《对数与对数运算》教学设计

合集下载

2017对数与对数运算教学设计

2017对数与对数运算教学设计

2017对数与对数运算教学设计第一篇:2017对数与对数运算教学设计2.2.1(1)对数与对数运算(教学设计)教学目的:1、理解对数的概念、了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并青春期技能。

2、通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

3、掌握对数的重要性质,通过练习,使学生感受到理论与实践的统一。

4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。

教学重点:对数的概念;对数式与指数式的相互转化。

教学难点:对数概念的理解;对数性质的理解。

教学过程:一、复习回顾,新课引入:引例1:一尺之锤,日取其半,万世不竭。

(1)取5次,还有多长?(答:1/32)x()=0.125,则x=?(2)取多少次,还有0.125尺?(答:12引例2:2002年我国GDP为a亿元,如果每年平均增长8%,那么经过多少年GDP是2002年的2倍?略解:(1+8%)x=2,则x=?二、师生互动,新课讲解: 1.定义一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N 的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.(解答引例)问:以4为底16的对数是2,用等式怎么表达?讨论:按照对数的定义,以4为底16的对数是2,可记作log416=2;同样从对数的定义出发,可写成42=16.2.对数式与指数式的互化当a>0,且a≠1时,如果ax=N,那么x=logaN;如果x=logaN,那么ax=N.即ax=N等价于x=logaN,记作当a>0,且a≠1时,ax=N⇔x=logaN.负数和零没有对数3.两个重要的对数(常用对数和自然对数)通常我们将以10为底的对数叫做常用对数(common logarithm),并且把log10N记作lgN.在科学技术中常使用以无理数e=2.7***Λ为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN记作lnN.例1:将下列指数式化为对数式,对数式化为指数式11;(3)3a=37;(4)()m=5.73 643(5)log116=-4;(6)log2128=7;(7)log327=a;(8)lg0.01=-2(1)54=625;(2)2-6=2变式训练1:(课本P64练习NO:1;2)例2(课本P63例2):求下列各式中x的值。

对数与对数运算教学设计

对数与对数运算教学设计

对数与对数运算教学设计对数与对数运算教学设计【篇1】1教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。

2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

3、通过学生分组探究进行活动,掌握对数的重要性质。

通过做练习,使学生感受到理论与实践的统一。

4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。

2学情分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。

通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。

因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。

3重点难点重点:(1)对数的概念;(2)对数式与指数式的相互转化。

难点:(1)对数概念的理解;(2)对数性质的理解。

4教学过程4.1第一学时教学活动活动1【导入】创设情境引入新课引例(3分钟)1、一尺之棰,日取其半,万世不竭。

(1)取5次,还有多长?(2)取多少次,还有0.125尺?分析:(1)为同学们熟悉的指数函数的模型,易得(2)可设取x次,则有抽象出:2、__年我国GPD为a亿元,如果每年平均增长8%,那么经过多少年GPD是__年的2倍?分析:设经过x年,则有抽象出:活动2【讲授】讲授新课一、对数的概念(3分钟)一般地,如果a(a0且a≠1)的b次幂等于N, 就是 =N 那么数 b叫做 a为底 N的对数,记作,a叫做对数的底数,N叫做真数。

注意:①底数的限制:a0且a≠1②对数的书写格式二、对数式与指数式的互化:(5分钟)幂底数← a →对数底数指数← b →对数幂← N →真数思考:①为什么对数的定义中要求底数a0且a≠1?②是否是所有的实数都有对数呢?负数和零没有对数三、两个重要对数(2分钟)①常用对数:以10为底的对数 ,简记为: lgN②自然对数:以无理数e=2.71828…为底的对数的对数简记为: lnN . (在科学技术中,常常使用以e为底的对数)注意:两个重要对数的书写课堂练习(7分钟)对数与对数运算教学设计【篇2】对数与对数运算训练题1.2-3=18化为对数式为A.log182=-3 B.log18(-3)=2C.log218=-3 D.log2(-3)=18解析:选C.根据对数的定义可知选C.2.在b=log(a-2)(5-a)中,实数a的取值范围是()A.a>5或a B.2<a<3或3<a<5C.25 D.3<a<4解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5.3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x =10;④若e=lnx,则x=e2,其中正确的是()A.①③ B.②④C.①② D.③④解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.4.方程log3(2x-1)=1的解为x=________.解析:2x-1=3,x=2.答案:21.logab=1成立的条件是()A.a=b B.a=b,且b0C.a0,且a D.a0,a=b1解析:选D.a0且a1,b0,a1=b.2.若loga7b=c,则a、b、c之间满足()A.b7=ac B.b=a7cC.b=7ac D.b=c7a解析:选B.loga7b=cac=7b,b=a7c.3.如果f(ex)=x,则f(e)=()A.1 B.eeC.2e D.0解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.f(e)=lne=1.4.方程2log3x=14的解是()A.x=19 B.x=x3C.x=3 D.x=9解析:选A.2log3x=2-2,log3x=-2,x=3-2=19.5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为() A.9 B.8C.7 D.6解析:选A.∵log2(log3x)=0,log3x=1,x=3.同理y=4,z=2.x+y+z=9.6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.7.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,log23a=log2323=1.答案:18.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e9.方程9x-63x-7=0的解是________.解析:设3x=t(t0),则原方程可化为t2-6t-7=0,解得t=7或t=-1(舍去),t=7,即3x=7.x=log37.答案:x=log3710.将下列指数式与对数式互化:(1)log216=4; (2)log1327=-3;(3)log3x=6(x>0); (4)43=64;(5)3-2=19; (6)(14)-2=16.解:(1)24=16.(2)(13)-3=27.(3)(3)6=x.(4)log464=3.(5)log319=-2.(6)log1416=-2.11.计算:23+log23+35-log39.解:原式=232log23+353log39=233+359=24+27=51. 12.已知logab=logba(a0,且a1;b0,且b1).求证:a=b或a=1b.证明:设logab=logba=k,则b=ak,a=bk,b=(bk)k=bk2.∵b0,且b1,k2=1,即k=1.当k=-1时,a=1b;当k=1时,a=b.a=b或a=1b,命题得证.对数与对数运算教学设计【篇3】对数是什么在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案一、教学目标1.了解对数的概念和性质。

