【最新】华东师大版八年级数学上册:第12章整式的乘除 第16课时 导学案(无答案)

合集下载

华东师大版八年级上册第12章整式的乘除复习导学案设计(无答案)

华东师大版八年级上册第12章整式的乘除复习导学案设计(无答案)

第12章 整式的乘除复习导学案一、学习目标:1. 对全章内容进行梳理,突出知识间的内在联系和递进关系. 2. 进一步提高学生综合应用整式乘除法公式进行运算的能力. 二、知识结构:三、专题演练 ㈠ 幂的运算例1 计算下列各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+⑶ 41()n n a - ⑷ 4223()()y y -⋅⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅例2 计算下列各式:⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯ ⑶ 12(1990)()3980nn +⋅㈡ 整式的乘法 例3 计算:⑴ 322[2()][3()][()]3a b a b a b ----- ⑵ 113(245)n n n n x x x x -++-+例4 计算:⑴ 2(325)(23)x x x ---+ ⑵ 22(2)(42)x y x xy y -++㈢ 乘法公式 例5 计算:⑴ (3)(3)a ab ab a ---+ ⑵ 98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷ ()()a b c a b c +--+例6 计算:⑴ 298 ⑵ 2(1)(1)(1)y y y --+-- ⑶ 2(23)x y z +-㈣ 整式的除法例7 先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解 例8 分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+---⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-五、能力提升 1.已知212448x x ++=,求x 的值.2.已知4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.3.已知一个多项式除以多项式243a a +-,所得商式是21a +,余式为28a +,求这个多项式.4. 已知2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.。

八年级数学上册第12章整式的乘除复习教案华东师大版(2021-2022学年)

八年级数学上册第12章整式的乘除复习教案华东师大版(2021-2022学年)

整式的乘除ﻬﻬ ﻬ 整式的乘除复习 1. 对全章内容进行梳理,突出知识间的内在联系和递进关系。

2. 进一步提高学生综合应用整式乘除法公式进行运算的能力. 难点目标 目标三导 学做思一:知识结构 学做思二: ㈠ 幂的运算 例1 计算下列各式: ⑴ ⑵ ⑶⑷ ⑸ ⑹ 例2 计算下列各式: ⑴ ⑵ ⑶㈡ 整式的乘法 例3 计算: ⑴ ⑵例4 计算: ⑴ ⑵ ㈢ 乘法公式 例5 计算: ⑴ ⑵ ⑶⑷ 例6 计算:⑵ ⑶㈣ 整式的除法 例7 先化简,再求值:,其中㈤ 因式分解例8 分解因式: ⑴ ⑵ ⑶ ⑷反思总结 1.知识建构 2。

能力提高3。

课堂体验 课后练习 1。

已知,求的值。

2。

已知,求代数式的值.3。

已知一个多项式除以多项式,所得商式是 ,余式为,求这个多项式. 4. 已知与的乘积中不含有和项,求、的值. 53()x x x ⋅⋅-112(2)(2)(2)n n n x x x -++⋅+-+41()n n a -4223()()y y -⋅5[()()]x yx y +-2212()m n x y +-⋅3244224()4()x x x x x ⋅⋅+-+-825(0.125)2-⨯12(1990)()3980n n +⋅322[2()][3()][()]3a b a b a b -----113(245)n n n n x x x x -++-+2(325)(23)x x x ---+22(2)(42)x yx x y y -++(3)(3)aa b a b a ---+98102⨯24(12)(12)(14)(116)x x x x -+++()()a b c a b c +--+2982(1)(1)(1)y y y --+--2(23)x y z +-42622322[5(4)(3)()](2)a a aa a a ---÷÷-5a =-324(1)2(1)q p p -+-221()()()m m m ab x y a b x ya b x y +-+---2a a ba cbc -+-22412925x x y y -+-212448x x ++=x 4,6xy xy +=-=22()(2)3x y yy y x yxx y +-+-243a a +-21a +28a +2(8)a p a ++2(3)a a q -+3a 2a p q。

华东师大版八年级上册 第12章 整式的乘除 复习学案

华东师大版八年级上册 第12章 整式的乘除 复习学案

八年级数学上册导学案22命题人:刘英明 审题人:曹金满 课型:复习课课题:第12章 整式的乘除(复习Ⅱ)强化训练类型一:单项式与多项式的次数1.已知m y x 27-是7次单项式,求m 的值.22128b a b a a m +++2.已知单项式3421y x -的次数与多项式22128b a b a a m +++的次数相同,求m 的值. 3.若单项式n y x n --12)2(是关于y x ,的三次单项式,求n 的值.4.已知c b a 、、满足:(1)022)3(52=-++b a ;(2)c b a y x ++-1231是7次单项式; 求多项式()22222234⎡⎤------⎣⎦a b a b abc a c a b a c abc 的值. 类型二:同类项1.已知35y x m -与n y x 34能合并,求n m 的值.2.若2222b a m +与3343-+-n m b a 是同类项,求n m +的值. 3.如果b a m 3--与n ab 431是同类项且m 与n 互为倒数,求1141)44(3-----m m mn n 的值. 类型三:整式的加减1.已知三角形的第一边长是b a 2+,第二边比第一边长)2(-b ,第三边比第二边小5. 求三角形的周长。

2.已知222c b a A -+=,222324c b a B ++-=,且A +B +C =0.求:(1)多项式C (2)若311=-==c b a ,,,求A +B 的值.3.已知xyz x A -=32,xyz z y B +-=23,xyz y x C -+-=222,且01)1(2=+-++z y x ; 求:A -(2B -3C)的值.01)1(2=+-++z y x4.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x +⎪⎭⎫ ⎝⎛-+--222123421y x xy x -= ⎝⎛-+--,阴影部分即为被墨迹弄污的部分. 求:被墨汁遮住的一项.类型四:缺项与无关1.多项式83322-+--xy y kxy x 化简后不含xy 项,求k 值.2.若多项式222)25(23mx x y x +-+-的值与x 的值无关,求m 的值.3.若)192()72(22-+--+-+y x bx y ax x 的值与字母x 的取值无关,求b a 、的值.4.试说明:不论x 取何值代数式7)13()345(223x x x x x x --+----++67425(32323x x x x x +---++)6()132()345(323223x x x x x x x x ++--+---++的值是不会改变的. 类型五:整体代入法1.当2=+b a 时,求代数式2()2()3a b a b +-++的值.2.已知532++x x 的值为3,求1932-+x x 的值.3.已知41=+-b a b a ,求代数式)(3)(2b a b a b a b a -+-+-的值. 4.已知3=+y x xy ,求代数式y xy x y xy x -+-+-3353的值. 类型六:化简绝对值1.若0<+b a ,化简b a b a ----+312.已知有理数c b a 、、在数轴上的位置如图所示且b a =.化简dc d c b a a -+--+- 3.当00<>y x ,时;化简 (1) x y y 21125++-+-;(2)182356-----y y x y . 类型七:自定义计算1.“*”是新规定的这样一种运算法则:ab a b a 22+=*比如3)2(323)2(32-=-⨯⨯+=-*.(1)试求)1(2-*的值;(2)若22=*x ,求x 的值;(3)若9)1()2(+=**-x x ,求x 的值.2.对正整数b a ,,b a ∆等于由a 开始的的连续b 个正整数之和,如:43232++=∆, 又如:26876545=+++=∆.若151=∆x ,求x 的值.。

新维度华东师大版八年级数学上册第12章整式的乘除 《整式的除法》学案设计(无答案)

新维度华东师大版八年级数学上册第12章整式的乘除  《整式的除法》学案设计(无答案)

新维度八年级数学上册《整式的除法》【学习目标】1. 会用同底数幂的除法性质进行计算.2. 会进行单项式除以单项式的计算.3. 会进行多项式除以单项式的计算.【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即______________要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点三、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点四、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即________________________________________类型一、同底数幂的除法1、计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.类型二、单项式除以单项式2、计算:(1)342222(4)(2)x y x y ÷; (2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭;(3)22[()()]()()x y x y x y x y +-÷+÷-; (4)2[12()()][4()()]a b b c a b b c ++÷++.举一反三:【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷;(3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯.3、夏天是多雷雨的季节,大家都知道,雷雨时往往是先看到闪电,后听到雷声,这是因为光的传播速度比声音的传播速度快的缘故.已知光在空气中的传播速度约为8310⨯米/秒,而声音在空气中的传播速度约为23.410⨯米/秒.(1)光的速度大约是声音速度的多少倍?(结果保留两个有效数字)(2)如果你看到闪电8秒后,才听到了雷声,那么你能算出闪电离你大约有多远吗?(注:光传播到地球的时间忽略不计)类型三、多项式除以单项式4、计算:(1)324(67)x y x y xy -÷; (2)42(342)(2)x x x x -+-÷-;(3)22222(1284)(4)x y xy y y -+÷-;(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭.举一反三:【变式】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷.。

华师版 数学八年级上册第12章 整式乘除导学案

华师版 数学八年级上册第12章   整式乘除导学案

第十二章“整式的乘除”导学计划一、课标要求1、了解整数指数幂的意义和基本性质2、会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。

3、会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算。

4、会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。

二、导学目标1。

使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算.2. 使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算. 3。

使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

4.使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

三、本章编写特点1、强调重要数学思想方法的渗透2、充分体现从具体到抽象再到具体的认知过程3、根据数学知识的逻辑关系循序渐进安排教学内容四、导学核心点1、导学重点(1)幂的运算性质(2)整式的乘除2、导学难点(1)乘法公式的运用(2)多项式的因式分解五、本章总课时安排:本章共安排了4个小节,导学时间约需13课时(供参考):12.1幂的运算4课时12。

2整式的乘法4课时12。

3乘法公式4课时12.4整式的除法3课时12.5 因式分解3课时复习2课时六本章知识结构框图12。

1 幂的运算第一课时同底数幂的乘法导学目标:1 、知识与技能:①、理解同底数幂的乘法法则.②、运用同底数幂的乘法法则解决一些实际的问题。

2、过程与方法:在推导同底数幂的乘法性质的过程中,培养学生初步运用“转化”思想能力,培养学生观察概括与抽象的能力.3、情感态度与价值观:体会科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神. 导学核心点:1。

华东师大版(新版)八年级数学上册:第12章整式的乘除小结与复习课件

华东师大版(新版)八年级数学上册:第12章整式的乘除小结与复习课件

8.因式分解的步骤 如果多项式的各项有公因式,那么先 提取公因式; 在各项提出公因式后或各项没有公因式的情况下,视察多项 式的次数:二项式可以尝试运用 平方差公式分解因式;三项 式可以尝试运用 两数和(差)公的式分解因式; 分解因式必须分解到每一个因式在指定的范围内都不能
再分解 为止.
9.图形面积与代数恒等式
整体思想
例6 若2a+5b-3=0,则4a·32b= 8 . 【解析】已知条件是2a+5b-3=0,无法求出a,b的值因此可以 逆用积的乘方先把4a·32b.化简为含有与已知条件相关的部分, 即4a·32b=22a·25b=22a+5b.把2a+5b看做一个整体,因为2a+5b3=0,所以2a+5b=3,所以4a·32b=23=8.
[注意] 其中的a、b代表的不仅可以是单独的数、单独的字
母,还可以是一个任意的代数式;这几个法则容易混淆,计算 时必须先搞清楚该不该用法则、该用哪个法则.
2.整式的乘法 单项式与单项式相乘,把它们的 系数 、 相同字母的幂 分别 相乘,对于只在一个单项式中出现的字母,则连同它的指数一 起作为积的一个 因式 . 单项式与多项式相乘,用 单项式 和 多项式 的每一项分别相 乘,再把所得的积 相加 . 多项式与多项式相乘,先用一个多项式的 每一项 与另一个 多项式的 每一项 相乘,再把所得的积 相加 .
5.因式分解的意义 把一个多项式化成几个整式的 积 的情势,叫做多项式的 因式分解.
因式分解的过程和 整式乘法 的过程正好相反.
6.用提公因式法分解因式 公因式的确定:公因式的系数应取多项式各项整数系数的 最大公约数 ;字母取多项式各项 相同 的字母;各字母 指数取次数最 低 的. 一般地,如果多项式的各项都含有公因式,可以把这个公 因式提到 括号 外面,将多项式写成 因式乘积 的情势,这 种分解因式的方法叫做提公因式法. [注意] 提公因式法是因式分解的首选方法,在因式分解时 先要考虑多项式的各项有无公因式.

