高中数学 第三章 指数函数、对数函数和幂函数 3.2.2 第2课时 对数函数的图象与性质的应用课件 苏教版必修1

合集下载

指数与对数函数幂函数知识点总结

指数与对数函数幂函数知识点总结

指数与对数函数幂函数知识点总结指数函数、对数函数和幂函数是高中数学中的重要内容,是数学中常见的数学函数类型。

下面将对这三种函数进行详细介绍和总结。

1.指数函数指数函数是以底数为常数,指数为自变量的函数。

通常表示为f(x)=a^x,其中a>0且不等于1、指数函数的特点有:-当a>1时,函数为增函数,曲线向上开口。

-当0<a<1时,函数为减函数,曲线向下开口。

-当x=0时,f(0)=1,即指数为0时,函数值等于1-当x为正无穷大时,函数趋于正无穷大;当x为负无穷大时,函数趋于0。

指数函数的应用广泛,例如在金融领域中的复利计算、生物学中的生长模型、物理学中的放射性衰变等都可以使用指数函数模型来描述。

2.对数函数对数函数是指输出的指数与给定的底数相等的函数,常用的对数函数有以e为底的自然对数函数ln(x)和以10为底的通用对数函数log(x)。

对数函数的特点有:-对数函数的定义域为正实数。

- 对数函数的基本性质是函数值等于对应的指数值,即log_a(a^x) = x。

- 自然对数函数ln(x)与指数函数e^x互为反函数。

-对数函数可以帮助解决指数方程和指数不等式等问题。

对数函数在数学中广泛应用,例如在科学计算、数据压缩、信号传输和信息论等领域都有应用。

3.幂函数幂函数是形如f(x)=a^x的函数,其中a是常数且大于0。

幂函数的特点有:-当a>1时,函数为增函数,曲线向上开口。

-当0<a<1时,函数为减函数,曲线向下开口。

-当x=0时,f(0)=1,即幂为0时,函数值等于1-当x为正无穷大时,函数趋于正无穷大;当x为负无穷大时,函数趋于0。

幂函数与指数函数相似,但是幂函数的底数是常数。

幂函数在自然科学领域中经常出现,例如在物理学中的速度、加速度和质量等计算中经常使用幂函数模型。

指数函数、对数函数和幂函数是数学中的基本函数类型,它们在实际问题中有着广泛的应用。

在学习指数函数、对数函数和幂函数时,需要熟练掌握其定义、性质和应用。

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。

指数函数的一般形式为:$y=a^x$。

在指数函数中,底数$a$是一个正实数,且$a\ne q1$。

1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。

当底数$a$在0和1之间时,指数函数则呈现递减趋势。

指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

根据底数$a$的不同,指数函数的值域也有所不同。

若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。

指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。

2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。

-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。

二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。

幂函数的一般形式为:$y=x^n$。

1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。

若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。

幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

幂函数的值域则根据指数$n$的奇偶性而定。

若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。

高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.3对数函数的概念及基本性质课堂导学案苏教

高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.3对数函数的概念及基本性质课堂导学案苏教

3.2.3 对数函数的概念及基本性质课堂导学三点剖析一、对数函数的图象和性质【例 1】 利用对数的单调性,比较下列各组数的大小: (1)log π,log e;22(2)log 0.3,log 0.04.1 1 24解析:(1)函数 y=log x 在(0,+∞)上是增函数,而π>e>0,∴ log π>log e.222(2)log 0.04=1log 0.04 1 421 2log1=12log 0.04=log 0.2.1 1 422又因为函数 y=log x 在(0,+∞)上为减函数,12∴log 0.3<log 0.2,即 log 0.3<1 1 1log 0.04.1 2224温馨提示先把不同底数化为相同底数,再利用函数单调性比较大小是比较对数值大小的基本方法. 二、a>1或 0<a<1时,对数函数的不同性质 【例 2】 求函数 y= 1 log (x a )a(a>0且 a ≠1)的定义域.思路分析:先由被开方数是非负数建立不等式,由于不等式中含有字母参数,再根据对数的性 质对字母参数进行分类讨论.解析:由 1-log a (x+a)≥0,得 log a (x+a)≤1.当 a>1时,0<x+a ≤a, ∴-a<x ≤0.当 0<a<1时,x+a ≥a, ∴x ≥0.综上,当 a>1时,函数的定义域为(-a,0). 当 0<a<1时,函数的定义域为[0,+∞).温馨提示对于对数函数问题,底数中含字母参数都必须进行分类讨论.三、对数函数的单调性和单调区间的求法【例3】求函数y=log2(x2-x-6)的单调区间.解析:令u=x2-x-6,则y=log2u.∵y=log2u为u的增函数,∴当u为x的增函数时,y为x的增函数;当u为x的减函数时,y为x的减函数.由x2-x-6>0,得x<-2或x>3.借助于二次函数图象可知:当x∈(-∞,-2)时,u是x的减函数;1当x∈(3,+∞)时,u是x的增函数.所以,原函数的单调减区间是(-∞,-2),单调增区间是(3,+∞).温馨提示(1)研究函数的单调性,首先必须考虑它的定义域;(2)对数函数的单调性,当底数是字母时,必须分底数大于1和底数大于0且小于1这两种情况进行讨论;(3)对于复合函数的单调性,必须考虑u=g(x)与y=f(u)的单调性,从而得出y=f[g(x)]的单调性;(4)判断函数的增减性,或者求函数的单调区间,一般都可借助函数图象求解.各个击破类题演练 1比较下列各组数中两个值的大小.(1)log23.4,log28.5;(2)log a5.1,log a5.9(a>0,a≠1).解析:(1)对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5;(2)当a>1时,函数y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.变式提升 1比较下列两个值的大小:(lgm)1.9,(lgm)2.1(m>1).解析:若1>lgm>0,即1<m<10时,y=(lgm)x在R上是减函数,∴(lgm)1.9>(lgm)2.1.若lgm=1,即m=10时,(lgm)1.9=(lgm)2.1.若lgm>1,即m>10时,y=(lgm)x在R上是增函数,∴(lgm)1.9<(lgm)2.1.类题演练 21x1x已知f(x)=log a求f(x)的定义域;(a>0,且a≠1).11解析:由对数函数定义知xx>0,∴-1<x<1,∴f(x)的定义域为(-1,1).变式提升 212e x, (2006山东高考文,2)设f(x)=log(x231)xx22.则f(f(2))的值为()A.0B.1C.2D.3 解析:∵f(2)=log3(22-1)=log33=1,∴f(f(2))=f(1)=2e1-1=2.故选C.答案:C类题演练 3求函数y=log0.1(2x2-5x-3)的递减区间.解析:先求函数的定义域,由2x2-5x-3=(2x+1)(x-3)>0,得x<- 12,或x>3.令u=2x2-5x-3,y=log0.1u.2由于u=2(x- 54)2-618,可得u=2x2-5x-3(x<-12或x>3)的递增区间为(3,+∞),从而可得y=log0.1(2x2-5x-3)的递减区间为(3,+∞).变式提升 3求函数y=log(3+2x-x2)的单调区间和值域.12解析:由3+2x-x2>0解得函数y=log(3+2x-x2)的定义域是-1<x<3.12设u=3+2x-x2(-1<x<3),当-1<x1<x2≤1时,u1<u2,从而log u1>log u2,即y1>y2,故函数y=1122log(3+2x-x2)在区间(-1,1)上单调递减;同理可得,函数在区间(1,3)上是单调递增.12函数u=3+2x-x2(-1<x<3)的值域是(0,4),故函数y=log(3+2x-x2)的值域是y≥log1122 4,即y≥-2.3。