2.掌握对数的换底公式。

3.能够运用对数运算解决实际问题。

二、教学重点1.对数的换底公式的掌握。

2.对数运算的实际应用。

三、教学难点1.对数的换底公式的理解与应用。

2.对数运算在实际问题中的灵活运用。

四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。

2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。

然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。

3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。

逐步提高题目的难度,以巩固学生的基本技能。

(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。

培养学生的问题解决能力和分析能力。

4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。

让学生感受到对数运算在实际问题中的重要性。

(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。

拓宽学生的数学思维。

五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。

展望下节课的内容,为下一步学习打下基础。

六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。

七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。

对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。

通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。

同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。

对数与对数的运算市公开课获奖教案省名师优质课赛课一等奖教案

对数与对数的运算市公开课获奖教案省名师优质课赛课一等奖教案

对数与对数的运算教案一、教学目标:1. 理解对数的概念及其运算规则;2. 掌握对数的运算方法;3. 能够解决涉及对数的实际问题。

二、教学重难点:1. 掌握对数的基本概念及其运算规则;2. 理解并能够正确应用对数与对数之间的运算。

三、教学内容与方法:1. 教学内容:(1) 对数的定义及性质介绍;(2) 对数的运算规则;(3) 对数的应用。

2. 教学方法:(1) 课堂讲解法:通过讲解对数的定义及性质,引导学生理解对数的概念;(2) 案例分析法:通过实际问题分析,引导学生掌握对数的运算方法;(3) 课堂练习法:通过课堂练习巩固所学知识。

四、教学步骤:1. 引入:通过提问的方式,询问学生对对数的理解程度,并激发学生对对数的兴趣。

2. 对数的定义及性质介绍:(1) 定义:介绍对数的定义,即对于任意正数a和底数为b的对数运算,定义为满足b的x次方等于a的x的值。

(2) 性质:介绍对数运算的基本性质,包括对数运算的单调性、对数运算的底数性质等。

3. 对数的运算规则:(1) 同底数相乘的运算规则;(2) 同底数相除的运算规则;(3) 底数为10的运算规则。

4. 对数的应用:(1) 对数在指数函数中的应用;(2) 对数在科学计数法中的应用;(3) 对数在解决实际问题中的应用。

5. 案例分析:通过具体实例分析,引导学生掌握对数的运算方法。

6. 课堂练习:布置一些练习题目,让学生在课堂上进行练习,并即时批改答案,帮助学生查漏补缺。

7. 拓展延伸:对于一些对数运算的特殊情况,进行延伸讨论,帮助学生更深入理解对数运算。

8. 总结回顾:对本节课所学的内容进行总结回顾,澄清学生的疑惑。

五、教学评价:通过课堂上的练习和学生的参与情况,评价学生是否掌握了对数和对数运算的概念、运算规则,并能够正确应用于解决实际问题。

六、教学拓展:1. 引导学生进一步思考,深入理解对数运算的本质及其应用领域;2. 鼓励学生自主探索,寻找更多有关对数的应用案例,并进行分享和讨论。

《对数与对数运算》教学设计(精品)

《对数与对数运算》教学设计(精品)