华东师大数学八上《第12章《整式的乘除》教案 (新版)华东师大版

华东师大数学八上《第12章《整式的乘除》教案 (新版)华东师大版
通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。内容由一线名师原创,立意新,图片精,是非常强的一手资料。
课前
预习
【导学提纲】
知识结构与知识归纳:
(一)知识结构见教材P43
(二)知识归纳:
1、整式乘除相关法则及公式有哪些?
2、因式分解:
(1)因式分解的步骤是什么?
(2)因式分解的常用方法有哪些?
(3)分解因式要注意哪些问题?
典例
讲解
1、幂的运算性质
例1已知 (m、n为正整数),求 的值.(思路点拨:注意公式的逆用)
整式的乘除
课 题
单元复习
课 型
复习课
教师复备
教学
目标
1、牢固掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;
2、分解因式的方法及运用;
3、培养自己的运算能力,以及分析问题、解决问题的能力.
教学重点、难点
重点:有关乘除法的各种运算法则和公式的理解与运用.
难点:有关乘除法的各项运算法则的理解与应用.
2、整式的乘除
例2先化简,再求值: ,其中 .(思路点拨:注意运算顺序及准确性)
(变式训练):若 ,
求 的值.
3、乘法公式的灵活运用
例3已知 ,求 ; 的值.
(思路点拨:注意公式的变形及相互关系)
4、因式分解的运用
例4求 的值
(思路点拨:注意观察数字特征,灵活运用因式分解进行有关计算)
(变式训练)计算:

八年级数学上册 第12章 整式的乘除 12.2 整式的乘法 1

八年级数学上册 第12章 整式的乘除 12.2 整式的乘法 1

12.2.3 多项式与多项式相乘 【学习目标】 1、探索并理解多项式与多项式相乘的法则,并会熟练运用它们进行运算. 2、主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯【学习重难点】理解多项式与多项式相乘的法则,并会熟练运用它们进行运算【学习过程】一、课前准备1、回忆单项式乘以单项式和单项式乘以多项式的运算法则;2、利用法则进行计算:①263x xy g = ; ②22(3)ab ab -g =③2(4)(2)a b b --g = ; ④212()2x x -= ;⑤5(20.2)ab a b -+g =二、学习新知自主学习:1、问题:为了扩大绿地面积,要把街心花园的一块长a 米,宽m 米的长方形绿地增长b 米,加宽n 米,求扩地以后的面积是多少?思考:可以用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?方法一:这块花园扩地后长 米,宽 米,因而面积为 米2. 方法二:这块花园现在是由 小块组成,它们的面积分别为: 米2、 米2、 米2、 米2,故这块绿地的面积为 米2.由此可得: 和 表示的是同一块绿地面积。

所以有: = ;2、由上题可得,多项式乘多项式的公式:(a+b)(m+n)= + + + 多项式与多项式相乘: 理解升华1.运用多项式的乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,结果仍是 .3.注意确定积中的每一项的符号,多项式中每一项都包含它前面的 ,“同号 ,异号 ”.4.多项式与多项式相乘的展开式中,有同类项要 .实例分析:例1、计算:(1)(x+2)(x-3) (2)(2x+5y)(3x-2y)例2、计算:(1))3)(2(22n mn m n m -+- (2))12)(223(2++-x x x【随堂练习】1.计算(5b+2)(2b -1)=______ _.2.计算:(3-2x )(2x -2)=___ ___.3.计算:(x+1)(x 2-x+1)=____ _ ____.4.若(x -8)(x+5)=x 2+bx+c ,则b=____ __,c=____ ___.5.当a=-1时,代数式)3)(2()2)(1(+---+a a a a 的值等于 .【中考连线】已知m ,n 满足│m+1│+(n -3)2=0,化简(x -m )(x -n )=_________.【参考答案】随堂练习1.2102--b b ;2. 61042-+-x x ;3. 13+x ;4. b=-3,c =-40;5.6.中考连线322--x x。

华师大版初中八年级数学上册第12章《整式的乘除》教案设计

华师大版初中八年级数学上册第12章《整式的乘除》教案设计

华师大版初中八年级数学上册第12章《整式的乘除》教案设计12.1 幂的运算第1课时教学目标1、能讲出同底数幂的乘法性质并会用式子表示;2、能主动探索并判断两个幂是否是同底数幂,并能掌握指数是正整数时底数的幂的乘法;3、能根据同底数幂乘法性质进行简单的计算;4、能让学生在已有知识的基础上,通过自主探索,获得幂的各种运算感性认识,进而上升到理性上来获得运算法则.教学重难点【教学重点】同底数幂的乘法性质.【教学难点】对同底数幂的乘法的理解.课前准备无教学过程一、创设情境:某地区在退耕还林期间,有一块原长m 米,宽a 米的长方形林区增长了n 米,加宽了b 米,用不同的方法表示这块林区现在的面积便可得到一个等式:()()m n a b ma mb na nb ++=+++提出问题:1、扩大后的林区面积是多少?2、你知道上面的等式蕴含着什么样的运算法则吗?二、知识回顾:1、什么叫乘方?2、n a 表示的意义是什么?三、计算观察:1、做一做:3422(222)(2222)⨯=⨯⨯⨯⨯⨯⨯=提出问题:这道题有什么特点? 通过本题推导:到m n m n a a a +=(m 、n 是正整数)概括:同底数幂相乘,底数不变,指数相加,概括出幂的第一个运算法则。

四、举例应用:例1、计算(1)341010⨯ (2)310a ⨯ (3)35a a五、随堂练习:P19 exc1、2六、课堂小结:1、同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系。

2、应用时,可以拓展到两个以上3、运用幂的乘法运算性质注意不能与整式的加减混淆。

七、家庭作业:P23 exc1八、每日预题:1、什么是幂的乘方,它与同底数幂相乘有何区别;2、如何进行幂的乘方。

九、教学反馈:12.1 幂的运算第2课时教学目标1、使学生掌握幂的乘方的法则,并能够用式子表示;2、通过自主探索,让学生明确幂的乘方法则是根据乘方的意义和同底数幂法则推导出来的,并能利用乘方的法则熟悉地进行幂的乘方运算.教学重难点【教学重点】幂的乘方法则的应用.【教学难点】理解幂的乘方的意义.课前准备无教学过程一、知识回顾:1、什么叫乘方?什么叫幂?2、口述幂的乘法法则。

八年级数学上册第12章整式的乘除教案新版华东师大版word版本

八年级数学上册第12章整式的乘除教案新版华东师大版word版本

整式乘除教具多媒体课型复习课教理解掌握整式乘法的法规. 公式,并能够运用整式进行整式学知识与技术乘法的运算。

目标整式再认,运用理解,训练增强,牢固提升。

过程与方法培育学生好的学习习惯。

感情态度与价值观教课要点整式乘法教课难点理解整式灵巧解题。

教课内容与过程教法学法设计一. 复习发问,回顾知识,请看下边的问题:1.整式乘法都有哪些?各种运算的法规是什么?2.乘法公式都有哪些?他们的表达形式各是什么?面向全体学生提出相关的问题。

明确要研究,探究的问题是什么,如何去研究和谈论。

.二.导入课题,研究知识:留给学生必定的思虑和回顾知识的时间。

本节课我们来复习整式的乘法为学生创建表现才干的平台。

三. 归纳知识,培育能力:1.整式的乘法法规;2.整式的除法法规;3..乘法公式。

四. 运用知识,解析解题:(一)知识填空:1.=;2.=;3.=;4.=;5.=;6.=;(二)计算题:1.;2.;3.;4..五 . 课堂练习:请见教材六. 课后小结:整式乘除法知识的复习七 . 课后作业 : 复印给学生。

教学反思从习题中认识学生对知识的掌握程度,完美学生的不足。

1.带领学生核对基础知识练习的答案,鼓舞学生总结每题所用的知识,并说出知识是如何利用的。

2.指引学生做中等难度的练习,鼓舞学生总结每题所用的知识。

3 .引导学生分组谈论做出较难的练习,并鼓舞学生在做题时能从多个侧面、多个出发点考虑问题,从而宽阔学生的思路。

建立学生的自信心。

从习题中认识学生对知识的掌握程度,完美学生的不足。

1.带领学生核对基础知识练习的答案,鼓舞学生总结每题所用的知识,并说出知识是怎样利用的。

2.指引学生做中等难度的练习,鼓舞学生总结每题所用的知识。

3 .指引学生分组谈论做出较难的练习,并鼓舞学生在做题时能从多个侧面、多个出发点考虑问题,从而宽阔学生的思路。

建立学生的自信心。

新华东师大版八年级数学上册:第12章 整式的乘除 第1课时 导学案(无答案)

新华东师大版八年级数学上册:第12章    整式的乘除 第1课时 导学案(无答案)
3 4 m n 3 4 3 4 3 4 ( )
n
=5


= a


=a
(
)
(m、n 为正整数)
a·a =
3
a·a ·a =
3
5
变一变: 由 a a =a ,可得 a =a a (m、n 为正整数.)
m n
m+n
m+n
m n
一、质疑 例 2: (1) 已知 a =3,a =8,求 a ?
m n m+n
新华师大版八年级上册:第 12 章整式的乘除第 1 课时导学案
1.熟记同底数幂的乘法的 运算性质,了解法则的推导过程. 2.能熟练 地进行同底数幂的乘法运算. 学习目标 3.会逆用公式 a a =a
m n m+n.来自4.通过法则的习题学习,训练归纳能力,感悟从未知转化成已知的思想 学习方法 勾画圈点法、旁 批法、识记法等。 一、自学 1. 阅读教材 18-19 页 想一想:(1) 2 表示几个 2 相乘? 3 表示什么?
3.同底数幂相乘,底数_________,指数_________. 4.计算:-2 ×(-2) =_______. 5.如果 (a b) (a b) (a b) (a b) ,那么 m=
2 m 10
m n p 2 3 4 2 2
.
反馈
6.计算:a ·a ·a =________; (-x) (-x ) (-x ) (-x )=_________. 7.已知 2m 5, 2b 3 ,则 2 m b = 8.计算下列各题: ①-x ·x ·x
5 2 10
②(-2) · (-2) · (-2)
9
8
3