常用函数图像

常用函数图像

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

高中数学第三章指数函数、对数函数和幂函数3.2对数函数3.2.1对数名师导航学案苏教版必修1

高中数学第三章指数函数、对数函数和幂函数3.2对数函数3.2.1对数名师导航学案苏教版必修1

3.2.1 对数名师导航知识梳理一、对数与对数运算 1.对数的定义一般地,如果a x=N(a>0,a ≠1),那么数x 叫做以a 为底N 的对数,记作__________,其中a 叫做对数的__________,N 叫做对数的__________.对数恒等式为________________________________________. 2.对数的运算法则指数的运算法则: 对数的运算法则:(1)a m ·a n =a m+n;→ (1)______________;(2)n m aa =a m ·a -n =a m-n;→ (2)______________;(3)(a m )n=a mn;→ (3)_______________. 二、对数运算法则的证明 (学会证明方法)1.正因数的积的对数等于同一底数各个因数的对数的_______________; log a (MN)=log a M+log a N. 设log a M=p,log a N=q,则a p =M,a q=N,∴MN=a p ·a q =a p+q.∴log a (MN)=p+q=log a M+log a N.2.两个正数的商的对数等于被除数的对数___________除数的对数;log a N M =log a M-log a N.∵N M =q p aa =a p-q,∴log aNM=p-q=log a M-log a N. 3.正数的幂的对数等于幂的底数的对数____________幂指数;log a (N n)=n ·log a N. 根据对数恒等式:Na a log =N,∴N n=(aalog N)n=Nn a alog •.∴log a (N n)=n ·log a N.4.正数的正的方根的对数等于被开方数的对数______________根指数. log anN n1=·log a N.∵n N =n N 1,∴由法则3得log a n N =log a nN 1=n1·log a N. 三、对数的性质1.__________和__________没有对数.因为a >0,所以不论b 是什么数,都有a b >0,即不论b 是什么数,N=a b永远是正数,这说明在相应的对数式 b=log a N 中真数N 永远是正数,换句话说负数和零没有对数. 2.1的对数是__________.因为a 0=1(a >0,且a ≠1),所以根据对数的定义可得log a 1=0. 3.底数的对数等于__________.因为a 1=a ,根据对数的定义知log a a=1. 四、一组重要的对数公式——换底公式 1.log a b=abc c log log ,即有log c a ·log a b=log c b;2.log b a=ba log 1,即有log a b ·log b a=1;3.nmb a log =mnlog a b. 疑难突破如何将给出的对数式换成指定底数的对数?《考试大纲》要求知道用换底公式将一般对数转化成指定底数的对数.对数换底公式:log b N=bNa a log log (a >0且a ≠1,b >0且b ≠1,N >0),推论:log a b=a b log 1,mn b a nm =log log a b.更特别地有log a a n=n.问题探究问题1 对数式与指数式有何关系?在对数符号log a N 中,为什么规定a >0,a ≠1,N >0呢?探究思路:对数的概念是这么说的:一般地,如果a(a >0且a ≠1)的b 次幂等于N ,即a b=N ,那么就称b 是以a 为底N 的对数,记作log a N=b ,其中a 叫做对数的底数,N 叫做真数.从定义不难发现无论是指数式a b=N ,还是对数式log a N=b 都反映的是a 、b 、N 三数之间的关系. 在对数符号log a N 中,若a <0,则N 为某些值时,log a N 不存在,如log (-2)8不存在. 若a=0,则N 不为0时,log a N 不存在;N 为0时,log a N 可以为任何正数,不唯一.若a=1,则N 不为1时,log a N 不存在;N 为1时,log a N 可以为任何实数,不唯一.因此规定a >0且a ≠1.因为log a N=b ⇔a b=N ,在实数范围内,正数的任何次幂都是正数,因此N >0. 问题2 对于对数,除了对数的定义,还有对数的性质,你能说说这些相关的内容吗? 探究思路:对数部分,我们首先应当掌握对数的意义,即对数式与指数式之间的对应关系.另外对于对数我们应该掌握一些常用的性质:如(1)log a 1=0(1的对数是0); (2)log a a=1(底数的对数是1); (3)aalog N=N(对数恒等式);(4)log a N=aNb b log log (b >0且b ≠1)(换底公式);(5)log a M+log a N=log a MN ; (6)log a M-log a N=log a NM ; (7)nlog a N=log a N n; (8)mn log a N=log a m N n. 以上各式均有条件a >0且a ≠1.问题3 初学对数运算性质,容易犯下面的错误:log a (M ±N)=log a M ±log a N ,log a (M ×N)=log a M ×log a N ,log aN M =NM a a log log ,log a N n =(log a N)n.应该如何解决呢?探究思路:首先应把握对数运算的本质特征,运算性质是把真数的乘、除、乘方降级为对数的加、减、乘运算,是降级运算;其次,对数记号log a N 整体上才有意义,不能误把对数符号当作表示数的字母进行运算. 典题精讲例1 (1)将下列指数式写成对数式: ①210=1 024;②10-3=10001; ③0.33=0.027;④e 0=1.(2)将下列对数式写成指数式: ①log 0.46.25=-2;②lg2=0.301 0; ③log 310=2.095 9;④ln23.14=x.思路解析 应用指数式与对数式的等价关系求解. 答案:(1)①log 21 024=10;②lg 10001=-3;③log 0.30.027=3;④ln1=0. (2)①0.4-2=6.25;②100.301 0=2;③32.095 9=10;④e x=23.14.例2 计算:log 2487+log 212-21log 242.思路解析 这是几个对数式的加减运算,注意到每个对数式是同底的,则可以利用同底数的对数的运算公式化为一个对数式.当然也可以反其道而行之,即把每个对数的真数写成积或商的形式,再利用积或商的对数的运算性质化为同底对数的和与差,然后进行约简.解法一:原式=21(log 27-log 248)+log 23+2log 22-21(log 27+log 22+log 23) =21log 27-21log 23-21log 216+21log 23+2-21log 27-21=-21. 解法二:原式=log 2(347×12×671⨯)=-21. 例3 求下列各式的值: (1)3log 3128-;(2)7lg20×(21)lg0.7; (3)log 2(1+32+)+log 2(1+32-); (4)lg(5353-++).思路解析 (1)由幂的运算法则把其化成同底,用对数恒等式aalog N=N 化简计算.(2)通过取对数,先算出对数值,再求值.(3)运用对数运算法则化成一个对数,然后利用底数与真数的特殊关系求解. (4)运用对数运算法则巧去根号. 解答:(1)2722222)2(827log 27log 13log 31)3log 31(33log 3122222=====----. (2)设x=7lg20×(21)lg0.7,则lgx=lg20×lg7+lg0.7×lg(21)=(lg2+1)×lg7+(lg7-1)×(-lg2)=lg7+lg2=lg14, ∴x=14,即7lg20×(21)lg0.7=14. (3)log 2(1+32+)+log 2(1+32-)=log 2[(1+2)2-(3)2]=log 222=log 2232=23. (4)lg(5353-++)=21lg(5353-++)2=21lg(3+5+3-5+259-)=21lg10=21. 例4 已知11.2a=1 000,0.011 2b=1 000,那么a 1-b1等于( ) A.1 B.2 C.3 D.4 思路解析 本题有两种解题方法.解法一:用指数解.由题意11.2=a 11000,0.011 2=b11000, ∴两式相除得ba 111000-=0112.02.11=1 000.∴a 1-b1=1. 解法二:用对数解.由题意,得a ×lg11.2=3,b ×lg0.011 2=3, ∴a 1-b 1=31(lg11.2-lg0.011 2)=1. 答案:A例5 方程lg(4x +2)=lg2x+lg3的解是_____________.思路解析 把方程两边化为同底的对数式,然后比较真数得含有求知数的方程,解之即可.解:把两边化成同底的对数式为lg(4x +2)=lg(2x×3),比较真数,得方程4x +2=2x×3,利用换元法,解得2x =1或2x=2. 所以x=0或x=1. 答案:x 1=0,x 2=1 知识导学 1.对数的概念在实际应用中,一定要注意指数式与对数式的等价性,即log a N=b a b=N. 2.换底公式一般地,我们称log a N=aNb b log log 为对数的换底公式.换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.对数运算性质应用的前提是式子中对数的底相同.若底不同则需要利用换底公式化为底相同的.我们在应用换底公式时,一方面要证明它和它的几个推论;另一方面要结合构成式子的各对数的特点选择一个恰当的数作为对数的底,不要盲目地换底,以简化我们的解题过程. 3.常用对数与自然对数的概念有了对数的概念后,要求log 0.840.5的值,我们需要引入两个常用的对数:常用对数和自然对数.常用对数是指以10为底的对数;自然对数是指以e(e=2.718 28…,是一个无理数)为底的对数.有了常用对数和自然对数再利用对数的运算性质,我们就可以求log 0.840.5的值了. 4.对数恒等式 对数恒等式:Na alog =N.它的证明也很简单,只要紧扣对数式的定义即可证明. ∵a b=N , ∴b=log a N. ∴a b=Na alog =N ,即Na a log =N.如5log 33=5、6log 44=6等.要熟记对数恒等式的形式,会使用这一公式化简对数式.疑难导析对数换底公式口诀:换底公式真神奇,换成新底可任意, 原底加底变分母,真数加底变分子. 问题导思指数式与对数式之间可以相互转化,它们之间可以理解为就像加法与减法一样的关系.后面我们会学习反函数,指数式与对数式之间的转化可以通过反函数进行. 这些常用的性质在指数运算中非常有用,需要记牢.有的性质可以用口诀来帮助记忆,比如,性质(5)(6)(7)可以这样来记: 积的对数变为加, 商的对数变为减,幂的乘方取对数, 要把指数提到前. 典题导考绿色通道 指数式与对数式之间的换算,就是利用log a N=b ⇔a b=N. 典题变式已知log a 2=m ,log a 3=n ,则a 2m-n=____________. 解答:∵log a 2=m ,log a 3=n , ∴a m =2,a n=3.∴a 2m-n=3432)(222===nm n m a a a a . 绿色通道 解决求值问题一般有两种解法:一是将式中的真数的积、商、幂、方根运用对数的运算法则化为对数的和、差、积、商,即“化整为零”,然后合并、消项、化简求值;二是将式中的对数的和、差、积、商运用对数运算法则将它们化为真数的积、商、幂、方根,即“化零为整”,然后“相约”,化简求值. 典题变式计算2log 525+3log 264-8log 71的值为( )A.14B.8C.22D.27 答案:C绿色通道 有关对数式的运算,除了要用到对数运算性质外,还要注意代数运算的其他性质的运用.如遇到不能直接运用对数运算法则进行运算的问题,有两种解决办法:一是取对数,先求出对数值,再求出真数的值,即为原式的值;二是运用对数恒等式aalog N=N 把任何正数N 化成含所需要的正数为底数的对数的一个幂,即可转化为用幂的运算法则和对数运算法则解决问题. 典题变式1.lg5lg8 000+(lg 32)2+lg0.06-lg6=______________.解答:原式=lg5(3+3lg2)+3lg 22+lg 606.0=3(1-lg2)(1+lg2)+3lg 22-2=3-2=1. 2.计算2lg5+32lg8+lg5·lg20+lg 22的值. 解答:原式=2lg5+2lg2+lg5(2lg2+lg5)+lg 22 =lg 25+2lg2·lg5+lg 22+2(lg5+lg2)=(lg5+lg2)2+2(lg5+lg2) =lg 210+2lg10 =1+2=3.绿色通道 因为指数与对数存在着互逆的运算关系,因而反映在具体问题中就一定从指数式、对数式两条思路分别运用幂的运算法则和对数运算法则解决问题.这就是对立统一的原则在具体思路上的指导和体现. 典题变式 已知a=lg(1+71),b=lg(1+491),试用a 、b 的式子表示lg1.4.答案:lg1.4=71(a-4b+1). 黑色陷阱 如果误以为原方程lg(4x+2)=lg2x+lg3可化为lg4x+lg2=lg2x+lg3,将导致解题错误.这也说明数学思维的严密性,如果百密一疏,则后悔莫及! 典题变式已知函数f(x)=⎩⎨⎧≤>,0,3,0,log 3x x x x 则f [f(91)]的值是( )A.9B.91C.-9D.-91答案:B。

指数函数对数函数与幂函数指数函数与对数函数的关系pptx

指数函数对数函数与幂函数指数函数与对数函数的关系pptx
对数函数的图像是一条直线,在定义域内单调递 增。
性质
对数函数的图像与y轴的交点为1,函数的导数是1/x',其中x'是x的倒数。
复合对数函数
定义
复合对数函数是指数函数和对数函数的组合形式,它表示为log(base) (x) ^ (y),其中base是底数,x和y是函数的自变量。
当n为负整数时,幂 函数的最大值出现在 x=1处,且最大值为 1/2;
当n为分数时,幂函 数的最大值出现在 x=1处,且最大值为 1。
复合幂函数
定义
复合幂函数是指由幂函数与其他函数复合而成的函数,如 $f(x) = \sin x^{2}$。
性质
复合幂函数的性质取决于其内部的幂函数的性质以及外部函 数的性质。例如,如果内部函数是偶函数,则复合幂函数也 是偶函数;如果内部函数是奇函数,则复合幂函数也是奇函 数。
复合指数函数
定义:复合指数函数是指形式为f(ax+b)的函数,其中 a和b是常数,且a≠0。
1. 复合指数函数的图像与指数函数的图像类似,但需 要根据具体的函数表达式来确定。
性质
2. 复合指数函数的性质与指数函数的性质类似,但需 要根据具体的函数表达式来进行判断。
02
对数函数
对数函数的定义与性质
性质
1. 当x为有理数时,a^x仍为有 理数;当x为无理数时,a^x亦 为无理数。
2. 当a>1时,a^x>0;当 0<a<1时,a^x<0。
指数函数的图像与性质
图像:指数函数的图像是一条连续的曲线,经过原点 ,并在第一象限内单调递增。
1. 函数值y随x的增大而增大(当x为正数时)。
性质
2. 当x=0时,y=1(当a>1时),y=0(当0<a<1时 )。