对数与对数运算(一)(一)教学目标1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.(二)教学重点、难点(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的(三)教学方法启发式启发学生从指数运算的需求中,提出本节的研究对象——对数,从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.引导学生在指数式与对数式的互化过程中,加深对于定义的理解,为下一节学习对数的运算性质打好基础.(四)教学过程教学环节教学内容师生互动设计意图提出问题1.提出问题(P72思考题)13 1.01xy=⨯中,哪一年的老师提出问题,学生思考回答.由实际问题引入,激发人口数要达到10亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).启发学生从指数运算的需求中,提出本节的研究对象——对数,学生的学习积极性.概念 形成合作探究:若1.01x =1318,则x 称作是以1.01为底的1318的对数.你能否据此给出一个一般性的结论?一般地,如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.举例:如:24416,2log 16==则,读作2是以4为底,16的对数.1242=,则41log 22=,读作12是以4为底2的对数.合作探究 师:适时归纳总结,引出对数的定义并板书.让学生经历从“特殊一一般”,培养学生“合情推理”能力,有利于培养学生的创造能力.概念 深化 1. 对数式与指数式的互化 在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1 (2)log x a a N N x =⇔= 指数式⇔对数式 幂底数←a →对数底数 指 数←x →对数 幂 ←N→真数掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.通过本环节的教学,培养学生的用联系的关点观察问题.说明:对数式log a N 可看作一记号,表示底为a (a >0,且a ≠1),幂为N 的指数工表示方程x a N =(a >0,且a ≠1)的解. 也可以看作一种运算,即已知底为a (a >0,且a ≠1)幂为N ,求幂指数的运算. 因此,对数式log a N 又可看幂运算的逆运算. 2. 对数的性质:提问:因为a >0,a ≠1时,log x N a a N x =⇔=则 由1、a 0=1 2、a 1=a 如何转化为对数式②负数和零有没有对数? ③根据对数的定义,log a N a =? (以上三题由学生先独立思考,再个别提问解答) 由以上的问题得到① 011,a a a == (a >0,且a ≠1) ② ∵a >0,且a ≠1对任意的力,10log N 常记为lg N .恒等式:log a N a =N 3. 两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e =2.71828…为底的对数称为自然对数,log e N 常记为ln N .备选例题例1 将下列指数式与对数式进行互化.(1)64)41(=x(2)51521=-(3)327log 31-= (4)664log -=x【分析】利用a x = N ⇔x = log a N ,将(1)(2)化为对数式,(3)(4)化为指数式. 【解析】(1)∵64)41(=x ,∴x =41log 64(2)∵51521=-,∴2151log 5-= (3)∵327log 31-=,∴27)31(3=-(4)∵log x 64 = –6,∴x -6 = 64.【小结】对数的定义是对数形式与指数形式互化的依据,同时,教材的“思考”说明了这一点. 在处理对数式与指数式互化问题时,依据对数的定义a b = N ⇔b = log a N 进行转换即可.例2 求下列各式中的x . (1)32log 8-=x ; (2)4327log =x ; (3)0)(log log 52=x ; 【解析】(1)由32log 8-=x得32332)2(8--==x = 2–2,即41=x .(2)由4327log =x ,得343327==x ,∴813)3(4343===x .(3)由log 2 (log 5x ) = 0得log 5x = 20 = 1. ∴x = 5.【小结】(1)对数式与指数式的互化是求真数、底数的重要手段.(2)第(3)也可用对数性质求解.如(3)题由log 2(log 5x ) = 0及对数性质log a 1=0. 知log 5x = 1,又log 55 = 1. ∴x = 5.对数与对数运算(二)(一)教学目标1.知识与技能:理解对数的运算性质.2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3.情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1.教学重点:对数运算性质及其推导过程. 2.教学难点: 对数的运算性质发现过程及其证明. (三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法. (四)教学过程教学环节教学内容师生互动设计意图复习引入复习:对数的定义及对数恒等式log baN b a N=⇔=(a>0,且a≠1,N>0),指数的运算性质.;m n m n m n m na a a a a a+-⋅=÷=();mnm n mn n ma a a a==学生口答,教师板书.对数的概念和对数恒等式是学习本节课的基础,学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备.提出问题探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m na a a+⋅=,那m n+如何表示,能用对数式运算吗?如:,,m n m n m na a a M a N a+⋅===设.于是,m nMN a+=由对数的定义得到log,maM a m M=⇔=lognaN a n N=⇔=logm naMN a m n MN+=⇔+=log log log()a a aM N MN∴+=放出投影学生探究,教师启发引导.即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?概念形成(让学生探究,讨论)如果a>0且a≠1,M>0,N>0,那么:(1)log log loga a aMN M N=+(2)log log loga a aMM NN=-(3)log log()na aM n M n R=∈证明:(1)令,m nM a N a==则:m n m nMa a aN-=÷=logaMm nN∴-=又由,m nM a N a==log,loga am M n N∴==即:log log loga a aMM N m nN-=-=(3)0,log,Nn nan N M M a≠==时令则log,bnab n M M a==则N bn na a∴=N b∴=让学生多角度思考,探究,教师点拨.让学生讨论、研究,教师引导.让学生明确由“归纳一猜想”得到的结论不一定正确,但是发现数学结论的有效方法,让学生体会“归纳一猜想一证明”是数学中发现结论,证明结论的完整思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略.通过这一环节的教学,训练学生思维的广阔性、发散性,进一步加深学生对字母的认识和利用,体会即log log log aa a MM N N=- 当n =0时,显然成立.log log na a M n M ∴=从“变”中发现规律.通过本环节的教学,进一步体会上一环节的设计意图.概念 深化合作探究: 1. 利用对数运算性质时,各字母的取值范围有什么限制条件?2. 性质能否进行推广?(师组织,生交流探讨得出如下结论) 底数a >0,且a ≠1,真数M >0,N >0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.(生交流讨论) 性质(1)可以推广到n 个正数的情形,即 log a (M 1M 2M 3…M n ) =log a M 1+log a M 2 +log a M 3+…+log a M n(其中a >0,且a ≠1,M 1、M 2、M 3…M n >0).应用 举例例1 用log a x ,log a y ,log a z 表示下列各式(1)log a xyz(2)23log 8a x y学生思考,口答,教师板演、点评. 例1分析:利用对数运算性质直接化简.(1)log axyzlog log a a xy z =-通过例题的解答,巩固所学的对数运算法则,提高运算能力.备选例题例1 计算下列各式的值: (1)245lg 8lg 344932lg21+-;(2)22)2(lg 20lg 5lg 8lg 325lg +⋅++. 【解析】(1)方法一:原式=2122325)57lg(2lg 34)7lg 2(lg 21⨯+--=5lg 217lg 2lg 27lg 2lg 25++-- =5lg 212lg 21+ =21)5lg 2(lg 21=+. 方法二:原式=57lg 4lg 724lg +- =475724lg⨯⨯ =21)52lg(=⨯.(2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.【小结】易犯lg52 = (lg5)2的错误.这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1.例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45; (2)设log a x = m ,log a y = n ,用m 、n 表示][log 344yxa a ⋅;(3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.【解析】(1)1190lg 45lg 222==1[lg9lg10lg 2]2=+- 1[2lg31lg 2]2=+- =-+=2lg 21213lg 0.4771+0.5 – 0.1505 = 0.8266 (2)434log []a x a y⋅ 1113412log log log a a a a x y =+-.1213141log 121log 3141m n y x a a -+=-+=(3)由已知得:532532lglg lg lg lg cb ac b a x =-+=,∴532c b a x =.【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a M ⇒N = M .对数与对数运算(三)(一)教学目标 1.知识与技能:(1)掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.(2)能将一些生活实际问题转化为对数问题并加以解答. 2.过程与方法:(1)结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想.(2)通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力. (3)通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用.3.情感、态度与价值观(1)通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.(二)教学重点、难点1.教学重点:(1)换底公式及其应用.(2)对数的应用问题.2.教学难点:换底公式的灵活应用.(三)教学方法启发引导式通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.(四)教学过程教学环节教学内容师生互动设计意图提出问题我们学习了对数运算法则,可以看到对数的运算法则仅适用于对数的底数相同的情形,若在解题过程中,遇到对数的底数不相同时怎么办?师:从对数的定义可以知道,任何不等于1的正数都可以作为对数的底.数学史上,人们经过大量的努力,制作了常用对数、自然对数表,只要通过查表就能求出任意正产生认知冲突,激发学生的学习欲望.数的常用对数或自然对数.这样,如果能将其他底的对数转换为以10或e为底的对数,就能方便地求出任意不为1的正数为底的对数.概念形成1. 探求换底公式,明确换底公式的意义和作用.例如,求我国人口达到18亿的年份,就是计算x=log1.011318的值,利用换底公式与对数的运算性质,可得x=log1.011318=01.1lg1318lg=01.1lg13lg18lg-≈0043.01139.12553.1-=32.8837≈33(年).由此可得,如果人口年增长率控制在1%,那么从2000年初开始,大约经过33年,即到2032年底我国的人口总数可达到18亿.师:你能根据对数的定义推导出下面的换底公式吗?log a N=aNccloglog(a>0,且a≠1;c>0,且c≠1;N>0).(师生讨论并完成)当a>0,且a≠1时,若a b=N,①则log a N=b. ②在①的两边取以c(c>0,且c≠1)为底的对数,则log c a b=log c N,即b log c a=log c N.∴b=aNcaloglog. ③由②③得log a N=aNccloglog(c>0,且c≠1).一般地,log a N=aNccloglog(a>0,且a≠1;c>0,且c≠1;N>0),这个公式称为换底公式.推导换底公式应用举例(多媒体显示如下例题,生板演,师组织学生进行课堂评价)例1 计算:(1)例1分析:在利用换底公式进行化简求值时,一般情况是根据题中所给的对数式的掌握换底公式的应用.log34·log48·log8m=log416,求m的值.(2)log89·log2732.(3)(log25+log4125)·5log2log33.具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.(1)解:原方程等价于3lg4lg×4lg8lg×8lglg m=2,即log3m=2,∴m=9.(2)解法一:原式=8lg9lg·27lg32lg=2g313g21·3g312g51=910.解法二:原式=8log9log22·27log32log22=33log22·3log352=910.(3)解:原式=(log25+log255)·5log22log33=21log2255·log52=21log2525·log52=45log25·log52=45.小结(1)不同底的对数要尽量化为同底的对数来计算;(2)在第(3)小题的计算过程中,用到了性质logmaM n=mn logaM及换底公式log a N=aNbbloglog.利用换底公合作探究:现在我们来用已学过的对数知识解决实际问题.例2 20世纪30年代,里克特(C.F.Richter)制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lg A-lg A0,其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1). 式可以证明:log a b=ablog1,即log a b log b a=1.例2解:(1)M=lg20-lg0.001=lg001.020=lg20000=lg2+lg104≈4.3.因此,这是一次约为里氏4.3级的地震.(2)由M=lg A-lg A0可得M=lgAA⇔AA=10M⇔A=A0·10M.当M=7.6时,地震的最大振幅为A1=A0·107.6;当M=5时,地震的最大振幅为A2=A0·105.所以,两次地震的最大振幅之比是21AA=56.71010⋅⋅AA=107.6-5=102.6≈398.答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍.合作探究:可以看到,虽然7.6级地震和5级地震仅相差2.6级,但7.6级地震的最大振幅却是5级地震最大掌握利用对数知识解决实际问题.课堂练习1.课本P 79练习第4题.2.在a b log 1,ba lg lg ,log nb a n ,log n b a n ,baab ab log 1log 1--(a >0,a ≠1,b >0,b ≠1,ab ≠1,n ∈N )中和log a b 相等的有 A.2个B.3个C.4个D.1个3.若log 34·log 48·log 8m =log 42,求m .4.(1)已知log 53=a ,log 54=b ,试用a 、b 表示log 2512;(2)已知log 1227=a ,求log 616.14的含量P =(21)5730t.由对数与指数的关系,指数式P =(21)5730t可写成对数式t =log573021P .湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,即P =0.767,那么t =log5730210.767,由计算器可得t ≈2193. 所以,马王堆古墓是近2200年前的遗址. 课堂练习答案1.(1)1;(2)1;(3)45.2. A3. 3.4. (1)2ba +. (2)aa +-3)3(4. 归纳 总结1.换底公式及其应用条件(注意字母的范围).2.解决实际问题的一般步骤:学生先自回顾反思,教师点评完善.形成知识体系.课后作业:2.2 第三课时 习案学生独立完成巩固新知备选例题例1 已知log 189 = a ,18b = 5,求log 3645. 【解析】方法一:∵log 189 = a ,18b = 5, ∴log 185 = b , 于是)218(log )59(log 36log 45log 45log 1818181836⨯⨯== =2log 15log 9log 181818++=aba b a -+=++2918log 118. 方法二:∵log 189 = a ,18b = 5, ∴lg9 = a lg18,lg5 = b lg8,∴9lg 18lg 25lg 9lg 918lg)59lg(36lg 45lg 45log 236-+=⨯===ab a a b a -+=-+218lg 18lg 218lg 18lg . 【小结】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质;(2)题目中有指数式和对数式时,要注意指数与对数互化,统一成一种形式. 例2 我们都处于有声世界里,不同场合,人们对音量会有不同的要求,音量大小的单位是分贝(dB),对于一个强度为I 的声波,分贝的定义是:y = 10lgI I. 这里I 0是人耳能听到的声音的最低声波强度,I 0 = 10-12w/m 2,当I = I 0时,y = 0,即dB = 0.(1)如果I = 1w/m 2,求相应的分贝值;(2)70dB 时声音强度I 是60dB 时声音强度I′的多少倍? 【解析】(1)∵I =1w/m 2, ∴y =10lg120110lg 10I I -= 1210lg101012lg10120()dB ==⨯=(2)由70 = 10lg 0I I ,即7lg 0=I I,∴7010=I I ,又60 = 10lg0I I ',即lg 0I I '=6,∴0I I '=106. ∴67001010='='I I I II I =10,即I = 10I ′答: (1)I = 1w/m 2,相应的分贝值为120()dB ; (2)70dB 时声音强度I 是60dB 时声音强度I′的10倍。