华东师大版八年级上册第12章整式的乘除学案(无答案)

华东师大版八年级上册第12章整式的乘除学案(无答案)

(4)-(∕)2∙(y2)32 .整式的乘法⑸(XM .严)2(6) (-0.125)8×2 八年级数学上册导学案21命题人:刘英明审题人:曹金满课型:复习课课题:第12章整式的乘除(复习I)复习目标:1.对全章内容进行梳理,突出知识间的内在联系和递进关系.2.进一.步提高学生综合应用整式乘除法公式进行运算的能力.复习重点:整式的乘除运算法那么.复习难点:灵活应用整式的乘除运算法那么进行有关计算.一、知识回忆:二、专题演练:1.暴的运算⑴X5∙x∙(τ)3(2)(x+2)H-'•(2+x)n+l-(x+2)2n(3)(α4n)n^,3 .乘法公式计算:(5)4x 2-12Λy+9∕-25 2.计算: (1)(a+b-c)(a-b+c)5.一个多项式除以多项式"+4〃—3 ,所得商式是2.+ 1 ,余式为2α + 8 ,求这个多项式. ⑵H7+/(4)4(2a-b)56÷(b-2a)76 (/+ p0 + 8)与-3α + q)的乘积中不含有/和/项,求〃、夕的值. 7 22Λ+,+4A =48 ,求X 的值.(1){-a-3ab)(-3ab ÷a) ⑵98x102 (3)(1-2x)(1+2x)(1+4X 2)(1+16x 4)(4)(α+b -c∙)(α-b+c) (5)98?(6)(l-y)2-(l +y)(-l-y) 4.整式的除法 先化简,再求值:[5α4(α2-4α)-(-3α6)2÷(Q2)3]χ-2∕)2,其中。

=_5 5.因式分解分解以下多项式:(1)⅜(1-P )3+2(P -1)2 (3)cr-ab-∖-ac-bc三、能力提升: 1.分解因式: (1)a-ab 1 (2)ab 2(x-y),n +a 2b(x-y)w+l -ab(x-y)m (4)4√-12xy+9∕-25 (2)xy 3-4xy (3)(x 2+2x)2+2(x 2+2x)+1⑷4式I-P)3+2(p-I)? 计算:(1) ∖l(a-b)2,∖∖r 3(a-b)2∖ -^(a-b) ⑵ x ,,-,(2√,-4x rt+1+5x n+3)(3) (3X 2-2X -5)(-2X + 3) (4) (2x-yX4x 2 +2xy + y 2)(3) (126Z ⅛4 + 20a 3b 2c - βa 4h 3) ÷(-2ah)2(6) ab 2 (x - y)m + a 2b(x - y)m+' - ab(x - y)m4.x+y=4,x-y=6,求代数式个(产+),)一短.+?如一3孙的值.。

八年级数学上册 第12章 整式的乘除 12.1 幂的运算 12.1.3 积的乘方导学案 (新版)华东师大版

八年级数学上册 第12章 整式的乘除 12.1 幂的运算 12.1.3 积的乘方导学案 (新版)华东师大版

12.1.3 积的乘方【学习目标】1、经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,2、了解积的乘方的运算性质,并能解决一些实际问题.【学习重难点】积的乘方的运算;正确区别幂的乘方与积的乘方的异同.【学习过程】一、课前准备1、口述同底数幂的运算法则。

2、口述幂的乘方运算法则。

3、计算:(1) ()34x (2) a 2a ∙ (3) 34x x ∙ 二、学习新知自主学习:计算观察,探索规律做一做:(1)(ab )2=(ab)·(ab)=(aa)·(bb) = a( )b ( ) (2) (ab)3= = =a( )b ( ) (3) (ab)4= = =a( )b ( ) 提出问题:(1)同学们通过上述这几道题的计算 、观察一下,你能得到什么规律?(2)如果设n 为正整数,将上述的指数改成n 即:()nab ,其结果是什么呢?(ab )n = 个)(n ab (ab)(ab)⋅⋅⋅⋅⋅⋅⋅= • =即 (ab )n = (n 为正整数)这就是说:积的乘方,等于把积的每一个因式 ,再把 相乘。

实例分析:例1、计算:(1)3)2(b (2)23)2(a (3)3)(a - (4)4)3(x -【随堂练习】1.()()322223ab bc a -⋅-=_______________。

2.(-0.125)2=_________3.已知(x 3)5=-a 15b 15,则x=_______4.(0.125)1999·(-8)1999=_______5.化简(12+⋅n m a a )2·(-2a 2)3所得的结果为____。

6.( )5=(8×8×8×8×8)(a ·a ·a ·a ·a)【中考连线】已知3=y 5,=x n n ,求 (x 2y)2n 的值。

【参考答案】 随堂练习1、28772c b a -2、6413、-ab4、-15、8248++-n m a6、8a中考连线7425。

八年级数学上册第12章整式的乘除教案2新版华东师大版word版本

八年级数学上册第12章整式的乘除教案2新版华东师大版word版本

整式的乘除

学知识与技术
经过对试题讲评,应当使学生进一步理解和掌握知
的利用知识解决问题,提升能力。

识,更好


过程与方法
查阅试卷,发现问题,提出问题,研究议论,解决问题,提升能力。

培育学生优秀的学习质量。

感情态度与价值观
教课要点试卷中存在的问题。

教课难点认识错误,正确更正,逐渐提升。

教课内容与过程教法学法设计
一. 你对本章整式的乘除知识掌握的怎样?请自己估量一下
自己的分数。

面向全体学生提出
有关的问题。

明确要研
究,探究的问题是什么,
明确本节课的详细任
务。

.
二.本节课我们一同来研究我们的单元考试题。

三 . 学生查阅试卷
四.从中发现问题 .
鼓舞学生去研究、
剖析、探究解决问题的
方法。

五 . 学生提出问题.
六 . 师生研究剖析问题.共同解决问题.
七.预习下一课的内容.



思。

华东师大版八年级数学上册第12章《整式的乘除》 复习导学案(无答案)

华东师大版八年级数学上册第12章《整式的乘除》 复习导学案(无答案)

南城中学八年级数学导学案 班级: 编制:八年级数学备课组 课题:12.7整式乘除复习 课时:第 课时 复习目标:1.记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则.2.会运用法则进行整式的乘除运算,会对一个多项式分解因式.3.培养学生的独立思考能力和合作交流意识.重点: 记住公式及法则. 难点: 会运用法则进行整式乘除运算.预习案1.幂的运算:同底数幂相乘:_________________________;符号语言____________. 幂的乘方: ___________________________;符号语言____________.积的乘方: ____________________________;符号语言____________.同指数幂相乘:_________________________;符号语言____________.同底数幂相除:_________________________;符号语言____________.2.整式的乘除法:单项式乘以单项式:__________________________________________________ 单项式乘以多项式:__________________________________________________ 多项式乘以多项式:__________________________________________________ 单项式除以单项式:__________________________________________________ 多项式除以单项式:__________________________________________________3.乘法公式平方差公式: ___________________________;符号语言______________完全平方公式:________________________;符号语言______________4.添括号法则__________________________________________________符号语言:__________________________________________________5.计算:①a ·a 3= ;②(-3x )4= ;③(103)5= ;④(b 3)4= ;⑤(2b )3= ; ⑥(2a 3)2= ;⑦(m +n )2·(m +n )3= ;⑧(ab )10÷(ab )3=_____; ⑨(3s 2t -st 2+12st )÷(-12st )= . 6.⑴(-2a 2)(3ab 2-5ab 3) ; ⑵(5x +2y )(3x -2y ) ;⑶(3y +2)(y -4)-3(y -2)(y -3) ; ⑷(-3)2014·(13)2016.姓名:探究案1.(x+2)(x-3)=__________;2. x2++49=(x+)2;3.a3·a·a8+(a3)4+(-2a6)2-(a5)3÷a34.(2m-n+3p)(2m+3p+n)5.(4x4y3-6x3y2+16x2y4)÷(-2xy)26.若(x+a)(2x+7)的积中不含有x的一次项,则a的值是________.7.有三个连续自然数,中间一个是x,则它们的积是___________.8.先化简,再求值:(a+b)(a-2b)-(a+2b)(a-b),其中a=2,b=-19.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.10.因式分解:①8(a-b)2-2(b-a) ; ②(x+y)2-3(x+y) ; ③x2-8ax+16a2 ; ④x2-5x+6 ;⑤3x3-6x2y+3xy2 ; ⑥(x2+4y2)2-16x2y2;⑦-12n2+2m2;⑧(x-1)(x-3)+1;⑨-1-4x2+4x练习案1.下列式子中,正确的是( )A.3x+5y=8xy B.3y2-y2=3 C.15ab-15ab=0 D.29x3-28x3=x2.当a=-1时,代数式(a+1)2+a(a+3)的值等于______3.若-4x2y和-2x m y n是同类项,则m=_____,n=______.4.化简(-x)3·(-x)2的结果是_______.5.若x2+2(m-3)x+16是完全平方式,则m的值等于_________.6.化简:a3·a2b=; 4x2+4x2=;4x2·(-2xy)=.7.按图15-4所示的程序计算,若开始输入的x值为3,则最后输出的结果是.8.在x2·x4,(x2)4,x4+x4,(-x4)2中,与x8相等的是______.9.计算:⑴a3·(-a)4=; ⑵m5·(-m4)=; ⑶(1+x)3·(1+x)5=;⑸(1-x)5÷(x-1)3=; ⑹[(-x3)]4=; ⑺(-x3y4)3=;⑻-64x6y3z9=( )3; ⑼48×0.258=; ⑽(-23)2014·(32)2015=.10.已知:2n+1=7,求2n+5的值. 11.已知10m=2,10n=3,求103m,103m+2n和102m-3n的值.12.已知:m+n=5,mn=6,求m2+n2的值. 13.x+y=4,xy=2,求x2+y2+3xy的值.14.计算:⑴[(x-2y)2-(x-3y)(x+2y)]÷(-4y); ⑵[(2x+y)2-(2x+y)(2x-y)]÷2y⑶8(x2-2y2)-x(7x+y)+xy; ⑷2012×2014×2016-20132×201615.先化简,再求值:⑴(3x4-2x3)÷(-x)-(x-x2)·3x其中x=-1 2;⑵(2x-3)2-(x+y)(x-y)-y2,其中x2-4x-1=0.。

八年级数学上册第12章整式的乘除12.5因式分解(2)导学案(无答案)华东师大版(2021年整理)

八年级数学上册第12章整式的乘除12.5因式分解(2)导学案(无答案)华东师大版(2021年整理)

山西省泽州县晋庙铺镇八年级数学上册第12章整式的乘除12.5 因式分解(2)导学案(无答案)(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省泽州县晋庙铺镇八年级数学上册第12章整式的乘除12.5 因式分解(2)导学案(无答案)(新版)华东师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省泽州县晋庙铺镇八年级数学上册第12章整式的乘除12.5 因式分解(2)导学案(无答案)(新版)华东师大版的全部内容。