高中数学 第三章 指数函数、对数函数和幂函数 3.2 对

高中数学 第三章 指数函数、对数函数和幂函数 3.2 对

第2课时 对数的运算性质1.理解对数的运算性质,能灵活准确地进行对数式的化简与计算;2.了解对数的换底公式,并能将一般对数式转化为自然对数或常用对数,从而进行简单的化简与证明.1.对数的运算法则如果a >0,且a ≠1,M >0,N >0,n ∈R ,那么: 指数的运算法则⇒对数的运算法则 ①a m ·a n =a m +n⇒log a (MN )=log a M +log a N ;②a m a n =a m ·a -n =a m -n ⇒log a MN =log a M -log a N ; ③(a m )n =a mn ⇒log a (N n)=n ·log a N.积的对数变为加,商的对数变为减,幂的乘方取对数,要把指数提到前. 【做一做1-1】计算:(1)log 26-log 23=________;(2)log 53+log 513=__________.答案:(1)1 (2)0【做一做1-2】若2lg(x -2y )=lg x +lg y ,则x y的值是__________. 解析:由等式得(x -2y )2=xy , 从而(x -y )(x -4y )=0, 因为x >2y ,所以x =4y . 答案:4 2.换底公式 (1)log a b =log log c c ba,即有log c a ·log a b =log c b (a >0,a ≠1,c >0,c ≠1,b >0); (2)log b a =1log a b,即有log a b ·log b a =1(a >0,a ≠1,b >0,b ≠1); (3)log m na b =log a nb m(a >0,a ≠1,b >0).换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子. 【做一做2】已知lg N =a ,用a 的代数式表示: (1)log 100N =__________;(2)=__________. 答案:(1)12a (2)2a运用对数的运算性质应注意哪些问题? 剖析:对数的运算性质有三方面,它是我们对一个对数式进行运算、变形的主要依据.要掌握它们需注意如下几点:第一,要会推导,要求对每一条性质都会证明,通过推导加深对对数概念的理解和对对数运算性质的理解,掌握对数运算性质中三个公式的特征,以免乱造公式.例如:log n (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N 等都是错误的.第二,要注意对数运算性质成立的条件,也就是要把握各个字母取值的范围:a >0且a ≠1,M >0,N >0.例如,lg(-2)(-3)是存在的,但lg(-2)、lg(-3)都不存在,因而得不到lg(-2)(-3)=lg(-2)+lg(-3).第三,由于对数的运算性质是三个公式,因此在应用时不仅要掌握公式的“正用”,同时还应掌握公式的“逆用”.题型一 有关对数式的混合运算 【例1】求下列各式的值:(1)log 535+122log 2-log 5150-log 514;(2)lg 52+23lg 8+lg 5·lg 20+lg 22;(3)lg 2+lg 3-lg 10lg 1.8.分析:利用对数运算性质和“lg 2+lg 5=1”解答. 解:(1)log 535+122log 2-log 5150-log 514=log 535×5014+12122log 2=log 553-1=2. (2)lg 52+23lg 8+lg 5·lg 20+lg 22=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+lg 22=2lg 10+(lg 2+lg 5)2=2+1=3.(3)lg 2+lg 3-lg 10lg 1.8=12lg 2+lg 9-lg 10lg 1.8=lg 18102lg 1.8=12. 反思:对数的运算一般有两种方法:一种是将式中真数的积、幂、商、方根运用对数运算法则将它们化为对数的和、差、积、商,然后计算;另一种是将式中的和、差、积、商运用对数运算法则将它们化为真数的积、幂、商、方根,然后化简求值.另外注意利用“lg 2+lg 5=1”来解题.题型二 有关对数式的恒等证明【例2】已知4a 2+9b 2=4ab (a >0),证明lg 2a +3b 4=lg a +lg b 2.分析:运用对数运算性质对所证等式转化为lg 2a +3b4=lg ab ,因此只要利用条件证出真数相等即可.证明:由4a 2+9b 2=4ab ,得⎝ ⎛⎭⎪⎫2a +3b 42=ab , 因为a >0,所以b >0,两边取以10为底的对数,得lg ⎝ ⎛⎭⎪⎫2a +3b 42=lg(ab ), 即2lg 2a +3b 4=lg(ab ),lg 2a +3b 4=12lg(ab ),所以lg 2a +3b 4=12(lg a +lg b ).因此lg 2a +3b 4=lg a +lg b2,所以原等式成立.反思:在由一般等式证明对数式时,要注意使对数有意义,这里在取对数前要说明b >0.题型三 对数换底公式的应用【例3】已知log 23=a,3b=7,则log 1256=__________(用a ,b 表示).解析:方法一:∵log 23=a ,∴2a=3.又3b =7,∴7=(2a )b =2ab.故56=8×7=23+ab.又12=3×4=2a ×4=2a +2, 从而33+22256=(2)=12ab ab a aa ++++.故log 1256=32123log 12=2ab a aba ++++. 方法二:∵log 23=a ,∴log 32=1a. 又3b=7,∴log 37=b .从而log 1256=log 356log 312=log 37+log 38log 33+log 34=log 37+3log 321+2log 32=b +3·1a 1+2·1a=ab +3a +2.方法三:∵log 23=lg 3lg 2=a ,∴lg 3=a lg 2.又3b=7,∴lg 7=b lg 3.∴lg 7=ab lg 2.从而log 1256=lg 56lg 12=3lg 2+lg 72lg 2+lg 3=3lg 2+ab lg 22lg 2+a lg 2=3+ab2+a.答案:3+ab 2+a反思:方法一是借助指数变形来解;方法二与方法三是利用换底公式来解,显得较简明.应用对数换底公式解这类题的关键是适当选取新的底数,从而把已知对数和所求对数都换成新的对数,再代入求值即可.题型四 有关对数的应用题【例4】科学研究表明,宇宙射线在大气中能够产生放射性14C.14C 的衰变极有规律,其精确性可以称为自然界的“标准时钟”,动植物在生长过程中衰变的14C ,可以通过与大气的相互作用而得到补充,所以活着的动植物每克组织中的14C 含量保持不变,死亡后的动植物,停止了与外界环境的相互作用,机体中原有的14C 按确定的规律衰减,我们已经知道其“半衰期”为5 730年.(1)设生物体死亡时,体内每克组织的14C 含量为1,试推算生物死亡t 年后体内每克组织中的14C 含量p ;(2)湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始含量的76.7%,试推算马王堆汉墓的年代.解:(1)设生物体死亡1年后,体内每克组织中14C 的残留量为x .由于死亡机体中原有的14C 按确定的规律衰减,所以生物体的死亡年数t 与其体内每克组织的14C 含量p 有如下关系:由于大约经过5 730年,死亡生物体的14C 含量衰减为原来的一半,所以12=x 5 730.于是x =5 73012=1573012⎛⎫ ⎪⎝⎭. 所以生物死亡t 年后体内每克组织中的14C 含量573012t p ⎛⎫=⎪⎝⎭.(2)由573012t p ⎛⎫=⎪⎝⎭可得125730log t p =.湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始含量的76.7%,即p =0.767. 所以125730log 0.767 2 193t =≈.故马王堆汉墓约是2 193年前的遗址.反思:生物体死亡后,机体中原有的14C 每年按相同的比率衰减,因此,可以根据“半衰期”得到这一比率.已知衰减比率,求若干年后机体内14C 的含量属于指数函数模型;反之,已知衰减比率和若干年后机体内14C 的含量,求衰减的年数应属于对数知识.1设lg a =1.02,则0.010.01的值为__________(用a 表示).解析:设0.010.01=x ,则lg x =lg 0.010.01=0.01lg 0.01=-0.02, ∴lg a +lg x =lg ax =-0.02+1.02=1.∴ax =10,x =10a.答案:10a2若lg 2=a ,lg 3=b ,则lg 0.18等于__________. 解析:lg 0.18=lg 18-2=2lg 3+lg 2-2=a +2b -2. 答案:a +2b -23已知=1-aa,则log 23=__________.解析:由条件得log 23=a 1-a ,所以log 23=2a 1-a.答案:2a1-a4计算:log 2748+log 212-12log 242. 解:原式=log 2⎝⎛⎭⎪⎫743×12×17×6=-12.5设x ,y ,z 为正数,且3x =4y =6z,求证:1z -1x =12y.证明:设3x =4y =6z=k ,且x ,y ,z 为正数, 所以k >1.那么x =log 3k ,y =log 4k ,z =log 6k ,所以1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12log 4k =12y .所以1z -1x =12y.。

高中数学第三章指数函数、对数函数和幂函数32对数函数321对数自我小测苏教版1.

高中数学第三章指数函数、对数函数和幂函数32对数函数321对数自我小测苏教版1.

3.2.1 对数自我小测1.如果lg2=a ,lg3=b ,则lg12lg15等于________. 2.下列结论中,正确的序号是________. ①lg2·lg3=lg5;②lg 23=lg9;③51log 2152=;④若log a M +N =b ,则M +N =a b(a >0且a ≠1);⑤若log 2M +log 3N =log 2N +log 3M ,则M =N .3.(1)已知log a 2=m ,log a 3=n (a >0且a ≠1)则a 2m -n=________;(2)若a >0,2349a =,则23log a =________; (3)若5lg x=25,则x =________.4.已知lg(log 2x )=0,7312log [log (log )]0y =,则log x y =________.5.已知log 7log 56m m a =,log n 8=b log n 56(m 、n >0且m ≠1,n ≠1),则a +b =________,17a=________.6.(1)已知11.2a=1 000,0.011 2b=1 000,则11a b-=________. (2)若2a=5b=10,则11a b+=________. 7.求下列各式的值:(1)2log 525+log 264-2 011log π1; (2)log 155·log 1545+(log 153)2;(3)375111log log log 258149⋅⋅; (4)lg 20lg0.717()2⨯;(5)2lg5lg8000lg0.06lg6⋅++-; (6)28393(log 3log 9)(log 4log 8log 2)+++.8.2010年我国国民生产总值为a 亿元,如果年平均增长8%,那么经过多少年后国民生产总值是2010年的2倍?(lg2≈0.301 0,lg3≈0.477 1,lg1.08≈0.033 4,精确到1年)参考答案1.21a bb a++- 解析:∵lg2=a ,lg3=b ,∴lg12lg3lg 4lg32lg 22.lg15lg3lg5lg31lg 21a bb a+++===++-+- 2.③⑤ 解析:由对数的运算性质知①②错;由对数恒等式知③正确;当log a (M +N )=b 时,有M +N =a b,∴④错;由log 2M +log 3N =log 2N +log 3M ,得log 2M -log 2N =log 3M -log 3N ,即23log log M M N N =,上式只有当1M N=,即M =N 时成立,∴⑤正确. 3.(1)43(2)3 (3)100 解析:(1)∵log a 2=m ,log a 3=n ,∴a m =2,a n=3. ∴()22224.33m mm nn na a aa a -==== (2)法一:∵a >0,2349a =,∴42log .93a =∴222log .33a=,即21log .33a =,∴231log 3.2log 3aa ==法二:∵a >0,22342.93a ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∴22322332log log 23a ⎛⎫== ⎪⎝⎭,∴232log 23a = ∴23log 3a =(3)∵5lg x =25=52.∴lg x =2,x =102=100.4.-3 解析:∵lg(log 2x )=0,∴log 2x =1,∴x =2,又∵7312log log log 0y ⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,∴312log log 1y ⎛⎫= ⎪⎝⎭,∴12log 3y =,∴31128y ⎛⎫== ⎪⎝⎭.∴3221log log log 238x y -===-.5.1 56 解析:由换底公式得56log 7log 7log 56m m a ==.56log 8log 8log 56n n b ==,∴a +b =log 567+log 568=log 5656=1. ∵log 567=a ,∴71log 56a=. ∴7log 5617756a==. 6.(1)1 (2)1 解析:(1)法一:用指数解:由已知得111.21000a=.10.01121000b =,两式相除得:1111.2100010000.0112a b-==,∴111a b-=. 法二:用对数解.由题意,得a ×lg11.2=3,b ×lg0.011 2=3,∴()111lg11.2lg 0.011213a b -=-=. 法三:综合法解.∵11.2a=1 000,0.011 2b=1 000,∴a =log 11.21 000,b =log 0.011 21 000.∴100010001000100011.20.0112111111.2log 11.2log 0.0112log log 10001log 1000log 10000.0112a b -=-=-=== (2)法一:由2a=5b=10,得a =log 210,b =log 510, ∴251111lg 2lg5lg101log 10log 10a b +=+=+==. 法二:对已知条件的各边取常用对数,得a lg2=b lg5=1,∴1lg 2a =,1lg 5b=, ∴11lg 2lg 5lg101a b+=+==. 7.解:(1)原式=2log 552+log 226-2011×0=4+6-0=10.(2)原式=log 155(1+log 153)+(log 153)2=log 155+log 153(log 155+log 153)=log 155+log 153=log 1515=1.[或原式=(1-log 153)(1+log 153)+(log 153)2=1-(log 153)2+(log 153)2=1](3)原式111lglg lg2lg 54lg 32lg 7258149lg 3lg 7lg 5lg 3lg 7lg 5---=⋅⋅=⋅⋅=(-2)×(-4)×(-2)=-16.(4)设lg0.7lg20172x ⎛⎫=⨯ ⎪⎝⎭,则1lg lg 20lg 7lg 0.7lg 2x =⋅+⋅=(1+lg2)lg7+(lg7-1)(-lg2)=lg7+lg2=lg14.∴x =14,即lg0.7lg2017142⎛⎫⨯= ⎪⎝⎭.(5)原式=(1-lg2)(3+3lg2)+3lg 22+lg6-2-lg6=3(1-lg2)(1+lg2)+3lg 22-2=3(1-lg 22)+3lg 22-2=3-2=1.(6)原式2233323235915log 3log 32log 2log 2log 2log 3log 232322⎛⎫⎛⎫=+++=⋅= ⎪⎪⎝⎭⎝⎭. 8.解:设经过x 年后国民生产总值是2010年的2倍.经过1年,总产值为a (1+8%),经过2年,总产值为a (1+8%)2,……经过x 年,总产值为a (1+8%)x.由题意得a (1+8%)x=2a ,即1.08x=2.方法一:两边取常用对数,得lg1.08x=lg2,即()lg 20.30109lg1.080.0334x =≈≈年.方法二:用换底公式.∵1.08x=2,∴ ()1.08lg 2log 29lg1.08x ==≈年.答:约经过9年,国民生产总值是2010的两倍. 百尺竿头解:(1)∵18b=5,∴log 185=b ,又∵log 189=a ,∴log 182=1-log 189=1-a . ∴18181836181818log 45log 5log 9log 45log 36log 18log 2112a b a ba a+++====++--. 2)∵log a 8+log 2a =4,∴3log a 2+log 2a =4,∴222log 4log 30a a -+=, ∴(log 2a -1)(log 2a -3)=0,即log 2a =1或log 2a =3,∴a =2或a =8. ①当a =2时,f (x )=x 2+3是偶函数;当a =8时,f (x )=x 8+3也是偶函数. ∴f (x )是偶函数.②当a =2时,原式23lg 27lg 643lg36lg 2log 27log 6418lg 2lg3lg 2lg3=⋅=⨯=⨯=;当a =8时,原式83lg 27lg 643lg36lg8log 27log 646lg8lg3lg8lg3=⋅=⨯=⨯=. ③∵g (x )=2x或g (x )=8x,且2与8都大于1,∴g (x )=a x在R 上是单调增函数.。