对数与对数运算教学设计

对数与对数运算教学设计

对数与对数运算教学设计对数运算教学设计对数运算公式对数函数教学设计幂函数教案道客篇一:对数与对数运算(一)教学设计对数与对数运算(一)教学设计(李恒福)一、教学内容分析本节课是新课标高中数学A版必修①中第二章对数函数内容的第一课时,也就是对数函数的入门。

对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。

而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。

通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。

同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。

二、学生学习情况分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。

通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。

因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。

三、设计思想学生是教学的主体,本节课要给学生提供各种参与机会。

调动学生学习的积极性,主动性。

本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。

在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。

让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

四、教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。

2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

3、通过学生分组探究进行活动,掌握对数的重要性质。

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)以下是网友分享的关于对数与对数运算说课稿的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一§2.2.1对数与对数运算说课稿大家好,我是。

,我今天的讲课内容是对数与对数的运算。

我将从以下5个方面来进行今天的说课,第一是教学内容分析,第二是学生的学情分析,第三是教学方法的策略,第四是教学过程的设计,第五的教学反思。

一、教学内容分析对数与对数的运算是人教版高中教材必修一第二章第二节第一课时的内容。

本节课是第一课时,主要讲的就是认识对数和对数的一些基本运算性质。

本节课的学习蕴含着转化化规的数学思想,类比与对比等基本数学方法。

在上节课,我们学习了指数函数以及指数函数的性质,是本节课学习对数与对数的运算的基础,而下节课,我们又将学习对数函数与对数函数的性质,这节课恰好为下节课的学习做了一个铺垫。

二、学生学情分析接下来我将从认知、能力、情感三个方面来进行学生的学情分析。

首先是认知,该阶段的高中生已经学习了指数及指数函数的性质,具备了学习对数的基础知识;在能力方面,高一的学生已经初步具备运用所学知识解决问题的能力,但是大多数同学还缺乏类比迁移的能力;而在情感方面,大多数学生有积极的学习态度,能主动参与研究,但是还有部分的学生还是需要老师来加以引导的。

三、教学方法的策略根据教材的要求以及本阶段学生的具体学习情况,我制定了一下的教学目标。

首先是知识与技能,理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值;接着是过程与方法,通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力;最后是情感态度与价值观,通过对问题转化过程的引导,培养学生敢于质疑、勇于开拓的创新精神。

基于以上的分析,我制定了本节课的重难点。

本节课的教学重点是对数的定义,对数式与指数式的互化,对数的运算法则及其推导和应用;本节课的难点是对数概念的理解和对数运算法则的探究和证明;本节课我所采用的教学方法是探究式教学法,分为以下几个环节:教师创设问题情境,启发式地讲授,讲练结合,引导学生思考,最后鼓励学生自主探究学习。