2因式分解年级八学科数学课型新授授课人学习内容因式分解学习目标1、认识平方差公式、完全平方公式的特点,会运用这两种公式将多项式分解因式.2、观察多项式的结构,按照一提(公因式)二套(套乘法公式)三查(查最简)的顺序将多项式分解因式,通过综合运用提高学生因式分解的能力。

3、体会数学的应用价值,激发学生学习的兴趣,逐步培养良好的数学情操。

学习重点运用平方差公式、完全平方公式将多项式分解因式。

学习难点综合运用多种方法把多项式因式分解。

导学过程复备栏【温故互查】1、用字母表示平方差公式和完全平方公式2、将边长是98的正方形中心剪一个边长为2的小正方形,怎样求剩余部分的面积呢?有简便方法吗?【设问导读】上面的问题实际是把平方差公式倒过来灵活运用,使运算简便.这一节我们就来学习把平方差公式和完全平方公式倒过来运用,也就是利用公式法分解因式.平方差公式是倒过来是。

完全平方公式倒过来是9x2—4y2=()2-( ) 2 =( ) ( )x2—6x+9=( ) 2—2 ( )()+ ( ) 2=( ) 2【自学检测】1、分解因式:(1)x2—16 (2)1-25b2(3)36m2—49y2 (4) (x+y) 2—9z22、分解因式:(1) x2-4x+4 (2) 9x2+12xy+4y2(3) 1-m+241m(4)(a+b) 2+2(a+b)+13、先提公因式,再运用公式分解因式。

华师大版数学八年级上册第12章《整式的乘除》复习教案

华师大版数学八年级上册第12章《整式的乘除》复习教案

华师大版数学八年级上册第12章《整式的乘除》复习教案第12章整式的乘除一、知识结构二、【方法指导与教材延伸】(一)同底数幂相乘、幂的乘方、积的乘方这三个幂运算,特别是同底数幂相乘的法则是学习整式乘法的基础,其他的如:后面的多项式乘以多项式是转化变成单项式乘以多项式,再转化为单项式乘以单项式,最后转化为同底数幂相乘,所以我们要熟练掌握其法则:1.同底数幂的相乘的法则是:底数不变,指数相加.即a m·a n=a m+n,幂的乘方法则是:底数不变,指数相乘.即(a m)n=a m n,积的乘方法则是:积的乘方等于乘方的积.即(a b)n=a n b n,同底数幂的相除的法则是:底数不变,指数相减.即a m÷a n=a m-n2.其中m、n为正整数,底数a不仅代表具体的数,也可以代表单项式、多项式或其他代数式.3.幂的乘方法则与同底数幂的相乘的法则有共同之处,即运算中底数不变,但不同之处一个是指数相乘,一个是指数相加4.这三个幂运算相互容易混淆,出现错误,在初学时要注意辨明“同底数幂”、“幂的乘方”、“积的乘方”等基本概念,对公式的记忆要联系相应的文字表述,运用法则计算时,要注意识别是同底数幂的相乘、幂的乘方还是积的乘方,法则中各字母分别代表什么?再对照法则运算.(二)整式的乘法1.单项式与单项式相乘:由单项式与单项式法则可知,单项式与单项式相乘实为完成三项工作:(1)系数相乘的积作为积的系数;(2)同字母的指数相加的和作为积中这个字母的指数;(3)只在一个单项式中出现的字母连同它的指数一起作为积中的一个因式.单项式乘法法则对两个以上单项式相乘同样成立.2.单项式与多项式相乘:单项式与多项式相乘,实际上是转化为单项式与单项式相乘:用单项式去乘以多项式中的每一项,再把所得的积相加,即m(a+b+c)=ma+m b+mc 单项式与多项式相乘,结果是多项式,积的项数与因式中多项式的项数相同. 3.多项式与多项式相乘:多项式与多项式相乘,实际上是先转化为单项式与多项式相乘,即将一个多项式看成一个整体,即(m+n)(a+b)=a(m+n)+b(m+n),再用一次单项式与多项式相乘,得(m+n)(a+b)=ma+n a+m b+b n.多项式乘以多项式其积仍是多项式,积的次数等于两个多项式的次数之和,积的项数在末合并同类项之前等于两个多项式项数之和.(三)乘法公式1.“两数和乘以它们的差等于这两个数的平方差”即(a+b)(a-b)=a2-b2,应用这个乘法公式计算时,应掌握公式的特征:①公式的左边是两个二项式相乘;并且这两个二项式中有一项是完全相同的项a,另一项是相反数项b;②公式的右边是相同项的平方a2减去相反数项的平方b2.公式中的a和b,可以是单项式,也可以是多项式或具体数字.2.“两数和的平方等于它们的平方和加上它们乘积的2倍”.即(a +b)2=a2+2ab+b2.要理解公式的特征:①公式的左边是一个二项式的平方,右边是一个二次三项式.公式的适用范围:公式中的a和b 可以是具体的数,也可以是单项式或多项式;任何形式的两数和(或差)的平方都可以运用这个公式计算.。