高中数学第三章指数函数和对数函数指数函数、幂函数、对数函数增长的比较基础知识素材1

高中数学第三章指数函数和对数函数指数函数、幂函数、对数函数增长的比较基础知识素材1

§6 指数函数、幂函数、对数函数增长的比较1.了解指数增长、幂增长、对数增长的意义.2.能够解决相应的实际问题.三种增长函数模型的比较在区间(0,+∞)上尽管y=a x(a>1),y=x n(x>0,n>1)和y =log a x(a>1)都是________,但它们增长的速度不同,而且不在一个“档次”上,随着x的增大,y=a x(a>1)的增长速度会越来越____,会超过并远远大于y=x n(x>0,n>0)和y=log a x(a>1)的增长速度.由于指数函数值增长非常快,人们常称这种现象为“________".【做一做1-1】当a>1时,下列结论:①指数函数y=a x,当a越大时,其函数值的增长越快;②指数函数y=a x,当a越小时,其函数值的增长越快;③对数函数y=log a x,当a越大时,其函数值的增长越快;④对数函数y=log a x,当a越小时,其函数值的增长越快.其中正确的结论是( ).A.①③B.①④C.②③D.②④【做一做1-2】当x越来越大时,下列函数中,增长速度最快的是( ).A.y=2x B.y=x10 C.y=lg x D.y=10x2【做一做1-3】当x>0,n>1时,幂函数y=x n是________函数,并且当x>1时,n越大其函数值的增长就________.答案:增函数快指数爆炸【做一做1-1】B【做一做1-2】A【做一做1-3】增越快如何选择增长型函数描述实际问题?剖析:选择的标准是:指数函数增长模型适合于描述增长速度快的变化规律;对数函数增长模型适合于描述增长速度平缓的变化规律;而幂函数增长模型介于两者之间,适合于描述增长速度一般的变化规律.题型一比较函数增长的差异【例1】分析指数函数y=2x与对数函数y=log2x在区间[1,+∞)上函数的增长情况.分析:解答本题时,应分析对于相同的自变量的增量,比较指数函数的增量与对数函数的增量的差异.反思:在同一坐标系内作出y=2x和y=log2x的图像,从图像上可观察出函数的增减变化情况.如图所示:题型二 比较大小问题【例2】 比较下列各组数的大小.(1)3423⎛⎫ ⎪⎝⎭,2334⎛⎫ ⎪⎝⎭;(2)0。

高中数学第3章指数函数、对数函数和幂函数3.4函数的应用3.4.2函数模型及其应用第1课时函数模型

高中数学第3章指数函数、对数函数和幂函数3.4函数的应用3.4.2函数模型及其应用第1课时函数模型

12/9/2021
第二十一页,共三十九页。
数据如下表
2.四个变量 y1,y2,y3,y4 随变量 x 的变化的
x 1 5 10 15
20
25
y1 2 y2 2
26 101 226 401 1.05×
32 1 024 32 768 106
626 3.36×
107
y3 2 10 20 30
40
50
y4 2 4.322 5.322 5.907 6.322 6.644
第十六页,共三十九页。
解:(1)C1 对应的函数为 g(x)=0.3x-1, C2 对应的函数为 f(x)=lg x. (2)当 0<x<x1 时,g(x)>f(x);当 x1<x<x2 时,f(x)>g(x);当 x>x2 时,g(x)>f(x);当 x=x1 或 x=x2 时,f(x)=g(x).
1
x2,曲线 C3 对应的函数是 g(x)=ln x+1. 由题图知,当 0<x<1 时,f(x)>h(x)>g(x); 当 1<x<e 时,f(x)>g(x)>h(x); 当 e<x<a 时,g(x)>f(x)>h(x); 当 a<x<b 时,g(x)>h(x)>f(x); 当 b<x<c 时,h(x)>g(x)>f(x); 当 c<x<d 时,h(x)>f(x)>g(x); 当 x>d 时,f(x)>h(x)>g(x).
12/9/2021
第十八页,共三十九页。
【解】 建立生产量 y 与年份 x 的函数,可知函数必过点(1, 8),(2,18),(3,30). (1)构造二次函数模型 f(x)=ax2+bx+c(a≠0), 将点坐标代入,

最全的高中幂_指数_对数_三角函数知识点总结

最全的高中幂_指数_对数_三角函数知识点总结

最全的高中幂_指数_对数_三角函数知识点总结高中数学中的幂、指数、对数和三角函数是重要的数学概念和知识点。

这些知识点涉及到数学的基本运算、函数的性质和变化规律等内容。

下面是对这些知识点的详细总结:一、幂和指数1.幂函数:幂函数是以底数为自变量的函数,形如f(x)=a^x,其中a为常数,x为实数。

幂函数的图像为指数增长或指数衰减的曲线。

2.指数函数:指数函数是以指数为自变量的函数,形如f(x)=a^x,其中a为底数,x为实数。

指数函数的图像为单调递增或单调递减的曲线。

3.指数运算法则:-a^m*a^n=a^(m+n)-(a^m)^n=a^(m*n)-(a*b)^n=a^n*b^n-a^(-n)=1/a^n-a^0=1,其中a不等于0-a^1=a二、对数1. 对数函数:对数函数是指以对数为自变量的函数,形如f(x)=loga(x),其中a为底数,x为正实数。

对数函数的图像为单调递增的曲线。

2.对数运算法则:- loga(m * n) = loga(m) + loga(n)- loga(m / n) = loga(m) - loga(n)- loga(m^n) = n * loga(m)三、三角函数1.三角比:- 正弦函数 sin(x):在单位圆上,横坐标为x点对应的边长除以圆的半径。

- 余弦函数 cos(x):在单位圆上,纵坐标为x点对应的边长除以圆的半径。

- 正切函数 tan(x):在单位圆上,横坐标为x点对应的边长除以纵坐标对应的边长。

2.三角函数的基本性质:-三角函数的定义域为全体实数,值域为[-1,1]。

- 三角函数的周期性:sin(x + 2π) = sin(x), cos(x + 2π) = cos(x), tan(x + π) = tan(x)。

- 三角函数的奇偶性:sin(-x) = -sin(x), cos(-x) = cos(x),tan(-x) = -tan(x)。

- 三角函数的反函数:反正弦函数 arcsin(x),反余弦函数arccos(x),反正切函数 arctan(x)。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案一、教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。

2. 掌握对数的定义、性质及运算法则。

3. 能够运用幂函数、指数函数和对数函数解决实际问题。

二、教学内容:1. 幂函数的定义与性质2. 指数函数的定义与性质3. 对数的定义与性质4. 对数的运算法则5. 实际问题中的应用三、教学重点与难点:1. 重点:幂函数、指数函数和对数函数的定义与性质,对数的运算法则。

2. 难点:对数函数的理解和应用,对数运算法则的推导。

四、教学方法:1. 采用讲授法,讲解幂函数、指数函数、对数函数的定义与性质。

2. 采用案例分析法,分析实际问题中的幂函数、指数函数和对数函数。

3. 采用小组讨论法,探讨对数运算法则的推导。

五、教学过程:1. 导入:通过生活中的实例,引入幂函数、指数函数和对数函数的概念。

2. 讲解:讲解幂函数、指数函数和对数函数的定义与性质。

3. 案例分析:分析实际问题中的幂函数、指数函数和对数函数。

4. 小组讨论:探讨对数运算法则的推导。

6. 练习:布置课后作业,巩固所学知识。

教学反思:在教学过程中,关注学生的学习反馈,针对学生的掌握情况,调整教学节奏和难度。

注重引导学生思考,激发学生的学习兴趣。

加强实际问题中的应用,提高学生的解决问题的能力。

对数函数的理解和应用是教学难点,可通过举例、小组讨论等方式,帮助学生理解和掌握。

六、教学评价:1. 课后作业:布置相关的习题,巩固学生对幂函数、指数函数、对数函数的理解和应用。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