对数与对数的运算教案

对数与对数的运算教案

对数与对数的运算教案教案标题:对数与对数的运算教案目标:1. 理解对数的概念和性质。

2. 掌握对数运算的基本规则。

3. 能够运用对数运算解决实际问题。

教案步骤:引入活动:1. 引导学生回顾指数的概念和运算规则,并提醒学生指数运算中可能遇到的困难。

2. 引出对数的概念,通过举例说明对数是指数的逆运算。

知识讲解:1. 解释对数的定义:如果a^x = b,那么x就是以a为底b的对数,记作log_a(b)。

2. 讲解对数的性质:a) log_a(a) = 1,任何数以自身为底的对数都等于1。

b) log_a(1) = 0,任何数以底为a的对数等于1。

c) log_a(a^x) = x,对数与指数运算互为逆运算。

d) log_a(b * c) = log_a(b) + log_a(c),对数运算中的乘法法则。

e) log_a(b / c) = log_a(b) - log_a(c),对数运算中的除法法则。

f) log_a(b^x) = x * log_a(b),对数运算中的幂运算法则。

示例练习:1. 给出一些简单的对数运算题目,让学生运用对数运算法则进行计算。

2. 提供一些实际问题,要求学生运用对数运算解决问题,如计算震级、pH值等。

拓展应用:1. 鼓励学生自主探索对数运算在科学、工程等领域的应用。

2. 分组讨论,让学生分享对数运算在日常生活中的应用案例。

总结回顾:1. 总结对数的定义和性质。

2. 强调对数运算的重要性和实际应用。

教学资源:1. 板书:对数的定义和性质,对数运算的基本规则。

2. 教材:提供相关的例题和练习题。

3. 计算器:用于计算较复杂的对数运算。

教学评估:1. 在课堂上进行小组讨论和问题解答,观察学生对对数和对数运算的理解程度。

2. 布置作业,包括计算题和应用题,检验学生对对数运算的掌握情况。

3. 批改作业,给予学生针对性的反馈和指导。

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案一、教学目标:1. 理解对数的概念和性质;2. 掌握对数与指数的关系;3. 掌握对数运算的基本规则;4. 能够运用对数解决实际问题。

二、教学重点:1. 对数的概念和性质;2. 对数与指数的关系;3. 对数运算的基本规则。

三、教学难点:1. 对数运算的基本规则;2. 对数方程的求解。

四、教学准备:1. 教材《高中数学选修6》;2. PowerPoint课件;3. 展示用白板、彩色笔。

五、教学过程:Step 1 引入新知识(5分钟)通过提问引导学生回忆指数运算的概念和性质。

然后告诉学生,当指数运算无法直接计算时,我们可以利用对数运算来简化计算过程。

Step 2 讲解对数的概念和性质(10分钟)1. 介绍对数的定义:如果a^x = b,则x叫做以a为底b的对数,记作x = logₐb。

2. 引导学生理解对数的特性:对数运算可以将一个指数运算转化为一个等价的等式运算。

3. 用例子讲解对数运算的具体过程,并利用PPT展示辅助讲解。

Step 3 探究对数与指数的关系(15分钟)1. 让学生思考:对数运算与指数运算之间有什么关系?2. 引导学生发现:对数运算是指数运算的逆运算,两者互为反函数。

3. 提醒学生注意指数和对数的底数需相同,否则无法进行计算。

4. 用简单的练习题让学生巩固对数和指数的关系。

Step 4 对数运算的基本规则(15分钟)1. 介绍对数运算的基本规则:a) logₐ(m × n) = logₐm + logₐn;b) logₐ(m ÷ n) = logₐm - logₐn;c) logₐ(m^p) = p × logₐm;d) logₐ1 = 0;e) logₐa = 1。

2. 指导学生如何运用这些规则进行对数运算的简化计算。

3. 通过实例展示对数运算的基本规则,并让学生自己尝试计算。

Step 5 解决真实问题(15分钟)1. 给学生提供实际问题,引导他们运用所学知识解决问题。

高中数学教案:对数与对数运算

高中数学教案:对数与对数运算

高中数学教案:对数与对数运算教学目标:1. 理解对数的定义和性质;2. 掌握对数的运算法则;3. 能够利用对数解决实际问题。

教学重点:1. 对数的定义和性质;2. 对数的运算法则。

教学难点:对数运算的应用。

教学准备:教师准备好黑板、白板、彩色粉笔、教科书、练习册等教材。

教学过程:Step1 导入教师可以通过提问激发学生对对数的了解和认识,如:你们知道什么是对数吗?对数有哪些性质呢?Step2 引入教师在黑板上写下对数的定义:如果a^x=b,那么x就是以a为底b的对数,记作x=log_a b,其中a是底数,b是真数。

让学生进行解读和理解。

Step3 对数的性质1. 对数的底数必须大于0且不等于1;2. log_a a=1;3. log_a 1=0;4. log_a (m*n)=log_a m + log_a n;5. log_a (m/n) = log_a m - log_a n;6. log_a m^p = p * log_a m;教师可以结合教材上的例题来讲解这些性质,并通过示意图等方式帮助学生理解。

Step4 对数的运算法则教师介绍对数的运算法则,如:log_a (mn) = log_a m + log_a n,log_a (m/n) = log_a m - log_a n,log_a m^p = p * log_a m,等等。

通过实例演示和练习,帮助学生掌握这些运算法则。

Step5 解决实际问题教师通过一些实际问题的例子,如物种繁殖问题、地震震级问题等,引导学生使用对数进行运算,解决问题。

Step6 练习教师布置一些练习题,让学生在课下巩固对对数和对数运算的理解和掌握。

Step7 总结与拓展教师对本节课的内容进行总结,并对下一节课的内容进行预告和拓展,如指数函数的概念和性质。

Step8 课堂作业布置课堂作业,让学生对本节课所学内容进行巩固和复习。

Step9 教学反思教师对本节课上的教学进行反思,并做好备课记录,以便下次备课和教学参考。

对数与对数运算教学设计

对数与对数运算教学设计

对数与对数运算教学设计1、合同主体11 甲方(委托方):____________________________12 乙方(受托方):____________________________2、合同标的21 本合同的标的为“对数与对数运算”教学设计服务。