华东师大版八年级上册数学第12章 《整式的乘除》教案

华东师大版八年级上册数学第12章 《整式的乘除》教案

课题单项式除以单项式【学习目标】1.掌握单项式除以单项式的运算法则及其应用;2.了解单项式除以单项式的运算原理;【学习重点】单项式除以单项式的运算法则及其应用;【学习难点】探索单项式与单项式相除的运算法则的过程,并加以理解和领会.行为提示:创景设疑,帮助学生知道本节课学什么.知识链接:同底数幂的除法法则:a m÷a n=a m-n(a≠0,m,n都是正整数).同底数幂相除,底数不变,指数相减.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题1.同底数幂除法的法则是什么?2.计算:(1)a10÷a3=a7;(2)y7÷y6=y;(3)105÷105=1;__ (4)y3÷y3=1.自学互研生成能力知识模块一单项式除以单项式的法则阅读教材P39~P40,完成下面的内容:1.填一填:(1)2a·4a2=8a3;(2)2x·3xy=6x2y;(3)2×103×(3×102)=6×105.对照(1)(2)(3)题,根据除法的意义填空:(4)8a3÷2a=4a2;(5)6x2y÷3xy=2x;(6)(6×105)÷(3×102)=2×103.2.试一试:你能由上述计算方法计算下列各式吗?①8ab3÷2ab=4b2;②6x3y÷3xy=2x2;③12a5÷3a2=4a3;④16a3b2÷4ab2=4a2.3.再思考:21a5c÷3a2=________,对此题中的c该怎么办?解:原式=7a3c.题中的c照写.4.想一想:单项式除以单项式的程序是怎样的?知识链接:1.单项式乘以单项式的法则;2.乘法和除法互为逆运算,加法和减法互为逆运算;3.应用法则应注意:(1)要明确两个单项式的系数各是什么,哪些是同底数幂,哪些只是在一个单项式里出现的字母;(2)被除式单独含有的字母及指数作为一个因式,不要遗漏.方法指导:整式的混合运算同实数的混合运算一样,有括号的先算括号内的运算;没有括号时,先算乘方,再算乘除,最后算加减.计算的过程中能合并同类项的要合并同类项.行为提示:在进行同底数幂的乘法、除法、幂的乘方及积的乘方的混合运算时,要遵循各自的运算规则,不要相互混淆,然后注意运算顺序的先后和底数的统一.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.5.归纳:单项式除以单项式法则:一般地,单项式与单项式相除,分别把系数、同底数幂相除,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.范例:计算:(1)-21x 2y 4÷(-3xy 3);(2)3x 4y 5÷⎝⎛⎭⎫-23xy 2;(3)(4×109)÷(-2×104); 解:(1)原式=-21÷(-3)x 2-1y 4-3=7xy ;(2)原式=3÷⎝⎛⎭⎫-23x 4-1y 5-2=-92x 3y 3; (3)原式=4÷(-2)×109-4=-2×105. 仿例:计算:(1)63x 7y 3÷7x 3y 2; (2)-25a 6b 4c ÷10a 4b. 解:(1)原式=9x 4y; (2)原式=-52a 2b 3c.变例:填空:(1)-12ab 2c 3=4b ×(-3abc 3); (2)⎝⎛⎭⎫-37a 2b 2c ÷3ab 2c =-17a. 知识模块二 单项式的混合运算 范例1:计算:(1)(6xy 2)2÷3xy; (2)-16(x 3y 4)3÷⎝⎛⎭⎫-12x 4y 52.解:(1)原式=36x 2y 4÷3xy =12xy 3; (2)原式=-16x 9y 12÷14x 8y 10=-64xy 2.仿例1:(1)(-4a 2b)2÷2ab 2;(2)(2xy)2·⎝⎛⎭⎫-15x 5y 3z 2÷(-2xy 2z)2. 解:(1)原式=16a 4b 2÷2ab 2=8a 3;(2)原式=-45x 7y 5z 2÷4x 2y 4z 2=-15x 5y.范例2:已知8a 3b m ÷28a n b 2=27b 2,求3m -4n 的值.解:因为8a 3b m ÷28a n b 2=27a 3-n b m -2,又因为8a 3b m ÷28a n b 2=27b 2,所以27a 3-n b m -2=27b 2.对比系数,则有3-n =0,m -2=2,解得m =4,n =3,所以3m -4n =0. 仿例2:已知(-3x 4y 3)3÷⎝⎛⎭⎫-32x n y 2=-mx 8y 7,求m ,n 的值. 解:因为(-3x 4y 3)3÷⎝⎛⎭⎫-32x n y 2=18x 12-n y 7, 又因为(-3x 4y 3)3÷⎝⎛⎭⎫-32x n y 2=-mx 8y 7, 所以18x 12-n y 7=-mx 8y 7.对比系数,则有-m =18,12-n =8.所以m =-18,n =4.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 单项式除以单项式的法则 知识模块二 单项式的混合运算检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________课题 单项式与单项式相乘【学习目标】1.在具体情境中理解并掌握单项式乘法的意义; 2.能够熟练地利用法则进行单项式的乘法运算;3.体验探究数学问题的过程,体验转化的思想方法,提升学习的动力源. 【学习重点】单项式乘单项式的乘法法则产生的过程及其应用. 【学习难点】理解运算法则及其探索过程.行为提示:创设问题情境导入,激发学生的求知欲望.引导学生得出该长方体的体积为:4xy ·3x ,继续追问:你会算4xy·3x吗?同学们愿意和老师一起来研究这个问题吗?知识链接:1.长方体的体积公式:V=长×宽×高.2.幂的运算性质.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学法指导:计算步骤:(1)系数相乘作为积的系数;(2)相同字母的因式,应用同底数幂的运算法则,底数不变,指数相加;(3)只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;(4)单项式与单项式的积仍是单项式.思路点拔:范例1的两个小题,可利用乘法交换律、结合律变形而成:数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母或系数照抄.情景导入生成问题1.问题引入一个长方体底面积是4xy,高是3x,那么这个长方体的体积是多少?该长方体的体积为:4xy·3x=12x2y.2.温故知新(1)同底数幂的乘法运算:同底数幂相乘,底数不变,指数相加.一般形式:a m·a n=a m+n(m,n是正整数);(2)幂的乘方法则:幂的乘方,底数不变,指数相乘;一般形式:(a m)n=a mn(m,n都是正整数).(3)积的乘方法则:把积的每一个因式分别乘方,再把所得的幂相乘.一般形式:(ab)n=a n·b n(n是正整数).自学互研生成能力知识模块一探究单项式与单项式相乘的法则阅读教材P25~P26,完成下面的内容:1.相信我能行:请同学们根据幂的运算性质及乘法交换律、结合律计算:4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.2.计算:(1)2x3·5x5;(2)3x2y5·(-2xy2z).解:(1)2x3·5x5=(2×5)(x3·x5)=10x8;(2)3x2y5·(-2xy2z)=3×(-2)·(x2·x)·(y5·y2)·z=-6x3y7z.归纳:单项式与单项式相乘的法则:单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只有一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.范例1:计算:(1)3x2y·(-2xy3);(2)(-5a2b3)·(-4b2c).解:(1)原式=[3·(-2)]·(x2·x)·(y·y3)=-6x3y4;(2)原式=[(-5)·(-4)]·a2·(b3·b2)·c=20a2b5c.范例2:卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒,卫星运行3×102秒所走的路程约是多少?解:7.9×103×3×102=23.7×105=2.37×106(米).答:卫星运行3×102秒所走的路程约是2.37×106米.仿例:计算:(1)(-3x2y2z3)·(-2x3y3);(2)-6x2y(a-b)·2xy2(b-a)2.解:(1)原式=6x5y5z3;(2)原式=-12x3y3(a-b)3.知识模块二创设情境理解单项式相乘的几何意义问题讨论:(1)边长是a的正方形的面积是a·a,反过来说a·a表示什么?a·ab又怎样理解呢?解:a·a可以看作a与a的积;a·ab可以看作a、a、b的积.(答案不唯一)(2)想一想,你会说明a·a,3a·2a以及3a·5ab的几何意义吗?解:a·a可以看作边长为a的正方形的面积;a·ab可以看作高是a,底面长和宽分别为a、b的长方体的体积;3a·5ab可以看作高是3a,底面长和宽分别为5a、b的长方体的体积.(答案不唯一)行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探究单项式与单项式相乘的法则知识模块二创设情境理解单项式相乘的几何意义检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________课题单项式与多项式相乘【学习目标】1.理解并掌握单项式与多项式相乘的法则;2.会熟练地进行单项式与多项式相乘的计算;3.经历探索单项式与多项式相乘的法则的过程,发展具有条理的思考及语言表达能力.【学习重点】单项式与多项式的相乘法则产生的过程及其应用.【学习难点】单项式与多项式相乘时结果的符号的确定.行为提示:点燃激情,引发学生思考本节课学什么.方法指导:1.单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法.2.单项式与多项式相乘时,分两个阶段:(1)按分配律把单项式与多项式的乘积写成单项式与单项式乘积的代数和的形式;(2)单项式的乘法运算.情景导入生成问题1.回忆幂的运算性质:a m·a n=a m+n.(m,n都是正整数)同底数幂相乘,底数不变,指数相加;(a m)n=a mn.(m,n都是正整数)幂的乘方,底数不变,指数相乘;(ab)n=a n b n.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2.单项式与单项式相乘法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.3.练一练:判断正误(不对的并加以改正).(1)4a2·2a3=8a6;(×)8a5(2)(ab)2(ab3)=a3b5; (√)(3)(-2x2)3xy2=8x7y2. (×)-8x7y2自学互研生成能力知识模块一探究单项式与多项式相乘的法则阅读教材P27,完成下面的内容:1.相信我能行:问题一:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a、b、c.你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?回答下列问题:(1)分析题意,可得出两种解法:方法一:先求三家连锁店的总销量,再求总收入,即总收入为m(a+b+c)元;方法二:先分别求三家连锁店的收入,再求它们的和,即总收入为ma+mb+mc元;(2)思考:根据(1)中两种方法得到的结果表示同一个量,可列等式:m(a+b+c)=ma+mb+mc;(3)思考:乘法分配律与(2)中的结论有什么关系?(2)中的结论可以运用乘法分配律得到.学法指导:1.单项式与多项式相乘的依据是乘法分配律;2.单项式与多项式相乘,其积仍是多项式,项数与原多项式的项数相同,注意不要漏乘项; 3.积的每一项的符号由原多项式各项符号和单项式的符号来决定.知识链接:梯形的面积公式:S =12(上底+下底)×高.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.问题二:观察右边的图形,回答下列问题:(1)大长方形的长为b +c +d ,宽为a ,面积为a(b +c +d);(2)三个小长方形的面积分别表示为ab ,ac ,ad ,大长方形的面积=ab +ac +ad ; (3)思考:根据(1)(2)中的结果中可列等式:ab +ac +ad =a(b +c +d); (4)思考:这一结论与乘法分配律有什么关系? 这一结论可以运用乘法分配律得到.想一想:根据以上探索你认为应如何进行单项式与多项式的乘法运算?单项式乘多项式法则:单项式与多项式相乘,就是用单项式分别乘以多项式的每一项,再将所得的积相加. 知识模块二 单项式与多项式相乘的法则的灵活运用 范例1:计算:(1)2a 2·(3a 2-5b);(2)(-2a 2)·(3ab 2-5ab 3). 解:(1)原式=(2a 2·3a 2)-(2a 2·5b)=6a 4-10a 2b ; (2)原式=(-2a 2)·3ab 2+(-2a 2)·(-5ab 3)=-6a 3b 2+10a 3b 3. 仿例:计算:(1)(-4x 2)(3x +1);(2)⎝⎛⎭⎫23ab 2-2ab ·12ab ;(3)―2a 2·⎝⎛⎭⎫12ab +b 2―5a ·(a 2b -ab 2). 解:(1)原式=(-4x 2)·3x +(-4x 2)×1=-12x 3-4x 2; (2)原式=23ab 2·12ab -2ab·12ab =13a 2b 3-a 2b 2;(3)原式=-a 3b -2a 2b 2-5a 3b +5a 2b 2=-6a 3b +3a 2b 2.范例2:一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 解:(1)防洪堤坝的横断面积:S =12[a +(a +2b)]×12a =14a(2a +2b)=12a 2+12ab(平方米).答:防洪堤坝的横断面积为⎝⎛⎭⎫12a 2+12ab 平方米. (2)堤坝的体积:V =⎝⎛⎭⎫12a 2+12ab ×100=50a 2+50ab(立方米). 答:这段防洪堤坝的体积是(50a 2+50ab)立方米.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探究单项式与多项式相乘的法则 知识模块二 单项式与多项式相乘的法则的灵活运用 仿例(3,法二):解:原式=-(a 3b +2a 2b 2)-(5a 3b -5a 2b 2) =-a 3b -2a 2b 2-5a 3b +5a 2b 2 =-6a 3b +3a 2b 2.检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________课题 多项式除以单项式【学习目标】1.掌握多项式除以单项式的运算法则及其应用; 2.了解多项式除以单项式的运算原理.【学习重点】多项式除以单项式的运算法则及其应用. 【学习难点】探索多项式与单项式相除的运算法则的过程,并加以理解和领会.行为提示:创设问题情境导入,激发学生求知欲望.知识链接:单项式除以单项式法则:单项式与单项式相除,分别把系数、同底数幂相除,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点.方法指导:1.除法与乘法互为逆运算,除以一个数等于乘以这个数的倒数. 2.应用法则时需注意:(1)法则本质是把多项式除以单项式转化成单项式除以单项式;(2)多项式除以单项式,所得到的商的项数和多项式的项数相同,当被除式的项与除式相同时,商是1,不能把“1”漏掉;(3)在多项式除以单项式转化为单项式除以单项式的过程中,要特别注意结果的符号;(4)要熟练地进行多项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础.学法指导:除式系数为分数时,要特别注意改写为倒数与被除式各项系数相乘.情景导入 生成问题 1.同底数幂的除法法则是什么? 2.单项式除以单项式的法则是什么? 3.计算:(1)-12a 5b 3c ÷(-4a 2b);(2)(-5a 2b)2÷5a 3b ;(3)4(a +b)7÷(a +b)3. 解:(1)3a 3b 2c ;(2)5ab ;(3)4(a +b)4.自学互研 生成能力知识模块一 探索多项式除以单项式的法则 阅读教材P 40~P 41,完成下面的内容: 1.根据除法的意义算一算(ax +bx)÷x :(ax +bx)÷x 就是要求一个式子,使它与x 的乘积是ax +bx. 因为(a +b)x =ax +bx ,所以(ax +bx)÷x =a +b . 2.根据除法与乘法的关系算一算(ax +bx)÷x : (1)把除法算式a÷m 转化为乘法算式是a ×1m ;(2)借用上述方法算一算(ax +bx)÷x.解:(ax +bx)÷x =(ax +bx)×1x =ax ×1x +bx ×1x =a +b.3.寻找新方法计算(ax +bx)÷x. 解:(ax +bx)÷x =ax÷x +bx÷x =a +b. 新方法对吗?分析如下:(ax +bx)÷x =(ax +bx)×1x =ax ×1x +bx ×1x =ax÷x +bx÷x .∴(ax +bx)÷x =ax÷x +bx÷x.4.归纳:多项式除以单项式的法则是:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 范例:计算:(1)(6x 3y 2-7x 4y)÷xy ;(2)⎝⎛⎭⎫0.3a 2b -13a 3b 2-16a 4b 3÷(-0.5a 2b). 解:(1)原式=6x 3y 2÷xy -7x 4y ÷xy =6x 2y -7x 3;(2)原式=0.3a 2b ÷(-0.5a 2b)-13a 3b 2÷(-0.5a 2b)-16a 4b 3÷(-0.5a 2b)=-35+23ab +13a 2b 2.仿例:计算:(1)(x 5y 3-2x 4y 2+3x 3y 5)÷⎝⎛⎭⎫-23xy ; (2)(-12x 3y 3z +6x 2yz 3-3xy 3z 2)÷(-3xyz). 解:(1)原式=-32x 4y 2+3x 3y -92x 2y 4;(2)原式=4x 2y 2-2xz 2+y 2z. 知识模块二 整式的混合运算范例:计算:⎣⎡⎦⎤(-3a 3x )2·x 3+15a 2·(3ax 2)3·5a ÷35ax 2. 解:原式=⎝⎛⎭⎫9a 6x 2·x 3+15a 2·27a 3x 6·5a ÷35ax 2 =(9a 6x 5+27a 6x 6)÷35ax 2=15a 5x 3+45a 5x 4.学法指导:1.这个算式是两个单项式乘积的代数和,再除以一个单项式.可以先作单项式的乘法,把问题归结为多项式除以单项式的运算;2.整式的混合运算同实数的混合运算一样,有括号的先算括号内的运算;没有括号时,先算乘方,再算乘除,最后算加减.计算的过程中,能合并同类项的要合并同类项.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 仿例:计算:(1)⎣⎡⎦⎤(-3ab )2·a 3-2a·(3ab 2)3·12b ÷9a 4b 2; 解:原式=⎝⎛⎭⎫9a 2b 2·a 3-2a·27a 3b 6·12b ÷9a 4b 2 =(9a 5b 2-27a 4b 7)÷9a 4b 2=a -3b 5;(2)[(2x +y)2-y(y +4x)-8x]÷2x.解:原式=(4x 2+4xy +y 2-y 2-4xy -8x)÷2x=(4x 2-8x)÷2x=2x -4.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索多项式除以单项式的法则知识模块二 整式的混合运算检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________课题 多项式与多项式相乘【学习目标】1.探索多项式与多项式相乘的乘法法则;2.会熟练地进行整式的乘法运算;3.通过对乘法法则的探索、归纳与描述,发展具有条理的思考及语言表达能力.【学习重点】多项式与多项式的相乘法则及应用.【学习难点】探索多项式与多项式的乘法法则,灵活地进行整式的乘法运算.知识链接:1.单项式与单项式相乘的法则:单项式和单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式;2.单项式乘多项式法则:单项式与多项式相乘,就是用单项式分别乘以多项式的每一项,再将所得的积相加.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.学法指导:三个多项式相乘,可先将其中两个相乘,再把积与剩下的一个多项式相乘.学法指导:解这类题目,应把等式左右两边的项化成对应的同类项,然后再比较同类项的系数.也可以抓住对应项成立的条件,采用取特殊值法求解.学法指导:变例:(1)多项式展开后不含x项,说明展开后x项的系数为0;(2)要使代数式的值与x的取值无关,则多项式展开后应为常数.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.情景导入生成问题1.单项式与单项式、单项式与多项式相乘的法则是什么?2.计算:(-3ab)·(-4b2)=12ab3;-6x(x-3y)=-6x2+18xy;(2x2y)3·(-4xy2)=-32x7y5;-5x(2x2-3x+1)=-10x3+15x2-5x.自学互研生成能力知识模块一探究多项式与多项式相乘的法则阅读教材P27~P29,完成下面的内容:1.相信我能行:问题:某地区在退耕还林期间,将一块长m米、宽a米的长方形林地的长、宽分别增加n米和b米.用两种方法表示现在林地的面积.(1)现在长方形林地的长为(m+n)米,宽为(a+b)米,面积为(m+n)(a+b)平方米;(2)如图:这块林地由四个小块组成,它们的面积分别表示为ma,mb,na,nb,故现在这块林地的面积=ma +mb+na+nb;(3)思考:根据(1)(2)中的结果可列等式:(m+n)(a+b)=ma+mb+na+nb;(4)思考:这一结论与乘法分配律有什么关系?将(m+n)(a+b)运用乘法分配律展开可得到ma+mb+na+nb.2.概括:多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.用式子表示:(a+m)(b+n)=ab+an+bm+mn.范例:计算:(3x4-3x2+1)(x4+x2-2)解:原式=3x4(x4+x2-2)+(-3x2)(x4+x2-2)+(x4+x2-2)=3x 8+3x 6-6x 4-3x 6-3x 4+6x 2+x 4+x 2-2=3x 8-8x 4+7x 2-2.知识模块二 多项式与多项式的综合应用范例:要使x(x 2+a)+3x -2b =x 3+5x +4成立,则a 、b 的值分别为多少?解:原式变形,得x 3+(a +3)x -2b =x 3+5x +4.比较系数,则有⎩⎪⎨⎪⎧a +3=5,-2b =4.解得⎩⎪⎨⎪⎧a =2,b =-2.变例:(1)已知多项式(mx +8)(2-3x)展开后不含x 项,求m 的值;(2)试说明:代数式(2x +3)(6x +2)-6x(2x +13)+8(7x +2)的值与x 的取值无关.解:(1)原式=2mx -3mx 2+16-24x =-3mx 2+(2m -24)x +16,∵展开后不含x 项,∴2m -24=0,即m =12.(2)原式=12x 2+4x +18x +6-12x 2-78x +56x +16=22为常数,∴原代数式的值与x 的取值无关.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探究多项式与多项式相乘的法则知识模块二 多项式与多项式的综合应用范例:法二解:当x =0时,有-2b =4,则b =-2;当x =1时,有1+a +3-2b =1+5+4则a =2.检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

