹣a+β8.(3分)如图,将9个不同的数填在3×3的方格中,使得每行、每列、每条对角线上的三个数字之和均相等,以下方程组符合题意的是()A.B.C.D.9.(3分)已知a>1,,,,则P、Q、R的大小关系是()A.R>P>Q B.P>Q>R C.R>Q>P D.P>R>Q 10.(3分)如图,已知AB∥CD,P为CD下方一点,G,H分别为AB,CD上的点,∠PGB =α,∠PHD=β,(α>β,且α,β均为锐角),∠PGB与∠PHD的角平分线交于点F,GE平分∠PGA,交直线HF于点E,下列结论:①∠P=α﹣β;②2∠E+α=180°+β;③若∠CHP﹣∠AGP=∠E,则∠E=60°;其中正确的序号是()A.①②B.②③C.①③D.①②③二、填空题:本大题有6个小题,每小题4分,共24分.11.(4分)因式分解:x2﹣x=.12.(4分)把50个数据分成五组,第一、二、三、四、五组的数据个数分别是8,15,x,12,5.则第三组的频率为.13.(4分)已知ab=a+b+2023,则(a﹣1)(b﹣1)的值为.14.(4分)如图,△ABC的边AB长为4cm,将△ABC沿着BB′方向平移2cm得到△A'B'C',且BB'⊥AB.则阴影部分的面积是cm2.15.(4分)对于实数x,y(x≠y),定义运算,如:,则方程F(x,1)=2的解为.16.(4分)实验室需要购买A,B,C三种型号的盒子存放材料,盒子容量和单价如下表所示:盒子型号A B C盒子容量(单位:升)234盒子单价(单位:元)569其中A型号盒子做促销活动:购买3个及以上可一次性优惠4元,现有28升材料需要存放,要求每个盒子都要装满且三种盒子都至少买一个.(1)若购买A,B,C三种型号的盒子的个数分别为1,6,2,则购买总费用为元;(2)若一次性购买所需盒子且购买总费用为58元,则购买A,B,C三种型号的盒子的总数为个.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或17.(6分)解方程或方程组.(2).(1);18.(8分)某校为了解全校学生的上学方式,随机抽取了若干名学生进行问卷调查,问卷给出了四种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)在这次调查中,一共抽取了多少名学生?请补全条形统计图;(2)如果全校有1200名学生,请根据调查估计学校准备的100个自行车停车位是否够用?19.(8分)已知关于x,y的方程组的解为,求a,b的值.20.(10分)已知实数x,y满足:x+y=7,xy=12.(1)求x2+y2的值;(2)将长方形ABCD和长方形CEFG按照如图方式放置,其中B,C,G三点在同一条直线上,点E在x边CD上,连接BD,BF,已知AD=x,AB=nx,FG=y,EF=ny,阴影部分的面积为14,求n的值.21.(10分)如图,点D,E分别在△ABC的边AB,AC上,点F在线段CD上,且∠3=∠B,EF∥AB.(1)求证:DE∥BC;(2)若DE平分∠ADC,∠2=4∠B,求∠1.22.(12分)甲、乙两商场对某商品进行促销,已知甲商场原售价为a元,乙商场原售价为b元.(1)甲商场将该商品降价20%后销售,乙商场将该商品降价2元,若在甲商场花60元能买到的件数,在乙商场需花费70元才能买到,请用含a的代数式表示b;(2)在(1)的条件下,若甲商场降价后的售价为12元,求b的值;(3)若a=b,甲、乙两商场把该商品均按原价进行了两次降价,降价的百分比如下表所示,其中x≠y.商场第一次降价百分比第二次降价百分比甲x y乙如果你是消费者,你会选择去哪家商场更划算?请说明理由.23.(12分)如图,已知AD∥BC,∠A=∠C=m°.(1)如图①,求证:AB∥CD;(2)如图②,连结BD,若点E,F在线段AB上,且满足∠FDB=∠BDC,并且DE平分∠ADF,求∠EDB的度数;(用含m的代数式表示)(3)如图③,在(2)的条件下,将线段BC沿着射线AB的方向向右平移,当∠AED =∠CBD时,求∠ABD的度数.(用含m的代数式表示)2022-2023学年浙江省杭州市西湖区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的1.【分析】根据二元一次方程的定义逐个判断即可.【解答】解:A.该方程含有三个未知数,不是二元一次方程,故本选项不符合题意;B.该方程是二元二次方程,不是二元一次方程,故本选项不符合题意;C.该方程是分式方程,不是整式方程,不是二元一次方程,故本选项不符合题意;D.该方程是二元一次方程,故本选项符合题意;故选:D.【点评】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键,只含有两个未知数,并且所含未知数的项的最高次数是1的整式方程叫二元一次方程.2.【分析】利用合并同类项的法则,同底数幂的乘法的法则,幂的乘方的法则,同底数幂的除法的法则对各项进行运算即可.【解答】解:A、m3与m2不属于同类项,不能合并,故A不符合题意;B、m3•m2=m5,故B符合题意;C、(m3)2=m6,故C不符合题意;D、m3÷m2=m,故A不符合题意;故选:B.【点评】本题主要考查同底数幂的除法,同底数幂的乘法,幂的乘方,合并同类项,解答的关键是对相应的运算法则的掌握.3.【分析】根据题目的已知条件并结合图形进行分析,然后根据内错角相等,两直线平行,即可解答.【解答】解:在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是:内错角相等,两直线平行,故选:A.【点评】本题考查了平行线的判定,熟练掌握平行线的判定是解题的关键.4.【分析】用360°乘最喜欢排球所占百分比即可.【解答】解:表示最喜欢排球的扇形圆心角是:360°×(1﹣20%﹣60%)=72°.故选:B.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.5.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==1,故选:A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.【分析】各式分解得到结果,即可作出判断.【解答】解:A、原式=x(x﹣2),不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,不符合题意;D、原式=(x+2)2,符合题意.故选:D.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7.【分析】过点C作CF平行于AB,根据平行线的性质,可知∠BCF=∠ABC,∠CDE+∠DCF=180°,∠BCD=∠BCF+∠DCF即可.【解答】解:如图,过C作CF∥AB,∵AB∥DE,AB∥CF,∴ED∥CF,∵AB∥CF,∴∠ABC=∠BCF=α,∵ED∥CF,∴∠CDE+∠DCF=180°,∴∠DCF=180°﹣∠CDE=180°﹣β,∴∠BCD=180°+α﹣β.故选:C.【点评】本题考查了平行线的性质,熟记相关性质并正确作出辅助线是解题关键.8.【分析】设左下角数字为a,右下角数字为b,根据每行、每列、每条对角线上的三个数字之和均相等,即可列出关于m,n(a,b可消去)的二元一次方程组,此题得解.【解答】解:设左下角数字为a,右下角数字为b,∵每行、每列、每条对角线上的三个数字之和均相等,∴m+n+a=1﹣1+a,1+m+b=n+7+b,即m+n=1﹣1,1+m=n+7,∴根据题意可列出方程组.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.【分析】利用分式的减法的法则进行求解即可.【解答】解:由题意得:P>1,Q<1,R<1,∵Q﹣R===<0,∴Q﹣R<0,∴Q<R,∴P>R>Q.故选:D.【点评】本题主要考查分式的加减法,解答的关键是对相应的运算法则的掌握.10.【分析】①设GP与CD相交于点T,GF与CD交于点K,由AB∥CD得∠PTD=∠PGB =α,,再由三角形的外角定理得∠PTD=∠P+∠PHD,由此出α=∠P+β,据此可对结论①进行判断;②由AB∥CD得,再由三角形的外角定理得,进而得∠F=1/2(α﹣β),再证∠EGF=90°,则∠E+∠F=90°,据此可对结论②进行判断;③先求出∠CHP﹣∠AGP=α﹣β,,然后根据已知条件得,据此可求出α﹣β=60°,进而可求出∠E的度数,于是可对结论③进行判断.【解答】解:①设GP与CD相交于点T,GF与CD交于点K,如图所示:∵∠PGB与∠PHD的角平分线交于点F,GE平分∠PGA,∠PGB=α,∠PHD=β,∴,,,∵AB∥CD,∴∠PTD=∠PGB=α,∵∠PTD=∠P+∠PHD,∴α=∠P+β,∴∠P=α﹣β,∴结论①正确;②∵AB∥CD,∴,又∵,∴,即:,∵∠AGP+∠PGB=180°,∴,即:∠EGF=90°,∴∠E+∠F=90°,∴,整理得:2∠E+α=180°﹣β,∴结论②正确;③∵∠CHP=180°﹣∠PHD=180°﹣β,∠AGP=180°﹣∠PGB=180°﹣α,∴∠CHP﹣∠AGP=α﹣β,由②可知:,∴,又∵∠CHP﹣∠AGP=∠E,∴,∴α﹣β=60°,∴,∴结论③正确.综上所述:正确的结论是①②③.故选:D.【点评】此题主要考查了平行线的性质,角平分线的定义,平角的定义,三角形的内角和定理和三角形的外角定理等,解答此题的关键是准确识图,熟练掌握两直线平行同位角相等;两直线平行内错角相等;三角形的内角和等于180°;三角形的任意一个外角等于和它不相邻的两个内角的和.二、填空题:本大题有6个小题,每小题4分,共24分.11.【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.【分析】根据各小组频数之和等于数据总和,即可求得第三组的频数;再根据频率=频数÷总数,进行计算.【解答】解:根据题意,得:第三组数据的个数x=50﹣(8+15+12+5)=10,故第三组的频率为10÷50=0.2.故答案为:0.2.【点评】本题是对频率、频数灵活运用的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于1.13.【分析】根据多项式与多项式的乘法法则把(a﹣1)(b﹣1)化简后把ab=a+b+2023代入计算即可.【解答】解:∵ab=a+b+2023,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=a+b+2023﹣a﹣b+1=2024.