卡方检验
统计方法卡方检验
统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。
它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。
卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。
2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。
卡方检验的原理是基于观察到的频数与期望的频数之间的差异。
观察到的频数是指在实际数据中观察到的变量组合的频数。
期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。
卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。
在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。
零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。
卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。
表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。
2.计算期望频数:根据变量边际分布计算得到期望频数。
期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。
3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。
卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。
4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。
在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。
5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。
6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。
卡方检验名词解释
卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。
参数和非参数检验最明显的区别是它们使用数据的类型。
非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。
卡方检验分为拟合度的卡方检验和卡方独立性检验。
我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。
我们只是将个体分类,并想知道每个类别中的总体比例。
它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。
拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。
测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。
拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。
确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。
关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。
卡方检验
χ2检验的其它应用
拟合优度检验(goodness of fit)
判断实际频数与理论频数的吻合程度 应用:
判断分布类型(正态分布、二项分布……) 评价多元回归分析中回归方程的拟合效果
线性趋势检验
资料类型:不同等级分层的百分率 分析目的:百分率虽等级增加而增加的趋势 分析方法:参见相关与回归分析
- + ++
- 23 45 56 + 34 23 67 ++ 12 34 21
配对四格表的确切概率法
b+c <25——确切概率法
例7-9
原理:二项分布
公式:
k
单侧
P(X k)
Ci bc
0.5bc
i0
双侧
k
P(X k) 2
Ci bc
0.5bc
i0
例7-9 P(X≤3)=0.0176<0.05
当其中一个变量为等级资料,且分析 目的为比较处理效应时,用秩和检验 如表8-3
第四节 两两比较
1. 卡方分割
两两比较计算卡方 无统计学意义的合并
2. Scheffè可信区间法 3. Bonferroni法:调整检验水准
k=R(R-1)/2,α’=α/k
例7-4: α’=0.05 / 3=0.0167 结果保守
之一,英国统计学家K . Pearson (1857-1936)于1900年提出的一 种具有广泛用途的统计方法,常称 为Pearson卡方检验,可用于:
✓两个或多个率间的比较; ✓两组或多组频数分布(或构成)的比较 ✓两分类变量的关联性分析 ✓拟合优度检验等等。
第一节 卡方检验的基本思想——以四格表为例
连续性校正公式
卡方检验
由=0.01得临界值 2(k1)0 2 .0(1 3)1.3 145
由于
22 (k1) 0.01
故接受H0,即认为试验结果与孟德尔学说的结果相符合。
X2拟合检验的步骤
1.把观察到的不同类别的频数分别归入k类,这 些频数之和应是独立观察到总频数之和。
2.假设H0,即确定出每一类应有的期望数Tk
(或np)。如k>2,只要有20%的Tk(或np) <5,就要合并相邻精度类别以减少k值,以 此来增加某些Tk值。如k=2,只有当Tk都5 时,才能应用式5-1来进行X2检验,否则就需 要应用修正式来检验。
[951000.9]2
np
1000.1
1000.9
(Ynp)
2
(51000.1)2
2.78
np(1p) 1000.10.9
X 2 0 .0 5 ,1 C H I I N V ( 0 .0 5 ,1 ) 3 .8 4
因为X2 < X20.05,1, 所以优级品率没有出现下降的变化。
II: 符号检验
1. 计算X2。
2. 根据给定的置信概率,查X2分布表,如果 计算值小于表值,则接受H0,反之则拒绝。
例
一试剂公司按现行生产工艺生产的化学试剂,
其优品率要占到10%。现从一批产品中抽取
100个进行检验,结果发现优级品仅5个。问是
否优级品率出现了下降的变化(=0.05)?