八年级数学上册第12章整式的乘除验收课教案新版华东师大版

八年级数学上册第12章整式的乘除验收课教案新版华东师大版

整式的乘除教学目标知识与技能了解学生对所学知识的掌握和理解情况,学生应用知识的分析解题情况,为期末复习打好基础。

过程与方法提出问题,研究讨论,理解知识,运用知识,提高能力。

情感态度与价值观培养学生良好的学习习惯.教学重点整式的乘除。

教学难点灵活运用知识解决问题。

教学内容与过程教法学法设计一.组织教学二.导入课题为了理解同学们对这一段时间所学知识掌握的情况,本解课我们对这部分知识进行验了解学生的出席情况明确本节课的任务三.明确要求四.试题印发给学生。

五.学生笔答卷。

六.预习下节课的内明确要求要求学生认真的进行答卷教学反思必须手写,是检查备课的重要依据。

第12章整式的乘除单元验收试题姓名一.填空题:(每空3分,共计30分)1.在公式①()()b ab a b a 22-=-+,②()b a b ab a ±=+±2222,③()()()ab b a b x a x x x +++=++2中,是完全平方公式的是 ,是平方差公式的是 ,是含有相同字母的两个一次二项式的乘法公式的是 。

2.同底数幂相乘公式是 ,公式()()为正整数n b aab nnn=是公式,同底数幂相除公式是 ,公式()()为正整数n m naa mnm,=是公式。

3.在算式①()y x x 32+, ②⎪⎭⎫ ⎝⎛-•y xx 2236, ③()x xy x 284÷+,④x xy 28÷-, ⑤()()y x x -+52中,是单项式乘以单项式的是 ,是多项式乘以多项式的是 ,是单项式乘以多项式的是 。

二.选择题:(每小题6分,共计30分)1.在下列算式中是多项式除以单项式的是( ) (A)⎪⎭⎫ ⎝⎛-•y xx 2236, (B)x xy 28÷-, (C)()x xy x 284÷+, (D)()y x x 32+. 2.整式乘法和因式分解的关系是( )(A)是同级运算,(B)不是同级运算,(C)互逆运算,(D)不是互逆运算. 3.下面计算不正确的是( ) (A)aa a 532222=+,(B)xy x y x 22423=÷,(C)()y x y x 533932=,(D)5)621012(2223-=÷-xyy x y x y x .4.下列因式分解正确的是( ) (第1页)(A ) (B) (C )()()n m n m n m -+=+22(D ) ()(时,代数式5323-+=x x x 5.当(A )239-, (B)18-, ( C)18, ( D)239.三.计算题:(每小题5分,共计10分) 1. ()()()1121242+-+x x x , 2. ()()ca bc b a --÷•222332.()()224282223-=-=-x x x x xx ()()22442882222-=+-=+-x x x x x ()()9396327183222+=++=++x y x x y y xy y x四.将下列各式分解因式:(每小题5分,共计10分)1.四.化简求值:(5分)()()().2,5,42242=-=÷⎥⎦⎤⎢⎣⎡--++y x y y x y x y x 其中(第2页)五.解方程:(5分)()()()()24133=++-+-x x x x .六.用适当的方法计算:(1. 2.题个2分;3. 4.题个3分;共计10分)2.9923. 1.4.⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222168421111111121121.(第3页)xx 2524-xxm xm 484.22+-497503⨯44.14.22.102.102+⨯-。

