2021届山东省潍坊市中考数学达标检测试题
2021年潍坊中考数学试题
.'%1&%&/ 3&%4
$!若菱形两条对角线的长度是方程 $" -($5* 6% 的两根# 则该菱形的边长为 ! ##"
!'槡/#####+'$#####,'" 槡/#####.'/ /!如图# 某机器零件的三视图中# 既是轴对称图形# 又是中心对称图
形的是 !##"
!'主视图
+'左视图 ,'俯视图
.#34;!在直角坐标系中# 若三点 )!&# -"" #*!"# -"" #,!"#%" 中恰有两点在抛物线
&6'$" 5($-" ! ' @% 且 '# (均为常数" 的图象上# 则下列结论正确是 ! ##"
!'抛物线的对称轴是直线 $6&"
+'抛物线与 $轴的交点坐标是! -&" #%" 和!"#%"
第卷# 选择题#共 )( 分
一 单项选择题 共 * 小题 每小题 ) 分 共 "$ 分'每小题四个选项只有一项正确'
&!下列各数的相反数中# 最大的是 !##"
!'槡"
+'&
,' -)"
.' -"
"!如图# 一束水平光线照在有一定倾斜角度的平面镜
上# 若入射光线与出射光线的夹角为 (%"# 则平面镜
-两点 连接 ,+ -+并延长分别交 +于点 . / 顺次连
山东省潍坊市2021年中考数学试卷(含解析)
2021年山东省潍坊市中考数学试卷一、选择题(共12小题).1.下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106 4.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46.若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.17.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.428.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<110.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD 最小时,OP的长为()A.B.C.1D.11.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<212.若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.因式分解:x2y﹣9y=.14.若|a﹣2|+=0,则a+b=.15.如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC 于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=°.16.若关于x的分式方程+1有增根,则m=.17.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE =3,CG=4,则sin∠DAE=.18.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y 轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P 的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.2.下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2++2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.3.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.解:∵1109万=11090000,∴11090000=1.109×107.故选:A.4.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.5.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.4【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.6.若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.1【分析】把变形为4m2+8m﹣3=4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.7.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.8.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式,再进行配方得到△=(k﹣1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.9.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<1【分析】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD 最小时,OP的长为()A.B.C.1D.【分析】延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线份线段成比例分别求出CD,PO的长即可.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴,即,解得,PO=故选:B.11.若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2【分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a 的取值范围即可.解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.12.若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【分析】根据a⊗b=,可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.若|a﹣2|+=0,则a+b=5.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.15.如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC 于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=55°.【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°﹣∠2=90°﹣35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.16.若关于x的分式方程+1有增根,则m=3.【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.17.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE =3,CG=4,则sin∠DAE=.【分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得,再利用勾股定理得到DE的长,即可求解.解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.18.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是4039π.【分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,再计算弧长.解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2021=BB2021=4(2021﹣1)+2=8078,的弧长=.故答案为:4039π.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.【分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【分析】(1)设y与x之间的函数表达式为y=kx+b,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w关于x的二次函数,根据二次函数的性质即可求解.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为W元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出AD=BC=,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EFB=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y 轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P 的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM 三种情况讨论结合图形得出边之间的关系,即可得出答案.解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,当△NME~△COB时,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).。
2021年潍坊中考数学
2021年潍坊中考数学2021年山东省潍坊市初中学业水平考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页,为选择题,36分;第Ⅱ卷8页,为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目、试卷类型涂写在答题卡上.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷选择题(共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列运算正确是(). A.6a2?3a B.?23???2?2?3 C.a21a?aD.18?8?2 2.将5.62?10?8用小数表示为().A.0.000 000 005 62 B.0.000 000 056 2 C.0.000 000 562 D.0.000000 000 5623.如图,数轴上A、B两点对应的实数分别是1和3,若点A关于点B的对称点为点C,则点C所对应的实数为().A.23?1B.1?3C.2?3D.23?14.如图,AB是⊙O的弦,半径OC?AB于点D,且AB?6cm,OD?4cm.则DC的长为(). A.5cm B. 2.5cm C. 2cm D. 1cm 5.二元一次方程组??x?y?10,2x?y?4?0的解是().??A.??x?28 B. ??x?14?3?y????y?163 E度教育网C. ??x?8?x?7 D. ??y?3?y?226.关于x的一元二次方程x?6x?2k?0有两个不相等的实数根,则实数k的取值范围是().9999 B.k? C. k≥ D. k? 22227.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为A.k≤C?6120,°?、F?5,210°?.按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是().A.A?5,30°? B. B?2,90°? C. D?4,240°? D. E?3,60°?8.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角形),若这两个多边形的内角和分别为M和N,则M?N不可能是().A.360° B. 540° C. 720° D. 630° 9.已知函数y1?x2与函数y2??1x?3的图象大致如图.若y1?y2,2则自变量x的取值范围是().33?x?2 B. x?2或 x?? 2233C. ?2?x? D. x??2或 x?22A.?10.已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面半径等于(). A.9 B. 27 C. 3 D. 1011.若正比例函数y?2kx与反比例函数y?象交于点A?m,,1?则k的值是().k?k?0?的图xA.?2或2 B. ?222或 C. D. 2222 12.如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依此类推.若各种开本的矩形都相似,那么AB等于(). ADA.0.618 B.2 C. 22 D. 2 E度教育网2021年潍坊市初中学业水平考试数学试题第Ⅱ卷非选择题(共84分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共5小题,共15分,只要求填写最后结果,每小题填对得3分.)13.分式方程xx?4?的解是_________. x?5x?614.分解因式:xy2?2xy?2y?4?_________.15.有4张背面相同的扑克牌,正面数字分别为2,3,4,5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张.这两张扑克牌正面数字之和是3的倍数的概率为_________.16.如图,在△ABC中,AB?BC,AB?12cm,F是AB边上一点,过点F作FE∥BC交AC于点E.过点E作ED∥AB交BC于点D.则四边形BDEF的周长是_________.AD∥BC,BC?AD,17.直角梯形ABCD中,AB?BC,AD?2,AB?4,点E在AB上,将△CBE沿CE翻折,使B点与D点重合,则?BCE的正切值是_________.三、解答题(本大题共7小题,共69分,解答要写出必要的文字说明、证明过程或演算步骤.) 18.(本题满分8分)2021年5月1日至20日的20天里,每天参观上海世博会的人数统计如下:(单位:万人次)20,22,13,15,11,11,14,20,14,16, 18,18,22,24,34,24,24,26,29,30. (1)写出以上20个数据的众数、中位数、平均数;(2)若按照前20天参观人数的平均数计算,估计上海世博会期间(2021年5月1日至2021年10月31日)参观的总人数约是多少万人次?(3)要达到组委会预计的参观上海世博会的总人数约为7000万人次,2021年5月21日至2021年10月31日期间,平均每天参观人数约为多少万人次?(结果精确到0.01万人次)19.(本题满分8分)如图,AB是⊙O的直径,C、D是⊙O上的两点,且AC?CD. (1)求证:OC∥BD;(2)若BC将四边形OBDC分成面积相等的两个三角形,试确定四边形OBDC的形状. E度教育网20.(本题满分9分)某中学的高中部在A校区,初中部在B校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知A校区的每位高中学生往返车费是6元,每人每天可栽植5棵树;B校区的每位初中学生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超过210元.要使本次活动植树最多,初高中各有多少学生参加?最多植树多少棵?21.(本题满分10分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)22.(本题满分10分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元.当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?23.(本题满分11分)如图,已知正方形OABC在直角坐标系xOy E度教育网中,点A、C分别在x轴、y轴的正半轴上,点O在坐标原点.等腰直角三角板OEF的直角顶点O在原点,E、F分别在OA、OC上,且OA?4,OE?2.将三角板OEF绕O点逆时针旋转至OE1F1的位置,连结CF1,AE1.(1)求证:△OAE1≌△OCF1.(2)若三角板OEF绕O点逆时针旋转一周,是否存在某一位置,使得OE∥CF.若存在,请求出此时E点的坐标;若不存在,请说明理由.24.(本题满分12分)如图所示,抛物线与x轴交于点A??1,0?、B?3,0?两点,与y轴交于点过抛物线上一点P作⊙M的切C?0,?3?.以AB为直径作⊙M,线PD,切点为D,并与⊙M的切线AE相交于点E,连结DM并延长交⊙M于点N,连结AN、AD.(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;(2)若四边形EAMD的面积为43,求直线PD的函数关系式;(3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由.2021年潍坊市初中学业水平考试数学试卷(A)参考答案及评分标准一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个,均记0分)1 2 3 4 5 6 7 8 9 10 11 12 题号答案 D B A D A B D D C C B B 二、填空题(本题共5小题,共15分,只要求填写最后结果,每小题填对得3分) 13.x?45114. ?xy?2??y?2? 15. 16. 24cm 17. 3162三、解答题(本大题共7小题,共69分.解答应写出文字说明、证明过程或演算步骤)18.(本小题满分8分)解:(1)这组数据的众数是24,中位数是20,平均数是20.25. ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3分(2)世博会期间共有184天,由184×20.25=3726,按照前20天的平均数计算,世博会期间参观的总人数约是3726万人次. ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6分(3)2021年5月21日至2021年10月31日期间共有164天, E度教育网感谢您的阅读,祝您生活愉快。