故答案为:2024.【点评】本题考查了多项式与多项式的乘法运算,掌握多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加是解题的关键.14.【分析】根据平移的性质得出阴影部分的面积等于四边形AA'BB'C'C的面积解答即可.【解答】解:由平移可知,阴影部分的面积等于四边形AA'BB'的面积=AB×BB'=4×2=8(cm2),故答案为:8.【点评】本题考查了四边形的面积公式和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.【分析】根据新定义,可知F(x,1)=,可得=2,解分式方程即可.【解答】解:根据新定义,可知F(x,1)=,∴=2,解得x=1,∴方程F(x,1)=2的解为x=1,∵x≠y,∴方程无解.故答案为:无解.【点评】本题考查了解分式方程,新定义,理解新定义是解题的关键.16.【分析】(1)根据盒子的个数乘以盒子的单价即可得购买费用;(2)设购买A种型号盒子x个,购买B种型号盒子y个,购买C种盒子型号z个,根据题意列出方程组,然后求正整数解即可.【解答】解:(1)购买费用为:1×5+6×6+2×9=69(元),故答案为:69;(2)设购买A种型号盒子x个,购买B种型号盒子y个,购买C种盒子型号z个,根据题意得:2x+3y+4z=28,①当0<x<3时,5x+6y+9z=58,∵x,y,z都为正整数,∴方程组无解;②当3≤x时,5x+6y+9z﹣4=58,∵x,y,z都为正整数,∴x=4时,y=4,z=2,综合所述,购买A,B,C三种型号的盒子的个数分别4,4,2,∴4+4+2=10,故答案为:10.【点评】本题考查了三元一次方程组的应用,分类讨论思想及列出方程求整数解是解题的关键.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或17.【分析】(1)代入消元解方程组即可;(2)按照解分式方程的步骤解答即可.【解答】解:(1),将②代入①得:3y﹣2y=1,y=1,将y=1代入②得:x=3.∴方程组的解为:.(2)去分母得:2x﹣2=x2﹣1,化简得:2=x+1解得:x=1,检验:将x=1代入x2﹣1=0,∴原方程无解.【点评】本题考查了二元一次方程组的解和分式方程的解法,分式方程的解需要检验.18.【分析】(1)从两个统计图可知,样本中“乘公交车”的有60人,占调查人数的30%,可求出调查人数,求出“步行”的人数即可补全条形统计图;(2)求出全校1200名学生中“骑自行车”的人数,再做出判断即可.【解答】解:(1)由统计图可知:调查总人数为:60÷30%=200(名),骑自行的人数为:200﹣40﹣60﹣80=20(名),补全条形统计图如下:答:在这次调查中,一共抽取了200名学生.(2)1200×=120(名),120>100.∴学校准备的100个自行车停车位不够用.【点评】本题考查条形统计图、扇形统计图,理解统计图中的数量关系是正确解答的关键.19.【分析】将方程组的解代入得到一个关于a、b的方程组,解新方程组即可.【解答】解:将代入方程组得:,∴.【点评】本题考查了二元一次方程组的解,转化方程组的未知数与系数是经常考查的基本技能.20.【分析】(1)将x+y=7两侧平方,利用xy=12可得x2+y2的值;(2)将阴影部分面积表示用代数式表示出来,代入已知条件即可求出n值.【解答】解:(1)∵x+y=7.xy=12.∴x2+y2+2xy=49,∴x2+y2=49﹣2×12=25.(2)由图示可知,阴影部分的面积等于长方形ABCD面积的一半加长方形CEFG的面积减去△BGF的面积,即S阴=nx2+ny2﹣y(x+ny)=14.整理得:n(x2+y2)﹣xy=14,∴n×25﹣×12=14,解得n=.【点评】本题考查了完全平方公式的几何背景,数形结合是破解本题的最佳方法.21.【分析】(1)由EF∥AB,得到∠ADE=∠3,等量代换可知∠ADE=∠B,由此可证明DE∥BC;(2)由两直线平行,得到∠1=∠ADC,根据∠2+∠ADC=180°,∠2=4∠B即可求得∠1的度数.【解答】证明:(1)∵EF∥AB(已知),∴∠3=∠ADE(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等,两直线平行);(2)解:∵DE平分∠ADC,∴∠ADC=2∠ADE,∵DE∥BC,∴∠B=∠ADE,∵∠2=4∠B,∴∠2=4∠ADE,∵∠2+∠ADC=180°,∴4∠ADE+2∠ADE=180°,∴∠ADE=30°,∴∠ADC=60°,∵EF∥AB,∴∠1=∠ADC=60°.【点评】本题考查了平行线的判定与性质,熟记平行线的性质和角平分线的性质是解题关键.22.【分析】(1)根据甲商场花60元能买到的件数,在乙商场需花费70元才能买到,列出式子,即可求解;(2)先求出a的值,代入即可求出b的值;(3)表示出甲、乙商场按原价进行了两次降价后的价格,然后比较大小,即可求解.【解答】解:(1)由题意得:在甲商场购买的件数为:,在乙商场购买的件数为:,整理得:=,56a﹣60b=120,b=a﹣2;(2)由题意得:(1﹣20%)a=12,解得:a=15,∴56a﹣60b=120,56×15﹣60b=120,解得:b=12;(3)由题意得:甲商场按原价进行了两次降价后的价格为:a(1﹣x)•(1﹣y),乙商场按原价进行了两次降价后的价格为:b(1﹣y)•(1﹣),b(1﹣)•(1﹣)﹣a(1﹣x)•(1﹣y),∵a=b,∴原式=a(1﹣)•(1﹣)﹣a(1﹣x)•(1﹣y)=a[1﹣(x+y)+()2]﹣a(1﹣x﹣y+xy)=a[1﹣x﹣y+()2]﹣a(1﹣x﹣y+xy)=a(1﹣x﹣y)+a()2﹣a(1﹣x﹣y)﹣axy=a[()2﹣xy]=a•=a•>0,∴选择去甲商场更划算.【点评】本题考查了列代数式和代数式求值,掌握题意列出代数式并解答是关键.23.【分析】(1)利用两直线平行的判断和性质;(2)利用角平分线的性质;(3)证明DE、DF、DB是∠ADC的四等分线.【解答】(1)证明:∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠B+∠C=180°,∴AB∥CD;(2)解:∵∠A=m°,∴∠ADC=(180﹣m)°,∵DE平分∠ADF,∴∠EDF=∠ADF,∵∠FDB=∠BDC=∠FDC,∴∠EDB=∠EDF+∠FDB=∠ADF+∠FDC=(∠ADF+∠FDC)=∠ADC=(90﹣)°.(3)解:∵AB∥CD,∴∠AED=∠EDC=∠EDB+∠BDC,∵AD∥BC,∴∠CBD=∠ADB=∠ADE+∠EDB,∵∠AED=∠CBD,∴∠EDB+∠BDC=∠ADE+∠EDB,∴∠ADE=∠BDC,∴∠ADE=∠EDF=∠FDB=∠DBC,∴∠BDC=∠ADC,∵AB∥CD,∴∠ABD=∠BDC,∴∠ABD=(180﹣m)°=(45﹣)°.【点评】本题考查了两直线平行的判定和性质,以及角的运算,关键是弄清角与角之间的关系。
杭州市七年级下册数学全册单元期末试卷及答案-百度文库
杭州市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯3.下列方程组中,解是-51x y =⎧⎨=⎩的是( ) A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩4.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+ 5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°6.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣8 7.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8± 8..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .49.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或1110.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.12.已知关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7则a 的取值范围是__________.13.计算:2202120192020⨯-=__________14.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.15.有两个正方形A 、B ,现将B 放在A 的内部得图甲,将A 、B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A ,B 的面积之和为_________.16.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.17.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .9 18.()22x y --=_____.19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.解方程组:41325x y x y +=⎧⎨-=⎩. 22.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.23.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.24.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.25.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.26.因式分解:(1)12abc ﹣9a 2b ;(2)a 2﹣25;(3)x 3﹣2x 2y +xy 2;(4)m 2(x ﹣y )﹣(x ﹣y ).27.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .28.