华东师大初中八年级数学上册《第12章整式的乘除》教案

华东师大初中八年级数学上册《第12章整式的乘除》教案

第12章整式的乘除第一课时同底数幂的乘法教学目标1.巩固同底数幂的乘法法则,学生能灵活地运用法则进行计算.2.了解同底数幂乘法运算性质,并能解决一些实际问题.3.能根据同底数幂的乘法性质进行运算.4.经历探索同底数幂的乘法运算的过程,进一步体会幂的意义,提高学生推理能力和有条理的表达能力.5.在了解同底数幂的乘法运算意义的基础上,“发现”同底数幂的乘法性质,培养学生观察、概括和抽象的能力.6.能用字母式子和文字语言表达这一性质,知道它适用于三个和三个以上的同底数幂相乘.重点熟悉同底数幂的乘法性质、幂的意义和乘法运算律等内容.难点区别幂的意义与乘法的意义,培养学生的推理能力和有条理的表达能力.教学过程一、创设情境,导入新课情景导入“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.教师提问盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?学生活动开始动笔计算,大部分学生可以列出算式:3×105×5×102=15×105×102=15×?(引入课题)二、师生互动,探究新知同底数幂的乘法法则.教师提问到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.学生活动分四人小组讨论、交流,举手发言,上台演示.计算过程:105×102=(10×10×10×10×10)×(10×10)=10×10×10×10×1 0×10×10=107.教师活动下面引例.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)53×54= =5( );(3)(-3)7×(-3)6= =(-3)( );(4)()3×()= ()( );(5)a3·a4= a( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师总结】a m·a n=·==a m+n从而得出同底数幂的乘法法则a m·a n=a m+n(m、n为正整数)即同底数幂相乘,底数不变指数相加.【教学说明】通过以上5个计算,让学生根据乘方的意义从特殊到一般探索同底数幂的乘法法则,水到渠成.三、随堂练习,巩固新知1.基础练习(1)下面的计算是否正确?如果错,请在旁边纠正:①a3·a4=a12②m·m4=m4③a3+a3=a6④x5+x5=2x10⑤3c4·2c2=5c6⑥x2·x n=x2n⑦2m·2n=2m·n⑧b4·b4·b4=3b4(2)计算:①78×73;②()5×(-)7;③x3·x5·x2;④a12·a;⑤y4·y3·y2·y;⑥x5·x5.2.能力提高(1)计算:①(x+y)3·(x+y)4;②(a-b)(b-a)3;③x n·x n+1+x2n·x(n是正整数)(2)填空:①x5·( )=x8;②a·( )=a6;③x·x3( )=x7;④x m·( )=x3m;⑤x5·x( )=x3·x7=x( )·x6=x·x( );⑥a n+1·a( )=a2n+1=a·a( ).(3)填空:①8=2x,则x= ;②8×4=2x,则x= ;③3×27×9=3x,则x= ;④已知a m=2,a n=3,求a m+n的值;⑤b2·b m-2+b·b m-1-b3·b m-5b2.四、典例精析,拓展新知例如果x m-n·x2n+1=x11,且y m-1·y4-n=y5,求m,n的值.分析根据同底数幂的乘法法则得:(m-n)+(2n+1)=11,(m-1)+(4-n)=5,用方程组解决.教学说明教师提问:由两个等式我们想到了什么知识?如何建立m与n之间的等量关系?教师深入强化数学中的转化思想.五、运用新知,深化理解1.a·a2·a3= .2.(x-y)3·(x-y)2·(y-x)= .3.(-x)4·x7·(-x)3=4.已知3a+b·3a-b=9.则a= .教学说明注意同底数幂乘法可以推广到多个因式相乘,遇到形如(-a)6·a9转化为a6·a9.六、师生互动,课堂小结这节课你学习到什么?有什么收获?有何疑问与困惑与同伴交流,在学生交流发言的基础上教师归纳总结.1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,使用方法:在乘积中,幂的底数不变,指数相加.2.同底数幂乘法可以拓展,例如,对含有三个或三个以上的同底数幂,仍成立.底数和指数,它既可取一个或几个具体数,也可取单项式或多项式.3.幂的乘法运算性质注意不能与整式的加减混淆.第二课时幂的乘方教学目标1.了解幂的乘方的运算性质,会进行幂的乘方运算.2.能利用幂的乘方的性质解决一些实际问题.3.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,提高学生推理能力和有条理的表达能力.4.通过合作探究,培养学生合作交流的意识,提高学生勇于探究数学的品质.重点了解幂的乘方的运算性质,会进行幂的乘方,积的乘方运算.难点幂的乘方与同底数幂的乘法运算性质区别,提高推理能力和有条理的表达能力,关键是利用教材内容安排的特点,把幂的乘方的学习与同底数幂的乘法紧密结合起来.教学过程一、创设情景,导入新课大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的103倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=πr3)学生活动进行计算,并在黑板上演算.解: 设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=π(102)3二、师生互动,探究新知教师引导(102)3=?利用幂的意义来推导.学生活动有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?学生回答a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,因此(102)3=106.教师活动利用上面推导方法求(1)(a3)2;(2)(24)3;(3)(b n)2学生活动推导上面几个算式并板演.教师推进请同学们根据所推导的几个题目,推导一下(a m)n的结果是多少?学生活动归纳总结并进行小组讨论,最后得出结论:教师板演(a m)n==a m×n(m、n为正整数)【教学说明】通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.三、随堂练习,巩固新知(1)(y3)2+(-y2)3-2y(-y5);(2)(a2n-2)2·(a m+1)3.例2已知:x2n=4,求(x3n)2与x8n的值.解析此题将(x3n)2与x8n都用x2n表示出来.四、典例精析,拓展新知例已知x2m=5,求x6m=-5的值,逆用幂的乘方法则x6m=x2m×3=(x2m)3.教学说明教师提问x6m与x2m在指数上有何关系,你想到了如何变形,化未知为已知(逆用幂的乘方法则).五、运用新知,深化理解1.108=( )2=( )42.p2n+2=( )23.(-x3)5=4.x2·x4+[(-x)2]3=5.已知x m·x2m=3,则x9m= .教学说明从跟踪练习中捕捉学生知识上、思维上的不足并及时跟进. 六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.1.幂的乘方(a m)n=a mn(m、n为正整数)使用范围是:幂的乘方,方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,也可以是字母,也可以是单项式和多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.第三课时积的乘方教学目标1.会进行积的乘方运算,进而会进行混合运算.2.经历探索积的乘方运算法则的过程,理解积的乘方是通过乘方的意义和乘法的交换律以及同底数幂的运算法则推导而得来的.理解积的乘方的运算法则,进一步体会幂的意义,提高学生推理能力和有条理的表达能力.3.在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美. 重点积的乘方是整式乘除运算的基础,本节课的重点是积的乘方运算.难点弄清幂的运算的根据,避免各种不同运算法则的混淆,突出幂的运算法则的基础性,注意区别与联系.教学过程一、回顾交流,引入新课教师活动提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.课堂演练计算:(1)(x4)3(2)a·a5(3)x7·x9(x2)3学生活动完成上面的演练题,并从中领会这两个幂的运算法则.教师活动巡视,关注学生的练习,并请3位学生上台演示,然后再提出下面的问题.二、师生互动,探究新知教师活动请同学们完成教材P20填空,并注意每步变形的依据.学生活动完成书本填空并回答教师问题.教师活动你发现了什么规律?如何解释这个规律?学生活动分组讨论,解释.师生互动教师在学生发言的基础上板书.(ab)n===a n b n.(ab)n=a n b n(n为正整数)即积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘.三、随堂练习,巩固新知1.下列等式中,错误的是( )A.(ab2)2=a2b4B.(-m2n2)5=-m15n10C.(-2x2)4=-4x4D.(4x m y3)3=64x3m y92.(-3x)3= ,(x2y3)4= ,[(-2)×102]3= ,[ (x3)2·(y2)4]2= .四、典例精析,拓展新知【例1】(1)[(-x2y)3·(-x2y)2]3(2)a3·a4·a+(a2)4+(-2a4)2【分析】(1)按积的乘方法则先算括号里面的;(2)第一项是同底数的乘法,第二项是幂的乘方,第三项是积的乘方.【例2】用简便方法计算:(1)(-)2014·(2)2015【分析】先将指数化为相同的再逆用积的乘方法则.教学说明例1由小组讨论交流解题思路,小组活动后,展示计算结果.教师根据反馈的情况总评.如(-2a4)2中的负号处理.倒2在教师引导下,由小组合作完成,并强调遇到高指数时化成同指数,再逆用积的乘方法则.五、运用新知,深化理解1.计算:(-3a3)2·a3+(-4a)2·a7-(5a3)32.已知:(a-2)2+=0,求a2014·b2013的值.教学说明由跟踪练习情况及时点评,如第一题中符号问题引起重视.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.1.积的乘方(ab)n=a n b n(n为正整数),使用范围:底数是积的乘方.方法:把积的每个因式分别乘方,再把所得的幂相乘.2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数也可以是整式,对三个以上因式的积也适用.3.要注意运算过程,注意每一步的依据,还应防止符号上的错误.4.在建构新的法则时应注意前面学过的法则与新法则的区别与联系.第四课时同底数幂的除法教学目标1.理解同底数幂的除法运算法则,能解决实际问题.2.在进一步体会幂的意义的过程中,发展学生的推理能力和表达能力.3.能熟练灵活地运用法则进行同底数幂的除法运算,培养学生的数学能力.4.感受数学的应用价值,体会数学与社会生活的联系,提高数学素养.重点理解同底数幂的除法法则.难点应用同底数幂除法法则解决数学问题.教学过程一、创设情景,导入新课教师活动地球的体积是1.1×1012km3,月球的体积2.2×1010km3,求地球的体积是月球的多少倍?如何列式?【学生活动】学生代表发言:(1.1×1012)÷(2.2×1010)教师活动1012÷1010=?下面我们一起探究.二、师生互动,探究新知教师活动完成教材P22填空,由填空你得出了什么规律?学生活动经小组交流后,汇报结果.教师活动板书:a m÷a n=a m-n,(m>n,且m、n为正整数)同底数相除,底数不变,指数相减.教师活动乘法与除法互为逆运算,我们能由同底数幂乘法法则来推导它吗?教师引导a n·( )=a m.设( )=a k.学生活动由小组讨论交流后汇报推导结果.教师活动我们的认知规律:猜测——归纳——证明.三、随堂练习,巩固新知1.105×107= .2.a·a2·a3·a4= .3.x n+1·x2·x1-n= .4.下列各题中,运算正确的是( )A.a3+a4=a7B.b3·b4=b7C.c3·c4=c12D.d3·d4=2d7教学说明根据反馈情况及时订正,并与法则对比,找准错因.四、典例精析,拓展新知【例1】一张数码照片的文件大小是28K,一个存储量为26M(1M=2K)的移动存储器能存储多少张这样的照片?分析用储量26M除以每张照片的存储量的大小.教学说明教师可将此问题类比成总价、单价与数量关系,从而化为同底数的除法.例2若32×92a+1÷27a+1=81,求a的值.分析将左右都化成3的指数幂再比较对应.教学说明左右两边能否化成同底幂的运算,如何使用幂的运算法则,强调转化思想,小组活动时注意对学困生的辅导.五、运用新知,深化理解1.一种计算机每秒可进行1012运算,它工作1015次运算需要秒时间.2.若y2m-1÷y=y2,求m+2的值.教学说明由跟踪练习情况及时点评,如y的指数不是0等.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何疑惑?与同伴交流,在学生交流发言的基础上教师归纳总结.运用同底数幂的除法性质时应注意以下问题:(1)运用法则的关键是看底数是否相同,而指数相减是指被除式的指数减去除式的指数;(2)因为零不能作除数,所以底数a≠0,这是此性质成立的前提条件;(3)注意指数“1”的情况,如a4÷a=a4-1=a3,不能把a的指数当做0;(4)多个同底数幂相除时,应按顺序计算.第五课时单项式与单项式相乘教学目标1.学生能理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.2.正确区别各单项式中的系数,同底数的幂和不同底数幂的因式.3.让学生感知单项式乘法法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式;经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力.4.注意培养学生的归纳、概括能力以及运算能力,充分调动学生的积极性,主动性.重点对单项式运算法则的理解和应用.难点应用单项式与单项式的乘法法则解决数学问题.教学过程一、复习旧知,导入新课我们已经学习了幂的运算性质,你能解答下面的问题吗?1.判断下列计算是否正确,如有错误加以改正.(1)a3·a5=a10;(2)a·a2·a5=a7;(3)(a3)2=a9;(4)(3ab2)2·a4=6a2b4.2.计算:(1)10×102×104=( );(2)(a+b)·(a+b)3·(a+b)4=( );(3)(-2x2y3)2=( ).教师活动我们刚才已经复习了幂的运算性质.从本节开始,我们学习整式的乘法.我们知道,整式包括什么?(包括单项式和多项式.)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式.