山东省潍坊市2021版中考数学试卷(I)卷
山东省潍坊市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若|a|=7,b的相反数是2,则a+b的值()A . -9B . -9或+9C . +5或-5D . +5或-92. (2分)(2015·衢州) 一个几何体零件如图所示,则它的俯视图是()A .B .C .D .3. (2分) (2019八上·周口月考) 下列运算中,正确的是()A .B .C .D .4. (2分)从下图的四张印有品牌标志图案的卡片中任取一张,取出印有品牌标志的图案是轴对称图形的卡片的概率是()A .B .C .D . 15. (2分)某种流感病毒的直径为0.000 000 08m,这个数据用科学记数法表示为()A . 8×10-6mB . 8×10-7mC . 8×10-8mD . 8×10-9m6. (2分)为了了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户数1324月用电量(度/户)40505560下列结论不正确的是()A . 众数是60B . 平均数是54C . 中位数是55D . 方差是297. (2分)下列命题:①菱形的四个顶点在同一个圆上;②正多边形都是中心对称图形;③三角形的外心到三个顶点的距离相等;④若圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线。
其中是真命题的有()A . 4个B . 3个C . 2个D . 1个8. (2分)如图所示,正方形ABCD的对角线相交于点O,点E是BC上任意一点,EG⊥BD于G,EF⊥AC于F,若AC=10,则EG+EF的值为()A . 10B . 4C . 8D . 59. (2分)(2017·沂源模拟) 已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A . p>﹣1B . p<1C . p<﹣1D . p>110. (2分)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为,下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确的个数是()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分) (2019八上·鄞州期末) 函数中,自变量的取值范围是________.12. (1分)(2017·荆门) 已知实数m、n满足|n﹣2|+ =0,则m+2n的值为________.13. (1分) (2016九上·市中区期末) 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.14. (1分) (2017九下·沂源开学考) 在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是________.15. (1分)(2018·南充) 若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为________.16. (1分)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有________根小棒.三、解答题 (共8题;共87分)17. (5分)先化简,再求值:(﹣2)÷,其中x=﹣4.18. (15分) (2017·河北) 编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.19. (10分) (2020九上·桂林期末) 如图,一次函数的图象与反比例函数的图象交于第一象限,两点,与坐标轴交于、两点,连结, .(1)求与的函数解析式;(2)将直线向上平移个单位到直线,此时,直线上恰有一点满足,,求的值.20. (15分)用不等式表示:(1) a与5的和是非负数;(2) a与2的差是负数;(3) b的10倍不大于27.21. (10分) (2017九上·河口期末) 如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数的图象在第二象限交于点C,CE垂直于x轴,垂足为点E,,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D做DF垂直于y轴,垂足为点F,连接OD、BF,如果,求点D的坐标.22. (10分) (2016九上·广饶期中) 如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为60°.(1)求小山的高度;(2)求铁架的高度.(≈1.73,精确到0.1米)23. (11分) (2017八下·江津期末) 已知CD是经过∠BCA顶点C的一条直线,CA=CB . E、F分别是直线CD上两点,且∠BEC=∠CFA=∠ .(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:如图1若∠BCA=90°,∠ =90°、探索三条线段EF、BE、AF的数量关系并证明你的结论.(2)如图2,若0°<∠BCA<180°,请添加一个关于∠与∠BCA关系的条件________使①中的结论仍然成立;(3)如图3,若直线CD经过∠BCA的外部,∠ =∠BCA,请写出三条线段EF、BE、AF的数量关系并证明你的结论.24. (11分)(2016·大连) 如图,在平面直角坐标系xOy中,抛物线y=x2+ 与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是________;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共87分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
潍坊市2021年中考数学试卷(II)卷
潍坊市2021年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共20分)1. (2分)下列各式;①(﹣2)0;②﹣22;③(﹣2)3 ,计算结果为负数的个数是()个.A . 3B . 2C . 1D . 02. (2分)如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD 上从点C向点D移动而点R不动时,下列结论成立的是()A . 线段EF的长逐渐增大B . 线段EF的长逐渐减小C . 线段EF的长不变D . 线段EF的长与点P的位置有关3. (2分) (2019七下·天台期末) 如图,直线 //b,下列各角中与相等的是()A .B .C .D .4. (2分) (2017七下·蒙阴期末) 若把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A .B .C .D .5. (2分)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A . 6 米B . 6米C . 3 米D . 3米6. (2分) (2018八下·肇源期末) 已知P1(x1 , y1),P2(x2 , y2),P3(x3 , y3)是反比例函数的图象上的三点,且x1<x2<0<x3 ,则y1、y2、y3的大小关系是()A . y3<y2<y1B . y1<y2<y3C . y2<y3<y1D . y2<y1<y37. (2分)如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为()A . 20cmB . 22cmC . 24cmD . 26cm8. (2分)下列式子正确的是()A . sin66°>sin68°B . tan66°>tan68°C . cos66°>cos68°D . cot66°<cot68°9. (2分) (2019七上·榆次期中) 下列各组数:-52和(-5)2 , (-3)3和-33 , -(-2)3和-23 , (-1)2019和(-1)2020 ,其中结果相等的共有()A . 1对B . 2对C . 3对D . 4对10. (2分) (2020九下·南召月考) 一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为()A .B . 2C . 2D . 4二、细心填一填 (共5题;共5分)11. (1分) (2020八下·马山期末) 甲、乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6,甲乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是________.(填“甲”“乙”)12. (1分)已知和互为相反数,求x+4y的平方根________。
2021潍坊中考数学试卷
2021年山东省潍坊市初中学业水平考试数学试题第Ⅰ卷(选择题,40分)一、选择题(本题共6小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分, 多选、不选、错选均记0分.) 1. 下面四个实数中最大的是A.B . 0 CD2.如图所示的几何体的主视图是A BCD3.已知ABCD 中,∠A =55°,分别以点B ,点C的长为半径画弧,分别交于点M ,N,作直线MN交DC于点E ,则∠ABE 的度数为 A .55°B .60°C .65°D .70°第3题图第4题图4. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =10,则EF 的长是 A .2B .1.5C .2.5D .35,例如:3⊕5=,3⊕(-5)=则y =3⊕x (x ≠0)的图象是A B CD6.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与弧AB交于点C,连接AC.若OA=3,则图中阴影部分的面积是A.BC D二、选择题(本题共4小题,每小题4分,共16分.在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,有选错的得0分,部分选对的得2分.)7.若x为实数,在“□ x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x可能是A.B.C D.8.关于x,y的二元一次方程组,下列说法中正确的是A.当a=-3时,;B;C.x,y满足关系式x+3y=-6;D.若,则a=27.9.已知二次函数的表达式为y=-x2-2x+3,将其图象向右平移k(k>0)个单位,得到新的二次函数的图象,使得当-1<x<3时,随x增大而增大;当4<x<5时,随x增大而减小.则实数k的取值可以是A.4 B.5 C.6 D.710. 如图,一架梯子AB斜靠在某个走廊竖直的左墙上,顶端在点A处,底端在水平地面的点B处.保持梯子底端B的位置不变,将梯子斜靠在竖直的右墙上,此时梯子的顶端在点D处,连接AD,F是线段AD的一点,且BF∥AC.若AC=2米,BC=1.5米,顶端D距离地面的高度DE比AC少0.5米,则下列结论成立的是A.AB的长为2.5米B.CE的长为3.5米C.四边形ACED平方米D.BF的长为第Ⅱ卷(非选择题,110分)三、填空题(本题共4小题,共16分,只要求填写最后结果,每小题填对得4分. )11.国家统计局网站显示,今年3月份,全国社会消费品零售总额为37855亿元,同比增长10.6%,37855亿用科学记数法表示为,则n= .12.如图,△ABC是⊙O的内接三角形,点O在AB上,⊙O的半径为3,AC=2,若点D 是圆上的动点,则点D到BC距离的最大值为.第12题图 第13题图 第14题图13.某学生的眼睛离地面的距离为m 米,在一处用眼睛看篮球框,测得仰角为30°,继续向正前方走n 米再看篮球框,测得仰角为60°,篮球框距地面的高度为 米. 14.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,…,如此作下去,则△B 2023A 2023B 2022的顶点A 2023的坐标是 . 四、解答题(本题共8小题,共94分.解答应写出必要文字说明或演算步骤.) 15.(本题满分10分)以下是某同学化简分式的部分运算过程: 原式① ②……(1)上面的运算过程中从第 步出现了错误;错误原因是 . (2)请你写出完整的解答过程.16.(本题满分10分)已知关于的一元二次方程.(1)若是方程的一个根,求的值及另一个根;(2)若该一元二次方程有两个不相等的实数根,求的取值范围.17.(本题满分12分)某校依据教育部印发的《大中小学劳动教育指导纲要(试行)》指导学生积极参加劳动教育,该校九年级数学兴趣小组利用课余时间,对九年级学生一周参加家庭劳动次数情况开展了一次调查研究. ①收集数据:2212(1)121x x x x x x −−−+÷+++2221(1)2[]11(1)x x x x x x −+−=−÷+++2221(1)(1)12x x x x x −−++=⨯+−222(1)12x x x x −−+=⨯+−x 2(2)30m x x −−−=1x =−mm通过问卷调查,兴趣小组获得了这20名学生每人一周参加家庭劳动的次数,数据如下:3,1,2,2,3,3,2,3,1,x,4,0,5,5,2,6,1,6,3,1;②整理、描述数据:(得到下面不完整的图表)(1)兴趣小组计划抽取该校九年级20名学生进行问卷调查,下面抽取方法中,合理的是;A.从该校九年级1班中随机抽取20名学生B.从该校九年级女生中随机抽取20名学生C.从该校九年级学生中随机抽取男,女各10名学生(2)填空:x=;m=;n=;a= ;b= ;(3)已知一周参加家庭劳动的次数在4≤x<8的这5名学生中,有2名女生,3名男生,现准备从这5名学生中,随机抽取两人,请他们谈谈体会.请你利用列表法或树状图求“谈体会的两人都是男生”的概率.18. (本题满分10分)对于任意一个四位正整数,我们可以记为,即=1000a+100b+10c+d.若规定:对四位正整数进行F运算,得到整数F()=a4+b3+c2+d1.例如,F(1049)=14+03+42+91=26.(1)计算:F(2023);(2)当c=e+4时,证明:F()-F()的结果一定是8的倍数.19.(本题满分11分)如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,EF交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若BF=8,OB=12,求证:AE=2BE.20.(本题满分14分)某超市购进了一种商品,进价为每件8元,销售过程中发现,该商品每天的销售量y (件)与每件售价x(元)之间存在某种函数关系(其中8≤x≤15,且x为整数),且当x=8时,y=110;当x=10时,y=100;当x=12时,y=90;… ,设超市销售这种消毒用品每天获利为w(元).(1)请判断y与x符合哪种函数关系,并求y与x的函数表达式;(2)若该商店销售这种商品每天获润480元,则每件商品的售价为多少元;(3)当每件商品的售价为多少元时,每天的销售利润最大?最大利润是多少元?21.(本题满分13分)某工厂加工车间要从一块四边形钢板ABCD中切割一个正方形,已知AD=9米,CD=2米,AB=14米,∠A=∠D=90°.如图,现有方案1和方案2两种切割方案,图中的正方形AEFG和正方形MNPQ四个顶点都在原四边形的边上.(1)求BC的长;(2)求(3)若在△BEF余料上再切割一个最大正方形.请直接写出此正方形的边长.方案 1方案222.(本题满分14分)如图1,两个正方形拼接成一个“L”型的图形,现用一条直线将图形分为面积相等的两部分. 小颖在研究时发现了三种不同的分割方法,图2是其中一种方法.图1图2(1)请在下面图形中再画出另外两种分割方法;(2)若小正方形的边长为2,大正方形的边长为4.小颖在利用绘图软件研究分割方法时,将图1放置在平面直角坐标系中,如图3所示,此时图2所示的分割直线AB的表达式为.小颖发现:上述三种不同的分割直线都经过同一个点.请你证明此发现;图3 备用图(3) 小颖继续研究,又发现了一种分割方法,如图4所示.请根据此图,简述其作图思路;图4(4) 通过上述探究过程,谈谈你的收获.(两条即可)。