X2
(Ynp)2
(51000.1)2 =
1 符号检验 检验不知道分布类型的数据
根据统计资料的符号,可以简便地来检验两组
成对的数据是否属于同一总体。两个样本既可
以是互相独立,也可以是相关的,也就是说既 可检验两总体是否存在显著差异,也可检验是 否来自同一总体。
08卡方检验
知识分子
25
11
4. 初步统计频数卡方独立性检验:SPSS
New file > Variable View > define variables Data View > input data Data > Weight Cases > “Counts” to be weighted Run “Crosstabs” analysis
统计方法与数据分析
第七讲 卡方检验
1. 卡方检验:概述
卡方(Chi-square), 数学符号表示为χ2, 是一种非 参数检验方法。它适用于比较两组(或以上)互斥 的频数数据之间是否存在显著差异。 卡方比较的是观测频数(observed frequency)和 期待频数(expected frequency)之间的比例,以 考察是否存在显著差异。 期待频数也称理论频数,通常是指假定各组均等的 频数。
卡方检验结果显示,对语言教学影响因素的看法受教龄的 影响显著(χ2=35.300,df=2,p<0.05)。教龄5年以上的教 师认为语言/学习因素是主要的;教龄5年以下的教师认为 环境和学习者因素是主要的(下表)。这可能是因为…
4. 初步统计频数卡方独立性检验:练习
一项研究得到家庭背景不同的学生(农民、干部、 知识分子)的英语学习成绩(及格、不及格)。 现要考察“家庭背景”与“英语成绩”之间是否 彼此独立?
卡方拟合检验SPSS结果(2)
卡方拟合检验结果在论文中的呈现方式
卡方检验结果显示,双语教师的课堂用语有显著差异 (χ2=340.556,df=5,p<0.05)。大多数双语教师使用英语 的量多于汉语,或至少英语汉语使用比例差不多。仅使用 英语或汉语授课的教师极少(下表)。这可能是因为…
生物统计学—卡方检验
卡方检验的原理和方法
由于离散型资料的卡方检验只是近似地服从连 续型变量的卡方分布,所以在对离散型资料进行 卡方检验计算的时,结果常常偏低,特别是当自 由度df=1时,有较大偏差,为此需要进行矫正:
cc
2 i 1 k
Oi Ei 0.5 Ei
2
当自由度df>1时,与连续型随机变量卡方分相 近似,这时可以不做连续性矫正 注意:要求各个组内的理论次数不小于5,如某 组理论次数小于5,则应把它与其相邻的一组或 几组合并,知道理论次数大于5为止
卡方检验的原理和方法
Pearson定理的基本含义: 如果样本确实是抽自由(P1,P2,…,Pk)代 表的总体,Oi和Ei之间的差异就只是随机误差, 则Pearson统计量可视为服从卡方分布 反之,如果样本不是抽自由(P1,P2,…,Pk) 代表的总体,Oi和Ei之间的差异就不只是是随机 误差,从而使计算出的统计量有偏大的趋势 因此,对Pearson统计量进行单尾检验(即 右尾检验)可用于判断离散型资料的观测值与理 论值是不是吻合
当用样本平均数估计总体平均数时,有:
c
2
1
2
x x
2
将样 s 2
2
其c2服从自由度为(k-1)的卡方分布
卡方函数的使用
2 2 假设 H 0: 2 0 , 适用右尾检验 ,其否定区为: c 2 c
假设 H 0: 2 02 , 适用左尾检验 ,其否定区为: c 2 c12 假设
卡方检验的原理和方法
统计假设: H0:观测值与理论值的差异是由随机误差引起 HA:观测值与理论值之间有真实差异
所以卡方值是度量实际观测值与理论值偏南 程度的一个统计量 卡方值越小,表明观测值与理论值越接近 卡方值越大,表明观测值与理论值相差越大 卡方值为0,表明H0严格成立,且它不会有下侧 否定区,只能进行右尾检验
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义
卡方检验的原理和内容公式原理
卡方检验是一种统计检验方法,其原理是比较理论频数和实际频数的吻合度或拟合优度。
基本思想是通过统计样本的实际观测值与理论推断值之间的偏离程度,来判断理论值是否符合。
卡方检验的应用范围包括检验某个连续变量或离散变量是否与某种理论分布接近,即分布拟合检验;以及检验类别变量之间是否存在相关性,即列联分析。