22 乙方应根据甲方的教学需求和课程目标,设计一套完整、系统、科学且具有创新性的“对数与对数运算”教学设计方案。

23 教学设计方案应包括但不限于教学目标、教学重难点、教学方法、教学过程、教学资源、教学评价等方面的内容。

3、双方权利和义务31 甲方的权利和义务311 有权对乙方的教学设计方案提出修改意见和建议。

312 按照合同约定向乙方支付相应的费用。

313 为乙方提供必要的教学相关资料和信息,协助乙方完成教学设计工作。

32 乙方的权利和义务321 有权按照自己的专业知识和经验,制定教学设计方案。

322 按照合同约定的时间和要求,向甲方交付高质量的教学设计方案。

323 保守甲方提供的教学相关资料和信息的秘密,不得泄露给第三方。

4、违约责任41 若甲方未按照合同约定支付费用,每逾期一天,应按照未支付金额的X%向乙方支付违约金。

逾期超过X天的,乙方有权解除合同,并要求甲方支付已完成工作的费用及违约金。

42 若乙方未按照合同约定的时间交付教学设计方案,每逾期一天,应按照合同总金额的X%向甲方支付违约金。

逾期超过X天的,甲方有权解除合同,并要求乙方返还已支付的费用及支付违约金。

43 若乙方交付的教学设计方案不符合合同约定的要求,乙方应在甲方指定的时间内进行修改和完善。

若经多次修改仍不符合要求,甲方有权解除合同,并要求乙方返还已支付的费用及支付违约金。

44 若双方违反本合同中关于保密义务的约定,应向对方支付合同总金额的X%作为违约金,并赔偿对方因此遭受的损失。

5、争议解决方式51 本合同的履行过程中如发生争议,双方应首先友好协商解决;协商不成的,任何一方均有权向合同签订地的人民法院提起诉讼。

对数与对数的运算详细教案

对数与对数的运算详细教案

课题2.2.1 对数与对数的运算 教学内容:对数与对数的运算 教学目标:1.知识目标:理解对数的概念,掌握指数式与对数式的互化以及认识特殊对数的意义和表示方式;2.能力目标:培养学生分析问题、解决问题的能力与思维灵活性的能力;3.情感目标:在知识的探索和发现过程中让学生认识事物之间的相互联系与相互转换;感受探索新知的乐趣和成功的喜悦.教学重点:对数的概念,对数与指数的关系. 教学难点:对数概念的理解. 课型:新授课. 教学方法:1 教法:讲解法,合作法.2 学法:类比学习法,合作学习法.3 教学用具:彩色粉笔;多媒体.教学过程:1.创设情境,引入新知(1)庄子:一尺之棰,日取其半,万世不竭.①取5次,还有多长? ②取多少次,还有0.125尺?(2)截止1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么多少年后我国人口数可达18亿? 可抽象出:51,2a ⎛⎫= ⎪⎝⎭10.125?2xx ⎛⎫=⇒= ⎪⎝⎭()1311%18y⨯+=即181.01?13y y =⇒=师:上一节我们已经知道指数运算就是我们以前学的乘方运算,同样也知道乘方运算的逆运算开方运算.对512a⎛⎫=⎪⎝⎭,大家认为是什么运算呢?a的值为多少呢?对于1180.125 1.01213xy⎛⎫==⎪⎝⎭和,这两个式子有什么共同的地方没有?是什么?(已知底数和幂值,求指数).是我们熟悉的运算吗?和我们所熟知的指数也能算和开方运算有联系吗?其中的x y和的值怎么表示呢?带着这些问题进入我们今天的课堂:对数.2.探究新知⑴对数定义如果x a N=(a>0且a≠1),那么数x叫做以a为底N的对数,记作x =loga N(01a a>≠且)其中a叫对数的底数,N叫做真数.师:从上述定义要知道对数的记法为:logaN;读作:以a为底N的对数.师:得出logaN表示a的多少次幂为N.师:在上节我们学的指数函数中,我们知道a>0且a≠1才有意义,所以在考虑对数的时候我们也规定a>0且a≠1.师:知道了对数的定义,我们就根据定义来把刚刚的第三和四小题中的,x y表示出来了:因为10.1252x⎛⎫=⎪⎝⎭,所以12log0.125x=;因为181.0113y=,所以1.0118log13y=.师:我们根据对数定义,可以看出指数和对数存在密不可分的关系,那么究竟有怎样的关系呢?我们一起来看看.⑵指数式和对数式的关系师: 讨论两者之间的关系前要明确a的取值范围是a>0且a≠1,也要知道两个式子中相同字母代表的是同一个数,只是数的位置发生了变化,到底是怎样的变化呢?下面我们就一起来学习:师: 这便是指数式和对数式的关系,在此我还要强调一下,x a N =和x =log a N 其实表示的一种关系,它们是一种关系的不同表达式,x a N =是指数形式,x =log a N 是对数形式,本质上它们是一回事。

对数与对数运算 教学设计 说课稿 教案

对数与对数运算 教学设计  说课稿  教案

对数与对数运算(二)(一)教学目标1.知识与技能:理解对数的运算性质.2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3.情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1.教学重点:对数运算性质及其推导过程.2.教学难点:对数的运算性质发现过程及其证明.(三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程例1 计算下列各式的值: (1)245lg 8lg 344932lg21+-; (2)22)2(lg 20lg 5lg 8lg 325lg +⋅++. 【解析】(1)方法一:原式=2122325)57lg(2lg 34)7lg 2(lg 21⨯+--=5lg 217lg 2lg 27lg 2lg 25++--=5lg 212lg 21+=21)5lg 2(lg 21=+.方法二:原式=57lg 4lg 724lg+-=475724lg⨯⨯=21)52lg(=⨯. (2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.【小结】易犯lg52 = (lg5)2的错误.这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1. 例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45; (2)设log a x = m ,log a y = n ,用m 、n 表示][log 344yxa a ⋅;(3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.【解析】(1)1190lg 45lg 222== 1[lg 9lg10lg 2]2=+- 1[2lg 31lg 2]2=+- =-+=2lg 21213lg 0.4771+0.5 – 0.1505 = 0.8266(2)log a 1113412log log log a a a a x y =+-.1213141log 121log 3141m n y x a a -+=-+=(3)由已知得:532532lglglglglgc bacbax=-+=,∴532 c bax=.【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a M⇒N = M.。

对数教学设计优秀10篇

对数教学设计优秀10篇

对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案教案标题:对数与对数运算教案概述:本教案旨在帮助学生理解对数的概念,并能够进行对数运算。

通过引入实际问题和互动式学习活动,学生将能够掌握对数的基本概念和运算规则,并能够应用于解决实际问题。

教案目标:1. 理解对数的概念和性质。

2. 掌握对数的运算规则。

3. 能够应用对数解决实际问题。

教学资源:1. 教材:包含对数和对数运算的相关知识点。

2. 白板、黑板或投影仪等教学工具。

3. 学生练习册或作业本。

教学步骤:引入活动:1. 引发学生对对数的兴趣,例如通过提问“你知道对数是什么吗?”或展示一些实际问题,如“如果你要计算一个数的指数,你会如何做?”2. 让学生分享他们对对数的理解和经验。

概念讲解:1. 通过示意图或实例解释对数的概念,例如“对数是指数的逆运算,用于表示一个数以某个底数为底的幂次方的结果。

”2. 引导学生理解对数的定义,并解释底数、指数和对数的关系。

运算规则讲解:1. 解释对数运算的基本规则,如对数的乘法法则、除法法则和幂运算法则。

2. 提供示例和练习,让学生运用运算规则进行对数运算。

互动学习活动:1. 将学生分成小组,给每个小组分发一些实际问题,要求他们用对数解决问题。

2. 每个小组向全班展示他们的解决思路和答案,并进行讨论和分享。

巩固练习:1. 分发练习册或作业本,让学生进行对数运算的练习。

2. 监督学生的练习过程,及时解答疑问并给予指导。

总结:1. 对本节课的内容进行总结,强调对数的概念和运算规则。

2. 鼓励学生将对数应用于解决更多实际问题,并提供相关资源和参考资料。

扩展活动:1. 鼓励学生进行更多的对数运算练习,以提高他们的计算能力。

2. 探索更深入的对数概念和应用,如对数函数和对数图像。

评估方式:1. 观察学生在课堂上的参与和回答问题的能力。

2. 批改学生的练习册或作业本,评估他们对对数的理解和运算能力。

教学反思:1. 教学过程中是否引起学生的兴趣和参与度?2. 学生是否理解对数的概念和运算规则?3. 是否有足够的练习和实际问题让学生巩固所学的知识?4. 是否需要调整教学方法和资源,以更好地满足学生的学习需求?通过以上教案,学生将能够理解对数的概念和运算规则,并能够应用于解决实际问题。