山东省潍坊市2021届中考数学达标检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对2.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .3.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .84.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表: 班级 参加人数 平均数 中位数 方差 甲 55 135 149 191 乙55135151110某同学分析上表后得出如下结论: ①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); ③甲班成绩的波动比乙班大. 上述结论中,正确的是( ) A .①②B .②③C .①③D .①②③5.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④6.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( )A .43B .54C .65D .767.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b8.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°9.设点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是 A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若7,CD=1,则BE 的长是( )A .5B .6C .7D .8二、填空题(本题包括8个小题) 11.化简:4= .12.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.13.因式分解:3a 2-6a+3=________. 14.若a+b=5,ab=3,则a 2+b 2=_____.15.已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n+= . 16.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)18.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.三、解答题(本题包括8个小题)19.(6分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如下图所示.求甲组加工零件的数量y 与时间x 之间的函数关系式.求乙组加工零件总量a 的值.20.(6分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a=,b=.该校八年级学生共有600人,则该年级参加足球活动的人数约人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.(6分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k 的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.22.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE 交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.23.(8分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(10分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?25.(10分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?26.(12分)解方程:252112xx x+--=1.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.2.C【解析】【分析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.3.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.4.D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<8<1.9,所以8应在③段上.故选C考点:实数与数轴的关系6.C【解析】【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.7.D【解析】【详解】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a<b<1b,故选D.8.A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.9.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数ky x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数ky x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况: ①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限; ②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限; ③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限; ④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A . 10.B 【解析】 【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB , ∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键 二、填空题(本题包括8个小题) 11.2 【解析】【分析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴【点睛】本题考查求算术平方根,熟记定义是关键.12.11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.13.3(a-1)2【解析】【分析】先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.14.1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.15.225 .【解析】试题分析:由m n ≠时,得到m ,n 是方程23650x x +-=的两个不等的根,根据根与系数的关系进行求解.试题解析:∵m n ≠时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴2m n +=,53mn =-. ∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为225-. 考点:根与系数的关系.16.1【解析】【分析】根据弧长公式l =,可得r =,再将数据代入计算即可.【详解】 解:∵l =,∴r ===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l =(弧长为l ,圆心角度数为n ,圆的半径为r ). 17.12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为>18.1:4【解析】【分析】由S △BDE :S △CDE =1:3,得到BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4.【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.三、解答题(本题包括8个小题)19.(1)y=60x ;(2)300【解析】【详解】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以a-100100=24.8-2.82⨯,解得a=300. 20. (1)a =16,b =17.5(2)90(3)35 【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P (恰好选到一男一女)=1220=35.考点:列表法与树状图法;用样本估计总体;扇形统计图.21.(1)32(2)1(3)①②③【解析】【分析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.22.(1)(2)证明见解析【解析】【分析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【详解】解:如图 1 中,在AB 上取一点M,使得BM=ME,连接ME.在Rt△ABE 中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴,∴x=(负根已经舍弃),∴AB=AC=(2+ )•,∴BC= AB= +1.作CQ⊥AC,交AF 的延长线于Q,∵ AD=AE ,AB=AC ,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23.(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.24.(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50,∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人).【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.25.(1)一副乒乓球拍28 元,一副羽毛球拍60元(2)共320 元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,2116 32204x yx y+=⎧⎨+=⎩,解得:2860 xy=⎧⎨=⎩答:购买一副乒乓球拍28元,一副羽毛球拍60元. (2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.26.12 x=-【解析】【分析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】原方程变形为253 2121xx x-=--,方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C2.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.13263.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )A.B.C.D.4.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.5.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果5400cm,设金色纸边的宽为xcm,那么x满足的方程是()要使整幅挂图的面积是2A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --= 6.在同一坐标系中,反比例函数y =k x与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C .D .7.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .8.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x9.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 10.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形二、填空题(本题包括8个小题)11.计算:21m m ++112m m++=______. 12.如图,是用火柴棒拼成的图形,则第n 个图形需_____根火柴棒.13.若关于x 的方程111m x x x ----=0有增根,则m 的值是______. 14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so ,研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x ,5,3(x >5),则x 的值是 .15.写出一个大于3且小于4的无理数:___________.16.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.17.函数21y x =-中,自变量x 的取值范围是_____. 18.如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为_____.三、解答题(本题包括8个小题)19.(6分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用? 20.(6分)如图,AB 为⊙O 的直径,D 为⊙O 上一点,以AD 为斜边作△ADC ,使∠C=90°,∠CAD=∠DAB 求证:DC 是⊙O 的切线;若AB=9,AD=6,求DC 的长.21.(6分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n -----=______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 22.(8分)已知Rt △ABC 中,∠ACB =90°,CA =CB =4,另有一块等腰直角三角板的直角顶点放在C 处,CP =CQ =2,将三角板CPQ 绕点C 旋转(保持点P 在△ABC 内部),连接AP 、BP 、BQ .如图1求证:AP =BQ ;如图2当三角板CPQ 绕点C 旋转到点A 、P 、Q 在同一直线时,求AP 的长;设射线AP 与射线BQ 相交于点E ,连接EC ,写出旋转过程中EP 、EQ 、EC 之间的数量关系.23.(8分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?24.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25.(10分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.26.(12分)解方程:11222xx x-=---参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.2.C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题. 3.C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.4.C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P 点在BC 边上,BP=3x ,则△BPQ 的面积=12BP•BQ ,解y=12•3x•x=232x ;故A 选项错误; ②1<x≤2时,P 点在CD 边上,则△BPQ 的面积=12BQ•BC ,解y=12•x•3=32x ;故B 选项错误; ③2<x≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=12AP•BQ ,解y=12•(9﹣3x )•x=29322x x -;故D 选项错误.故选C .考点:动点问题的函数图象.5.B【解析】【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为xcm ,得出方程:(80+2x )(50+2x )=5400,整理后得:2653500x x +-=故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.6.D【解析】【分析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k <0时,反比例函数y=k x ,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合;②当k >0时,反比例函数y=k x,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符.。
2021年山东省潍坊市中考数学试题及答案
试卷类型:A2021年潍坊市初中学业水平考试数 学 试 题第1卷 (选择题 共36分)一、选择题(此题共12个小题,在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来。