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确;B 、a 2+a 2=2a 2,故此选项错误;C 、a 2•a 3=a 5,故此选项错误;D 、a 6÷a 3=a 3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110⨯;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C解析:C【解析】试题解析:A. 的解是51x y =⎧⎨=⎩,故A 不符合题意; B. 的解是06x y =⎧⎨=⎩,故B 不符合题意; C. 的解是51x y =-⎧⎨=⎩,故C 符合题意; D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意; 故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.4.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是因式分解,故A 正确;B 、是整式的乘法运算,故B 错误;C 、是单项式的变形,故C 错误;D 、没把一个多项式转化成几个整式积的形式,故D 错误;故选:A .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.6.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n 即可.【详解】解:0.00000012=1.2×10﹣7,故选:C .【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.7.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.8.A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键. 9.D解析:D【解析】【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解.【详解】解:根据已知a 2-ab -ac +bc =11,即a (a -b )-c (a -b )=11,(a -b )(a -c )=11,∵a >b ,∴a -b >0,∴a -c >0,∵a 、b 、c 是正整数,∴a -c =1或a -c =11故选D .【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.10.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题11.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a的不等式组,求出不等式组的解集即可.【详解】解:,∵解不等式①得:,解不等式②得:x≤4,∴不等式组的解析:7≤a<9或-3≤a<-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a的不等式组,求出不等式组的解集即可.【详解】解:()531235x a x x ⎧->-⎨-≤⎩①②, ∵解不等式①得:32a x ->, 解不等式②得:x≤4, ∴不等式组的解集为342a x -<≤, ∵关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7, ∴当32a ->0时,这两个整数解一定是3和4, ∴2≤32a -<3, ∴79a ≤<, 当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1, ∴a 的取值范围是7≤a <9或-3≤a <-1.故答案为:7≤a <9或-3≤a <-1.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.13.-1【分析】根据平方差公式即可求解.【详解】=-1故答案为:-1.【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则. 解析:-1【分析】根据平方差公式即可求解.【详解】2202120192020⨯-=()()22220201202012020202012020+⨯--=--=-1故答案为:-1.【点睛】此题主要考查整式乘法公式的应用,解题的关键是熟知其运算法则.14.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.15.11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得,即,由图乙得,得2ab=10,解析:11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得222()1a b a b b ---=,即2221a ab b -+=,由图乙得222()10a b a b +--=,得2ab=10,∴2211a b +=,故答案为:11.【点睛】此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键. 16.﹣【分析】先解方程4x ﹣1=3x+1,然后把x 的值代入2m+x =1,即可求出m 的值.【详解】解:4x ﹣1=3x+1解得x =2,把x =2代入2m+x =1,得2m+2=1,解得m =﹣.解析:﹣12【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12.【点睛】此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.17.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.18.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.19.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-,故原方程组的解为:11717 xy⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键. 22.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.68︒【分析】根据已知首先求得∠BAD 的度数,进而可以求得∠BAE ,而∠CAE=∠BAE ,在△ACD 中利用内角和为180°,即可求得∠C .【详解】解:∵AD 是△ABC 的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD 中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE 平分∠BAC ,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD 中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.24.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解.【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=, ∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=. 故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.25.(1)见解析;(2)35°;(3)117°【分析】(1)由AC ∥BD 得∠D =∠DAE ,角的等量关系证明∠DAE 与∠C 相等,根据同位角得AD ∥BC ;(2)由BD ⊥BC 得∠HBC =90°,余角的性质和三角形外角性质解得∠C 的度数为35°; (3)由BF ∥AD 得∠D =∠DBF ,垂直的定义得∠DBC =90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C =∠D =∠DBF ,又∵BD ⊥BC ,∴∠DBC =90°,又∵∠D+∠DBA+∠BAD =180°,∠C+∠CBA+∠BAC =180°.∠BAC =∠BAD ,∴∠DBA =∠CBA =45°,又∵∠EFB =7∠DBF ,∠EFB =∠FBC+∠C ,∴7∠DBF =2∠DBF+∠DBC ,解得:∠DBF =18°,∴∠BAD =180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.26.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );(2)a 2﹣25=(a +5)(a ﹣5);(3)x 3﹣2x 2y +xy 2=x (x 2﹣2xy +y 2)=x (x ﹣y )2;(4)m 2(x ﹣y )﹣(x ﹣y )=(x ﹣y )(m 2﹣1)=(x ﹣y )(m +1)(m ﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 27.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.28.(1)21x y =⎧⎨=-⎩;(2)175125x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.。