对数与对数运算的教案

对数与对数运算的教案

对数与对数运算的教案《对数与对数运算》教案授课教师:马吉艳课时:一个课时授课对象:高中一年级学生一.设计思想本节课就是数学必修课程1第二章基本初等函数(i)2.2.1对数与对数运算的内容,它就是研究自学时程科学知识对数函数与性质的必不可少基础知识。

通过与指数式的比较得出结论对数的定义与性质,使学生学会指数与对数的互化并能够展开一些直观的对数式表达式。

通过指数运算性质,根据对数定义,使用逆向思维对对数的乘法运算展开推论,从对数的积运算的推论过程中,用相似的方法获得其他运算性质。

在学生基本掌控这些性质后,通过练与鼓励推论出换底公式。

运用观测、操作方式去领悟规律,能并使学生充份介绍自学的方法和技巧,在交流中突破难点,超越传统教学的死记硬背,进一步增强学生自学兴趣。

二.教学目标1.科学知识与技能(1)理解对数的概念,了解指数与对数的关系;(2)理解和掌握对数的性质,记住几个重要的公式;(3)能灵活运用对数运算性质和换底公式进行计算。

2.过程与方法通过与指数式的比较,带出对数定义与性质。

3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳的能力;(2)通过对数运算性质的学习,培养学生举一反三、严谨的思维态度;(3)在自学过程中,使学生践行探究、技术创新的意识,培育分析问题、解决问题的能力。

三.课程类型新授课四.教学重点与难点(1)重点:对数式与指数式的互化以及对数的运算性质。

(2)难点:对数运算性质的推导与运用。

五.教学方法讲授法、探讨法、投影分析与辨认出。

六.教学过程教师活动复习引入:1.老师带领学生复习指数的定义。

“如果反过来求哪一年的人口数可以达答呢?我们要求x,其实就是知道了底数和幂的值,反过来求指数。

这就是我们今天要学习的内容之一对数。

4.老师讲解对数的概念并板书:一般地,如果a=n(a>0,且a≠1),那么数x叫做以a为底n的对数,记作x=san,其中a叫做对数的底数,n叫做幂数。

《对数与对数运算》教学设计 孟祥保

《对数与对数运算》教学设计 孟祥保

《对数与对数运算(第一课时)》教学设计教学目标(一)知识与能力1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的关系。

通过与指数式的比较,引出对数定义与性质(三)情感、态度和价值观1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;2.通过对数的运算法则的学习,培养学生的严谨的思维品质;3.在学习过程中培养学生探究的意识;4.让学生理解平均之间的内在联系,培养分析、解决问题的能力。

教学内容分析教学重点对数式与指数式的互化以及对数性质教学难点推导对数性质教学模式讲练结合教学主题掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握教学程序(对数教学目标)—对数的文化意义、对数概念(讲一讲)—对数式与指数式转化(做一做)—例题(讲一讲)、习题(做一做)—两种特殊的对数(讲一讲)—求值(做一做)—评价、小结—作业。

教学过程(一)(说一说)对数的文化意义教师:对数发明是17世纪数学史上的重大事件,为什么呢?大家一起来看一下投影:恩格斯说,对数的发明与解析几何的创立、微积分的建立是17世纪数学史上的3大成就。

伽利略说,给我空间、时间及对数,我可以创造一个宇宙。

布里格斯(常用对数表的发明者)说,对数的发明,延长了天文学家的寿命。

教师:对数的发明让天文学家欣喜若狂,这是为什么?(停顿)我们将会发现,对数可以将乘除法变为加减法,把天文数字变为较小的数,简化数的运算。

这些都非常有趣。

那么,什么是对数?对数真的有用吗?对数如何发现?我们带着这些问题,一起来探究对数。

(对数的导入)教师:为了研究对数,我们先来研究下面这个问题: (P72思考)根据上一节的例8我们能从13 1.01x y =⨯中,算出任意一个年头x 的人口总数,那么哪一年的人口达到18亿,20亿,30亿?(停顿让学生思考)即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少?(二)(讲一讲)对数概念教师:在这三个式子中,都是已知(停顿)底数和幂,求指数x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1 对数与对数运算(一)教学目标(一) 教学知识点1. 对数的概念; 2.对数式与指数式的互化.(二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识.(三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用.教学重点对数的定义.教学难点对数概念的理解.教学过程一、复习引入:假设 20XX 年我国国民生产总值为 a 亿元,如果每年平均增长 8%,那么经过多少年国民生产总值是 20XX 年的 2 倍?1 8% =2 x=?也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容:aa 0,a 1 的b 次幂等于 N ,就是a b N ,那么数 b 叫做以 a 为底 N 的对⑴ 负数与零没有对数(∵在指数式中⑵ log a 1 0 , log a a 1 ;∵对任意 a 0且 a 1, 都有 a 0 1 ∴log a 1 0 同样易知: log a a 1 ⑶对数恒等式 如果把 a b N 中的 b 写成 log a N , 则有 a logaN N .定义:一般地,如果 数,记作 log a Nb , a 叫做对数的底数, N 叫做真数. a blog a Nb例如:42 16 log 4 16 22102 100 log 10 100 2 ; 探究: 1。