卡方检验的基本公式是卡方值,它是由实际频数和理论频数之间的差的平方与理论频数的比值计算得出的。
卡方值的计算公式如下:
卡方值=∑(实际频数-理论频数)^2 / 理论频数
其中,∑表示求和,实际频数和理论频数分别表示观测频数和期望频数。
如果卡方值越大,说明观测频数和期望频数之间的偏离程度越大;如果卡方值越小,说明观测频数和期望频数之间的偏离程度越小,越趋于符合。
需要注意的是,卡方检验的前提假设是样本数据服从卡方分布,且样本量足够大。
同时,卡方检验对于样本量较小的数据可能不太稳定,此时可以考虑使用其他统计方法如Fisher's exact test等。
卡方检验详述
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
卡方检验
总计 160 205 182 547
H0:稻叶衰老情况与灌溉方式无关;HA:稻叶衰老情 况与灌溉方式有关。
取 =0.05。 根据H0的假定,计算各组格观察次数的相应理论次数: 如与146相应的E=(481×160)/547=140.69,
与183相应的E=(481×205)/547=180.26,……, 所得结果填于表7.11括号内。
因本例共有k=4组,故df=k-1=3。查附表4,
,现实得
,所以否定
H0,接受HA,即该水稻稃尖和糯性性状在F2的实际结果 不符合9∶3∶3∶1的理论比率。
这一情况表明,该两对等位基因并非独立遗传, 而可能为连锁遗传。
实际资料多于两组的 值通式则为:
(5·15)
上式的mi为各项理论比率,ai为其对应的观察次数。 如本例,亦可由(5·15)算得
如种子灭菌项的发病穗数O11=26,其理论次数 E11=(210×76)/460=34.7,即该组格的横行总和乘以纵行总 和再除以观察总次数(下同);同样可算得
O12=50 的 E12=(250×76)/460=41.3; O21=184的E21=(210×384)/460=175.3; O22=200的E22=(250×384)/460=208.7。 以上各个E值填于表5.7括号内。
(1)设立无效假设,即假设观察次数与理论次数的差 异由抽样误差所引起,即H0:花粉粒碘反应比例为1∶1 与HA:花粉粒碘反应比例不成1∶1。
(2)确定显著水平 =0.05。
(3)计算 值
查附表4,当
时
=3.84 ,实得
=0.2926小于
,所以接受H0。即认为观察次数和理
论次数相符,接受该玉米F1代花粉粒碘反应比率为1∶1的
医学统计方法之卡方检验
医学统计方法之卡方检验卡方检验,又称卡方分布检验(Chi-Square Test),是一种常用的统计方法,用于检验两个或多个分类变量之间是否存在显著差异。
本文将详细介绍卡方检验的原理、应用范围以及具体的步骤。
一、原理:卡方检验的原理是基于卡方分布的性质。
卡方分布是指具有自由度的正态分布的平方和,记为χ^2(k),其中k为自由度。
在卡方检验中,我们将观察到的频数与理论预期频数进行比较,从而判断两个或多个分类变量之间的差异是否显著。
二、应用范围:卡方检验广泛应用于医学研究中的数据分析,尤其是在对两个或多个分类变量之间的关联进行检验时。
常见的应用场景包括但不限于以下几种:1.检验观察频数与理论预期频数之间的差异,以判断观察结果是否与理论预期相符。
2.检验两个或多个分类变量之间的关联性,以确定它们之间是否存在显著的相关性。
3.比较两个或多个群体在一个或多个分类变量上的分布差异,从而判断它们之间是否存在显著差异。
三、步骤:卡方检验的主要步骤包括以下几个:1. 建立假设:首先需要明确检验的假设。
在卡方检验中,通常有两种假设:“原假设”(null hypothesis,H0)和“备择假设”(alternative hypothesis,H1)。
原假设通常表示没有差异或关联,备择假设则表示存在差异或关联。
2.计算期望频数:根据原假设,计算出理论预期频数。
理论预期频数是基于既定的分布假设和样本总体的参数计算得出的。
3.计算卡方值:将观察频数与理论预期频数进行比较,计算出卡方值。
卡方值是观察频数与理论预期频数之间的差异的平方和。
4.确定自由度:根据检验问题的具体情况确定自由度。
在卡方检验中,自由度通常由分类变量的水平数目决定。
5.查表找出p值:根据卡方分布表,找出相应自由度下的临界值。
将计算得到的卡方值与临界值进行比较,确定其显著性水平。