3. 小组讨论:评估学生在小组讨论中的表现,包括思考问题的深度和广度,以及团队合作能力。

七、教学资源:1. 教材:提供相关的教材或教学参考书,以便学生可以在家中复习和学习。

2. 课件:制作详细的课件,辅助学生理解和记忆幂函数、指数函数、对数函数的概念和性质。

3. 实际问题案例:收集一些实际问题,用于课堂分析和讨论,帮助学生理解函数的应用。

图表总结指数函数、对数函数、幂函数对比与联系

图表总结指数函数、对数函数、幂函数对比与联系

幂函数一、基础知识1.幂函数的概念一般地,形如y =x α(α∈R)的函数称为幂函数,其中底数x 是自变量,α为常数.幂函数的特征(1)自变量x 处在幂底数的位置,幂指数α为常数;(2)x α的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质函数特征性质y =xy =x2y =x3y =x12y =x -1图象定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、常用结论对于形如f (x )=xn m(其中m ∈N *,n ∈Z,m 与n 互质)的幂函数:(1)当n 为偶数时,f (x )为偶函数,图象关于y 轴对称;(2)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称;(3)当m 为偶数时,x >0(或x ≥0),f (x )是非奇非偶函数,图象只在第一象限(或第一象限及原点处).指数式、对数式一、基础知识1.指数与指数运算(1)根式的性质①(na )n=a (a 使na 有意义).②当n 是奇数时,na n =a ;当n 是偶数时,na n =|a,a ≥0,a ,a <0.(2)分数指数幂的意义分数指数幂的意义是解决根式与分数指数幂互化问题的关键.①a m n =na m (a >0,m ,n ∈N *,且n >1).②am n=1am n=1n a m(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①a r·a s=a r+s(a>0,r,s∈Q);②a ra s=a r-s(a>0,r,s∈Q);③(a r)s=a rs(a>0,r,s∈Q);④(ab)r=a r b r(a>0,b>0,r∈Q).(1)有理数指数幂的运算性质中,要求指数的底数都大于0,否则不能用性质来运算.(2)有理数指数幂的运算性质也适用于无理数指数幂.2.对数的概念及运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,就是a b=N,那么,数b就叫做以a 为底N的对数,记作:log a N=b.指数、对数之间的关系(1)对数的性质①负数和零没有对数;②1的对数是零;③底数的对数等于1.(2)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M -log a N ;③log a (N n )=n log a N (n ∈R).二、常用结论1.换底公式的变形(1)log a b ·log b a =1,即log a b =1log b a (a ,b 均大于0且不等于1);(2)log am b n=nm log a b (a ,b 均大于0且不等于1,m ≠0,n ∈R);(3)log N M =log a M log a N =log b Mlog b N (a ,b ,N 均大于0且不等于1,M >0).2.换底公式的推广log a b ·log b c ·log c d =log a d (a ,b ,c 均大于0且不等于1,d >0).3.对数恒等式a log aN =N (a >0且a ≠1,N >0).指数函数一、基础知识1.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R,a 是底数.形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数.2.指数函数y =a x (a >0,且a ≠1)的图象与性质底数a >10<a <1图象性质定义域为R,值域为(0,+∞)图象过定点(0,1)当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1;当x <0时,恒有y >1在定义域R 上为增函数在定义域R 上为减函数注意指数函数y =a x (a >0,且a ≠1)的图象和性质与a 的取值有关,应分a >1与0<a <1来研究.二、常用结论指数函数图象的特点(1)指数函数的图象恒过点(0,1),(1,a 依据这三点的坐标可得到指数函数的大致图象.(2)函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.(3)底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”.对数函数一、基础知识1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).y =log a x 的3个特征(1)底数a >0,且a ≠1;(2)自变量x >0;(3)函数值域为R.2.对数函数y =log a x (a >0,且a ≠1)的图象与性质底数a >10<a <1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即恒有log a 1=0当x >1时,恒有y >0;当0<x <1时,恒有y <0当x >1时,恒有y <0;当0<x <1时,恒有y >0在(0,+∞)上是增函数在(0,+∞)上是减函数注意当对数函数的底数a 的大小不确定时,需分a >1和0<a ,<1两种情况进行讨论.3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y=x对称.二、常用结论对数函数图象的特点(1)对数函数的图象恒过点(1,0),(a,大致图象.(2)函数y=log a x与y=log1ax(a>0,且a≠1)的图象关于x轴对称.(3)当a>1时,对数函数的图象呈上升趋势;当0<a<1时,对数函数的图象呈下降趋势.。

高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.1 对数 第2课时 对数的运

高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.1 对数 第2课时 对数的运

第2课时 对数的运算性质及换底公式1.了解对数的换底公式.2.理解对数的运算性质.3.掌握用对数的运算性质进行化简与证明.[学生用书P49]1.如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N ; (2)log a M N=log a M -log a N ; (3)log a M n=n log a M (n ∈R ). 2.换底公式一般地,称log a N =log c Nlog c a(a >0且a ≠1,c >0且c ≠1,N >0)为对数的换底公式.1.判断(正确的打“√”,错误的打“×”)(1)两个正数的积、商的对数可以化为这两个正数的对数的和、差.( ) (2)log a (xy )=log a x ·log a y .( ) (3)log 2(-5)2=2log 2(-5).( ) (4)由换底公式可得log a b =log (-2)blog (-2)a.( )答案:(1)√ (2)× (3)× (4)×2.已知a >0且a ≠1,则log a 2+log a 12=( )A .0B .12 C .1 D .2答案:A3.(1)lg 10=________;(2)已知ln a =0.2,则ln ea=________.答案:(1)12(2)0.84.log 29log 23=________. 答案:2对数的运算性质及应用[学生用书P49]计算下列各式:(1)12lg 3249-43lg 8+lg 245; (2)2lg 2+lg 31+12lg 0.36+13lg 8;(3)lg 25+23lg 8+lg 5lg 20+(lg 2)2.【解】 (1)原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10=12. (2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg (10×0.6×2)=lg 12lg 12=1.(3)原式=2lg 5+2lg 2+(1-lg 2)(1+lg 2)+(lg 2)2=2(lg 5+lg 2)+1-(lg 2)2+(lg 2)2=2+1=3.(1)对于同底的对数的化简,常用的方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数(逆用运算性质); ②“拆”,将积(商)的对数拆成对数的和(差)(正用运算性质).(2)对数式的化简,求值一般是正用或逆用公式.要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.1.计算下列各式:(1)12lg 25+lg 2+lg 10+lg(0.01)-1;(2)2log 32-log 3329+log 38-3log 55.解:(1)法一:原式=lg[2512×2×1012×(10-2)-1] =lg (5×2×1012×102) =lg 1072=72.法二:原式=12lg 52+lg 2+12lg 10-lg 10-2=(lg 5+lg 2)+12-(-2)=lg 10+12+2=1+12+2=72.(2)法一:原式=log 322+log 3(32×2-5)+log 323-3 =log 3(22×32×2-5×23)-3 =log 332-3 =2-3=-1.法二:原式=2log 32-()5log 32-2+3log 32-3 =2-3=-1.换底公式的应用[学生用书P50](1)计算:(log 2125+log 425+log 85)·(log 52+log 254+log 1258); (2)已知log 189=a ,18b=5,求log 3645(用a ,b 表示). 【解】 (1)法一:原式=⎝⎛⎭⎪⎫log 253+log 225log 24+log 25log 28⎝ ⎛⎭⎪⎫log 52+log 54log 525+log 58log 5125 =⎝⎛⎭⎪⎫3log 25+2log 252log 22+log 253log 22⎝ ⎛⎭⎪⎫log 52+2log 522log 55+3log 523log 55 =⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 法二:原式 =⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8⎝ ⎛⎭⎪⎫lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13.(2)法一:因为18b=5,所以log 185=b , 又log 189=a ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a.法二:因为log 189=a ,18b=5,所以lg 9=a lg 18, lg 5=b lg 18,所以log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b2-a.法三:因为log 189=a ,所以18a=9. 又因为18b=5,所以45=5×9=18b·18a=18a +b.令log 3645=x ,则36x=45=18a +b,即36x=⎝ ⎛⎭⎪⎫183·183x=18a +b.所以⎝ ⎛⎭⎪⎫1829x=18a +b,所以x log 181829=a +b ,所以x =a +b log 18182-log 189=a +b 2-a ,即log 3645=a +b2-a.(1)具有换底功能的另两个结论:①log a c ·log c a =1,②log an b n=log a b .(a >0且a ≠1,b >0,c >0且c ≠1)(2)求条件对数式的值,可从条件入手,从条件中分化出要求的对数式,进行求值;也可以从结论入手,转化成能使用条件的形式;还可同时化简条件和结论,直至找到它们之间的联系.(3)本题主要考查已知一些指数值或对数值,利用这些条件来表示所要求的式子,解决该类问题必须熟练掌握所学性质和法则,并学会运用整体思想.2.(1)计算:(log 43+log 83)log 32=________.(2)计算:log22+log 279=________.解析:(1)原式=⎝ ⎛⎭⎪⎫1log 34+1log 38log 32=⎝⎛⎭⎪⎫12log 32+13log 32log 32=12+13=56.(2)原式=log 22log 2212+log 332log 333=112+23=2+23=83.答案:(1)56 (2)83对数的综合应用[学生用书P50]若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. 【解】 原方程可化为2(lg x )2-4lg x +1=0, 设t =lg x ,则原方程可化为2t 2-4t +1=0.所以t 1+t 2=2,t 1t 2=12.由已知a ,b 是原方程的两个根,则t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12,所以lg(ab )·(log a b +log b a ) =(lg a +lg b )⎝⎛⎭⎪⎫lg b lg a +lg a lg b=(lg a +lg b )[(lg b )2+(lg a )2]lg a lg b=(lg a +lg b )·(lg b +lg a )2-2lg a lg blg a lg b=2×22-2×1212=12.即lg(ab )·(log a b +log b a )=12.应用对数的运算性质解对数方程的三种方法(1)定义法:解形如b =log a f (x )(a >0,a ≠1)的方程时,常借助对数函数的定义等价转化为f (x )=a b 求解.(2)转化法:形如log a f (x )=log a g (x )(a >0,a ≠1)的方程,等价转化为f (x )=g (x ),且⎩⎪⎨⎪⎧f (x )>0,g (x )>0求解. (3)换元法:适用于f (log a x )=0(a >0,a ≠1)形式的方程的求解问题,这类方程一般可通过设中间变量的方法(换元法)来解.3.(1)方程log 4(3x -1)=log 4(x -1)+log 4(x +3)的解为________.(2)已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,求x y的值. 解:(1)原方程可化为3x -1=(x -1)(x +3), 即x 2-x -2=0, 解得x =2或x =-1,而x =-1使真数3x -1和x -1小于0, 故方程的解是x =2.故填x =2. (2)由已知条件得⎩⎪⎨⎪⎧x +2y >0,x -y >0,x >0,y >0,(x +2y )(x -y )=2xy ,即⎩⎪⎨⎪⎧x >y ,y >0,(x +2y )(x -y )=2xy ,整理得⎩⎪⎨⎪⎧x >y ,y >0,(x -2y )(x +y )=0,所以x -2y =0,所以xy=2.1.对对数的运算性质的理解(1)利用对数的运算性质可以把求正数的乘、除、乘方的对数的运算转化为这些正数的对数的加、减、乘运算,反之亦然.但两个正数的和或差的对数没有运算性质.(2)对于每一条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立. (3)能用语言准确叙述对数的运算性质log a (M ·N )=log a M +log a N →积的对数等于对数的和. log a M N=log a M -log a N →商的对数等于对数的差.log a M n=n log a M (n ∈R )→真数的n 次幂的对数等于对数的n 倍. 2.关于换底公式的两点说明(1)换底公式成立的条件是公式中的每一个对数式都有意义.(2)利用换底公式,可以“随意”地改变对数的底,应注意选择适当的底数,一般转化为常用对数或自然对数,化简和证明中常常用到换底公式.已知lg a +lg b =2lg(a -2b ),求log 2a b的值. [解] 因为lg a +lg b =2lg(a -2b ), 所以lg ab =lg(a -2b )2,ab =(a -2b )2,a 2-5ab +4b 2=0,即(a -b )(a -4b )=0, 所以a =b 或a =4b . 又因为a -2b >0,所以a =4b ,log 2a b=log 24=2.(1)错因:易忽视真数大于0的限制,导致出现增解. (2)防范:将对数化简、变形,不能忘记真数大于0的限制.1.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3D .12 解析:选C.原式=log 612-log 62=log 6122=log 6 3. 2.已知a =log 32,那么log 38-2log 36用a 表示是( ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2解析:选A.log 38-2log 36=3log 32-2(log 32+1)=log 32-2=a -2. 3.(1)log 52·log 79log 513·log 734=________.(2)log 2()3+5- 3-5=________.解析:(1)原式=log 132·log 349=12lg 2-lg 3·2lg 323lg 2=-32.(2)原式=12log 2(3+5- 3-5)2=12log 2[](3+5)+(3-5)-2(3+5)(3-5) =12log 2(6-4) =12log 22=12. 答案:(1)-32 (2)124.用lg x ,lg y ,lg z 表示下列各式:(1)lg(xyz ); (2)lg xy 2z ;(3)lg xy 3z; (4)lg x y 2z .解:(1)lg(xyz )=lg x +lg y +lg z ;(2)lg xy 2z =lg(xy 2)-lg z =lg x +2lg y -lg z ;(3)lg xy 3z=lg(xy 3)-lg z=lg x +3lg y -12lg z ;(4)lgx y 2z=lg x -lg(y 2z ) =12lg x -2lg y -lg z . [学生用书P111(单独成册)])[A 基础达标]1.lg 8+3lg 5的值为( ) A .-3 B .-1 C .1D .3解析:选D.lg 8+3lg 5=lg 8+lg125=lg1 000=3. 2.设log 34·log 48·log 8m =log 416,则m 的值为( ) A.12B .9C .18D .27解析:选B.由题意得lg 4lg 3·lg 8lg 4·lg mlg 8=log 416=log 442=2, 所以lg m lg 3=2,即lg m =2lg 3=lg 9. 所以m =9,选B.3.若lg x =m ,lg y =n ,则lg x -lg ⎝ ⎛⎭⎪⎫y 102的值为( ) A.12m -2n -2 B .12m -2n -1 C.12m -2n +1 D .12m -2n +2 解析:选D.因为lg x =m ,lg y =n ,所以lg x -lg ⎝ ⎛⎭⎪⎫y 102=12lg x -2lg y +2=12m -2n +2.故选D.4.设lg 2=a ,lg 3=b ,则log 512等于( ) A.2a +b1+a B .a +2b1+a C.2a +b 1-aD .a +2b1-a解析:选C.log 512=lg 12lg 5=lg (22×3)lg (10÷2)=lg 22+lg 3lg 10-lg 2=2lg 2+lg 31-lg 2=2a +b1-a .故选C.5.已知2x=3,log 483=y ,则x +2y 等于( )A .3B .8C .4D .log 48解析:选A.因为2x=3,所以x =log 23. 又log 483=y ,所以x +2y =log 23+2log 483=log 23+2(log 48-log 43)=log 23+2⎝ ⎛⎭⎪⎫32log 22-12log 23 =log 23+3-log 23=3.故选A.6.已知m >0,且10x=lg(10m )+lg 1m,则x =________.解析:lg(10m )+lg 1m =lg 10+lg m +lg 1m=1,所以10x =1=100.所以x =0. 答案:07.方程log 3(x 2-10)=1+log 3x 的解是________.解析:原方程可化为log 3(x 2-10)=log 3(3x ),所以x 2-10=3x ,解得x =-2,或x =5.经检验知x =5.答案:x =58.已知2m =3n=36,则1m +1n=________.解析:m =log 236,n =log 336,所以1m =log 362,1n =log 363,所以1m +1n =log 366=12.答案:129.计算下列各式:(1)lg 8+log 39+lg 125+log 319;(2)[log 2(log 216)](2log 36-log 34);(3)⎝ ⎛⎭⎪⎫lg 4-lg 60lg 3+lg 53-45×2-11. 解:(1)原式=lg 8+lg 125+log 39+log 319=lg(8×125)+log 3⎝ ⎛⎭⎪⎫9×19=lg 1 000+log 31=3+0=3. (2)原式=(log 24)(log 336-log 34)=2log 3364=2log 39=4.(3)原式=⎝ ⎛⎭⎪⎪⎫lg 460lg 153-210×2-11=⎝ ⎛⎭⎪⎫-lg 15lg 153-2-1 =-1-12=-32.10.解下列关于x 的方程: (1)lg x -1=lg(x -1);(2)log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1).解:(1)原方程等价于⎩⎨⎧x -1=x -1,x -1>0.解之得x =2. 经检验x =2是原方程的解,所以原方程的解为x =2.(2)原方程可化为log 4(3-x )-log 4(3+x )=log 4(1-x )-log 4(2x +1).即log 43-x 3+x=log 41-x 2x +1. 整理得3-x x +3=1-x 2x +1,解之得x =7或x =0. 当x =7时,3-x <0,不满足真数大于0的条件,故舍去.x =0满足,所以原方程的解为x =0.[B 能力提升]1.若log 513·log 36·log 6x =2,则x 等于________. 解析:由换底公式,得-lg 3lg 5·lg 6lg 3·lg x lg 6=2, lg x =-2lg 5,x =5-2=125. 答案:1252.计算log 8(log 242)的值为________.解析:log 8(log 242)=log 814=-2log 82=-23. 答案:-233.若log a b +3log b a =132,则用a 表示b 的式子是________. 解析:原式可化为1log b a +3log b a =132, 整理得3(log b a )2+1-132log b a =0, 即6(log b a )2-13log b a +2=0;解得log b a =2或log b a =16, 所以b 2=a 或b 16=a , 即b =a 或b =a 6.答案: b =a 或b =a 64.(选做题)已知地震的震级R 与地震释放的能量E 的关系为R =23(lg E -11.4).若A 地地震级别为9.0级,B 地地震级别为8.0级,求A 地地震释放的能量是B 地地震释放的能量的多少倍.解:由R =23(lg E -11.4), 得32R +11.4=lg E , 故E =10(32R +11.4).设A 地和B 地地震释放的能量分别为E 1,E 2,则E 1E 2=10(32×9.0+11.4)10(32×8.0+11.4)=1010, 即A 地地震释放的能量是B 地地震释放的能量的1010倍.。

