八年级数学整式的乘法
八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版
八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
洋葱数学讲解八上讲解整式的乘法
洋葱数学讲解八上讲解整式的乘法(最新版)目录1.引言2.整式的乘法规则3.整式乘法的实际应用4.结论正文【引言】在本文中,我们将介绍八年级上册数学中的重要内容:整式的乘法。
整式乘法是代数学的基础,它在解决许多实际问题中都起着关键作用。
我们将通过以下内容来学习整式乘法:整式的乘法规则、实际应用以及一些典型例题。
【整式的乘法规则】整式乘法的基本规则如下:1.相同字母相乘,指数相加。
2.不同字母相乘,指数保持不变。
3.任何一个数乘以 1 都等于它本身。
这些规则为我们解决复杂的整式乘法问题提供了基本依据。
【整式乘法的实际应用】整式乘法在实际问题中有广泛的应用。
例如,在物理学中,我们常用整式乘法来计算力、速度和加速度之间的关系;在化学中,我们用整式乘法计算分子量和化学方程式中的系数。
此外,整式乘法还在计算机科学、地理学等其他学科中有所应用。
【典型例题】例题 1:计算表达式 (2x + 3y) * (4x - 5y)。
解答:根据整式乘法规则,我们可以将表达式展开,得到:8x - 10xy + 12xy - 15y。
合并同类项后,简化为:8x + 2xy - 15y。
例题 2:一个小球从高度 h 处自由落下,经过 t 秒后,它的速度 v 和所经过的路程 s 分别是多少?解答:根据物理学知识,小球的速度 v 和所经过的路程 s 可以由以下整式表示:v = gt,s = 1/2 * g * t。
其中,g 表示重力加速度,t 表示时间。
将这两个整式相乘,得到:s = v * t = 1/2 * g * t。
这就是整式乘法在物理学中的应用。
【结论】整式乘法是代数学的重要组成部分,它在解决实际问题中起着关键作用。
通过学习整式乘法的基本规则和实际应用,我们可以更好地理解和掌握代数学知识。
数学初二上册整式的乘法
数学初二上册整式的乘法数学初二上册整式的乘法是指在整式之间进行乘法运算,下面将详细介绍整式的乘法运算原理及应用。
整式(也称为代数式)是由多项式经过加、减、乘及其运算得来的,它是变量及其系数的有限和。
整式的一般形式可以表示为:f(x) = aₙₓⁿ + aₙ₋₁ₓⁿ⁻¹ + ... + a₁ₓ + a₀其中,aₙₓⁿ为整数系数,x为变量,n为非负整数。
整式的乘法运算即是将两个整式相乘得到新的整式。
首先,我们来看整式乘法的步骤:Step 1:将被乘数和乘数按照竖式排列,并对齐。
例如,计算(2x + 3) * (4x - 5):```(2x + 3)* (4x - 5)```Step 2:从被乘数的个位开始,依次与乘数的每一位相乘。
```(2x + 3)* (4x - 5)__________8x² - 10x <-- (2x * 4x) + (3 * -5)```Step 3:上一步的结果需要与被乘数的下一位继续相乘,并最终相加。
```(2x + 3)* (4x - 5)__________8x² - 10x <-- (2x * 4x) + (3 * -5)- 10x² + 15x <-- (3 * 4x) + (2x * -5)```Step 4:将所有相乘的结果相加得到最终结果。
```(2x + 3)* (4x - 5)__________8x² - 10x <-- (2x * 4x) + (3 * -5)- 10x² + 15x <-- (3 * 4x) + (2x * -5)__________- 2x² + 5x - 15```因此,(2x + 3) * (4x - 5)的结果是-2x² + 5x - 15。
整式乘法的应用非常广泛,特别在代数中的各种问题解决中起着重要作用。
在解方程、推导公式、求极限、求导数等数学运算中,整式的乘法都扮演着至关重要的角色。
人教版八年级数学上册14.整式的乘除与因式分解--复习课件
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
八年级数学上人教版《整式的乘法》教案
《整式的乘法》教案一、教学目标:1.掌握整式乘法的基本法则和运算步骤。
2.能够正确地进行整式的乘法运算。
3.培养学生的运算能力和代数思维,体验数学中的一般思想和方法。
二、教学内容:1.单项式与单项式相乘。
2.单项式与多项式相乘。
3.多项式与多项式相乘。
4.乘法公式。
三、教学重点:1.单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
2.乘法公式的推导和应用。