p值是指在原假设成立的前提下,观察到的差异大于或等于当前差异的概率。
6.做出判断:根据p值与显著性水平的比较,做出判断是否拒绝原假设。
卡方检验
第16章无序分类变量的统计推断——卡方检验通过前面的介绍可以知道,变量可以被分为连续性变量(定距、定比)和分类变量,后者又被细分为有序、无序变量两种。
对于各组所在总体的定量变量(即连续性变量)的平均水平,可以使用t检验和方差分析方法进行比较,秩和检验则用于比较各组所在总体为有序分类变量的分布情况是否相同。
这里将要介绍的卡方检验主要用于是在应用的程度上可以和t检验相媲美的另一种常用检验方法。
连续变量两组t检验多组方差分析分类变量有序秩和检验无序卡方检验16.1 卡方检验概述16.1.1 卡方检验的基本原理1. 卡方检验的基本思想卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设为H0是:观察频数与期望频数没有差异。
卡方检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝原假设,表示比较资料之间有显著差异;否则不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
2.卡方值的计算与意义见复印资料柯惠新等人编著《调查研究中的统计分析法》卡方统计量,由于它最初是由英国统计学家Karl Pearson 在1900年首次提出的,因此也称之为Pearson χ2。
由卡方的计算公式可知,当观察频数与期望频数完全一致时,χ2值为0;观察频数与期望频数越接近,两者之间的差异越小,χ2值越小;反之,观察频数与期望频数差别越大,两者之间的差异越大,χ2值越大。
换言之,大的χ2值表明观察频数远离期望频数,即表明远离假设。
3.卡方检验的样本量要求一般认为,对于卡方检验中的每一个单元格,要求其最小期望频数均大于1,且至少有4/5的单元格期望频数大于5,此时使用卡方分布计算出的概率值才是准确的。
16.1.2 卡方检验的用途卡方检验最常间的用途就是考察无序分类变量各水平在两组或多组之间的分布是否一致。
卡方检验的构造原理_解释说明以及概述
卡方检验的构造原理解释说明以及概述1. 引言1.1 概述卡方检验,也称为卡方拟合度检验,是一种常用的统计方法,用于判断观察数据与期望数据之间是否存在显著差异。
它是由1880年代英国统计学家皮尔逊(Karl Pearson)提出的,并成为统计学中一项重要的假设检验工具。
1.2 文章结构本文将首先介绍卡方检验的构造原理,包括该方法的背景与发展历程、假设检验基本概念以及构造原理及假设条件。
接着,文章会详细解释说明卡方检验的相关内容,包括检验统计量及其分布、P值的计算方法与判断标准,以及常见误差类型与校正方法。
然后,我们将对卡方检验在不同领域中的应用进行概述:生物医学研究、社会科学和工程技术。
最后,在结论部分总结了卡方检验的重要性和优缺点,并展望了未来在该研究领域可能出现的发展趋势。
1.3 目的本文旨在深入探讨卡方检验这一统计学方法,全面阐述其构造原理、解释说明以及应用领域概述。
希望通过本文的阐述,读者能够更好地理解和运用卡方检验,为相关领域的研究提供参考,并促进该方法在未来的发展与应用。
2. 卡方检验的构造原理2.1 背景与发展历程在统计学中,卡方检验是一种常用的假设检验方法,用于判断观察值与期望值之间的差异是否显著。
卡方检验最早由卡尔·皮尔逊(Karl Pearson)在19世纪末提出,并受到了罗纳德·费舍尔(Ronald Fisher)等人的进一步发展和推广。
2.2 假设检验基本概念在进行卡方检验时,我们需要建立一个原假设(Null Hypothesis,H0)和一个备择假设(Alternative Hypothesis,H1)。
原假设通常表示无关性、随机性或相等性的假设,而备择假设则表明存在相关性、差异或不相等性。
2.3 构造原理及假设条件卡方检验基于观察频数与期望频数之间的差异来判断数据是否遵循某种分布或相互独立。
其构造原理可以简单描述如下:步骤1:收集数据并得到数据表格。
卡方检验
例3 大量的研究表明,人群中超常儿童的比率为3%。最 近有人对某班54名学生做了一项智力测查,结果发现有 两名学生的智力属于超常,问该班超常儿童的比率与普 通人群中超常儿童的比率是否相同?