142 2log 42 12 ;是不是所有的实数都有对数?10 2 0.01 log 10 0.01 2.log a Nb中的 N 可以取哪些值?2. 根据对数的定义以及对数与指数的关系, log a 1 ?log a a ?⑷常用对数:我们通常将以 10为底的对数叫做常用对数. 为了简便 ,N 的常用对数 log 10 N 简记作 lgN . 例如: log 10 5简记作 lg5 ; log 10 3.5简记作 lg3.5.⑸自然对数:在科学技术中常常使用以无理数 e=2.71828 ⋯⋯为底的对数,以 e 为底的对数叫自然对 数,为了简便, N 的自然对数 log e N 简记作 lnN . 例如: log e 3简记作 ln3 ; log e 10简记作 ln10.6)底数的取值范围 (0,1) (1, ) ;真数的取值范围 (0, ) .三、讲解范例:例 1 .将下列指数式写成对数式:例 3 .求下列各式中的 x 的值:例 4 .计算: ⑴ log 9 27 ,⑵ log 4381,⑶ log 2 3 2 3 ,⑷ log 3 54 625.解法一:3⑴设 xlog 9 27 则 9x 27, 32x 33, ∴ x 3x⑵设 xlog 43 81则 4 3 81, 34 34,∴ x 16⑶令 xlog 2 3 2 3 =log 2 3 2 3 , ∴ 2 3 2 3 , ∴x 1x 4⑷令 x log 354625, ∴ 3 54 625, 53x 54, ∴x 3解法二:3 3 3⑴log 9 27 log 933 log 9 92 32;⑶log 2 3 2 3 =log 2 3 2 3 1 1;⑷ log 3 54 625 log 3 54 (3 54)3 3 四、练习 :( 书 P64`)1) 54 625 (2)26 1643) 3a 271(4) ( 1)m35.73解:(1) log 5 625=4; (2) log 2 1=-6 ;643) log 3 27=a ;4) log 1 5.73 m .3例 2 . 将下列对数式写成指数式:(1) log 116 4 ; (2)2log 2128 7 3) lg0.01 2;4) ln10 2.303 .1解:(1) ( ) 4 16 (2)227 =128; 3)10 2 =0.01 ; 4)2.303e=10.1) log 64 x32; (2)3log x 8 63) lg100 x 4) ln e 2 x⑵ log 4 381 log 43(4 3)16 161. 把下列指数式写成对数式3 5 11 1 1 (1) 23=8; (2) 25=32 ; (3) 2 1 = ; (4) 273 .23五、课堂小结⑴对数的定义; ⑵指数式与对数式互换; 六、课后作业 :1.阅读教材第 62~64 页; 2 .作业:《习案》作业二十《对数与对数运算(第一课时) 》教学设计华南师范大学 陈嘉韵教材 新课标人教版高中教材数学必修 1 课题 2.2.1 对数与对数运算第一课时 教学目标 (一) 知识与能力1.理解对数的概念,了解对数与指数的关系; 2.理解和掌握对数的性质;解:(1) log 2 8=3 (2) log 2 32=52. 把下列对数式写成指数式(1) log3 9=2⑵ log 5 125=3解: (1) 32 =9 (2) 53 =125(3) log 2 1=-1 (4) log 27 1 =- 12 3 33. 求下列各式的值(1) log 5251⑵ log 22 16⑷ lg 0.01 ⑸ lg 1000011⑶ log 2 =-2⑷log 3 =-248121(3) 2 2 = (4)34 = 1481⑶ lg 100⑹ lg 0.00012解:(1) log 5 25= log 552=2 (2)log 216(3) lg 100 =2(4) lg 0.01 =-2 (5)lg 10000=4 (6)lg 0.0001 =-44. 求下列各式的值(1) log 15 15 ⑵log 0.41⑶ log 981⑷ log 2..5 6.25 ⑸ log 7 343⑹ log 3 243解: (1) log 15 15=1 (2)log 0.4 1=0 (3) log 981=2 (4) log 2..5 6.25 =2(5)log 7 343=3 (6)log 3 243=5⑶求对数式的值.1=-43.掌握对数式与指数式的关系。

(二)过程与方法通过与指数式的比较,引出对数定义与性质(三)情感、态度和价值观1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;2.通过对数的运算法则的学习,培养学生的严谨的思维品质;3.在学习过程中培养学生探究的意识;4.让学生理解平均之间的内在联系,培养分析、解决问题的能力。

教学内容分析教学重点对数式与指数式的互化以及对数性质教学难点推导对数性质教学模式讲练结合教学主题掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握教学程序对数教学目标) —对数的文化意义、 对数概念(讲一讲) —对数式与指数式转化 (做 一做)—例题(讲一讲) 、习题(做一做)—两种特殊的对数(讲一讲)—求值(做一做)— 评价、小结—作业。

教学过程一)(说一说)对数的文化意义教师:对数发明是 17 世纪数学史上的重大事件,为什么呢?大家一起来看一下 投影:恩格斯说,对数的发明与解析几何的创立、微积分的建立是 17 世教师: 纪数学史上的 3 大成就。

伽利略说,给我空间、时间及对数,我可以创造一个宇宙。

布里格斯(常用对数表的发明者)说,对数的发明,延长了天文学家的寿命。

对数的发明让天文学家欣喜若狂,这是为什么?(停顿)我们将会发现,对数可以将乘除 法变为加减法,把天文数字变为较小的数,简化数的运算。

这些都非常有趣。

那么,什么 是对数?对数真的有用吗?对数如何发现?我们带着这些问题,一起来探究对数。

对数的导入)教师:为了研究对数,我们先来研究下面这个问题:P72思考)根据上一节的例 8 我们能从 y 13 1.01x 中,算出任意一个年头 x 的人口总数,那么哪一年的人口达到 18亿, 20亿, 30 亿? 停顿让学生思考)二)(讲一讲)对数概念教师:在这三个式子中,都是已知(停顿)底数和幂,求指数 节课要解决的问题。

这一问题也就是:若a x N ,已知 a 和N 如何求指数 x (其中, a 0且 a 1) 数学家欧拉用对数来表示 x ,如何表示?一般地,若 a x N (a 0,且 a 1),那么数 x 叫做以 a 为底 N 的对数,记作x log a N , a 叫做对数的底数, N 叫做真数 .x称a x N 为指数式,称 x log a N 为对数式我们可以由指数式得到对数式,也可以由对数式得到指数式:18 x 20 x即: 1.01x , 1.01x ,13 1.01x, 在个式子中, x 分别等于多少?x 。

如何求指数 x ?这是本x2a Nlog a N x我们要注意到, a x N 中的 a 0且a 1。

因此, log a N x 也要求 a 0且a 1;还有log a N x中的真数 N 能取什么样的数呢?这是为什么?(停顿)这是因为 a 0且a 1,所以 a x N 0 。

因此, log a N x中真数 N 也要求大 于零,即负数与零一定没有对数。

三)(做一做)指数式与对数式间的关系例 1 指数式化为对数式:41 4 31 310 1 1 04 10 0 0 040 1解: 对数式是l og 4 4 1 log 10 1 0 l og 3 3 1 log 41 0log 4 4 1教师:大胆猜测,由log3 3 1由log 101 0 呢?log 41 0停顿,让学生思考)log a 1 0,log a a 1(其中, a 0且a 1) .为什么? 停顿,让学生思考)即得到上式结论。

把a 1 a,a 0 1(其中, a 0且 a 1)化为对数式 .立4我们还会注意到, 104 10000 , log 10 10000 4 ,利用对数可以将很大很大的数变为较小的数,减少计算量,以后还会发现,乘除运算便会加减运算,简化运算四)(讲一讲)例题讲解例 2 将下列指数式化为对数式,对数式化为指数式:不难得到, 1.01x13的 x 用对数表示就是x log 1.01118313log 10 10000 441)54=625(2)2 6 6141(3)(13)m 5.73(4) l o g 3 9 2 (5) log 5 125 3 (6) log 1 16 4五)(讲一讲)两种特殊的对数:常用对数 log 10 N 记为 lg N ; 自然对数 log e N 记为 ln N ;教师:对数 log a N 的底 a 有何限制 ?(停顿) a 0且a 1a 10 ,我们得到对数 log 10 N 。

称 log 10 N 为常用对数。

通常写成 lg N .当 a e=2.71828⋯ 时,得到对数 log e N ,称 log e N 为自然对数。

相关文档
最新文档