人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(含答案解析)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 3.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 4.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3) 9.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 10.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 11.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 12.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C(1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1二、填空题13.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______16.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 17.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 18.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限三、解答题21.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.22.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()5,6A ,()2,3B -,()3,1C .请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC ;(2)将三角形ABC 先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形111A B C (点1A ,1B ,1C 分别是点A ,B ,C 移动后的对应点)请画出三角形111A B C ;并判断线段AC 与11A C 位置与数量关系.23.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴24.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.25.如图,在平面直角坐标系中,点C(-1,0),点A(-4,2),AC⊥BC且AC=BC,求点B的坐标.26.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由题目中所给的跳蚤运动的特点找出规律,即可解答.【详解】由图可得,(0,1)表示1=12次后跳蚤所在位置;(0,2)表示8=(2+1)2−1次后跳蚤所在位置;(0,3)表示9=32次后跳蚤所在位置;(0,4)表示24=(4+1)2−1次后跳蚤所在位置;…∴(0,44)表示(44+1)2−1=2024次后跳蚤所在位置,则(3,44)表示第2021次后跳蚤所在位置.故选:A.【点睛】本题主要考查点的坐标问题,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.2.C解析:C【分析】根据图示可知A点坐标为(-3,1),它绕原点O旋转180°后得到的坐标为(3,-1),根据平移“上加下减”原则,向上平移2个单位得到的坐标为(3,1).【详解】解:根据图示可知A点坐标为(-3,1)根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,-1)根据平移“上加下减”原则∴向下平移2个单位得到的坐标为(3,1)故选C.【点睛】本题考查平面直角坐标系中点的对称点的坐标,掌握与原点对称和平移原则是解题的关键.3.C解析:C【分析】根据分别表示点到x轴的距离和到y轴的距离,再根据到y轴的距离是它到x轴距离的两倍列式即可.【详解】解:点(),A m n 到y 轴的距离是它到x 轴距离的两倍.则2m n =,故选C .【点睛】本题考查了点的坐标,熟记点到y 轴的距离,再根据到y 轴的距离是它到x 轴距离的两倍列式是解题的关键.4.A解析:A【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论.【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒90A ACE ∴∠+∠=︒, 90ACB ∠=︒90ACE BCF ∴∠=∠=︒A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==,426OE CE OC ∴=+=+=,()6,3A ∴-故选A .【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.5.D解析:D【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限,故选D .6.D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab=0,则a=0或b=0,所以点P (a ,b )表示在坐标轴上的点,故此选项不符合题意;B 、当a >0时,点(1,a )在第一象限,故此选项不符合题意;C 、已知点A (3,-3)与点B (3,3),A ,B 两点的横坐标相同,则直线AB ∥y 轴,故此选项不符合题意;D 、若ab >0,则a 、b 同号,故点P (a ,b )在第一或三象限,故此选项符合题意. 故选:D .【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.7.A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.8.D解析:D【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.9.C解析:C【分析】平行于y轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.10.D解析:D【分析】分两种情况考虑:①A点移动到C点,则向右移动一位,向上移动两位,另一个点同等平移即可;②B点移动到C点,则向右移动三位,再向上移动一位,另一个点同等平移即可.【详解】分两种情况考虑:1,3;①A点移动到C点,则向右移动一位,向上移动两位,则B点平移后坐标为()5,1.②B点移动到C点,则向右移动三位,再向上移动一位,则A点平移后坐标为()故答案选:D.【点睛】本题考查坐标系中点的平移变换,掌握点的变换情况以及分类讨论是解题关键.11.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA4n=2n知OA2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2×505,则△OA2A2020的面积是12×1×2×505=505m2,故选:B.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.12.B解析:B【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【详解】解:∵点A(0,a),点B(0,4﹣a),且A在B的下方,∴a<4﹣a,解得:a<2,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A,B,C的坐标分别是(0,a),(0,4﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.二、填空题13.55【分析】在直角坐标系下现根据题意确定AB 点的位置和方向最后确定C 点的位置和方向依次连接ABC 三点根据角之间的关系求出∠5的度数即可【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到解析:55【分析】在直角坐标系下现根据题意确定A 、B 点的位置和方向,最后确定C 点的位置和方向.依次连接A 、B 、C 三点,根据角之间的关系求出∠5的度数即可.【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到达点B ,从点B 沿南偏西10°的方向走了100米到达点C ,∴∠1+∠2=60°,AB=BC=100,∴∠2=50°,且△ABC 是等腰三角形,∴∠BAC=180502︒-︒=65°, ∴∠5=180°-65°-60°=55°, ∴点C 在点A 的南偏东55°的方向上.故答案为:55.【点睛】本题考查了直角坐标系的建立和运用,运用直角坐标系来确定点的位置和方向. 14.(-34)【分析】根据点平移的规律:横坐标左减右加纵坐标上加下减求解【详解】点向左平移个单位向上平移3个单位得∴点的坐标是(-34)故答案为:(-34)【点睛】此题考查直角坐标系中点的坐标平移规律:解析:(-3,4)【分析】根据点平移的规律:横坐标左减右加,纵坐标上加下减求解.【详解】点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,∴点1P 的坐标是(-3,4),故答案为:(-3,4).【点睛】此题考查直角坐标系中点的坐标平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.15.8排7号【分析】由已知条件知:横坐标表示第几排纵坐标表示第几号【详解】解:根据排在前号在后得(87)表示8排7号故答案为:8排7号【点睛】本题是数学在生活中应用平面位置对应平面直角坐标系空间位置对应 解析:8排7号【分析】由已知条件知:横坐标表示第几排,纵坐标表示第几号.【详解】解:根据排在前,号在后,得(8,7)表示8排7号.故答案为:8排7号.【点睛】本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.16.(6-4)【分析】直接利用平移中点的变化规律求解即可平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】设点P 的坐标为()由题意得:求得所以点P 的坐标为()故答案为:()【点睛】本题解析:(6,-4)【分析】直接利用平移中,点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】设点P 的坐标为(x ,y ),由题意,得:42x -=,13y +=-,求得6x =,4y =-,所以点P 的坐标为(6,4-).故答案为:(6,4-).【点睛】本题考查了坐标与图形变化-平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.17.