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法高中数学中,幂函数、指数函数、对数函数和三角函数是常见的函数类型。

这些函数求导的公式常用于解决函数的速率和变化率等问题。

同时,积与商的函数导数求法也是数学中常用的方法之一1.幂函数的导数:幂函数的一般形式为y = ax^n (a ≠ 0, n为实数)。

其导数可以通过求导公式来计算。

对于幂函数 y = ax^n,其导数为 dy/dx = anx^(n-1)。

例如,对于函数 y = 2x^3,其导数为 dy/dx = 3*2x^(3-1) = 6x^2 2.指数函数的导数:指数函数的一般形式为y=a^x(a>0,a≠1)。

其导数可以通过自然对数的导数来计算。

对于指数函数 y = a^x,其导数为 dy/dx = ln(a) * a^x。

例如,对于函数 y = e^x,其导数为 dy/dx = ln(e) * e^x = e^x。

3.对数函数的导数:对数函数的一般形式为y = log_a(x) (a > 0, a ≠ 1)。

其导数可以通过换底公式和幂函数的导数来计算。

换底公式:log_a(x) = ln(x) / ln(a)对于对数函数 y = log_a(x),其导数为 dy/dx = 1/(xln(a))。

例如,对于函数 y = log_2(x),其导数为 dy/dx = 1/(xln(2))。

4.三角函数的导数:常见的三角函数包括正弦函数、余弦函数和正切函数等。

它们的导数可以通过基本导数公式来计算。

正弦函数的导数:d(sin(x))/dx = cos(x)余弦函数的导数:d(cos(x))/dx = -sin(x)正切函数的导数:d(tan(x))/dx = sec^2(x)5.积的函数导数求法:对于两个函数相乘的情况,可以使用乘积的求导法则来计算。

设函数 y = f(x) * g(x),其中 f(x) 和 g(x) 为可导函数,则它们的乘积的导数为 dy/dx = f'(x) * g(x) + f(x) * g'(x)。