这节课我们就来学习最简单的一种:单项式与单项式相乘.二、师生互动,探究新知1.一个长方体底面积是4xy,高度是3x,那么这个长方体的体积是多少?学生活动小组合作完成,在小组交流讨论后由代表发言.教师活动每一步的依据是什么?(乘法交换律)因此4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.(要强调解题的步骤和格式)2.仿照刚才的作法,你能解出下面的题目吗?(1)3x2y·(-2xy3)=[3·(-2)]·(x·x2)(y·y3)=-6x3y4.(2)(-5a2b3)·(-4b2c)=[(-5)×(-4)]·a2·(b3·b2)·c=20a2b5c.教师活动第(2)题中在第二个单项式-4b2c中出现的c怎么办?学生活动由小组讨论归纳单项式乘单项式的法则,教师板书.单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.三、随堂练习,巩固新知1.3x5·5x3= ,4y·(-2xy3)= .2.3×103×5×102= .3.(-3x2y)·xy2= .4.下列计算正确的是( )A.4a2·2a2=8a6B.2x4·3x4=6x8C.3x2·4x2=12x2D.(2ab2)·(-3abc)=-6a2b3四、典例精析,拓展新知例1边长是a的正方形面积是a·a,反过来说,a·a也可以看作是边长为a的正方形的面积.探讨:3a·2a的几何意义.探讨:3a·5ab的几何意义.例2纳米是一种长度单位,1米=109纳米,试计算长为5米,宽为4米,高为3米的长方体的体积是多少立方纳米?分析长方体体积=长×宽×高教学说明注意单位换算.五、运用新知,深化理解1.边长分别为2a和a的两个正方形按如图形式摆放,则图中阴影部分的面积是( )A.2a2B.2C.5a2-3aD.a22.光速约为3×105km/s,太阳光照射到地球所需的时间为5×102 s,则太阳与地球间的距离是km.教学说明第1题若学生思维受阻时,引导阴影部分可以转化成哪些图形的积和差?直角三角形的底和高各是多少?六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.第六课时单项式与多项式相乘教学目标1.在具体情况中,了解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算.2.经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力.3.体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力.4.充分调动学生学习的积极性、主动性.重点单项式与多项式的乘法运算.难点推测整式乘法的运算法则.教学过程一、复习旧知,导入新课1.单项式与单项式相乘法则?2.完成下列各题.(1)2x2·(-4xy)=( );(2)(-2x2)·(-3xy)=( );(3)(-ab)·(ab2)=( ).二、师生互动,探究新知1.5×(7-2+3)=5×+5×+5×依据是什么?将题中数转换成字母a、b、c、d,则a·(b+c+d)= ?【教师活动】你能将算出的结果用长方形的面积验证吗?如图2.在教师引导下,学生总结法则,并用语言叙述,教师订正语言准确性.板书:单项式与多项式相乘,只要将单项式分别乘以多项式的各项, 再将所得的积相加.即a(b+c+d)=ab+ac+ad三、随堂练习,巩固新知1.2a(4a-2b)= .2.4x2(5x2-3x+1)= .3.(4x2-6xy2)·(-xy)= .4.若一个长方体的长、宽、高分别为3x-4,2x和x,则它的体积是.四、典例精讲,拓展新知例先化简,再求值.(1)3x2(2x2-x+1)-x(3x3-4x2+2x),其中x=-1;(2)x2(3-x)+x(x2-2x)+1,其中x=.分析先利用单项式乘多项式的法则化简,再代入求值.教学说明教师强调运用法则做到一步一查确保计算准确无误,这类题应先化简,再求值.五、运用新知,深化理解先化简,再求值(1)3x(2x+y)-2x(x-y),其中x=1,y=(2)已知x2-3=0,求x(x2-x)-x2(5+x)-9的值.教师说明(2)中宜将x2视为一个整体.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.1.指导学生总结本节课的知识点,学习过程等的自我评价.2.多项式×单项式的积的项数、符号(结合去括号法则)及不能漏乘等注意事项给予强调.3.要善于在图形变化中发现规律,能熟练地对整式加减进行运算.第七课时多项式与多项式相乘教学目标1.经历探索多项式乘法法则的过程,理解多项式乘法法则;灵活运用多项式乘以多项式的运算法则.2.经历探索乘法法则的过程,发展观察、归纳、猜测、验证的能力;体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力.3.充分调动学生学习的积极性、主动性及与他人沟通交往的能力.重点多项式乘法的运算.难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”“负号”的问题.教学过程一、复习旧知,导入新课指名学生说出单项式与多项式相乘的法则.(单项式乘以多项式就是用单项式乘以多项式中的每一项,再把所得的积相加.) 式子p(a+b)=pa+pb中的p,可以是单项式,也可以是多项式.如果p=m+n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题.(由此引出课题)你会计算这个式子吗?你是怎样计算的?二、师生互动,探究新知教师活动教师引导学生由繁化简,把(m+n)看作一个整体,使之转化为单项式乘以多项式,即: [(m+n)(a+b)]=(m+n)a+(m+n)b=ma+mb+na+nb.学生活动由教材P28例图你会验证吗?教师活动问题:(1)如何表示扩大后的林区的面积?(2)用不同的方法表示出来后的等式为什么是相等的呢?学生活动学生分组讨论,相互交流得出答案.教师活动观察这一结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?如果能得到,又是怎样相乘得到的?(教师示范)1.你能用语言叙述这个式子吗?多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即:(m+n)(a+b)=ma+mb+na+nb.教师活动2.两个多项式相乘,不先计算能知道结果中(合并同类项前)有几项吗?3.在计算中怎样才能不重不漏?这个法则,对于三个或三个以上的多项式相乘,是否适用?若适用,应怎样计算?【学生活动】学生小组讨论、交流、发言汇报.三、随堂练习,巩固新知例1计算:(1)(x+3)(2x2-4x+1);(2)2(2x+3y)(3x+2y)-(6x-y)(2x-5y).四、典例精析,拓展新知甲、乙二人共同计算一道整式乘法:(2x+a)·(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中x的系数,得到的结果为2x2-9x+10.(1)你能知道式子中a、b的值各是多少吗?(2)请你计算出这道整式乘法的正确结果.分析甲抄错了a的符号,即甲的计算式为(2x-a)(3x+b)=6x2-(3a-2b)x-ab.对比得到的结果可得-(3a-2b)=11;乙漏抄了第二个多项式中a的系数,即乙的计算式为(2x+a)(x+b)=2x2+(a+2b)x+ab.对比得到的结果可得出a,b的值.解: (1)(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x-10.(2)(2x+a)(x+b)=2x2+(a+2b)x+ab=2x2-9x+10.∴---解得--(2)原式=(2x-5)(3x-2)=6x2-19x+10.五、运用新知,深化理解若多项式(x2+mx+n)(x2-3x+4)展开后不含x3项和x2项,试求m、n 的值.解:原式=x4+mx3+nx2-3x3-3mx2-3nx+4x2+4mx+4n=x4+(m-3)x3+(n-3m+4)x2+(4m-3 n)x+4n,由题意得:m-3=0,且n-3m+4=0∴m=3,n=5.教学说明教师提示各项系数对应,即待定系数法.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.指导学生总结本节课的知识点,学习过程的自我评价.主要针对以下方面:1.多项式×多项式2.整式的乘法用一个多项式中的每一项乘以另一个多项式的每一项,不要漏项.在没有合并同类项之前,两个多项式相乘展开后的项数应是这两个多项式项数之积.第八课时两数和乘以这两数的差教学目标1.掌握两数和乘以这两数的差公式,会推导两数和乘以它们的差的公式,并能运用公式进行简单的计算.2.了解两数和乘以这两数的差的公式的几何背景.3.培养学生独立思考的能力,集体协作的能力,组织归纳的能力及积极探索问题的能力.4.经历探索两数和乘以这两数的差的公式的过程,进一步发展学生的符号感和推理能力.5.通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔的、勇于探索的品质.重点对两数和乘以这两数的差的公式的理解,掌握两数和乘以这两数的差的公式的结构特征,熟练运用两数和乘以这两数的差的公式进行简单计算.难点理解两数和乘以这两数的差的公式的几何意义及特点,理解公式中字母的广泛含义,代数推理能力的培养.教学过程一、创设情景,导入新课街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米.问改造后的长方形草坪的面积是多少?学生活动(a+2)(a-2)=a2-4二、师生互动,探究新知教师活动你观察式子左边有什么特征?右边的结果又有什么特征?这种发现具有一般性吗?请同学们再列举几个验证一下.你能得出什么规律性结论?请用字母表示.教师活动在学生发言基础上归纳:(a+b)(a-b)=a2-b2.这就是说,两数之和与两数之积,等于这两数的平方差.简称平方差公式.请同学们结合P31图形进行面积验证.教师活动请同学们给出几个平方差的式子,并让同伴计算.三、随堂练习,巩固新知1.(5x+2)(5x-2)= ,(7+m)(-7+m)= .2.(a-3)( )=a2-9,(-a )(-b )=b2-a23.(a+1)(a-1)(a2+1)= .四、典例精析,拓展新知例利用平方差公式计算(1)59.8×60.2;(2)(5+1)(52+1)(54+1)(58+1)(516+1)+.分析(1)可转化为(60-0.2)(60+0.2);(2)先将前面部分乘以(5-1)构造平方差公式,再除以4.教学说明第(2)小题可能大多数同学不会做,教师抓住这困惑,是思维的起点,帮助分析如何构造平方差公式?(52+1)与谁构成平方差,同时注意代数式恒等的要求.五、运用新知,深化理解1.计算(y+x)(y-x)(x2+y2)(x4+y4)2.计算(1)2 0132-2 012×2 014(2)3×(4+1)(42+1)+1教学说明如何转化构造平方差公式,教师巡视并对学困生给予指导. 六、师生互动,课堂小结这一节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.第九课时两数和(差)的平方教学目标1.理解两数和(差)的平方的公式,掌握公式的结构特征,并熟悉地应用公式进行计算.2.经历探索两数和(差)的平方公式的过程,进一步发展学生的符号感和推理能力.3.培养学生探索能力和概括能力,体会数形结合的思想.重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新华师大版八年级上册:第12章整式的乘除第16课时导学案
课题:运用完全平方公式分解因式
学习目标
1.会用完全平方公式分解因式;
2.会选择适当方法分解因式。
学习方法
勾画圈点法、旁批法、识记法等。
预习
一、自学
1.阅读教材44页
2.我们已经学过的因式分解的方法有什么?尝试分解因式: =
3.根据乘法公式进行计算:
二、互学
1.探究一:
观察上面3、4中各式的左、右两边有什么共同特点?
左边的特点:______________________________________,
右边的特点:______________________________________.
试用公式表示:_______________________________________
这个公式你能用语言来描述吗?
公式中的a、b代表什么?
我们把形如a2+2ab+b2和 的式子叫完全平方式
2.探究二:下列各式是否是完全平方式?如果不是,请说明理由。
(1)a2-4a+4;(2)x2+4x+4y2 ;(3)4a2+2ab+ b2;
(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0. 25.
(1) = ______________(2) =______ __________
(3) = _________ (4) =__________
4.猜一猜:你能将下面的多项式分解因式吗?
(1) =_____________ (2) =___________
(3)a2+2ab+b2=(4)a2-2ab+b2=_________
(4)多项式首项带有“-”号时,则需先提出“-”号候在进行分解
(5)另一项为底数积的2倍;若底数积的2倍与平方项(同号还是异号),则选择和的完全平方
(6)如果多项式各项有公因式,一定要先,然后在考虑用哪个公式。其方法、步骤及结果检查可总结成以下口诀:首先提取,然后考虑用,两种方法反复试,提净、分完连乘式。
二、当堂检测
1.下列多项式是不是完全 平方式?为什么?
(1) a2-4a+ 4 (2) 1 +4a2(3) 4b2+ 4b–1 (4) a2+ ab + b2
2.若x2—6x +k是一个 完全平方式,那么k=
3.把下列各式分解因式:
(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.
4.将各式因式分解:
4.将下面各式分解因式:
(1) (2) (3)
展示
一、质疑
将下面各式分解因式:(1) (2) 4(2a+b)2-12(2a+b)+9
二、点拨(由小组提出有价值的问题,其他小组 发表意见,帮助解决问题;展示过程中,教师适时引导、点拨、调控和激励。)
反馈
一、小结
1.本节课学了什么?
2.如果多项式各项有公因式,一定要先,然后在考虑用哪个公式。其方法、步骤及结果检查可总结成以下口诀:首先提取,然后考虑用,两种方法反复试,提净、分完连乘式。
(1)x2+14xy+4 9y2; (2 )
(3)-4xy-4x2-y2(4) 2x3y2-16x2y+32x
(5) x2+2xy+2y2(6)(x+y)2-14(x+y)+49
反思 :判断一个式子是否是完全平方式应从几个方面思考?
3.归纳概括:
(1)用完全平方公式分解因式时,各公式中的字母既可以表示数,也可以表示式或式。
(2)在运用完全平方公式进行多项式的分解因式时,要根据其特点进行公式的选择,若多项式为三项式,才考虑用公式。
(3)完 全平方公式特征:左边是三项式,其中两项为平方式且同号,另一项为底数积的2倍。
相关文档
最新文档