或或【分析】根据点不在第一象限内利用平面直角坐标系内点的坐标的几何意义分别讨论在第二第三第四象限的情况即可解答【详解】解:∵点不在第一象限内则点在第二第三第四象限内∵点到两坐标轴距离相等∴解之得:或 解析:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【分析】根据点(),22A x x -+不在第一象限内,利用平面直角坐标系内点的坐标的几何意义,分别讨论在第二、第三、第四象限的情况即可解答.【详解】解:∵点(),22A x x -+不在第一象限内,则点(),22A x x -+在第二、第三、第四象限内,∵点(),22A x x -+到两坐标轴距离相等, ∴22x x =-+,解之得:2x =或2x =-,23x =, ∴点A 的坐标是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭ 故答案是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查了平面直角坐标系内各象限内点的坐标的符号及点的坐标的几何意义,注意横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离. 18.【分析】观察题图可知先根据P3(10)P6(20)即可得到P3n(n0)P3n+1(n-1)再根据P3×673(6730) 可得P2019(6730)进而得到P2020(673-1)【详解】由图可知 解析:(673,1)-【分析】观察题图可知,先根据P 3(1,0), P 6 (2,0),即可得到P 3n (n ,0),P 3n+1(n ,-1),再根据P 3×673(673,0) ,可得P 2019 (673,0),进而得到P 2020(673,-1).【详解】由图可知P 3(1,0), P 6 (2,0),···,P 3n (n ,0),P 3n+1(n ,-1),∵3×673=2019,∴P 3×673(673,0) ,即P 2019 (673,0),∴P 2020(673,-1).故答案为:(673,1)-.【点睛】本题主要考查了点的坐标变化规律,解题的关键是根据图形的变化规律得到P 3n (n ,0). 19.【分析】根据点AC 的坐标建立平面直角坐标系由此即可得【详解】根据点AC 的坐标建立平面直角坐标系如图所示:则点B 的坐标为故答案为:【点睛】本题考查了点的坐标依据题意正确建立平面直角坐标系是解题关键解析:(1,2)--【分析】根据点A 、C 的坐标建立平面直角坐标系,由此即可得.【详解】根据点A 、C 的坐标建立平面直角坐标系,如图所示:则点B 的坐标为(1,2)--,故答案为:(1,2)--.【点睛】本题考查了点的坐标,依据题意,正确建立平面直角坐标系是解题关键.20.四【分析】根据绝对值与算术平方根的和为0可得绝对值与算术平方根同时为0据此求解即可【详解】解:∵∴解得:x=3y=-3∴A(3-3)在第四象限故答案是:四【点睛】本题考查了非负数的性质及象限内点的坐解析:四【分析】根据绝对值与算术平方根的和为0,可得绝对值与算术平方根同时为0,据此求解即可.【详解】解:∵330x y -+=∴30x -= ,30y +=.解得:x=3,y=-3,∴A(3,-3)在第四象限.故答案是:四.【点睛】本题考查了非负数的性质及象限内点的坐标特征,先求出x 、y 的值,再判断点的位置.三、解答题21.116OABC S =四边形【分析】过B 作BD ⊥x 轴,垂足为D ,根据A ,B ,C ,O 四点坐标求解CD ,BD ,OD ,OA 的长,再利用BCD OABC OABD S S S =+四边形四边形可求解.【详解】解:过B作BD⊥x轴,垂足为D,∵B(-10,8),∴D(-10,0),∴OD=10,BD=8,∵A(0,12),C(-14,0),∴OC=14,OA=12,∴CD=4,∴S四边形OABC=S△BCD+S四边形OABD=12BD•CD+12(BD+OA)•OD=12×8×4+12(8+12)×10=16+100=116.【点睛】本题主要考查三角形的面积,点的坐标,作辅助线将四边形转化为直角三角形和梯形是解题的关键.22.(1)作图见解析;(2)作图见解析;位置关系是:平行;数量关系是:相等.【分析】(1)根据点A、B、C三点的坐标在坐标系中描出各点,再顺次连接即可得;(2)将三顶点分别向下平移6个单位长度,再向左平移3个单位长度后得到对应点,顺次连接可得,继而根据平移的性质解答可得.【详解】解:1)如图所示,△ABC即为所求;(2)如图所示,A 1B 1C 1即为所求,AC 与A 1C 1平行且相等.【点睛】本题主要考查作图−平移变换,解题的关键是熟练掌握平移变换的定义和性质. 23.(1)1a =-,6b =;(2)3a =,4b =-;(3)3a ≠,6b =【分析】(1)关于y 轴对称,纵坐标不变,横坐标变为相反数,据此可得a ,b 的值; (2)关于x 轴对称,横坐标不变,纵坐标变为相反数,据此可得a ,b 的值; (3)AB ∥x 轴,即两点的纵坐标相同,横坐标不相同,据此可得a ,b 的值.【详解】解:(1)因为A ,B 两点关于y 轴对称,所以1215a b -=-⎧⎨-=⎩, 则1a =-,6b =.(2)因为A ,B 两点关于x 轴对称,所以1215a b -=⎧⎨-=-⎩则3a =,4b =-.(3因为//AB x 轴则满足15b -=,即6b =,12a -≠,即3a ≠.【点睛】本题考查了关于x 轴的对称点的坐标特点以及关于y 轴的对称点的坐标特点,即点P(x,y)关于x 轴对称点P´的坐标是(x,-y),关于y 轴对称点P´的坐标是(-x,y).24.下一步“象”可能走到的位置的坐标为()0,2-、()4,2--【分析】由于中国象棋中的“象”,在图中的坐标为(−2,−4),而根据中国象棋中的“象”的走法可以确定下一步它可能走到的位置的坐标.【详解】解:建立坐标系,如图:∵中国象棋中的“象”,在图中的坐标为()2,4--,且象走田字,∴下一步它可能走到的位置的坐标为()0,2-、()4,2--.【点睛】此题把数学问题和实际生活结合起来,既考查了生活中的知识,也考查了利用数学知识解决实际问题的能力,要求学生生活经验比较丰富才能很好完成这些题目.25.(1,3)【分析】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N ,证明AMC CNB ∆≅∆得到AM CN =,MC NB =,即可得到结论.【详解】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N则90AMC BNC ∠=∠=︒90ACB ∠=︒190A ∴∠+∠=︒2190∠+∠=︒2A ∴∠=∠AC CB ∴=AMC CNB ∴∆≅∆AM CN ∴=,MC NB =( 1.0)C -,(4,0)M -3BN ,2ON =(1,0)N ∴()1,3B∴【点睛】此题主要考查了坐标与图形,证明AMC CNB∆≅∆是解答此题的关键.26.(1)(0,2),(4,2),8;(2)Q(0,4)或Q(0,﹣4);(3)∠CPO=∠DCP+∠BOP,证明见解析【分析】(1)根据平移直接得到点C,D坐标,用面积公式计算S四边形ABDC即可;(2)设出Q的坐标,OQ=|m|,用S△QAB=S四边形ABDC建立方程,解方程即可;(3)作PE∥AB交y 轴于点E,利用两直线平行,内错角相等即可得出结论.【详解】解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,且A(﹣1,0),B(3,0),∴C(0,2),D(4,2);∵AB=4,OC=2,∴S四边形ABDC=AB×OC=4×2=8;故答案为:(0,2);(4,2);8;(2)∵点Q在y轴上,设Q(0,m),∴OQ=|m|,∴S△QAB=12×AB×OQ=12×4×|m|=2|m|,∵S四边形ABDC=8,∴2|m|=8,∴m=4或m=﹣4,∴Q(0,4)或Q(0,﹣4).(3)如图,∵线段CD是线段AB平移得到,∴CD∥AB,作PE∥AB交y 轴于点E,∴CD∥PE,∴∠CPE=∠DCP,∵PE∥AB,∴∠OPE=∠BOP,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴∠CPO=∠DCP+∠BOP.【点睛】本题主要考查了线段的平移及平行线的性质,掌握平行线的性质并作出辅助线是解题的关键.。
杭州市七年级(下)月考数学试卷(解析版)
七年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共16小题,共48.0分)1.如果把向东走3km 记作,那么表示的实际意义是+3km −2km ( )A. 向东走2kmB. 向西走2kmC. 向南走2kmD. 向北走2km2.如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是( )A. B. C. D.3.已知,则的余角度数是∠α=37°∠α( )A. B. C. D. 53°63°143°133°4.图中的几何体有条棱.( )A. 3B. 4C. 5D. 65.下列各组数中,互为倒数的是A. 2和B. 3和C. 和D. 和4−1213|−3|−13−46.如图.,则∠AOB =∠COD ( )A. ∠1>∠2B. ∠1=∠2C. ∠1<∠2D. 与的大小无法比较∠1∠27.m 个2n 个3=( )A. B. C. D. 2m3n2m 3n2m3n2mn 38.在、、,这四个数中,负数有几个(−1)5(−1)4−23(−3)2( )A. 0个B. 1个C. 2个D. 3个9.下列换算中,错误的是( )A. B.C. D.10.已知,b 是2的相反数,则的值为|a|=1a +b ( )A. B. C. 或 D. 1或−3−1−1−3−311.能断定A ,B ,C 三点共线的是( )A. ,,B. ,,AB =6AC =2BC =5AB =6AC =2BC =4C. ,,D. ,,AB =6AC =3BC =4AB =6AC =5BC =412.利用运算律简便计算正确的是52×(−666)+49×(−666)+666( )A. −666×(52+49)=−666×101=67266B. −666×(52+49−1)=−666×100=−66600C. −666×(52+49+1)=−666×102=−67932D. −666×(52+49−99)=−666×2=−133213.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:;;;.