高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.2 对数函数 第1课时 对数

高中数学 第3章 指数函数、对数函数和幂函数 3.2 对数函数 3.2.2 对数函数 第1课时 对数

第1课时对数函数的概念、图象及性质1.了解对数函数的概念.2.会画对数函数的图象,记住对数函数的性质.3.掌握对数函数图象和性质的应用.[学生用书P52]1.对数函数的概念一般地,函数y=log a x(a>0,a≠1)叫做对数函数,对数函数的定义域是(0,+∞),值域为(-∞,+∞).2.对数函数的图象与性质定义y=log a x(a>0且a≠1)底数a>10<a<1图象定义域{x|x>0}值域R单调性增函数减函数共点性图象过点(1,0),即log a1=0函数值x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1ax的图象关于x轴对称趋势a值越大图象越靠近x,y轴a值越小图象越靠近x,y轴x趋于零,y趋于-∞;x趋于+∞,y趋于+∞x趋于零,y趋于+∞;x趋于+∞,y趋于-∞3.y=a x称为y=log a x的反函数,反之,y=log a x也称为y=a x的反函数,一般地,如果函数y =f(x)存在反函数,那么它的反函数记作y=f-1(x).1.判断(正确的打“√”,错误的打“×”)(1)y=log2x2与y=log x3都不是对数函数.( )(2)对数函数的图象一定在y轴右侧.( )(3)当0<a <1时,若x >1,则y =log a x 的函数值都大于零.( ) (4)函数y =log 2x 与y =x 2互为反函数.( ) 答案:(1)√ (2)√ (3)× (4)× 2.函数y =log 4.3x 的值域是________. 答案:R3.函数y =(a 2-4a +4)log a x 是对数函数,则a =________. 答案:34.函数f (x )=log 5(1-x )的定义域是________. 答案:{x |x <1}与对数函数有关的定义域问题[学生用书P52]求下列函数的定义域: (1)y =lg(x +1)+3x21-x; (2)y =log (2x -1)3x -2. 【解】 (1)要使函数有意义, 需⎩⎪⎨⎪⎧x +1>0,1-x >0,即⎩⎪⎨⎪⎧x >-1,x <1.所以-1<x <1.所以函数的定义域为(-1,1). (2)由⎩⎪⎨⎪⎧2x -1>0,2x -1≠1,3x -2>0,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).若将例题(2)函数改为“y =log3x -2(2x -1)”,则其定义域应为________.解析:由⎩⎪⎨⎪⎧2x -1>0,3x -2>0,3x -2≠1,解得x >23,且x ≠1,所以函数的定义域为⎝ ⎛⎭⎪⎫23,1∪(1,+∞).答案:⎝ ⎛⎭⎪⎫23,1∪(1,+∞)(1)求与对数函数有关的函数定义域时应遵循的原则①分母不能为0;②根指数为偶数时,被开方数非负; ③对数的真数大于0,底数大于0且不为1. (2)求函数定义域的步骤①列出使函数有意义的不等式(组); ②化简并解出自变量的取值范围; ③确定函数的定义域.1.求下列函数的定义域:(1)y =1lg (x +1)-3;(2)y =log a (4x -3)(a >0,且a ≠1).解:(1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0,x +1>0得⎩⎪⎨⎪⎧x +1≠103,x >-1, 所以x >-1,且x ≠999,所以函数的定义域为{x |x >-1,且x ≠999}. (2)log a (4x -3)≥0⇒log a (4x -3)≥log a 1. 当a >1时, 有4x -3≥1,x ≥1 . 当0<a <1时,有0<4x -3≤1,解得34<x ≤1.综上所述,当a >1时,函数的定义域为[1,+∞),当0<a <1时,函数的定义域为⎝ ⎛⎦⎥⎤34,1. 对数函数的图象和性质[学生用书P53](1)如图所示的曲线是对数函数y =log a x 的图象,已知a 的取值可为35,110,3,43,则相应曲线C 1,C 2,C 3,C 4的底数a 的值依次为________.(2)若函数y =log a (x +b )+c (a >0,a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为________,________.【解析】 (1)由底数对对数函数图象的影响,可知C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应的曲线C 1,C 2,C 3,C 4的底数依次是3,43,35,110.(2)因为函数的图象恒过定点(3,2), 所以将(3,2)代入y =log a (x +b )+c , 得2=log a (3+b )+c .又当a >0,a ≠1时,log a 1=0恒成立, 所以log a (3+b )=0,所以b =-2,c =2. 【答案】 (1)3,43,35,110(2)-2 2(1)对数函数的性质可以结合图象去理解记忆.(2)对数函数图象的画法有两种:一是描点法;二是通过图象变换画出.2.已知a >0,且a ≠1,则函数y =a x与y =log a (-x )的图象可能是( )解析:选B.法一:若0<a <1,则函数y =a x的图象下降且过点(0,1),而函数y =log a (-x )的图象上升且过点(-1,0),以上图象均不符合.若a >1,则函数y =a x的图象上升且过点(0,1),而函数y =log a (-x )的图象下降且过点(-1,0),只有B 中图象符合.法二:首先指数函数y =a x的图象只可能在x 轴上方,函数y =log a (-x )的图象只可能在y 轴左方,从而排除A ,C ;再看单调性,y =a x与y =log a (-x )的单调性正好相反,排除D.只有B 中图象符合.法三:如果注意到y =log a (-x )的图象关于y 轴的对称图象为y =log a x ,又y =log a x 与y =a x互为反函数(图象关于直线y =x 对称),则可直接确定选B.利用对数函数的单调性比较大小[学生用书P53]比较下面各组数中两个值的大小. (1)log 33.4,log 38.5; (2)log 0.21.8,log 0.22.7;(3)log a 5.1,log a 5.9(a >0且a ≠1). 【解】 (1)考察对数函数y =log 3x ,因为它的底数3>1,所以它在(0,+∞)上是增函数, 于是log 33.4<log 38.5.(2)考察对数函数y =log 0.2x ,因为它的底数0.2<1,所以它在(0,+∞)上是减函数,于是log 0.21.8>log 0.22.7.(3)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件并未明确指出底数a 与1哪个大,因此要对底数a 进行讨论:当a >1时,函数y =log a x 在(0,+∞)上是增函数, 于是log a 5.1<log a 5.9;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数, 于是log a 5.1>log a 5.9.(1)如果同底,可直接利用单调性求解.如果底数为字母,则要分类讨论. (2)如果不同底,一种方法是化为同底对数,另一种方法是寻找中间变量.(3)如果不同底同真数,可利用图象的高低与底数的大小的关系解决或利用换底公式化为同底,再进行比较.(4)若底数、真数都不相同,则常借助中间量1,0,-1等进行比较.3.比较下列各组数的大小:(1)log 0.20.4,log 0.20.3,log 0.23; (2)log 123,log 133,log 143;(3)log 23,log 45,log 76.解:(1)因为函数y =log 0.2x 是区间(0,+∞)上的单调减函数,且0.3<0.4<3, 所以log 0.20.3>log 0.20.4>log 0.23.(2)因为函数f (x )=log 3x 在(0,+∞)上是增函数, 又0<14<13<12<1,所以log 314<log 313<log 312<0,即1log 143<1log 133<1log 123<0, 所以log 123<log 133<log 143. (3)log 23=log 49>log 45>1, 而log 76<log 77=1, 故log 76<log 45<log 23.1.关于对数函数概念的两点说明(1)对数函数的概念与指数函数类似,都是形式化定义,如y =2log 2x ,y =log 2x3都不是对数函数,可称其为对数型函数.(2)由指数式与对数式的关系知:对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞).2.a 对对数函数的图象的影响(1)底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.(2)底数的大小决定了图象对应位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.函数f (x )=1log 2x -1的定义域为________.[解析] 要使函数有意义,则⎩⎪⎨⎪⎧x >0,log 2x -1>0,解得x >2.[答案] (2,+∞)(1)解答本题只注意被开方数大于零,而忽视真数大于零.(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.1.下列函数表达式中,是对数函数的有( ) ①y =log x 2;②y =log a x (a ∈R );③y =log 8x ; ④y =ln x ;⑤y =log x (x +2). A .1个 B .2个 C .3个D .4个解析:选B.形如y =log a x (a >0且a ≠1)的函数即为对数函数,符合此形式的函数表达式有③、④,其他的均不符合.2.函数y =lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C.要使函数式有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1,且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C.3.函数y =2x的反函数为________.解析:由对数函数y =log a x (a >0,a ≠1)和y =a x (a >0,a ≠1)互为反函数知y =2x的反函数为y =log 2x .答案:y =log 2x4.若函数y =log a (x +a )(a >0且a ≠1)的图象过点(-1,0). (1)求a 的值; (2)求函数的定义域.解:(1)将(-1,0)代入y =log a (x +a )(a >0且a ≠1)中,有0=log a (-1+a ), 则-1+a =1,所以a =2.(2)由(1)知y =log 2(x +2),x +2>0,解得x >-2, 所以函数的定义域为{x |x >-2}.[学生用书P112(单独成册)])[A 基础达标]1.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =( ) A .-1 B .5 C .-1或5D .1解析:选B.由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.2.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1,故a >c >b .3.函数y =lg(x -1)+lg(x -2)的定义域为M ,函数y =lg(x 2-3x +2)的定义域为N ,则( ) A .MN B .N MC .M =ND .M ∩N =∅解析:选A.y =lg(x 2-3x +2) =lg[(x -1)(x -2)], 所以⎩⎪⎨⎪⎧x -1>0x -2>0或⎩⎪⎨⎪⎧x -1<0x -2<0,即x >2或x <1.所以N ={x |x >2或x <1}. 又M ={x |x >2}. 所以MN .4.已知函数f (x )=log a (x -m )的图象过点(4,0)和(7,1),则f (x )在定义域上是( ) A .增函数 B .减函数 C .奇函数D .偶函数解析:选A.将点(4,0)和(7,1)代入函数解析式,有⎩⎪⎨⎪⎧0=log a (4-m ),1=log a (7-m ).解得a =4和m =3,则有f (x )=log 4(x -3).由于定义域是{x |x >3},则函数不具有奇偶性.很明显函数f (x )在定义域上是增函数.5.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .12x C .log 12xD .2x -2解析:选A.函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .6.下列四个数:0.2-0.1,log 1.20.3,log 0.20.3,log 0.20.5,由小到大的顺序为________.解析:因为0.2-0.1>1,log 1.20.3<0,0<log 0.20.5<log 0.20.3<log 0.20.2=1, 所以log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.1. 答案:log 1.20.3<log 0.20.5<log 0.20.3<0.2-0.17.已知函数y =log a (x +3)-89(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x+b的图象上,则b =________.解析:当x +3=1,即x =-2时, 对任意的a >0,且a ≠1都有y =log a 1-89=0-89=-89,所以函数y =log a (x +3)-89的图象恒过定点A ⎝ ⎛⎭⎪⎫-2,-89,若点A 也在函数f (x )=3x+b 的图象上, 则-89=3-2+b ,所以b =-1.答案:-18.已知log a 3>log b 3>0,则a ,b 的大小关系是________. 解析:因为log a 3>log b 3>0,所以a >1,b >1. 由换底公式有1log 3a >1log 3b >0,所以log 3b >log 3a >0. 所以b >a . 答案:b >a9.求下列函数的定义域:①y =log 3(3x );②y =log 34x -5; ③y =1log 12x ;④y = log 2(2x +6).解:①由3x >0,得x >0,所以函数y =log 3(3x )的定义域为(0,+∞). ②由4x -5>0,得x >54,所以函数y =log 34x -5的定义域为⎝ ⎛⎭⎪⎫54,+∞. ③由x >0及log 12x ≠0得x >0且x ≠1,所以函数y =1log 12x的定义域为(0,1)∪(1,+∞).④log 2(2x +6)≥0,得2x +6≥1,即x ≥-52,所以函数y =log 2(2x +6)的定义域为⎣⎢⎡⎭⎪⎫-52,+∞.10.解不等式:log a (2x -5)>log a (x -1). 解:当a >1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5>x -1.解得x >4.所以原不等式的解集为{x |x >4}. 当0<a <1时,原不等式等价于 ⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4. 综上,当a >1时,不等式的解集为{x |x >4};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪52<x <4.[B 能力提升]1.已知函数f (x )=lg|x |,设a =f (-3),b =f (2),则a 与b 的大小关系是________. 解析:f (x )=lg|x |定义域为(-∞,0)∪(0,+∞),是偶函数,且f (x )在(0,+∞)上为增函数.a =f (-3)=f (3),b =f (2),因为f (3)>f (2),所以a >b .答案:a >b2.已知f (x )=|lg x |,若1c>a >b >1,则f (a ),f (b ),f (c )的大小关系是________.解析:先作出函数y =lg x 的图象,再将图象在x 轴下方的部分沿x 轴翻折到上方,这样,我们便得到了y =|lg x |的图象,如图.由图可知,f (x )=|lg x |在(0,1)上单调递减,在(1,+∞)上单调递增,于是f ⎝ ⎛⎭⎪⎫1c>f (a )>f (b ),而f ⎝ ⎛⎭⎪⎫1c =⎪⎪⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ).所以f (c )>f (a )>f (b ).答案:f (c )>f (a )>f (b )3.已知函数f (x )=log (2a -1)(2x +1)在区间⎝ ⎛⎭⎪⎫32,+∞上满足f (x )>0,试求实数a 的取值范围. 解:当x ∈⎝ ⎛⎭⎪⎫32,+∞时,2x +1>4>1.因为log(2a -1)(2x +1)>0=log (2a -1)1,所以2a -1>1,即2a >2,解得a >1.即实数a 的取值范围是(1,+∞).4.(选做题)已知函数f (x )=log 21+x 1-x. (1)求证:f (x 1)+f (x 2)=f ⎝⎛⎭⎪⎫x 1+x 21+x 1x 2; (2)若f ⎝ ⎛⎭⎪⎫a +b 1+ab =1,f (-b )=12,求f (a )的值. 解:(1)证明:左边=log 21+x 11-x 1+log 21+x 21-x 2=log 2⎝ ⎛⎭⎪⎫1+x 11-x 1·1+x 21-x 2 =log 21+x 1+x 2+x 1x 21-x 1-x 2+x 1x 2. 右边=log 21+x 1+x 21+x 1x 21-x 1+x 21+x 1x 2=log 21+x 1+x 2+x 1x 21+x 1x 2-x 1-x 2. 所以左边=右边.(2)因为f (-b )=log 21-b 1+b =-log 21+b 1-b =12, 所以f (b )=log 21+b 1-b =-12, 利用(1)可知:f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab , 所以f (a )-12=1, 解得f (a )=32.。