每题选对得3分,选错、不选或选出的答案超出一个均记0分〕 1.计算:2-2=( ).A .41B .2C .41- D .4 2.如果代数式34-x 有意义,那么x 的取值范围是( ). A .x ≠3 B .x <3 C .x >3 D .x ≥33.某班6名同学参加体能测试的成绩如下(单位:分):75,95,75,75,80,80.关于这组数据的表述错误的选项是( ).A .众数是75B .中位数是75C .平均数是80D .极差是204.右图空心圆柱体的主视图的画法正确的选项是( ).5.不等式组{532423>+<-x x 的解等于( ).A . 1<x <2B . x >1C . x <2D . x <1或x >26.许多人由于粗心,经常造成水龙头“滴水〞或“流水〞不断.根据测定,一般情况下一个水龙头“滴水〞1个小时可以流掉3.5千克水.假设1年按365天计算,这个水龙头1年可以流掉( )千克水.(用科学计数法表示,保存3个有效数字) A .3.1×104 B .0.31×105 C .3.06×104 D .3.07×1047.两圆半径r 1、r 2分别是方程菇x 2—7x +10=0的两根,两圆的圆心距为7,那么两圆 的位置关系是( ).A .相交B .内切C .外切D .外离8.矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将ΔABE 向上折叠,使B 点落在AD 上的F 点,假设四边形EFDC 与矩形ABCD 相似,那么AD =( ).A .215-B .215+ C .3 D .29.轮船从B 处以每小时50海里的速度沿南偏东300方向匀速航行,在B 处观测灯塔A 位于南偏东750方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东600方向上,那么C 处与灯塔A 的距离是 ( )海里.A .325B .225C .50D .2510.甲乙两位同学用围棋子做游戏.如下图,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.那么以下下子方法不正确的选项是( ).[说明:棋子的位置用数对表示,如A 点在(6,3)]A .黑(3,7);白(5,3)B .黑(4,7);白(6,2)C .黑(2,7);白(5,3)D .黑(3,7);白(2,6)11.假设直线y =-2x -4与直线y =4x +b 的交点在第三象限,那么b 的取值范围是( ). A . -4<b <8 B .-4<b <0 C .b <-4或b >8 D .-4≤6≤812.以下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).假设圈出的9个数中,最大数与最小数的积为192,那么这9个数的和为( ).第二卷 (非选择题 共84分)二、填空题(本大题共5个小题,共15分,只要求填写最后结果,每题填对得3分〕 13.分解因式:x 3—4x 2—12x = .14.点P 在反比例函数xk y =(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,那么反比例函数的解析式为 .15.方程060366=-+xx 的根是 . 16.如下图,AB =DB ,∠ABD =∠CBE ,请你添加一个适当的条件 , 使ΔABC ≌ΔDBE . (只需添加一个即可)17.右图中每一个小方格的面积为l ,那么可根据面积计算得到如下算式:1+3+5+7+…+(2n -1)= .(用n 表示,n 是正整数)三、解答题(本大题共7个小题,共69分。
2021年山东省潍坊市数学中考试题(含答案)
潍坊)的立方根是(解:的立方根是3分)(2014•潍坊)下列标志中不是中心对称图形的是()B .C.D.3分)(2014•潍坊)下列实数中是无理数的是(B.5.B .C.D.潍坊)若代数式有意义潍坊)若不等式组无解范围.解:,由①得∵不等式组无解, A B.C.D.∴,即,y=(﹣(+﹣(+(,)B .C.D.==.=(连续经过2014次变换后,正方形 A(﹣2012,2)B(﹣两个半径均为的⊙3得出=﹣进而得出即可.C⊥AO=,=,S=××=,==,∴=﹣S=﹣,(﹣)3.3.∴=1=(﹣=[2=[(∴=,=,∴=①,=②,∴=,解得∴=,解得因此葛藤长为=25由题意知:=11.3是:=0.30相应频率是:=0.45∴Rt△OAD≌Rt△EOD=∠ABE=∠COB=∠CD====10前方另一海岛顶端B的俯角是60°,求两海岛间的距离CE===300(米).DF===900CE=19900+300﹣900=19000+300(米).19000+300)米.=,再利用x=,BQP===.∴=,∴=,=,﹣=,的面积是.,解得:,﹣x+88,(﹣x+88﹣(﹣=1﹣,b=1x,﹣t2﹣t2=OB=OC﹣x,)DE=﹣3=.若以,﹣m(﹣m﹣m﹣m+2m=,求出)﹣(﹣m=m解方程m2m=,求出2+,2﹣)﹣,2+).2﹣=1﹣,b=1﹣x,﹣t2﹣t2=OB FH=×4(﹣t2=OC FG=×4(0,4),∴,解得,∴直线BC的解析式为y=﹣﹣x﹣(+,,)DE=﹣3=.,﹣m(﹣m﹣m由﹣m+2m=,解得:)﹣(﹣m=m由m2m=,解得±,经检验适合题意2+,2﹣)﹣,2+).综上所述满足题意的点P有三个,分别是(2+,2﹣),P3(2﹣,2+).本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一。
2021年山东省潍坊市数学中考真题含答案解析
2021年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1.(3分)(2015•潍坊)在|﹣2|,20,2﹣1,这四个数中,最大的数是( ) A.|﹣2|B.20C.2﹣1D.2.(3分)(2015•潍坊)如图所示几何体的左视图是( ) A.B.C.D.3.(3分)(2015•潍坊)2021年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( ) A.1.11×104B.11.1×104C.1.11×105D.1.11×1064.(3分)(2015•潍坊)如图汽车标志中不是中心对称图形的是( ) A.B.C.D.5.(3分)(2015•潍坊)下列运算正确的是( ) A.+=B.3x2y﹣x2y=3D.(a2b)3=a6b3 C.=a+b6.(3分)(2015•潍坊)不等式组的所有整数解的和是( ) A.2B.3C.5D.67.(3分)(2015•潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是( ) A.70°B.50°C.45°D.20°8.(3分)(2015•潍坊)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是( ) A.B.C.D.9.(3分)(2015•潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N。
第二步,连接MN分别交AB、AC于点E、F。
第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是( ) A.2B.4C.6D.810.(3分)(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是( ) A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2D.(π﹣2)cm211.(3分)(2015•潍坊)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( ) A.cm2B.cm2C.cm2D.cm212.(3分)(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0。
山东省潍坊市2021版中考数学试卷(I)卷(新版)
山东省潍坊市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2019七上·佛山月考) 如图,在数轴上点A所表示的数的相反数是()A . ﹣2B . 2C . 0.5D . ﹣0.52. (2分)(2019·深圳) 下列运算正确的是()A . a2+a2=a4B . a3a4=a12C . (a3)4=a12D . (ab)2=ab23. (2分) (2019九上·海曙期末) 若,则()A .B .C .D .4. (2分)主视图、左视图、俯视图都是圆的几何体是()。
A . 圆锥B . 圆柱C . 球D . 空心圆柱5. (2分) (2019八上·凌源月考) 以下列各组线段为边,能组成三角形的是()A . 4cm,5cm,6cmB . 8cm,2cm,5cmC . 12cm,5cm,6cmD . 3cm,6cm,3cm6. (2分) 2015年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是()A . 23.2×108B . 2.32×109C . 232×107D . 2.32×1087. (2分)(2018·柘城模拟) 外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A .B .C .D .8. (2分)方程()A . 解为x=1B . 无解C . 解为任何实数D . 解为x≠1的任何实数9. (2分) (2020八上·东台月考) 如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③ ;④CD=AE.其中不正确的结论有()A . 0个B . 1个C . 2个D . 3个10. (2分)下列各组中两个图形不一定相似的是()A . 有一个角是35°的两个等腰三角形B . 两个等腰直角三角形C . 有一个角是120°的两个等腰三角形D . 两个等边三角形11. (2分) (2016九上·婺城期末) 如果正比例函数y=ax(a≠0)与反比例函数y= (b≠0 )的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2),那么另一个交点的坐标为()A . (2,3)B . (3,﹣2)C . (﹣2,3)D . (3,2)12. (2分) (2016七下·大连期中) 如图,已知AB∥CD,∠2=135°,则∠1的度数是()A . 35°B . 45°C . 55°D . 65°13. (2分) (2020九上·温州期末) 如图,AD是⊙O的直径,以A为圆心,弦AB为半径画弧交⊙O于点C,连结BC交AD于点E,若DE=3,BC=8,则⊙O的半径长为()A .B . 5C .D .14. (2分) (2017八下·承德期末) 如果某函数的图象如图所示,那么y随x的增大而()A . 增大B . 减小C . 不变D . 有时增大有时减小二、填空题 (共4题;共4分)15. (1分)(2019·宜宾) 分解因式: ________.16. (1分) (2019七下·新罗期末) 把方程2x﹣y﹣3=0化成用含x的代数式表示y的形式:y=________.17. (1分)如图,已知AB∥ED,∠ABC=300,∠EDC=400 ,则∠BCD的度数是________.18. (1分) (2019九上·沭阳期中) 如图,Rt△AOB中,∠O=90°,OA=OB=3 ,⊙O的半径为1,P是AB 边上的动点,过点P作⊙O的切线PQ,切点为Q,则切线长PQ的最小值为________三、解答题 (共6题;共65分)19. (5分)(2012·宿迁) 计算:|2﹣ |+(﹣1)0+2cos30°.20. (5分)(2016·滨州) 某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据4666221011860注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.21. (15分)(2020·南岗模拟) 时下娱乐综艺节目风靡全国,随机对九年级部分学生进行了一次调查,对最喜欢《我是喜剧王》(记为A)、《王牌对王牌》(记为B)、《奔跑吧,兄弟》(记为C)、《欢乐喜剧人》(记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:(1)求本次调查一共选取了多少名学生;(2)将条形统计图补充完整;(3)若九年级共有1900名学生,估计其中最喜欢《奔跑吧,兄弟》的学生大约是多少名.22. (10分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2 ,写出顶点A2 , B2 , C2的坐标.23. (15分)(2020·武汉模拟) 在与中,,与交于点F,(1)如图1,若,求证:;(2)如图2,,,,,求的长;(3)如图3,若,,,,直接写出的长.24. (15分)(2020·锦江模拟) 如图,抛物线y=ax2+x+c与x轴交于点A(6,0),C(﹣2,0),与y轴交于点B,抛物线的顶点为D,对称轴交AB于点E,交x轴于点F.(1)求抛物线的解析式;(2) P是抛物线上对称轴左侧一点,连接EP,若tan∠BEP=,求点P的坐标;(3) M是直线CD上一点,N是抛物线上一点,试判断是否存在这样的点N,使得以点B,E,M,N为顶点的四边形是平行四边形,若存在,请直接写出点N的坐标,若不存在,请说明理由.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共65分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-3、。
2021年山东省潍坊市中考数学试题(解析版)
一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣18B.18C.0 D.8【答案】B. 【解析】试题分析:20•2﹣3=1×18=18.故答案选B.考点:实数的运算.2.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()【答案】D.考点:轴对称图形与中心对称图形的概念.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()【答案】C.【解析】试题分析:根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中可得:图中几何体的俯视图是C选项中的图形.故答案选C.考点:几何体的三视图.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011 B.1.3×1011 C.1.26×1011 D.0.13×1012【答案】B.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,用这个数的整数位数减1即可,即将1256.77亿用科学记数法可表示为1.3×1011.故答案选B . 考点:科学计数法.5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是( )A .﹣2a+bB .2a ﹣bC .﹣bD .b 【答案】A.考点:二次根式的性质与化简;实数与数轴. 6.关于x 的一元二次方程x 2﹣x+sinα=0有两个相等的实数根,则锐角α等于( )A .15°B .30°C .45°D .60° 【答案】B. 【解析】试题分析:已知关于x 的一元二次方程x 2﹣2x+sinα=0有两个相等的实数根,可得△=2﹣4sinα=0,解sinα=21,因α为锐角,由特殊角的三角函数值可得α=30°.故答案选B . 考点:根的判别式;特殊角的三角函数值.7.木杆AB 斜靠在墙壁上,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆的底端B 也随之沿着射线OM 方向滑动.下列图中用虚线画出木杆中点P 随之下落的路线,其中正确的是( )【答案】D.考点:直角三角形斜边上的中线.8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【答案】C.【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.考点:因式分解.9.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.413D.41【答案】D.考点:切线的性质;坐标与图形性质.10.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠C.m>﹣D.m>﹣且m≠﹣【答案】B. 【解析】试题分析:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.考点:分式方程的解.11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣【答案】A.考点:扇形面积的计算;含30度角的直角三角形.12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【答案】C.【解析】试题分析:由题意得,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故答案选C.考点:一元一次不等式组的应用.二、填空题:本大题共6小题,每小题3分13.计算:(+)=.【答案】12.【解析】试题分析:原式33333.考点:二次根式的化简.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.【答案】5 3.考点:同类项的定义.15.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.【答案】77.4.【解析】试题分析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值可得该应聘者的总成绩是:70×510+80×310+92×210=77.4分.考点:加权平均数.16.已知反比例函数y=kx(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.【答案】﹣3<x<﹣1.考点:反比例函数的性质.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA 的距离之和的最小值是.【答案】3【解析】试题分析:如图,过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,因∠ON′M=90°,OM=4,所以MN′=OM•sin60°=23,即点P到点M与到边OA的距离之和的最小值为23.考点:轴对称-最短路线问题.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1).考点:一次函数图象上点的坐标特征;正方形的性质.三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【答案】另一个根是﹣4,m的值为10.【解析】试题分析:已知x=23是方程的一个根,把它代入方程即可求出m的值,再由根与系数的关系来求方程的另一根即可.