(1)b−a <0(2)|a|<|b|(3)a +b >0(4)ba >0其中正确的是( )A. B. C. D. (1)(2)(2)(3)(3)(4)(1)(4)14.10时10分,分针与时针的夹角为( )A. B. C. D. 110°115°120°135°15.如图,矩形纸片ABCD ,M 为AD 边的中点将纸片沿BM 、CM 折叠,使A 点落在处,D 点落在处,A 1D 1若,则∠1=30°∠BMC =( )A. B. C. D. 75°150°120°105°16.若数轴上A ,B 两点之间的距离为8个单位长度,点A 表示的有理数是,并且−10A ,B 两点经折叠后重合,此时折线与数轴的交点表示的有理数是( )A. B. C. 或 D. 或−6−9−6−14−1−9二、填空题(本大题共4小题,共12.0分)17.互为相反数两数之和为_______.18.如图所示,在我国“西气东输”的工程中,从A 城市往B 城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是______,依据是______.19.如图,将绕点O 按逆时针方向旋转后得到△ABO 55°,若,则的度数是______.△A′B′O ∠AOB =20°∠AOB′20.己知在纸面上有一数轴如图所示一般地,数轴上表示数m 和数n 的两点间距离可()用表示,的最小值是______|m−n||x−4|+|x−5|三、解答题(本大题共6小题,共60.0分)21.试试你的基本功:(1)−32×[−32×(−23)2−2]计算:已知,,当时,求的值(2)|x|=4|y|=3xy <0x +y22.如图,点B 是线段AC 上一点,,,直线MN 经过线段BC 的AC =4AB AB =6cm 中点P .图中共有线段______条,图中共有射线______条.(1)图中与互补的角是______.(2)∠MPC 线段AP 的长度是______.(3)23.为了加强校园周边治安综合治理,警察巡逻车在学校旁边的一条东西方向的公路上执行治安巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程单位:(千米为:,,,,,,)+2−3+2+1−2−1−2此时,这辆巡逻车司机如何向警务处描述他现在的位置?(1)已知每千米耗油升,如果警务处命令其巡逻车马上返回出发点,这次巡逻(2)0.25共耗油多少升?24.如图,线段,点C 是线段AB 的中点,点D 是线段BC 的中点.AB =8求线段AD 的长;(1)若在线段AB 上有一点E ,,求AE 的长.(2)CE =14BCAB=2BD=325.在一条不完整的数轴上从左到右有点A,B,D,C,其中,,DC=1,如图所示,设点A,B,D,C所对应数的和是p.若以B为原点.写出点A,D,C所对应的数,并计算p的值;(1)①若以D为原点,p的值是______若以C为原点,p的值是______.②(2)CO=15若原点O在图中数轴上点C的右边,且,p的值是______.∠AOC∠BOD∠COD26.已知与具有公共顶点,是两个角叠合的部分.(1)()观察图形一并完成下列问题:若,直接写出图中两个相等的锐角:____________;①∠AOC=∠BOD=90°=如果,则______,若,则______;②∠COD=40°∠AOB=∠AOB=150°∠COD=猜想______,请说明理由.③∠AOB+∠DOC=°(2)()∠AOC=60°∠BOD=50°∠AOB+∠DOC=°探究图形二:若,,则______,请说明理由.答案和解析1.【答案】B【解析】解:向东走3km 记作,那么表示向西走2km ,+3km −2km 故选:B .首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【答案】A【解析】解:由题意得:四个排球质量偏差的绝对值分别为:,,,,0.60.7 2.5 3.5绝对值最小的为,最接近标准.0.6故选:A .根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.此题主要考查了正数和负数,本题的解题关键是求出检测结果的绝对值,绝对值越小的数越接近标准.3.【答案】A【解析】解:,∵∠α=37°的余角.∴∠α=90°−37°=53°故选:A .根据互为余角的定义作答.本题考查了互为余角的定义:如果两个角的和为,那么这两个角互为余角.90°4.【答案】D【解析】解:此几何体有6条棱,故选:D .计算出几何体的棱数即可.此题主要考查了认识立体图形,关键是掌握几何体的形状.5.【答案】B【解析】【分析】此题主要考查了倒数以及绝对值,掌握倒数定义是解决本题的关键.根据倒数之积等于1进行逐项分析即可.【解答】解:和不是倒数关系,故此选项错误;A.2−12B .3和是倒数关系,故此选项正确;13C .,3和不是倒数关系,故此选项错误;|−3|=3−13D .和4不是倒数关系,故此选项错误;−4故选B .6.【答案】B【解析】解:,∵∠AOB =∠COD ,∴∠AOB−∠BOD =∠COD−∠BOD ;∴∠1=∠2故选:B .根据,再在等式的两边同时减去,即可得出答案.∠AOB =∠COD ∠BOD 本题考查了角的大小比较,此题较简单,培养了学生的推理能力.7.【答案】B【解析】解:,m 个2n 个3=2m3n故选:B .根据乘方和乘法的定义求解可得.本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义和乘法的定义.8.【答案】C【解析】解:、、,,(−1)5=−1(−1)4=1−23=−8(−3)2=9所以这四个数中,负数有2个,故选:C .先根据乘方的定义计算各式的值,再进一步判断即可得.本题主要考查有理数的乘方,解题的关键是掌握乘方的定义.9.【答案】B【解析】解:A 、,所以A 选项的换算正确;B 、,所以B 选项的换算错误;C 、,所以C 选项的换算正确;D 、,所以D 选项的换算正确.0.25°=900″故选:B .利用1度分,即,1分秒,即对各选项进行判断.=601°=60′=601′=60″本题考查了度分秒的换算:度、分、秒是常用的角的度量单位.1度分,即=60,1分秒,即.1°=60′=601′=60″10.【答案】C【解析】【分析】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a 、b 的值.先根据绝对值和相反数得出a 、b 的值,再分别计算可得.【解答】解:,b 是2的相反数,∵|a|=1或,,∴a =1a =−1b =−2当时,;a =1a +b =1−2=−1当时,;a =−1a +b =−1−2=−3综上,的值为或,a +b −1−3故选C .11.【答案】B【解析】解:A 、,、B 、C 三点不共线.则选项A 错误;∵2+5≠6∴A B 、,、B 、C 三点共线.则选项B 正确;∵2+4=6∴A C 、,、B 、C 三点共线.选项C 错误;∵3+4≠6∴A D 、,、B 、C 三点不共线.选项D 错误.∵5+4≠6∴A 故选:B .如果A 、B 、C 三点共线,那么由A 、B 、C 三点确定的三条线段中,两条较小线段的和等于最长的线段;否则,就不相等.本题考查了两点间的距离,三点共线的方法.如果给出三条线段的长度,通常用两条较小线段的和是否等于最长的线段来检验此三点是否共线.12.【答案】B【解析】解: 52×(−666)+49×(−666)+666 =−666×(52+49−1) =−666×100.=−66600故选:B .根据乘法分配律简便计算即可求解.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.【答案】B【解析】解:根据图示,可得,,−3<a <0b >3,故错误;∴(1)b−a >0,故正确;(2)|a|<|b|,故正确;(3)a +b >0,故错误.(4)ba <0故选:B .根据图示,可得,,据此逐项判断即可.−3<a <0b >3此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a 、b 的取值范围.14.【答案】B【解析】解:10时10分时,时钟上的分针与时针的夹角大小为,30°×(4−1060)=115°故选:B .根据时针与分针相距的份数乘以每份的度数,可得答案.本题考查了钟面角,确定时针与分针相距的份数是解题关键.15.【答案】D【解析】解:,ɛ∠1=30°.∴∠AM A 1+∠DM D 1=180−30=150°.∴∠BM A 1+∠CM D 1=75°.∴∠BMC =∠BM A 1+∠CM D 1+∠1=105°故选:D .利用折叠的性质,相重合的角相等,然后利用平角定理求出角的度数.本题考查了轴对称的性质,矩形的性质,角的计算.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.16.【答案】C【解析】解:当点B 在点A 的左侧时,点B 表示的有理数是,−10−8=−18折线与数轴的交点表示的有理数是;∴−10−182=−14当点B 在点A 的右侧时,点B 表示的有理数是,−10+8=−2折线与数轴的交点表示的有理数是.∴−10−22=−6故选:C .分点B 在点A 的左侧和点B 在点A 的右侧两种情况找出点B 表示的有理数,结合折线与数轴的交点表示的有理数为点A ,B 表示的有理数的平均数,即可求出结论.本题考查了数轴以及有理数,分B 在点A 的左侧和点B 在点A 的右侧两种情况,找出点B 表示的有理数是解题的关键.17.【答案】0【解析】【分析】本题主要考查了互为相反数的定义,是概念题,熟记概念是解题的关键.根据互为相反数的两个数的和等于0解答.【解答】解:互为相反数两数和为0.故答案为0.18.【答案】两点之间,线段最短①【解析】解:在不考虑其他因素的情况下,架设管道的最短路线是,依据是两点的所①有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故答案为:,两点之间,线段最短.①根据线段的性质:两点之间线段最短.本题主要考查线段的性质,解题的关键是掌握两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.19.【答案】35°【解析】解:将绕点O按逆时针方向旋转后得到,,∵△ABO55°△A′B′O∠AOB=20°,,故答案为:35°由旋转的性质可得,,可求的度数.∠AOB′本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.20.