解:根据题目中给出的数据列表:
超常
非超常
N
f
1.62
52.38
54
e
f
2.00
52.00
0
根据自由度df=1查附表6,得
二、卡方检验的统计量
卡方检验是对由样本得来的实际频数与理论频数 的分布是否有显著性差异所进行的检验。其计算 公式为:
2 f0 fe 2
fe
f 表示实际频数 0
f 表示理论次数 e
• 例:抛投一枚硬币80次,结果正面朝上46次,反面朝 上34次,问该枚硬币质地是否均匀? 从理论上讲,抛一枚质地均匀的硬币,正反面朝上的 概率相等,那么如果抛投硬币80次,正面或反面朝上 的理论频数均为80/2=40次。这样,实际频数(正 面朝上46次,反面朝上34次)与理论频数(正面与反
反对 21 30 -9
81
2.7
总 和 60 60
5.4
自由度为: df = k -1=1
3.统计决断
查χ2值表,当 df =1 时
2 (1)0.05
3.84
2 (1)0.01
6.63
计算结果为: χ2=5.4*
3.84 <χ2= 5.4 < 6.63,则 0.05 > P > 0.01
结论:学生对高中文理分科的态度有显著差异。
2. 计 算
表9-5 学生干部性别比例的χ2检验计算表
fo
2
fe fo fe f0 fe 0.5
卡方检验的应用条件和原理
卡方检验的应用条件和原理什么是卡方检验?卡方检验是一种用于比较两个或多个分类变量间是否存在显著差异的统计方法。
它基于观察值与期望值之间的差异,通过计算卡方值和查表得出结果。
卡方检验广泛应用于医学、社会科学、市场调查等领域。
卡方检验的原理卡方检验的原理基于卡方统计量的计算。
卡方统计量(χ²)是一种非负值,其计算公式如下:$\\chi^{2} = \\Sigma \\frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$其中,O ij是观察频数,表示实际观察到的某个组合的次数;E ij是期望频数,表示在假设成立的情况下,某个组合的理论次数。
卡方检验的原理是假设原始数据服从某种特定的分布(通常是期望频数分布),然后通过计算卡方统计量来检验观察频数与期望频数之间的差异。
如果差异显著,则可以拒绝原假设,认为变量之间存在显著性差异。
卡方检验的应用条件卡方检验的应用条件包括以下几个方面:1. 变量的类型卡方检验适用于两个或多个分类变量之间的比较。
分类变量是指被观察对象可以被分为有限个互斥的组别,例如性别(男、女)、教育程度(小学、初中、高中、大学)等。
2. 样本数量卡方检验要求样本数量足够大,以满足检验的统计功效。
一般来说,每个组别的期望频数不应小于5,否则卡方检验的结果可能不可靠。
3. 数据的独立性卡方检验假设观察数据是独立的,即不受其他因素的影响。
如果数据存在相关性或者重复观察现象,卡方检验结果可能会失真。
4. 原假设的满足卡方检验依赖于对原假设的明确表述。
原假设是关于样本或总体分布的猜想,一般是指变量之间不存在显著差异。
如果原假设无法明确表述或者不满足,卡方检验的结果可能无法得出有效结论。
如何进行卡方检验?进行卡方检验的主要步骤如下:1.确定原假设和备择假设:根据研究问题和数据特点,明确要检验的变量和假设。
2.计算观察频数和期望频数:根据实际观察数据和原假设,计算出各个组别的观察频数和期望频数。
卡方检验
假设检验方法
01 基本原理
03 检验方法 05 代码实现
目录
02 步骤 04 资料检验
卡方检验,是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括两个率或两个构成比 比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
基本原理
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程 度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡 方值就为0,表明理论值完全符合。
卡方检验要求:最好是大样本数据。一般每个个案最好出现一次,四分之一的个案至少出现五次。如果数据 不符合要求,就要应用校正卡方。
谢谢观看
注意:卡方检验针对分类变量。
步骤
(1)提出原假设: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为 H0:总体X的分布律为P{X=xi}=pi, i=1,2,... (2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取 A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak), 其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5, 而区间个数k不要太大也不要太小。 (3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和 f1+f2+...+fk等于样本容量n。 (4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i个小区间Ai的概率pi,于是,npi 就是落入第i个小区间Ai的样本值的理论频数(理论值)。