四、教学难点:1.乘法公式的推导和理解。
2.运用乘法公式进行复杂整式乘法的运算。
五、教学方法:1.通过实例引入,引导学生自主探究,发现整式乘法的规律和法则。
2.通过讲解、示范和练习相结合的方式,使学生掌握运算法则和运算步骤。
3.运用多媒体教学工具,帮助学生更好地理解抽象的概念和解决问题的方法。
六、教学过程:1.导入新课:通过复习旧知,引出新课题。
引导学生观察、思考整式乘法的规律和特点。
2.新课学习:通过实例讲解和示范,引导学生探究单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
然后通过练习题和例题讲解,使学生掌握运算法则和运算步骤。
最后推导乘法公式,并讲解其意义和应用。
3.课堂练习:通过练习题和例题讲解,使学生能够正确地进行整式的乘法运算,并运用乘法公式进行复杂整式乘法的运算。
同时引导学生发现整式乘法中的规律和特点,培养其代数思维和运算能力。
4.归纳小结:总结整式乘法的运算法则和运算步骤,强调重点和难点。
同时强调学生在运算中需要注意的事项,如符号问题、括号问题等。
八年级数学上册第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》
教学设计2024秋季八年级数学上册第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》一、教学目标(核心素养)1.知识与技能:学生能够理解整式乘法的概念,掌握单项式乘单项式、单项式乘多项式以及多项式乘多项式的运算法则,并能准确进行整式的乘法运算。
2.数学思维:通过整式乘法的探索过程,培养学生的逻辑推理能力、抽象思维能力以及代数运算能力。
3.问题解决:学会将实际问题转化为整式乘法问题,运用所学知识解决简单的实际问题。
4.情感态度:激发学生对数学的兴趣,培养认真细致的学习态度和合作学习的精神。
二、教学重点•掌握单项式乘单项式、单项式乘多项式以及多项式乘多项式的运算法则。
•能够准确进行整式的乘法运算。
三、教学难点•理解整式乘法法则的推导过程及其背后的数学原理。
•灵活运用整式乘法法则解决复杂问题,包括处理系数、字母部分以及合并同类项等。
四、教学资源•多媒体课件(包含整式乘法示例、动态演示)•教科书及配套习题集•黑板与粉笔•学生练习本五、教学方法•讲授法:介绍整式乘法的概念及运算法则。
•演示法:通过例题演示整式乘法的运算过程。
•讨论法:组织学生讨论整式乘法中的难点和易错点,分享解题经验。
•练习法:通过大量练习巩固学生对整式乘法运算法则的理解和掌握。
六、教学过程导入新课•情境引入:通过一个实际问题(如计算长方形的面积)引入整式乘法的概念,激发学生兴趣。
•复习旧知:回顾单项式、多项式等基本概念,为新课学习做铺垫。
新课教学1.单项式乘单项式•概念阐述:明确单项式乘单项式的意义。
•法则讲解:介绍运算法则(系数相乘,相同字母的指数相加)。
•例题演示:通过例题展示运算过程,强调运算步骤和注意事项。
•学生练习:学生独立完成几道练习题,教师巡回指导。
2.单项式乘多项式•概念引入:通过具体例子引入单项式乘多项式的概念。
•法则推导:结合分配律推导运算法则。
•例题讲解:详细讲解例题,强调分配律的应用和运算顺序。
•学生活动:分组讨论,尝试解决新问题,并分享解题思路。
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课教学课件复习(单项式与单项式、多项式相乘)
如图(1)是某中学B楼和C楼之间的一个长和宽分别为米和米
的长方形绿地,如果它的长和宽分别增加米和米后变成了新的长方
形绿地如图(2).请你计算这块新长方形绿地的面积.
图(1)
图(2)
知识讲解
你能用不同的形式表示长方形
绿地的面积吗?
此时绿地面积:
方法1 =( + ) ( + )①
化为单项式乘单项式)
单项式与多项式的乘法法则
一般地,单项式与多项式相乘,就是用单项式
乘多项式的每一项,再把所得的积相加.
用字母表示如下:p(a+b+c)=pa+pb+pc
注意:(1)依据是乘法分配律;
(2)积的项数与多项式的项数相同.
例3
计算:
(1)
3a(5a b)
(2) - 7x y 2 x 3 y
=3ax3-2ax2+3bx2-2bx+3x-2
=3ax3+(-2a+3b)x2+(-2b+3)x-2.
∵积不含x2项,也不含x项,
a
2a 3b 0,
∴
∴
2b 3 0,
b
9
,
4
3
.
2
拓展练习
计算:
x2+5x+6
(1)(x+2)(x+3)=__________;
(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致;
(3)单项式系数为负时,改变多项式每项的符号.