(统编版)2020高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.2对数函数自主训练苏教版必修59

(统编版)2020高中数学第三章指数函数对数函数和幂函数3.2对数函数3.2.2对数函数自主训练苏教版必修59

3.2.2 对数函数自主广场我夯基 我达标1.如下图,当a >1时,在同一坐标系中,函数y=a -x 与y=log a x 的图象是( )思路解析:首先把y=a -x 化为y=(a 1)x , ∵a >1,∴0<a 1<1.因此y=(a1)x ,即y=a -x 的图象是下降的,y=log a x 的图象是上升的. 答案:A2.y=21log (x 2-3x+2)的递增区间是( )A.(-∞,1)B.(2,+∞)C.(-∞,23)D.(23,+∞)思路解析:首先考虑对数函数的定义域,再利用对数函数的性质.答案:A3.已知函数f(x)=lg(x 2-3x+2)的定义域为F ,函数g(x)=lg(x-1)+lg(x-2)的定义域为G ,那么( ) A.G F B.G=F C.F ⊆G D.F∩G=∅ 思路解析:F={x|x 2-3x+2>0}={x|x>2或x<1},G={x|x>2}.∴G F.答案:A4.已知函数f(x)=log 2(x 2-ax+3a)在[2,+∞)上是增函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,4)思路解析:解决复合函数问题的通法是把复合函数化归为基本初等函数. 令u (x )=x 2-ax+3a ,其对称轴x=2a .由题意有⎪⎩⎪⎨⎧≤>+-=.22,0324)2(a a a u 解得-4<a≤4. 答案:B5.若定义在(-1,0)上的函数f(x)=log 2a(x+1)满足f(x)>0,则a 的取值范围是( )A.(0,21)B.(0,21]C.(21,+∞) D.(0,+∞) 思路解析:本题考查对数函数的基本性质.当x ∈(-1,0)时,有x+1∈(0,1),此时要满足f(x)>0,只要0<2a<1即可.由此解得0<a<21. 答案:A6.函数y=lg 11-x 的图象大致是( )思路解析:本题通法有两种:①图象是由点构成的,点点构成函数的图象,所以可取特殊点(2,0),(1011,1).②利用函数解析式判断函数的性质,函数的定义域为(1,+∞),在定义域上函数为减函数.答案:A7.若函数f(x)=log a x(0<a<1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于( ) A.42 B.22 C.41 D.21 思路解析:本题关键是利用f(x)的单调性确定f(x)在[a ,2a ]上的最大值与最小值. f(x)=log a x(0<a<1)在(0,+∞)上是减函数,当x ∈[a ,2a ]时,f(x)max =f(a)=1,f(x)min =f(2a)=log a 2a.根据题意,3log a 2a=1,即log a 2a=31,所以log a 2+1=31,即log a 2=-32.故由32-a =2得a=232-=42. 答案:A我综合 我发展8.log a32<1,则a 的取值范围是____________. 思路解析:当a>1时,log a 32<1=log a a.∴a>32.又a>1,∴a>1. 当0<a<1时,log a 32<log a a.∴a<32.又0<a<1,∴0<a<32. 答案:(0,32)∪(1,+∞) 9.函数y=log a (x-2)+1(a >0且a ≠1)恒过定点______________.思路解析:若x-2=1,则不论a 为何值,只要a >0且a ≠1,都有y=1.答案:(3,1)10.函数f(x)=log (a-1)x 是减函数,则a 的取值范围是____________.思路解析:考查对数函数的概念、性质.注意到a-1既受a-1>0且a-1≠1的制约,又受减函数的约束,由此可列关于a 的不等式求a.由题意知0<a-1<1,∴1<a <2.答案:1<a <211.已知f(x)=log a xx -+11(a>0且a ≠1). (1)求函数的定义域;(2)讨论函数的单调性;(3)求使f(x)>0的x 的取值范围.思路解析:注意对数函数的底和真数的制约条件以及底的取值范围对单调性的影响. 解答:(1)由xx -+11>0得-1<x<1. ∴函数的定义域为(-1,1).(2)对任意-1<x 1<x 2<1,)1)(1()(2111121212211x x x x x x x x ---=-+--+<0,∴22111111x x x x -+<-+. 当a>1时,log a 1111x x -+<log a 2211x x -+,即f(x 1)<f(x 2); 当0<a<1时,log a 1111x x -+>log a 2211x x -+,即f(x 1)>f(x 2). ∴当a>1时,f(x)为(-1,1)上的增函数;当0<a<1时,f(x)为(-1,1)上的减函数.(3)log axx -+11>0=log a 1. 当a>1时,x x -+11>1,即x x -+11-1=x x -12>0. ∴2x(x-1)<0.∴0<x<1.当0<a<1时,⎪⎪⎩⎪⎪⎨⎧<-+>-+.111,011xx x x 解得-1<x<0.∴当a>1时,f(x)>0的解为(0,1);当0<a<1时,f(x)>0的解为(-1,0).12.已知f(x)=1+log x 3,g(x)=2log x 2,试比较f(x)与g(x)的大小.思路解析:要比较两个代数式的大小,通常采取作差法或作商法,作差时,所得差同零比较,作商时,应先分清代数式的正负,再将商同“1”比较大小.因为本题中的f(x)与g(x)的正负不确定,所以采取作差比较法.解答:f(x)和g(x)的定义域都是(0,1)∪(1,+∞).f(x)-g(x)=1+log x 3-2log x 2=1+log x 3-log x 4=log x43x. (1)当0<x <1时,若0<43x <1,即0<x <34,此时log x 43x >0,即0<x <1时,f(x)>g(x).(2)当x >1时,若43x >1,即x >34,此时log x 43x >0,即x >34时,f(x)>g(x); 若43x=1,即x=34,此时log x 43x=0,即x=34时,f(x)=g(x);若0<43x <1,即0<x <34,此时log x 43x <0,即1<x <34时,f(x)<g(x).综上所述,当x ∈(0,1)∪(34,+∞)时,f(x)>g(x);当x=34时,f(x)=g(x);当x ∈(1,34)时,f(x)<g(x).我创新 我超越13.已知f(x)=lg(a x -b x )(a>1>b>0).(1)求y=f(x)的定义域;(2)在函数图象上是否存在不同两点,使过两点的直线平行于x 轴?思路解析:(2)的思维难点是把问题化归为研究函数的单调性问题.解答:(1)由a x -b x >0,得(b a)x >1=(b a)0. ∵b a>1,∴x>0.∴函数的定义域为(0,+∞).(2)先证明f(x)是增函数.对于任意x 1>x 2>0,∵a>1>b>0,∴1x a >2x a ,1x b <2x b .∴1x a -1x b >2x a -2x b .∴lg(1x a -1x b )>lg(2x a -2x b ).∴f(x 1)>f(x 2).∴f(x)在(0,+∞)上为增函数.假设y=f(x)上存在不同的两点A(x 1,y 1)、B(x 2,y 2),使直线AB 平行于x 轴,则x 1≠x 2,y 1=y 2,这与f(x)是增函数矛盾.∴y=f(x)的图象上不存在两点,使过这两点的直线平行于x 轴.14.已知非零常数x 、y 、z ,满足2x =3y =6z ,求证:zy x 111=+. 思路解析:考查转化的思想方法,指、对式的转化.可以先求出x 、y 、z ,然后由左边推证出右边.证法一:设2x =3y =6z =k ,则x=log 2k ,y=log 3k ,z=log 6k. ∴k k y x 32log 1log 111+=+=log k 2+log k 3=log k 6=zk 1log 16=. 证法二:由2x =3y =6z ,有2x =6z ,3y =6z .∴x=log 26z =zlog 26,y=log 36z =zlog 36. ∴z z z y x 16log 16log 11132=+=+(log 62+log 63)=z 1log 66=z1. 15.求函数f(x)=log 211-+x x +log 2(x-1)+log 2(p-x)的值域. 思路解析:求函数值域,必须先求定义域,求对数函数的定义域转化为解不等式组.解答:f(x)的定义域为⎪⎪⎩⎪⎪⎨⎧>->->-+.0,01,011x p x x x ∴⎪⎩⎪⎨⎧>->->+.0,01,01x p x x ∴⎩⎨⎧<>.,1p x x ∵函数定义域不能是空集,∴p >1,定义域为(1,p).而x ∈(1,p)时,f(x)=log 2(x+1)(p-x)=log 2[-x 2+(p-1)x+p ]=log 2[-(x-21-p )2+(21+p )2]. (1)当0<21-p ≤1,即1<p ≤3时,0<(x+1)(p-x)<2(p-1). ∴f(x)的值域为(-∞,log 22(p-1)).(2)当1<21-p <p ,即p >3时,0<(x+1)(p-x)≤(21+p )2. ∴函数f(x)的值域为(-∞,2log 2(p+1)-2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】 向左平移 3 个单位,再向下平移 1 个单位
对数函数的图象
[小组合作型]
作出函数 y=|log2 (x+2)|+4 的图象,并指出其单调增区间.
【精彩点拨】 可先作出 y=log2 x 的图象,再左移 2 个单位得到 y=log2 (x+ 2),通过翻折变换得到 y=|log2 (x+2)|,再向上平移 4 个单位即可.
【自主解答】 步骤如下: (1)作出 y=log2 x 的图象,如图(1). (2)将 y=log2 x 的图象沿 x 轴向左平移 2 个单位得到 y=log2 (x+2)的图象,如 图(2). (3)将 y=log2 (x+2)的图象在 x 轴下方的图象以 x 轴为对称轴翻折到 x 轴的上 方得到 y=|log2 (x+2)|的图象,如图(3). (4)将 y=|log2 (x+2)|的图象沿 y 轴方向向上平移 4 个单位,得到 y=|log2(x+2)| +4 的图象,如图(4).
2.对称变换 要得到 y=loga 1x的图象,应将 y=loga x 的图象关于 x轴 对称.
为了得到函数 y=lg x+103的图象,只需把函数 y=lg x 的图象上所有的点 ________________________________________________________. 【解析】 y=lg x+103=lg (x+3)-1,故将 y=lg x 向左平移 3 个单位,再向 下平移 1 个单位.
【精彩点拨】 (1)中利用 f (x)=2log1x 在定义域[2,4]上为减函数求解.
2
(2)y=ax 与 y=loga(x+1)在[0,1]上具有相同的单调性,所以 f (x)=ax+loga(x+
1)在[0,1]上是单调函数.
(3)中注意考虑真数-x2-4x+12 的范围.ቤተ መጻሕፍቲ ባይዱ
【自主解答】 (1)∵f (x)=2log1x 在[2,4]上为减函数,






第2课时 对数函数的图象与性质的应用

阶 段 二
业 分 层 测

1.能正确判断图象之间的变换关系.(重点) 2.理解并掌握对数函数的单调性.(重点) 3.会用对数函数的相关性质解综合题.(难点)
[基础·初探] 教材整理 与对数函数有关的图象变换 阅读教材 P84 例 3 以下内容,完成下列问题. 1.平移变换 当 b>0 时,将 y=loga x 的图象向 左 平移 b 个单位,得到 y=loga(x+b)的图 象;向 右 平移 b 个单位,得到 y=loga(x-b)的图象.当 b>0 时,将 y=loga x 的 图象向上 平移 b 个单位,得到 y=logax+b 的图象,将 y=logax 的图象向 下 平 移 b 个单位,得到 y=logax-b 的图象.
由图可知,函数的单调增区间为(-1,+∞).
1.已知 y=f (x)的图象,求 y=|f (x+a)|+b 的图象步骤如下: y=f (x)→y=f (x+a)→y=|f (x+a)|→y=|f (x+a)|+b. 2.已知 y=f (x)的图象,求 y=|f (x+a)+b|的图象,步骤如下: y=f (x)→y=f (x+a)→y=f (x+a)+b→y=|f (x+a)+b|. 从上可以看出,作含有绝对值号的函数图象时,先将绝对值号内部的图象做 出来,再进行翻折,内部变换的顺序是先变换 x,再变换 y.
1 (2)2
(3)∵-x2-4x+12>0,
又∵-x2-4x+12=-(x+2)2+16≤16,
∴0<-x2-4x+12≤16,
故 log2(-x2-4x+12)≤log216=4,
∴函数的值域为(-∞,4].
求函数值域或最大(小)值的常用方法 1.直接法 根据函数解析式的特征,从函数自变量的变化范围出发,通过对函数定义域、 性质的观察,结合解析式,直接得出函数值域. 2.配方法 当所给的函数是二次函数或可化为二次函数形式的(形如 y=a[f (x)]2+bf (x)+ c),求函数值域问题时,可以用配方法.
【答案】 ④
(2)已知 lg a+lg b=0,则函数 f (x)=ax 与函数 g(x)=-logb x 的图象可能是 ________.(填序号)
【解析】 由 lg a+lg b=0,得 lg (ab)=0,所以 ab=1,故 a=1b, 所以当 0<b<1 时,a>1;当 b>1 时,0<a<1.又因为函数 y=-logb x 与函数 y= logb x 的图象关于 x 轴对称.综合分析可知,②正确. 【答案】 ②
值XX域X 问题
(1)已知函数 f (x)=2log1x 的定义域为[2,4],则函数 f (x)的值域是
2
________. (2)若函数 f (x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为 a,则 a 的值
为________. (3)求函数 f (x)=log2(-x2-4x+12)的值域.
[再练一题] 1.(1)若函数 f (x)=a-x(a>0,a≠1)是定义域为 R 的增函数,则函数 g(x)=loga (x+1)的图象大致是________.(填序号)
【解析】 因为函数 f (x)=a-x 是定义域为 R 的增函数,所以 0<a<1.另外 g(x) =loga (x+1)的图象是由函数 h(x)=loga x 的图象向左平移 1 个单位得到的.
2
∴x=2 时,f (x)max=2log12=-2; 2
x=4 时,f (x)min=2log14=-4, 2
∴f (x)的值域为[-4,-2].
(2)由题意得 1+loga1+a+loga2=a, a>0且a≠1, ∴loga2=-1, 解得 a=12.
【答案】
(1)[-4,-2]
3.单调性法 根据在定义域(或定义域的某个子集)上的单调性,求出函数的值域. 4.换元法 求形如 y=logaf (x)型函数值域的步骤:①换元,令 u=f (x),利用函数图象和 性质求出 u 的范围;②利用 y=logau 的单调性、图象,求出 y 的取值范围.
相关文档
最新文档