检验方法
卡方检验95%置信区间
卡方检验95%置信区间卡方检验是一种常见的假设检验方法,用于检验样本数据是否符合某种理论分布。
在统计学中,置信区间是一种用于衡量估计值精度的方法,在给定置信水平的条件下,估计值的真实值有多大的可能性落在置信区间内。
本文旨在介绍卡方检验的基本原理和95%置信区间的计算方法。
一、卡方检验的基本原理卡方检验是一种用于检验样本数据是否符合某种理论分布的假设检验方法。
其基本原理是将观察值与理论值进行比较,计算出卡方值,然后根据卡方分布表确定拒绝域和接受域。
如果计算出的卡方值小于临界值,则接受原假设,即认为样本数据符合理论分布;反之则拒绝原假设,即认为样本数据不符合理论分布。
卡方检验的原假设为样本数据符合某种理论分布,备择假设为样本数据不符合该理论分布。
在进行卡方检验时,需要先确定显著性水平,通常取0.05或0.01。
然后根据样本数据和理论分布计算出期望值和卡方值,再根据卡方分布表确定临界值,最后比较计算出的卡方值和临界值的大小,判断是否拒绝原假设。
二、95%置信区间的计算方法置信区间是一种用于衡量估计值精度的方法,其基本思想是在给定置信水平的条件下,估计值的真实值有多大的可能性落在置信区间内。
置信区间的计算方法因估计量的不同而异,本文以卡方检验为例介绍95%置信区间的计算方法。
95%置信区间的计算方法如下:1. 根据样本数据计算出卡方值。
2. 根据卡方分布表查找卡方分布的临界值。
3. 根据卡方分布的自由度和置信水平计算出置信区间的上下限。
具体而言,置信区间的上限为样本数据的卡方值加上卡方分布的临界值乘以卡方分布的标准差,下限为样本数据的卡方值减去卡方分布的临界值乘以卡方分布的标准差。
卡方分布的标准差可以通过卡方分布的公式计算得到。
例如,假设某个样本数据的卡方值为20,自由度为4,置信水平为95%,则根据卡方分布表可知,卡方分布的临界值为9.488。
根据卡方分布的公式可知,卡方分布的标准差为2。
因此,95%置信区间的上限为20+9.488×2=39.976,下限为20-9.488×2=0.024。
数据分析知识:数据分析中的卡方检验流程
数据分析知识:数据分析中的卡方检验流程卡方检验是统计学中一种常用的假设检验方法,它适用于分析两个变量之间的关系以及检验两个分布之间的差异。
本文将详细介绍卡方检验的流程以及应用场景。
一、卡方检验的基本概念卡方检验是基于卡方分布的检验方法,首先需要了解卡方分布。
卡方分布是统计学中常用的概率分布,是由自由度为n的n个独立标准正态分布随机变量平方和所组成的随机变量的分布。
卡方检验是通过计算观察值与期望值之间的差异来检验数据之间是否存在相关性或差异。
这里的观察值指的是实际观测到的数据,期望值则是通过假设检验得到的预测值。
当观察值与期望值之间的差异越大,就说明两个变量之间的相关性或差异越显著。
卡方检验分为拟合优度检验和独立性检验两种类型。
拟合优度检验用于检验样本分布是否符合某个已知的理论分布,而独立性检验则用于检验两个变量之间是否存在关联。
二、卡方检验的流程卡方检验的流程通常分为以下五个步骤:1.建立假设在进行卡方检验之前,需要明确所要检验的假设。
一般情况下,研究人员提出两个假设:原假设和备择假设。
原假设通常是指不存在差异或关联,备择假设则是指存在差异或关联。
例如,在研究男女生育率是否存在差异时,原假设可以设为男女生育率相同,备择假设可以设为男女生育率存在差异。
2.计算卡方值计算卡方值是卡方检验的核心内容。
卡方值通常通过以下公式计算:![image.png](attachment:image.png)其中,O为观察值,E为期望值,n为数据总量,k为自由度。
自由度的计算公式为(r-1)*(c-1),其中r表示行数,c表示列数,代表每个分类变量在计算期望值时可以独立取值的数量。
具体而言,在研究男女生育率是否存在差异的例子中,可以将数据按照男女分类,列出如下的交叉表:![image-2.png](attachment:image-2.png)假设男性生育率的期望比例为50%,女性生育率的期望比例也为50%,那么期望频数可以通过以下公式计算:期望频数=总频数*期望比例男性生育率的期望频数为1000 * 0.5 = 500,女性生育率的期望频数也为500。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理项目 种子灭菌 种子未灭菌 合计 发病穗数
26 184 210
未发病穗数
50 200 250
合计
76 384 460
(二)计算理论次数
种子灭菌的理论发病穗数:E11=76×210/460=34.7 种子灭菌的理论未发病穗数:E12=76×250/460=41.3
种子未灭菌的理论发病穗数:E12=384×210/460=175.3
(总次数,&由样本估计了总体的平均数和标准差)
2 0.05(3) 7.81 2,p 0.05,接受H0
查2表(附表7), 得
统计结论:
这100株高梁某品种的株高服从正态分布
分析 描述统计 探索 SPSS分析:
例7-1
SPSS操作:
例7-1:检验100株高梁某品种的株高是否服从正态分布?