试题解析:设方程的另一根为t.依题意得:3×(23)2+23m﹣8=0,解得m=10.又23t=﹣83,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.考点:根与系数的关系.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.【答案】(1)25;(2)8°48′;(3)5 6.【解析】试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.试题解析:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:225×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:1012=56.考点:频数(率)分布表;扇形统计图;列表法与树状图法.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【答案】(1)详见解析;(2)详见解析.∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.考点:正方形的性质;矩形的判定;圆周角定理.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【答案】(23+4)米.试题解析:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF=22CD DF =23,由题意得∠E=30°,∴EF=tan DF E=23, ∴BE=BC+CF+EF=6+43,∴AB=BE×tanE=(6+43)×33=(23+4)米, 答:电线杆的高度为(23+4)米.考点:解直角三角形的应用.23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数.发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元. (1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【答案】(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.【解析】由50x ﹣1100>0,解得x >22,又∵x 是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y 元,当0<x≤100时,y 1=50x ﹣1100,∵y 1随x 的增大而增大,∴当x=100时,y 1的最大值为50×100﹣1100=3900;当x >100时,y 2=(50﹣1005x )x ﹣1100 =﹣15x 2+70x ﹣1100 =﹣15(x ﹣175)2+5025, 当x=175时,y 2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.考点:二次函数的应用.24.如图,在菱形ABCD 中,AB=2,∠BAD=60°,过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F .(1)如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:MN=AC ;(2)如图2,将△EDF 以点D 为旋转中心旋转,其两边DE′、DF′分别与直线AB 、BC 相交于点G 、P ,连接GP ,当△DGP 的面积等于3时,求旋转角的大小并指明旋转方向.【答案】(1)详见解析;(2)将△EDF 以点D 为旋转中心,顺时针或逆时针旋转60°时,△DGP 的面积等于33.【解析】在菱形ABCD 中,∠BAD=60°,AD=AB ,∴△ABD 为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==21, 同理, =21,∴MN=13 AC;综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于33.考点:旋转的性质;菱形的性质.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P 时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【答案】(1)y=13x 2+2x+1;(2)P(﹣92,﹣54);(3)(﹣4,1)或(3,1).试题解析:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴b=2,c=1,∴抛物线的解析式为y=13x2+2x+1,此时点P(﹣92,﹣54).(3)∵y=13x2+2x+1=13(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=92,AC=6,CP=32∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).考点:二次函数综合题.。
山东省潍坊市2021年中考数学试卷(word版,含解析)
山东省潍坊市2021年中考数学试卷一、选择题1.(3分)(2021•潍坊)的立方根是( )A .﹣1 B.0C.1D.±1考点: 立方根分析:根据开立方运算,可得一个数的立方根.解答:解:的立方根是1,故选:C.点评:本题考查了立方根,先求幂,再求立方根.2.(3分)(2021•潍坊)下列标志中不是中心对称图形的是( )A.B.C.D.考点: 中心对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、不是中心对称图形,是轴对称图形,故此选项符合题意;D、是中心对称图形,故此选项不合题意;故选:C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.D.s in45°A.B.2﹣2C.5.考点: 无理数分析:根据无理数是无限不循环小数,可得答案.解答:解:A、B、C、是有理数;D、是无限不循环小数,是无理数;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2021•潍坊)一个几何体的三视图如图,则该几何体是( )A.B.C.D.考点: 由三视图判断几何体分析:由空间几何体的三视图可以得到空间几何体的直观图.解答:解:由三视图可知,该组合体的上部分为圆台,下部分为圆柱,故选:D.点评:本题只要考查三视图的识别和判断,要求掌握常见空间几何体的三视图,比较基础.5.(3分)(2021•潍坊)若代数式有意义,则实数x的取值范围是( ) A.x≥﹣1 B.x≥﹣1且x≠3 C.x>﹣1 D.x>﹣1且x≠3考点: 二次根式有意义的条件;分式有意义的条件分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x+1≥0且x﹣3≠0,解得x≥﹣1且x≠3.故选B.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2021•潍坊)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE 上,连接AE,∠E=36°,则∠ADC的度数是( )A.44°B.54°C.72°D.53°考点: 圆周角定理;平行四边形的性质分析:首先根据直径所对的圆周角为直角得到∠BAE=90°,然后利用四边形ABCD是平行四边形,∠E=36°,得到∠BEA=∠DAE=36°,从而得到∠BAD=126°,求得到∠ADC=54°.解答:解:∵BE是直径,∴∠BAE=90°,∵四边形ABCD是平行四边形,∠E=36°,∴∠BEA=∠DAE=36°,∴∠BAD=126°,∴∠ADC=54°,故选B.点评:本题考查了圆周角定理及平行四边形的性质,解题的关键是认真审题,发现图形中的圆周角.7.(3分)(2021•潍坊)若不等式组无解,则实数a的取值范围是( ) A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1考点: 解一元一次不等式组分析:分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.解答:解:,由①得,x≥﹣a,由②得,x<1,∵不等式组无解,∴﹣a≥1,解得a≤﹣1.故选D.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(3分)(2021•潍坊)如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是( )A.B.C.D.考点: 动点问题的函数图象分析:利用三角形相似求出y关于x的函数关系式,根据函数关系式进行分析求解.解答:解:∵BC=4,BE=x,∴CE=4﹣x.∵AE⊥EF,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE.又∵∠B=∠C=90°,∴Rt△AEB∽Rt△EFC,∴,即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选A.点评:本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.9.(3分)(2021•潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元2A.27 B.36 C.27或36 D.18考点: 等腰三角形的性质;一元二次方程的解分析:由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一根,再根据三角形的三边关系判断是否符合题意即可;②当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.解答:解:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得32﹣12×3+k=0,k=27.将k=27代入原方程,得x2﹣12x+27=0,解得x=3或9.3,3,9不能够组成三角形,不符合题意舍去;②当3为底时,则其他两条边相等,即△=0,此时144﹣4k=0,k=36.将k=36代入原方程,得x2﹣12x+36=0,解得x=6.3,6,6能够组成三角形,符合题意.故k的值为36.故选B.点评:本题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解.10.(3分)(2021•潍坊)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是( )A.B.C.D.考点: 概率公式;折线统计图分析:先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公式求解即可.解答:解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时为(86,25,57),3天空气质量均为优;当2号到达时,停留的日子为2、3、4号,此时为(25,57,143),2天空气质量为优;当3号到达时,停留的日子为3、4、5号,此时为(57,143,220),1天空气质量为优;当4号到达时,停留的日子为4、5、6号,此时为(143,220,160),空气质量为污染;当5号到达时,停留的日子为5、6、7号,此时为(220,160,40),1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为(160,40,217),1天空气质量为优;∴此人在该市停留期间有且仅有1天空气质量优良的概率==.故选C.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.11.(3分)(2021•潍坊)已知一次函数y1=kx+b(k<0)与反比例函数y2=(m≠0)的图象相交于A.x<﹣1或0<x <3 B.﹣1<x<0或0<x<3C.﹣1<x<0或x>3D.x<x<3考点: 反比例函数与一次函数的交点问题.分析:根据观察图象,可得直线在双曲线上方的部分,可得答案.解答:解:如图:直线在双曲线上方的部分,故答案为:x<﹣1或0<x<3,故选:A.点评:本题考查了反比例函数与一次函数的交点问题,直线在双曲线上方的部分是不等式的解.12.(3分)(2021•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2021次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(﹣2021,2)B.(﹣2021,﹣2)C.(﹣2021,﹣2)D.(﹣2021,2)考点: 翻折变换(折叠问题);正方形的性质;坐标与图形变化-平移专题: 规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2021次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点B的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点B的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2021次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2021,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.二、填空题13.(3分)(2021•潍坊)分解因式:2x(x﹣3)﹣8= 2(x﹣4)(x+1) .考点: 因式分解-十字相乘法等分析:首先去括号,进而整理提取2,即可利用十字相乘法分解因式.解答:解:2x(x﹣3)﹣8=2x2﹣6x﹣8=2(x2﹣3x﹣4)=2(x﹣4)(x+1).故答案为:2(x﹣4)(x+1).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,熟练掌握十字相乘法分解因式是解题关键.14.(3分)(2021•潍坊)计算:82021×(﹣0.125)2021= ﹣0.125.考点: 幂的乘方与积的乘方;同底数幂的乘法分析:根据同底数幂的乘法,可化成指数相同的幂的乘法,根据积的乘方,可得答案.解答:解:原式=82021×(﹣0.125)2021×(﹣0.125)=(﹣8×0.125)2021×(﹣0.125)=﹣0.125,故答案为:﹣0.125.点评:本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.15.(3分)(2021•潍坊)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为2π﹣3.(结果保留π)考点: 扇形面积的计算;等边三角形的判定与性质;相交两圆的性质分析:根据题意得出一部分弓形的面积,得出=﹣S进而得出即可.解答:解:连接O1O2,过点O1作O1C⊥AO2于点C,由题意可得:AO1=O1O2=AO2=,∴△AO1O2是等边三角形,∴CO1=O1O2sin60°=,∴S=××=,==,∴=﹣S=﹣,∴图中阴影部分的面积为:4(﹣)=2π﹣3.故答案为:2π﹣3.点评:此题主要考查了扇形的面积公式应用以及等边三角形的判定与性质,熟练记忆扇形面积公式是解题关键.16.(3分)(2021•潍坊)已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为9.考点: 方差;中位数专题: 计算题.分析:由于有6个数,则把数据由小到大排列时,中间有两个数中有1,而数据的中位数为1,所以中间两个数的另一个数也为1,即x=1,再计算数据的平均数,然后利用方差公式求解.解答:解:∵数据﹣3,x,﹣2,3,1,6的中位数为1,∴=1,解得x=1,∴数据的平均数=(﹣3﹣2+1+1+3+6)=1,∴方差=[(﹣3﹣1)2+(﹣2﹣1)2+(1﹣1)2+(1﹣1)2+(3﹣1)2+(6﹣1)2]=9.故答案为5.点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.17.(3分)(2021•潍坊)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔50米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是50米.考点: 相似三角形的应用分析:根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.解答:解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=50m,FH=4m,∴=①,=②,∴=,解得BD=50m,∴=,解得AB=52m.故答案为:52.点评:本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.18.(3分)(2021•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.考点: 平面展开-最短路径问题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.解答:解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为25.点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.三、解答题19.(9分)(2021•潍坊)今年我市把男生“引体向上”项目纳入学业水平体育考试内容,考试前某校为了解该项目的整体水平,从九年级220名男生中,随机抽取20名进行“引体向上”测试,测试成绩(单位:个)如图1:其中有一数据被污损,统计员只记得11.3是这组样本数据的平均数.