【答案】1【解析】解:表示数x与4和5的距离之和∵|x−4|+|x−5|当时,有最小值,最小值为:1.∴4≤x≤5|x−4|+|x−5|故答案为:1.根据数轴上表示数m和数n的两点间距离可用表示,可知表示数x|m−n||x−4|+|x−5|与4和5的距离之和,结合数轴,可得答案.本题考查了数轴上的点所表示的数及数轴上的点之间的距离的最值问题,数形结合,并明确用绝对值表示距离,是解题的关键.21.【答案】解:原式(1)=−32×(−9×49−2)=−32×(−4−2)=−32×(−6);=9,,(2)∵|x|=4|y|=3,,∴x=±4y=±3又,∵xy<0,或,,∴x=4y=−3x=−4y=3当,时,原式;x=4y=−3=4−3=1当,时,;x=−4y=3x+y=−4+3=−1综上,的值为1或.x+y−1【解析】根据有理数的混合运算顺序和运算法则计算可得;(1)先根据绝对值的性质和有理数乘法运算的符合特点得出x 、y 的值,再分别代入计算(2)可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.【答案】6 2 和 15cm∠APM ∠CPN 【解析】解:图中共有线段6条,图中共有射线2条.(1)图中与互补的角是和.(2)∠MPC ∠APM ∠CPN ,,(3)∵AC =4AB AB =6cm ,∴BC =3AB =18cm 是线段BC 的中点,∵P ,∴PB =12BC =9cm ,∴AP =AB +PB =6+9=15cm 线段AP 的长度是15cm .∴故答案为:6,2,2,和,15cm .∠APM ∠CPN 根据题意即可得到结论;(1)根据对顶角和补角的定义即可得到结论;(2)根据已知条件得到,根据线段中点的定义得到,(3)BC =3AB =18cm PB =12BC =9cm 于是得到结论.本题考查了两点间的距离,对顶角,补角的定义,正确的识别图形是解题的关键.23.【答案】解:根据题意得:.(1)+2+(−3)+2+1+(−2)+(−1)+(−2)=−3由此时巡边车出发地的西边3km 处.依题意得:(2)升0.25×(|+2|+|−3|+|+2|+|+1|+|−2|+|−1|+|−2|+|−3|)=0.25×16=4(,)答:这次巡逻共耗油4升.【解析】本题考查了正数和负数,能根据题意列出算式是解此题的关键.求出这些数的和,即可得出答案;(1)求出这些数的绝对值的和,再乘以升即可,注意最后需要返回出发点.(2)0.2524.【答案】解:,C 是AB 的中点,(1)∵AB =8,∴AC =BC =4是BC 的中点,∵D ,∴CD =12BC =2;∴AD =AC +CD =6,,(2)∵BC =4CE =14BC,∴CE =14×4=1当E 在C 的左边时,;AE =AC−CE =4−1=3当E 在C 的右边时,.AE =AC +CE =4+1=5的长为3或5.∴AE 【解析】根据,只要求出AC 、CD 即可解决问题;(1)AD =AC +CD 根据,只要求出CE 即可解决问题.(2)AE =AC−EC 本题考查两点间距离、线段的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】 −7−11−71【解析】解:若以B 为原点,(1)①,,∵AB =2BD =3DC =1点A ,D ,C 所对应的数分别为:,3,4;∴−2;p =−2+3+4=5若以D 为原点,;②p =−3−5+1=−7若以C 为原点,;p =−6−4−1=−11故答案为:;;−7−11若原点O 在图中数轴上点C 的右边,且(2)CO =15则.p =−21−19−16−15=−71故答案为:.−71以B 为原点,观察数轴,可得点A ,D ,C 所对应的数,将点A ,B ,D ,C 所对应(1)①数求和即可得p 值;分别以点D 和点C 观察数轴,得其余点所表示的数,将点A ,B ,D ,C 所对应数求②和即可得p 值;若原点O 在图中数轴上点C 的右边,且,则其余点所表示的数在以点C 为(2)CO =15原点的基础上再各减15,从而p 值可求.本题考查了数轴上的点所表示的数及有理数的加法运算,属于基础知识的考查,比较简单.26.【答案】 180 110∠AOD ∠BOC 140°30°【解析】解:若,(1)①∠AOC =∠BOD =90°,∠AOD +∠COD =∠BOC +∠COD =90°;∴∠AOD =∠BOC ,②∵∠COD =40°,∴∠AOD =50°,∠AOB =∠AOD +∠BOD =140°若,则,∠AOB =150°∠AOD =∠AOB−90°=60°.∴∠COD =90°−∠AOD =30°.③∠AOB +∠DOC =90°+∠AOD +∠DOC =90°+90°=180°若,,(2)∠AOC =60°∠BOD =50°∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠BOD=110°则.故答案为:,;.(1)①∠AOD∠BOC②30°.③180°.(2)110°利用等角的余角相等得出答案即可;(1)①利用余角的意义和角的和与差计算即可;②③(2)利用角的和与差计算即可.此题考查余角的意义,角的和与差,结合图形,灵活解答.。
新人教版七年级数学下册期末考试题(附答案)
新人教版七年级数学下册期末考试题(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.下列图形具有稳定性的是()A.B.C.D.5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如果23a b-=22()2a b aba a b+-⋅-的值为()A3B.23C.33D.37.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.因式分解:2218x -=______.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .(1)求反比例函数y=k x的表达式; (2)求点B 的坐标;(3)求△OAP 的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、A5、A6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、()()2a b a b++.3、2(x+3)(x﹣3).4、2m≤-5、±26、±3三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、﹣1≤x<2.3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、60°5、(1)20%;(2)6006、(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省杭州市卓越教育集团2015-2016学年七年级数学下学期段考试题一、选择题(共10题,满分30分)1.4的算术平方根是()A.±2 B.2 C.﹣2 D.2.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70° B.100°C.110°D.120°3.是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.14.下列说法中,其中不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④算术平方根不可能是负数.A.0个B.1个C.2个D.3个5.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠56.点P(4,﹣a2﹣1)在哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限7. +|x﹣3|=0,则x y=()A.81 B.64 C.27 D.638.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.B.C.D.9.下列结论中,正确的是()A.若a>b,则<B.若a>b,则a2>b2C.若a>b,则1﹣a<1﹣b D.若a>b,ac2>bc210.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)二、填空题(共5题,满分15分)11.点C(5,﹣7)到x轴的距离为.12.已知方程组,则x+y= .13.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.14.如图所示,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿平移,阴影部分的面积为.15.若的整数部分是a,小数部分是b,计算a+b的值为.三、解答题(共5题,满分55分)16.解下列方程组:.17.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;(2)求△DEF的面积.18.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.19.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(m3/件)质量(吨/件)A型商品0.8 0.5B型商品 2 1(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?20.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.2015-2016学年浙江省杭州市卓越教育集团七年级(下)段考数学试卷参考答案与试题解析一、选择题(共10题,满分30分)1.4的算术平方根是()A.±2 B.2 C.﹣2 D.【考点】算术平方根.【分析】根据开方运算,可得一个数的算术平方根.【解答】解:4的算术平方根是2,故选:B.2.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70° B.100°C.110°D.120°【考点】平行线的性质;对顶角、邻补角.【分析】先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.【解答】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.3.