小结
2 ( O E ) 1.卡方统计量:次数资料。 2 i i Ei i 1 k
应用:适合性检验、独立性检验、方差齐性检验。
步骤 : 步骤:注意矫正
2.适合性检验:定义
应用:分布类型、属性类别比例 。 理论次数的计算: SPSS操作:weight cases
小知识(1)——加权
发病穗数
26(34.7)
184(175.3) 210
未发病穗数
50(41.3)
200(208.7) 250
合计
76
384 460
(一)提出假设
H0:种子灭菌对防止小麦散黑穗病无效,即种子灭菌与否与 散黑穗病发病穗多少无关,二者相互独立; HA:种子灭菌对防止小麦散黑穗病有效,即种子灭菌与否与散黑穗
例:某医院研究导致手术切口感染的原因,怀疑手术时
间长短可能是一个危险因素。于是,收集了305例手术患
者的情况列于下表,问手术时间长短对患者切口是否感 染有无影响?
两种手术时间下患者的切口感染情况 感染情况 手术时 感染 未感染 (小时)
≤5 >5 13 7 229 56
合计
242 63
列联表:观测数据按两个或更多属性(定性变量)
种子未灭菌的理论未发病穗数:E21=384×250/460=208.7
(三) 计算2: df=(2-1)*(2-1)=1,应进行连续性矫正,计算c2
(| Ai Ei | 0.5) 2 (| 26 34.7 | 0.5) 2 (| 50 41.3 | 0.5) 2 Ei 34.7 41.3 i 1
(三) 计算2:
由于本例是涉及到两组(发芽与未发芽),属性类别分类数 k=2,自由度df=k-1=1,须使用矫正公式来计算 c2 。
(|Ai Ei | 0.5)2 (| 150 160 | 0.5)2 (| 50 40 | 0.5)2 c 2.82 Ei 160 40 i 1
3. 属性类别分配的适合性检验: 例7-2:有一批棉花种子,规定发芽率达80%为合格,现随
机抽取200粒作发芽试验,得发芽种子为150粒,问是否合格?
(一)提出假设 H0:发芽率符合80%的合格比例; HA:发芽率不符合80%的合格比例。 (二)计算理论次数 理论发芽种子数:E1=200×80%=160(粒) 理论未发芽种子数:E2=200×20%=40(粒)
2=
i 1
k
(Oi Ei ) Ei
2
适合性检验df =k-1
独立性检验df =(横行属性类别数1)×(直列属性类别数-1)
(二)适合性检验
1. 定义:判断实际观察的属性类别分配是否符合已知属
性类别分配理论或比例的假设检验。
2. 资料分布类型的适合性检验:
例7-1:检验100株高梁某品种的株高是否服从正态分布?
例:研究玉米果穗是否发病与种子是否灭菌这两个因素
是否相关,即灭菌处理对防止果穗发病是否有效?
例:工农业从业者的高血压患病率的比较研究。调查首
钢50-59岁男性工人1281人,高血压患者386人,患病率 30.13%。石景山区农民387人,高血压患者65人,患病率
16.80%,试问从事工农业生产的男性患病率有无差别?
致癌剂2 合计
39 91
3 22
42 113
92.86 80.33
(一)卡方检验的原理
1. 统计量2:由K. Pearson于1899年提出, 反映实
际观察次数与理论次数吻合程度的一个统计量。
2 ( O E ) i 2 i Ei i 1 k
k
为组数
Oi 为第i 组的实际观察次数
Ei 为第i 组的理论次数
3. Pearson 2的连续性矫
当df =1时,皮尔逊2与标准卡方分布偏差较大,需要进行矫正 正:
。df ≥2时,要求各组内的理论次数不小于5。 当
当df ≥2时,不作连续性矫正
样本容量n ≥ 50
当df =1,需作连续性矫正。
2 ( | O E | 0.5) i i c 2 Ei i 1 k
(2)独立性检验(Independence test)
(3)同质性检验(齐性检验)
2. Pearson 2的检验程序
(1)将观测值分为k组; : (2)计算n次观测值中每组的观测次数,记为Oi; (3)根据变量的分布规律或概率运算法则,计算每组的理论
次数,记为Ei;
(4)计算统计量Pearson2 ; (5)检验Oi与Ei的差异显著性,判断两者之间的吻合程度, 作出统计推断。
酒类产品的嗜好性没有改变。
SPSS操作: 例7-4:根据以往的调查,消费者对啤酒(a),白酒(b
),葡萄酒(c)的满意度分别为0.51,0.31,0.18。现随机选
择600个消费者对上述3种酒进行嗜好性检验,从中选出各自最
喜欢的产品。结果有300人选a,120人选c,试问消费者对3种 酒类产品的嗜好性是否有所改变?