(1)求该组样本数据中被污损的数据和这组数据的极差;(2)请补充完整下面的频数、频率分布表和频数分布直方图(如图2);频数、频率分布表:测试成绩/个频数频率1~5 20.106~10 60.3011~15 90.4516~20 3 0.15合计20 1.00(3)估计在学业水平体育考试中该校九年级有多少名男生能完成11个以上(包含11个)“引体向上”?考点: 频数(率)分布直方图;用样本估计总体;频数与频率;频数(率)分布表.分析:(1)直接利用平均数求法得出x的值,进而求出极差即可;(2)直接利用已知数据得出各组频数,进而求出频率,填表和补全条形图即可;(3)利用样本估计总体的方法得出,能完成11个以上的是后两组所占百分比,进而得出九年级男生能完成11个以上(包含11个)“引体向上”的人数.解答:解:(1)设被污损的数据为x,由题意知:=11.3,解得:x=19,根据极差的定义,可得该组数据的极差是:19﹣3=16,(2)由样本数据知,测试成绩在6~10个的有6名,该组频数为6,相应频率是:=0.30,测试成绩在11~15个的有9名,该组频数为9,相应频率是:=0.45,补全的频数、频率分布表和频数分布直方图如下所示:测试成绩/个频数频率1~5 2 0.106~10 6 0.3011~15 9 0.4516~20 3 0.15合计20 1.00(3)由频率分布表可知,能完成11个以上的是后两组,(0.45+0.15)×100%=60%,由此估计在学业水平体育考试中能完成11个以上“引体向上”的男生数是:220×60%=132(名).点评:此题主要考查了频数分布直方表以及条形统计图等知识,正确掌握相关定义求出各组频率是解题关键.20.(10分)(2021•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.考点: 切线的性质;全等三角形的判定与性质;勾股定理;梯形分析:(1)连接OE,证出RT△OAD≌RT△OED,利用同弦对圆周角是圆心角的一半,得出∠AOD=∠ABE,利用同位角相等两直线平行得到OD∥BE,(2)由RT△COE≌RT△COB,得到△COD是直角三角形,利用S梯形ABCD=2S△COD,求出xy=48,结合x+y=14,求出CD.解答:(1)证明:如图,连接OE,∵CD是⊙O的切线,∴OE⊥CD,在Rt△OAD和Rt△OED,∴Rt△OAD≌Rt△OED(SAS)∴∠AOD=∠EOD=∠AOE,在⊙O中,∠ABE=∠AOE,∴∠AOD=∠ABE,∴OD∥BE.(2)解:与(1)同理可证:Rt△COE≌Rt△COB,∴∠COE=∠COB=∠BOE,∵∠DOE+∠COE=90°,∴△COD是直角三角形,∵S△DEO=S△DAO,S△OCE=S△COB,∴S梯形ABCD=2(S△DOE+S△COE)=2S△COD=OC•OD=48,即xy=48,又∵x+y=14,∴x2+y2=(x+y)2﹣2xy=142﹣2×48=100,在RT△COD中,CD====10,∴CD=10.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和全等三角形的判定与性质.关键是综合运用,找准线段及角的关系.21.(10分)(2021•潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A 的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.考点: 解直角三角形的应用-仰角俯角问题分析:首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE 为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900米,CD=1.99×104米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得两海岛间的距离AB.解答:解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900米,CD=1.99×104米=19900米.在Rt△AEC中,∠C=60°,AE=900米.∴CE===300(米).在Rt△BFD中,∠BDF=45°,BF=900米.∴DF===900(米).∴AB=EF=CD+DF﹣CE=19900+300﹣900=19000+300(米).答:两海岛间的距离AB为(19000+300)米.点评:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.22.(12分)(2021•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP 的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.考点: 四边形综合题分析:(1)运用Rt△ABE≌Rt△BCF,再利用角的关系求得∠BGE=90°求证;(2)△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QP求解;(3)先求出正方形的边长,再根据面积比等于相似边长比的平方,求得S△AGN=,再利用S四边形GHMN=S△AHM﹣S△AGN求解.解答:(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP===.(3)解:∵正方形ABCD的面积为4,∴边长为2,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=2,∵∠AHM=90°,∴GN∥HM,∴=,∴=,∴S△AGN=,∴S四边形GHMN=S△AHM﹣S△AGN=1﹣=,∴四边形GHMN的面积是.点评:本题主要考查了四边形的综合题,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.23.(12分)(2021•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.考点: 一次函数的应用分析:(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.解答:解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88;(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值时4840辆/小时.点评:本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.24.(13分)(2021•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.考点: 二次函数综合题分析:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先根据三角形的面积公式求出S△OBF=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由S四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=形ABFC﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,四边形的面积,平行四边形的判定等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。
山东省潍坊市2021年中考:数学考试真题与答案解析
山东省潍坊市2021年中考:数学考试真题与答案解析一、单项选择题共8小题,每小题3分,共24分.每小题四个选项只有一项正确。
1. 下列各数的相反数中,最大的是()A. 2B. 1C. ﹣1D. ﹣2答案:D2. 如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是( )A. 15°B. 30°C. 45°D. 60°答案:B3. 第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101 527 000用科学记数法(精确到十万位)()A.1.02×108B. 0.102×109C. 1.015×108D. 0.1015×109答案:C4. 若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A. B. 4C. 25D. 5答案:A5. 如图,某机器零件的三视图中,既是轴对称图形,又是中心对称图形的是()A. 主视图B. 左视图C. 俯视图D. 不存在答案:C6. 不等式组的解集在数轴上表示正确的是( )2111313412x x x x +≥⎧⎪-⎨-<⎪⎩A. B.C. D.答案:D7. 如图为2021年第一季度中国工程机械出口额TOP 10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是()A. 对10个国家出口额的中位数是26201万美元B. 对印度尼西亚的出口额比去年同期减少C. 去年同期对日本的出口额小于对俄罗斯联邦的出口额D. 出口额同比增速中,对美国的增速最快答案:A8. 记实数x 1,x 2,…,x n 中的最小数为min|x 1,x 2,…,x n |=﹣1,则函数y =min|2x ﹣1,x ,4﹣x |的图象大致为( )A. B.C. D.答案:B二、多项选择题共4小题,每小题3分,共12分.每小题四个选项有多项正确,全部选对得3分,部分选对得2分,有选错的即得0分。
2021年山东省潍坊市中考数学试卷
山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(3分)(2020•潍坊)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b3.(3分)(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106 4.(3分)(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.5.(3分)(2020•潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名) 5 2 1 2则关于这组数据的结论正确的是( ) A .平均数是144 B .众数是141 C .中位数是144.5D .方差是5.46.(3分)(2020•潍坊)若m 2+2m =1,则4m 2+8m ﹣3的值是( ) A .4B .3C .2D .17.(3分)(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE=12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .428.(3分)(2020•潍坊)关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定9.(3分)(2020•潍坊)如图,函数y =kx +b (k ≠0)与y =mx(m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,则不等式kx +b >mx的解集为( )A .x >﹣2B .﹣2<x <0或x >1C .x >1D .x <﹣2或0<x <110.(3分)(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .3211.(3分)(2020•潍坊)若关于x 的不等式组{3x −5≥12x −a <8有且只有3个整数解,则a 的取值范围是( ) A .0≤a ≤2B .0≤a <2C .0<a ≤2D .0<a <2 12.(3分)(2020•潍坊)若定义一种新运算:a ⊗b ={a −b(a ≥2b)a +b −6(a <2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y =(x +2)⊗(x ﹣1)的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.) 13.(3分)(2020•潍坊)因式分解:x 2y ﹣9y = .14.(3分)(2020•潍坊)若|a ﹣2|+√b −3=0,则a +b = .15.(3分)(2020•潍坊)如图,在Rt △ABC 中,∠C =90°,∠B =20°,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线AF .若AF 与PQ 的夹角为α,则α= °.16.(3分)(2020•潍坊)若关于x 的分式方程3x x−2=m+3x−2+1有增根,则m = .17.(3分)(2020•潍坊)如图,矩形ABCD 中,点G ,E 分别在边BC ,DC 上,连接AC ,EG ,AE ,将△ABG 和△ECG 分别沿AG ,EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若CE =3,CG =4,则sin ∠DAE = .18.(3分)(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA 1̂的圆心为点A ,半径为AD ;A 1B 1̂的圆心为点B ,半径为BA 1;B 1C 1̂的圆心为点C ,半径为CB 1;C 1D 1̂的圆心为点D ,半径为DC 1;⋯DA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020̂的长是 .三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.) 19.(2020•潍坊)先化简,再求值:(1−x+1x 2−2x+1)÷x−3x−1,其中x 是16的算术平方根. 20.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.21.(2020•潍坊)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.22.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BF̂的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.23.(2020•潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)24.(2020•潍坊)如图1,在△ABC中,∠A=90°,AB=AC=√2+1,点D,E分别在边AB,AC上,且AD=AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.25.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=35S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.2020年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)(2020•潍坊)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.2.(3分)(2020•潍坊)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【解答】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.3.(3分)(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【解答】解:∵1109万=11090000,∴11090000=1.109×107. 故选:A .4.(3分)(2020•潍坊)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是( )A .B .C .D .【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线, 故选:D .5.(3分)(2020•潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表: 一分钟跳绳个数(个) 141144145146学生人数(名)5212则关于这组数据的结论正确的是( ) A .平均数是144 B .众数是141 C .中位数是144.5D .方差是5.4【解答】解:根据题目给出的数据,可得: 平均数为:x =141×5+144×2+145×1+146×25+2+1+2=143,故A 选项错误;众数是:141,故B 选项正确; 中位数是:141+1442=142.5,故C 选项错误;方差是:S 2=110[(141−143)2×5+(144−143)2×2+(145−143)2×1+(146−143)2×2]=4.4,故D 选项错误; 故选:B .6.(3分)(2020•潍坊)若m 2+2m =1,则4m 2+8m ﹣3的值是( )A .4B .3C .2D .1【解答】解:∵m 2+2m =1, ∴4m 2+8m ﹣3 =4(m 2+2m )﹣3 =4×1﹣3 =1. 故选:D .7.(3分)(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且DE AE=12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .42【解答】解:∵四边形ABCD 是平行四边形, ∴AB ∥CF ,AB =CD , ∴△ABE ∽△DFE , ∴DE AE=FD AB=12,∵DE =3,DF =4, ∴AE =6,AB =8, ∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34. 