是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.1【考点】二元一次方程的解.【分析】由是方程ax﹣y=3的解,即可把x=1,y=2代入ax﹣y=3,得到方程a ﹣2=3,解此方程即可求得a的值.【解答】解:∵是方程ax﹣y=3的解,∴a﹣2=3,解得:a=5.故选A.4.下列说法中,其中不正确的有()①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④算术平方根不可能是负数.A.0个B.1个C.2个D.3个【考点】算术平方根.【分析】①②③④分别根据平方根和算术平方根的概念即可判断.【解答】解:根据平方根概念可知:①负数没有算术平方根,故错误;②反例:0的算术平方根是0,故错误;③当a<0时,a2的算术平方根是﹣a,故错误;④算术平方根不可能是负数,故正确.所以不正确的有①②③.故选D.5.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠5 【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠B+∠BCD=180°,∴AB∥CD,故本选项错误;B、∵∠1=∠2,∴AD∥BC,故本选项正确;C、∵∠3=∠4,∴AB∥CD,故本选项错误;D、∵∠B=∠5,∴AB∥CD,故本选项错误.故选B.6.点P(4,﹣a2﹣1)在哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据四个象限的符号特点判断即可得解.【解答】解:∵a2为非负数,∴﹣a2<0,∴﹣a2﹣1<0,∴点P(4,﹣a2﹣1)在第四象限,故选:D.7. +|x﹣3|=0,则x y=()A.81 B.64 C.27 D.63【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣y+1=0,x﹣3=0,解得x=3,y=4,所以,x y=34=81.故选A.8.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设计划租用x辆车,共有y名学生,根据如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,列方程组即可.【解答】解:设计划租用x辆车,共有y名学生,由题意得,.故选B.9.下列结论中,正确的是()A.若a>b,则<B.若a>b,则a2>b2C.若a>b,则1﹣a<1﹣b D.若a>b,ac2>bc2【考点】不等式的性质.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、当a>0>b时,<,故本选项错误;B、当a>0,b<0,a<|b|时,a2<b2,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,故本选项正确;D、当c=0时,虽然a>b,但是ac2=bc2,故本选项错误.故选C.10.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)【考点】点的坐标.【分析】该题显然是数列问题.设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n﹣a n﹣1=2n,则a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a n﹣a n﹣1=2n,以上相加得到a n﹣a1的值,进而求得a n来解.【解答】解:设粒子运动到A1,A2,…A n时所用的间分别为a1,a2,…,a n,a n﹣a1=2×n+…+2×3+2×2=2 (2+3+4+…+n),a n=n(n+1),44×45=1980,故运动了1980秒时它到点A44(44,44);则运动了2010秒时,粒子所处的位置为(14,44).故选A.二、填空题(共5题,满分15分)11.点C(5,﹣7)到x轴的距离为7 .【考点】点的坐标.【分析】根据点的坐标到x轴的距离为纵坐标的绝对值,即可解答.【解答】解:点C(5,﹣7)到x轴的距离为:|﹣7|=7,故答案为:7.12.已知方程组,则x+y= 4 .【考点】解二元一次方程组.【分析】方程组中两方程相加求出x+y的值即可.【解答】解:,①+②得:5(x+y)=20,则x+y=4.故答案为:413.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.14.如图所示,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿平移,阴影部分的面积为140cm2.【考点】平移的性质;直角梯形.【分析】根据平移的性质得S梯形ABCD=S梯形EFGH,BC=FG=20,则FQ=FG﹣QG=15,S阴影部分=S梯形BCQF,然后根据梯形的面积公式求解即可.【解答】解:如图,∵梯形ABCD平移到梯形EFGH的位置,∴S梯形ABCD=S梯形EFGH,BC=FG=20,∴FQ=FG﹣QG=20﹣5=15,S阴影部分=S梯形BCQF,而S梯形BCQF=×(15+20)×8=140,∴S阴影部分=140cm2.故答案为140cm2.15.若的整数部分是a,小数部分是b,计算a+b的值为3﹣2 .【考点】估算无理数的大小.【分析】先利用逼近法求出在哪两个连续的整数之间,得出整数部分a的值,再求出小数部分b的值,然后代入a+b,计算即可.【解答】解:∵4<7<9,∴2<<3,∴a=2,b=﹣2,∴a+b=×2+﹣2=3﹣2.故答案为3﹣2.三、解答题(共5题,满分55分)16.解下列方程组:.【考点】解二元一次方程组.【分析】直接把x+y=4代入②,求出x的值,再把x的值代入①求出y的值即可.【解答】解:,把①代入②得,7x﹣8=﹣1,解得x=1,把x=1代入①得,1+y=4,解得y=3,故方程组的解为.17.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;(2)求△DEF的面积.【考点】坐标与图形变化-平移;三角形的面积.【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A、B、O三个对应点D、E、F的坐标;(2)把△DEF放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)∵点A(1,3),B(3,1),O(0,0),∴把△ABO向下平移3个单位再向右平移2个单位后A、B、O三个对应点D(1+2,3﹣3)、E (3+2,1﹣3)、F(0+2,0﹣3),即D(3,0)、E(5,﹣2)、F(2,﹣3);(2)△DEF的面积:3×3﹣×1×3﹣×1×3﹣×2×2=4.18.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.【考点】平行线的判定与性质.【分析】根据已知条件∠1=∠2及对顶角相等求得同位角∠2=∠3,从而推知两直线DB∥EC,所以同位角∠C=∠ABD;然后由已知条件∠C=∠D推知内错角∠D=∠ABD,所以两直线AC∥DF.【解答】解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴DB∥EC (同位角相等,两直线平行)∴∠C=∠ABD (两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)19.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(m3/件)质量(吨/件)A型商品0.8 0.5B型商品 2 1(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?【考点】二元一次方程组的应用.【分析】(1)等量关系式为:0.8×A型商品件数+2×B型商品件数=20,0.5×A型商品件数+1×B型商品件数=10.5.(2)①付费=车辆总数×600;②付费=10.5×200;③按车付费之所以收费高,是因为一辆车不满.∴由于3辆车是满的,可按车付费,剩下的可按吨付费,三种方案进行比较.【解答】解:(1)设A型商品x件,B型商品y件.由题意可得.解之得.答:A型商品5件,B型商品8件.(2)①若按车收费:10.5÷3.5=3(辆),但车辆的容积6×3=18<20,所以3辆汽车不够,需要4辆车.4×600=2400(元).②若按吨收费:200×10.5=2100(元).③先用3辆车运送18m3,剩余1件B型产品,付费3×600=1800(元).再运送1件B型产品,付费200×1=200(元).共需付1800+200=2000(元).∵2400>2100>2000∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.20.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.【考点】坐标与图形性质;非负数的性质:算术平方根;三角形的面积.【分析】(1)根据被开方数大于等于0列式求出b,再求出a,从而得到A、B的坐标,再根据向上平移纵坐标加,向右平移横坐标加求出点C、D的坐标即可,然后利用平行四边形的面积公式列式计算即可得解;(2)根据三角形的面积公式列出方程求出OP,再分点P在y轴正半轴和负半轴两种情况讨论求解;(3)根据平移的性质可得AB∥CD,再过点P作PE∥AB,根据平行公理可得PE∥CD,然后根据两直线平行,内错角相等可得∠DCP=∠CPE,∠BOP=∠OPE,然后求出∠CPO=∠DCP+∠BOP,从而判断出比值不变.【解答】解:(1)由题意得,3﹣b≥0且b﹣3≥0,解得b≤3且b≥3,∴b=3,a=﹣1,∴A(﹣1,0),B(3,0),∵点A,B分别向上平移2个单位,再向右平移1个单位,∴点C(0,2),D(4,2);∵AB=3﹣(﹣1)=3+1=4,∴S四边形ABDC=4×2=8;(2)∵S△PAB=S四边形ABDC,∴×4•OP=8,解得OP=4,∴点P的坐标为(0,4)或(0,﹣4);(3)=1,比值不变.理由如下:由平移的性质可得AB∥CD,如图,过点P作PE∥AB,则PE∥CD,∴∠DCP=∠CPE,∠BOP=∠OPE,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴=1,比值不变.。