——该统计量近似地服从自由度为df=k-1的卡方分布。
受到O1+O2=E1+E2这一条件的的限制
统计量2的意义:
统计量2可以用来检验随机变量之间是否相互独立 ,也可用来检测统计模型/观察频数是否符合实际要求/理 论频数。 可应用于: (1)适合性检验(Goodness-of-fit test)
择题中的28题,现在要判断该生是否是完全凭猜测做题。
例7-4:根据以往的调查,消费者对啤酒(a),白酒(b
),葡萄酒(c)的满意度分别为0.51,0.31,0.18。现随机选
择600个消费者对上述3种酒进行嗜好性检验,从中选出各自最
喜欢的产品。结果有300人选a,120人选c,试问消费者对3种 酒类产品的嗜好性是否有所改变?
干次,记录每一面出现的次数,从这些数据出发去检验各面出
现的概率是否都是1/6.
3. 在次数资料分析中,需要了解两类因子是相互独立还
是彼此相关。
因子独立性检验
例:两组大白鼠在不同致癌剂作用下的发癌率如下,问
致癌剂的不同是否对发癌率有影响?
处理 致癌剂1 发癌数 52 未发癌数 19 合计 71 发癌率% 73.24
460
例7-5:为防治小麦散黑病,播种前用某种药剂对小麦种子进行
灭菌处理,以未经灭菌处理的小麦种子为对照。观察结果为:种子 灭菌76株中有26株发病,50株未发病;种子未灭菌的384株中有184 株发病,200株未发病。分析种子灭菌对防止小麦散黑穗病是否有效 ?
处理项目 种子灭菌 种子未灭菌 合计
(20%、10%、70%)、(2、3、4、1)就叫权数。 这种方法叫加权法。
SPSS中的加权个案
加权个案是指对变量,特别是频数变量赋以权重,常用于计数频
数表资料,加权以后的变量被说明为频数。通常在做卡方检验的时
候用的比较多~在做卡方检验之前需要对频数变量进行加权。 如果有168个相同的观察数据,每一行就是一个记录, 则需要输入168行,这样做非常麻烦。 Weight Cases(加权个案) 使用频数格式录入数据,即相同取值的观测只录入一
当df≥2时,可采用SPSS进行分析:
DataWeight Cases… 设置实际次数 Analyze Nonparametric Tests Chi-Square 设置理论次数
例7-4
输出:
P =0.439>0.05,不显著,表 明实际观察次数与理论次数差异
不显著,可以认为消费者对3种
(1)提出假设
H0:符合正态分布;HA: 不符合正态分布
(2)将观测值分为k组(10组),制频数分布表;计 算样本平均数、标准差,及标准正态离差;
x 156.1cm,s 4.98cm
假设高粱株高符合正态分布(μ, σ)。根据参数 估计原理, μ用 x 估计 , σ用s估计。 计算各组标准正态离差u,l为组下限值。
76 384
210
250
460
P(发病)=P(发病|种子灭菌)=P(发病|种子未灭菌) P(未发病)=P(未发病|种子灭菌)=P(未发病|种子未灭菌)
处理项目 种子灭菌 种子未灭菌 合计
发病穗数
26(34.7)
未发病穗数
50(41.3)
合计
76
184(175.3)
210
200(208.7)
250
384
u lx s
(3)求各组的理论频数 ;
正态分布表(附表1)
合并组
合并组
(4)求Pearson卡方;
(Oi Ei )2 (7 9.09)2 (14 13.82)2 ...+ =2.06 Ei 9.09 13.82 i 1
2 k
(5)统计推断;
自由度df=组数k(合并后)-受限因子数=6-3=3
应用:适合性检验、独立性检验、方差齐性检验。ຫໍສະໝຸດ 步骤 : 步骤:注意矫正