故选:C .8.(3分)(2020•潍坊)关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定【解答】解:△=(k ﹣3)2﹣4(1﹣k ) =k 2﹣6k +9﹣4+4k=k 2﹣2k +5 =(k ﹣1)2+4,∴(k ﹣1)2+4>0,即△>0, ∴方程总有两个不相等的实数根. 故选:A .9.(3分)(2020•潍坊)如图,函数y =kx +b (k ≠0)与y =mx(m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,则不等式kx +b >mx 的解集为( )A .x >﹣2B .﹣2<x <0或x >1C .x >1D .x <﹣2或0<x <1【解答】解:∵函数y =kx +b (k ≠0)与y =mx(m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,∴不等式kx +b >mx的解集为:x <﹣2或0<x <1, 故选:D .10.(3分)(2020•潍坊)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =4,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD ⊥OB 交AB 于点D ,点P 是边OA 上的动点.当PC +PD 最小时,OP 的长为( )A .12B .34C .1D .32【解答】解:如图,延长CO 交⊙O 于点E ,连接ED ,交AO 于点P ,此时PC +PD 的值最小.∵CD ⊥OB , ∴∠DCB =90°, 又∠AOB =90°, ∴∠DCB =∠AOB , ∴CD ∥AO ∴BC BO=CD AO∵OC =2,OB =4, ∴BC =2, ∴24=CD 3,解得,CD =32;∵CD ∥AO , ∴EO EC=PO DC,即24=PO 3,解得,PO =34故选:B .11.(3分)(2020•潍坊)若关于x 的不等式组{3x −5≥12x −a <8有且只有3个整数解,则a 的取值范围是( ) A .0≤a ≤2B .0≤a <2C .0<a ≤2D .0<a <2【解答】解:解不等式3x ﹣5≥1得:x ≥2, 解不等式2x ﹣a <8得:x <8+a2, ∴不等式组的解集为:2≤x <8+a2, ∵不等式组{3x −5≥12x −a <8有三个整数解,∴三个整数解为:2,3,4, ∴4<8+a2≤5, 解得:0<a ≤2, 故选:C .12.(3分)(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)(2020•潍坊)因式分解:x2y﹣9y=y(x+3)(x﹣3).【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.(3分)(2020•潍坊)若|a﹣2|+√b−3=0,则a+b=5.【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.15.(3分)(2020•潍坊)如图,在Rt △ABC 中,∠C =90°,∠B =20°,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线AF .若AF 与PQ 的夹角为α,则α= 55 °.【解答】解:如图,∵△ABC 是直角三角形,∠C =90°, ∴∠B +∠BAC =90°, ∵∠B =20°,∴∠BAC =90°﹣∠B =90°﹣20°=70°, ∵AM 是∠BAC 的平分线, ∴∠2=12∠BAC =12×70°=35°, ∵PQ 是AB 的垂直平分线, ∴△AMQ 是直角三角形, ∴∠AMQ +∠2=90°,∴∠AMQ =90°﹣∠2=90°﹣35°=55°, ∵∠α与∠AMQ 是对顶角, ∴∠α=∠AMQ =55°. 故答案为:55°.16.(3分)(2020•潍坊)若关于x 的分式方程3xx−2=m+3x−2+1有增根,则m = 3 .【解答】解:去分母得:3x =m +3+(x ﹣2),整理得:2x =m +1, ∵关于x 的分式方程3x x−2=m+3x−2+1有增根,即x ﹣2=0,∴x =2,把x =2代入到2x =m +1中得:2×2=m +1, 解得:m =3; 故答案为:3.17.(3分)(2020•潍坊)如图,矩形ABCD 中,点G ,E 分别在边BC ,DC 上,连接AC ,EG ,AE ,将△ABG 和△ECG 分别沿AG ,EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若CE =3,CG =4,则sin ∠DAE =725.【解答】解:矩形ABCD 中,GC =4,CE =3,∠C =90°, ∴GE =√GC 2+CE 2=√42+32=5,根据折叠的性质:BG =GF ,GF =GC =4,CE =EF =3,∠AGB =∠AGF ,∠EGC =∠EGF ,∠GFE =∠C =90°,∠B =∠AFG =90°, ∴BG =GF =GC =4,∠AFG +∠EFG =90°, ∴BC =AD =8,点A ,点F ,点E 三点共线, ∵∠AGB +∠AGF +∠EGC +∠EGF =180°, ∴∠AGE =90°, ∴Rt △EGF ∽Rt △EAG , ∴EG EA=EF EG ,即5EA=35,∴EA =253,∴DE =√AE 2−AD 2=√(253)2−82=73,∴sin ∠DAE =DE AE =73253=725,故答案为:725.18.(3分)(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA 1̂的圆心为点A ,半径为AD ;A 1B 1̂的圆心为点B ,半径为BA 1;B 1C 1̂的圆心为点C ,半径为CB 1;C 1D 1̂的圆心为点D ,半径为DC 1;⋯DA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020̂的长是 4039π .【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故A 2020B 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,A 2020B 2020̂的弧长=90180×8078π=4039π. 故答案为:4039π.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.) 19.(2020•潍坊)先化简,再求值:(1−x+1x 2−2x+1)÷x−3x−1,其中x 是16的算术平方根.【解答】解:原式=(x 2−2x+1x 2−2x+1−x+1x 2−2x+1)÷x−3x−1,=(x 2−3x x 2−2x+1)×x−1x−3,=x(x−3)(x−1)2×x−1x−3,=xx−1.∵x 是16的算术平方根,∴x=4,当x=4时,原式=4 3.20.(2020•潍坊)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD=CDtan60°=120√3=40√3(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40√3+120)(米).答:桥AB的长度为(40√3+120)米.21.(2020•潍坊)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【解答】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×1640=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)=1012=56.22.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BF̂的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【解答】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧BF̂的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧BF̂的中点,∴FĈ=BĈ,∴∠FOC=∠BOC=60°,∵AB =4,∴FO =OC =OB =2,∴S 扇形FOC =60⋅π×22360=23π,即阴影部分的面积为:23π.23.(2020•潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b , 将点(60,100)、(70,80)代入一次函数表达式得:{100=60k +b80=70k +b ,解得:{k =−2b =220,故函数的表达式为:y =﹣2x +220;(2)设药店每天获得的利润为W 元,由题意得: w =(x ﹣50)(﹣2x +220)=﹣2(x ﹣80)2+1800, ∵﹣2<0,函数有最大值,∴当x =80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.(2020•潍坊)如图1,在△ABC 中,∠A =90°,AB =AC =√2+1,点D ,E 分别在边AB ,AC 上,且AD =AE =1,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE ,BD ,CD .(1)当0°<α<180°时,求证:CE =BD ;(2)如图3,当α=90°时,延长CE 交BD 于点F ,求证:CF 垂直平分BD ;(3)在旋转过程中,求△BCD 的面积的最大值,并写出此时旋转角α的度数.【解答】(1)证明:如图2中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, ∵∠CAE +∠BAE =∠BAD +∠BAE =90°,∴∠CAE =∠BAD ,在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD (SAS ),∴CE =BD ;(2)证明:如图3中,根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°, 在△ACE 和△ABD 中,{AC =AB ∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD (SAS ),∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,∴BC =√2AB =√2+2,CD =AC +AD =√2+2,∴BC =CD ,∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解:△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图4中:∵∵AB =AC =√2+1,AD =AE =1,∠CAB =∠EAD =90°,DG ⊥BC 于G ,∴AG =12BC =√2+22,∠GAB =45°,∴△BCD 的面积的最大值为:12BC ⋅DG =12(√2+2)(√2+42)=3√2+52,25.(2020•潍坊)如图,抛物线y =ax 2+bx +8(a ≠0)与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =35S △ABC 时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与△OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (﹣2,0)和点B (8,0),∴{4a −2b +8=064a +8b +8=0,解得{a =−12b =3, ∴抛物线解析式为:y =−12x 2+3x +8;(2)当x =0时,y =8,∴C (0,8),∴直线BC 解析式为:y =﹣x +8,∵S △ABC =12⋅AB ⋅OC =12×10×8=40, ∴S △PBC =35S △ABC =24,过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设P(t ,−12t 2+3x +8),∴F (t ,﹣t +8),∴PF =−12t 2+4t ,∴S △PBC =12PF ⋅OB =24,即12×(−12t 2+4t)×8=24, ∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)∵C (0,8),B (8,0),∠COB =90°,∴△OBC 为等腰直角三角形,抛物线y =−12x 2+3x +8的对称轴为x =−b 2a =−32×(−12)=3, ∴点E 的横坐标为3,又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E (3,5),设M(3,m),N(n ,−12n 2+3n +8),①当MN =EM ,∠EMN =90°,当△NME ~△COB 时,则{m −5=n −3−12n 2+3n +8=m, 解得{n =6m =8或{n =−2m =0(舍去), ∴此时点M 的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则{m−5=n−3−12n2+3n+8=5,解得:{m=5+√15n=3+√15或{m=5−√15n=3−√15(舍去),∴此时点M的坐标为(3,5+√15);③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴CM=√32+(m−8)2,CE=√32+(5−8)2=3√2,∴√32+(m−8)2=3√2,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),(3,5+√15)或(3,11).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2)2.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A .37B .38C .50D .513.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+4.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .145.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱6.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差7.将2001×1999变形正确的是( )A .20002﹣1B .20002+1C .20002+2×2000+1D .20002﹣2×2000+18.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )A .B .C .D .9.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23-; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个10.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°二、填空题(本题包括8个小题)11.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.12.如图,正方形ABCD 边长为3,连接AC ,AE 平分∠CAD ,交BC 的延长线于点E ,FA ⊥AE ,交CB 延长线于点F ,则EF 的长为__________.13.化简:18=_____.14.分解因式:x2-9=_ ▲.15.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s甲________2s乙.(填“>”或“<”)16.4的算术平方根为______.17.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.18.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______三、解答题(本题包括8个小题)19.(6分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨?目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?20.(6分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是人,扇形C的圆心角是°;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?21.(6分)如图,点B 在线段AD 上,BC DE ,AB ED =,BC DB =.求证:A E ∠=∠.22.(8分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表: x/元 … 15 20 25 … y/件…252015…已知日销售量y 是销售价x 的一次函数.求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23.(8分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.24.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?25.(10分)如图,一次函数y=k 1x+b(k 1≠0)与反比例函数22 ( 0 )k y k x=≠的图象交于点A(-1,2),B(m ,-1).求一次函数与反比例函数的解析式;在x 轴上是否存在点P(n ,0),使△ABP 为等腰三角形,请你直接写出P 点的坐标.26.(12分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。
参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.2.D【解析】试题解析:第①个图形中有3盆鲜花,+=盆鲜花,第②个图形中有336++=盆鲜花,第③个图形中有33511…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+, 则第⑥个图形中的鲜花盆数为26238.+= 故选C. 3.B 【解析】 【分析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果. 【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k , 代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1; 故选:B . 【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标. 4.B 【解析】试题分析:根据平行四边形的性质可知AB=CD ,AD ∥BC ,AD=BC ,然后根据平行线的性质和角平分线的性质可知AB=AF ,DE=CD ,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10. 故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解. 5.A 【解析】 【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱. 【详解】解:观察图形可知,这个几何体是三棱柱. 故选A . 【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.. 6.B 【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数. 故选:C .点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 7.A 【解析】 【分析】原式变形后,利用平方差公式计算即可得出答案. 【详解】解:原式=(2000+1)×(2000-1)=20002-1, 故选A . 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键. 8.D 【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形: 几何体的左视图是:.故选D. 9.C 【解析】 【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误; ②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴-2ba=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0), ∴a-b+c=3a+c=0, ∴a=-3c. 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点), ∴2≤c≤3, ∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ), ∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确; ④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点, 又∵a <0, ∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 故选C . 【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.10.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.二、填空题(本题包括8个小题)11.0<x<4【解析】【分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为0<x<4.【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.12.6【解析】【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴2∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD ∥CE , ∴∠DAE=∠E , ∴∠CAE=∠E , ∴, ∵FA ⊥AE ,∴∠FAC+∠CAE=90°,∠F+∠E=90°, ∴∠FAC=∠F , ∴, ∴13 【解析】 【分析】直接利用二次根式的性质化简求出答案. 【详解】4===,故答案为4. 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键. 14. (x +3)(x -3) 【解析】 【详解】x 2-9=(x+3)(x-3), 故答案为(x+3)(x-3). 15.> 【解析】 【分析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定. 【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小; 则乙地的日平均气温的方差小, 故S 2甲>S 2乙. 故答案为:>. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 16.2【解析】【分析】首先根据算术平方根的定义计算先4=2,再求2的算术平方根即可.【详解】∵4=2, ∴4的算术平方根为2.【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.17.2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠1,故答案为m >2且m≠1.18.【解析】如图,连接BB′,∵△ABC 绕点A 顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.三、解答题(本题包括8个小题)19.(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【详解】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得:34182617x y x y +=⎧⎨+=⎩ , 解得:432x y =⎧⎪⎨=⎪⎩. 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得:4m+32(10-m )≥33 m≥010-m≥0解得:365≤m≤10, ∴m=8,9,10;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m )=30m+1000,∵k=30〉0,∴W 随x 的增大而增大,∴当m=8时,运费最少,∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.20.(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.【解析】【分析】(1)由D 组频数及其所占比例可得总人数,用360°乘以C 组人数所占比例可得;(2)用总人数分别乘以A 、B 组的百分比求得其人数,再用总人数减去A 、B 、C 、D 的人数求得E 组的人数可得;(3)用总人数乘以样本中A 、B 组的百分比之和可得.【详解】解:(1)抽取学生的总人数为78÷26%=300人,扇形C的圆心角是360°×120300=144°,故答案为300、144;(2)A组人数为300×7%=21人,B组人数为300×17%=51人,则E组人数为300﹣(21+51+120+78)=30人,补全频数分布直方图如下:(3)该校创新意识不强的学生约有2200×(7%+17%)=528人.【点睛】考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.21.证明见解析【解析】【分析】若要证明∠A=∠E,只需证明△ABC≌△EDB,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC,可得∠ABC=∠BDE,因此利用SAS问题得解.【详解】∵DE//BC∴∠ABC=∠BDE在△ABC与△EDB中AB DEABC BDEBC BD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EDB(SAS)∴∠A=∠E22.(1)40y x=-+;(2)此时每天利润为125元.【解析】试题分析:(1)根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:(1)设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩, ∴40y x =-+;(2)将35x =代入(1)中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.23. (1);(2)【解析】【分析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:20001400220x x=⨯+,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.25.(1)反比例函数的解析式为2yx=-;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+14,0)或(-1-14,0)或(2+17,0)或(2-17,0)或(0,0).【解析】【分析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程. (2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函数的解析式为.∵B (m ,-1)在上,∴m=2, 由题意,解得:,∴一次函数的解析式为y=-x+1.(2)满足条件的P 点的坐标为(14,0)或(14,0)或(17,0)或(17,0)或(0,0).【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论. 26.(1)详见解析;(2)详见解析【解析】【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,再根据全等三角形的性质和等量关系即可求解;(2)由(1)知AF 平行等于BD ,易证四边形AFBD 是平行四边形,而AB=AC ,AD 是中线,利用等腰三角形三线合一定理,可证AD ⊥BC ,即∠ADB=90°,那么可证四边形AFBD 是矩形.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DCE ,∵点E 为AD 的中点,∴AE=DE ,在△AEF 和△DEC 中,AFE DCE AEF DEC AE DE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF ≌△DEC (AAS ),∴AF=CD ,∵AF=BD ,∴CD=BD ,∴D 是BC 的中点;(2)若AB=AC ,则四边形AFBD 是矩形.理由如下:∵△AEF ≌△DEC ,∴AF=CD ,∵AF=BD ,∴CD=BD ;∵AF ∥BD ,AF=BD ,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A .B .C .D .2.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°3.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于( )A .2﹣2B .1C .2D .2﹣l 4.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD 的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A.36B.C.32D.5.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道6.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm27.把a•1a-的根号外的a移到根号内得()A.a B.﹣a C.﹣a-D.a-8.下列各数中是有理数的是()A.πB.0 C.2D.359.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150°B.140°C.130°D.120°10.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°二、填空题(本题包括8个小题)11.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.12.因式分解:x2﹣3x+(x﹣3)=_____.13.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.14.如图,点A在双曲线kyx=上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.15.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.16.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.17.一元二次方程x2=3x的解是:________.18.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P =40°,则∠ADC=____°.三、解答题(本题包括8个小题)19.(6分)解不等式组:426113x xxx>-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.20.(6分)如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.若∠AOD=45°,求证:CE2ED;(2)若AE=EO,求tan∠AOD的值.21.(6分)画出二次函数y=(x﹣1)2的图象.22.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.23.(8分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.24.(10分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.25.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.26.(12分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=kx(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=kx的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.3.D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′-AD=2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×(2-1)2=2-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.4.C【解析】【分析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.5.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.6.A【解析】【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.7.C【解析】【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)【详解】解:∵﹣1a>0,∴a<0,∴原式=﹣(﹣a)=.故选C.【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.8.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C是无理数,故本选项错误;D故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.9.B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.。