八年级数学整式的乘法与因式分解常考必考知识点总结
一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
人教版八年级数学上册 第12讲 整式的乘法 讲义
第12讲 整式的乘法知识点梳理:复习回顾:整式的加减:同类项,合并同类项新课要点:(1)同底数幂的乘法:底数不变,指数相加。
n m n m aa a +=⋅(m 、n 都是正整数) 注意公式逆用。
(2)幂的乘方:底数不变,指数相乘。
mn n m aa =)((m 、n 都是正整数) 注意公式逆用。
(3)积的乘方:n n nb a ab =)((n 是正整数) 注意公式逆用。
(4)整式的乘法:①单项式和单项式相乘:把它们的系数、相同的字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式。
例如:)3(2322bc a ab -⋅=3336c b a - ②单项式与多项式相乘,先用单项式去乘多项式的每一项,再把所得的积相加。
即mb ma b a m +=+)( ③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积再相加。
即nb na mb ma b a n m +++=++))((经典例题例1.(1)-x 3·x 5 (2)x m ·x 3m+1 (3)2×24×23(4)31++••m m m a a a (5)n m m m m a a a a 321⋅⋅例2.计算:例3.计算:(5)()()4234242a a a aa ⋅⋅++- (6)()()()2323337235x x x x x ⋅-+⋅ 例4.计算:(3)()()152n a b a +-- (4)()()()232236ab a c ab c --⋅(5)()()24231x x x -⋅+- (6)221232ab ab ab ⎛⎫-⋅ ⎪⎝⎭ (7)()22221252a ab b a a b ab ⎛⎫-⋅+-- ⎪⎝⎭(8)()()32x y x y +- (9)()()22m n m n +- (10)2)2(b a +例5.若20x y +=,则代数式3342()x xy x y y +++的值为 。
八年级数学上册整式的乘除知识点归纳
在八年级数学上册的整式乘除部分,可以归纳以下几个知识点:1. 同底数幂相乘:当两个幂数的底数相同时,可以将它们的指数相加,得到新的幂数。
例如:a^m * a^n = a^(m+n)。
2. 幂的乘法法则:当有多个幂相乘时,可以将它们的底数保持不变,指数相乘,得到新的幂。
例如:(a^m) * (a^n) = a^(m+n)。
3. 同底数幂相除:当两个幂数的底数相同时,可以将它们的指数相减,得到新的幂数。
例如:a^m / a^n = a^(m-n)。
4. 幂的除法法则:当有多个幂相除时,可以将它们的底数保持不变,指数相减,得到新的幂。
例如:(a^m) / (a^n) = a^(m-n)。
5. 同底数幂的乘方:当一个幂的指数再次取幂时,可以将它们的指数相乘,得到新的幂。
例如:(a^m)^n = a^(m*n)。
6. 幂的整数指数相除:当一个幂的指数是整数,且除以另一个整数时,可以将它们的指数相除,得到新的幂。
例如:(a^m)^(1/n) = a^(m/n)。
7. 化简整式:将整式中的同类项进行合并,即将具有相同字母和相同指数的项合并成一个项,并进行系数的运算。
例如:3x + 2x = 5x。
8. 整式的乘法:将整式中的每一项按照分配律逐个与另一个整式的每一项相乘,并将结果合并。
例如:(2x + 3) * (4x - 5) = 8x^2 + 2x -15x -15。
9. 整式的除法:将整式的被除式与除式进行长除法运算,按照整数除法的规则进行计算,得到商式和余式。
这些是八年级数学上册整式的乘除的主要知识点,通过理解和掌握这些知识点,可以更好地解决相关的题目和应用。
八年级数学上册听课记录:第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》
新2024秋季八年级人教版数学上册第十四章整式的乘法与因式分解《整式的乘法:整式的乘法》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解并掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式以及多项式乘多项式,能够准确进行整式的乘法运算。
2.过程与方法:通过具体实例的探究,引导学生经历整式乘法法则的发现过程,培养学生的观察、归纳和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养严谨、细致的学习态度,以及合作学习的精神。
二、导入教师行为:•教师首先展示几个简单的整式乘法实例,如(2x+3)×4、x2×3x,让学生尝试进行计算,并请几位学生分享他们的解题思路。
•接着,教师提出问题:“同学们,你们在进行整式乘法时,有没有发现一些通用的方法和规律呢?我们能否将这些方法和规律总结出来,以便更好地解决类似的问题呢?”学生活动:•学生认真观察教师给出的例子,尝试进行计算,并思考整式乘法可能存在的规律。
•学生分享自己的解题思路,与同桌或小组内成员讨论可能的答案。
过程点评:•导入环节通过具体实例和问题的引导,有效地激发了学生的探究欲望,为学习整式乘法的基本法则做好了铺垫。
•学生积极参与讨论,初步感知了整式乘法的运算规律,为后续学习打下了基础。
三、教学过程3.1 单项式乘单项式教师行为:•明确给出单项式乘单项式的法则,即“系数相乘,字母部分按同底数幂的乘法法则进行运算”。
•通过具体例子演示法则的应用,如3a2×2a3,引导学生观察结果并验证法则的正确性。
学生活动:•认真听讲,记录单项式乘单项式的法则,并尝试理解其含义。
•跟随教师的演示,自己完成例题的计算,验证法则的正确性。
过程点评:•教师讲解清晰,通过具体例子帮助学生理解单项式乘单项式的法则及其应用。
•学生通过动手计算,加深了对法则的理解和掌握。
3.2 单项式乘多项式教师行为:•引入单项式乘多项式的概念,讲解其运算法则,即“用单项式去乘多项式的每一项,再把所得的积相加”。
初二数学整式的乘法运算
初二数学整式的乘法运算在初二数学学习中,整式的乘法运算是一个重要的内容。
整式是指由数字和字母的乘方组成的代数式,乘法运算是对整式进行扩展和合并的过程。
本文将详细介绍初二数学中整式的乘法运算,帮助同学们更好地掌握这一知识点。
一、整式的基本概念在进行整式的乘法运算前,我们首先需要了解整式的基本概念。
整式是由系数和字母的乘方组成的代数式,例如:3x^2+5xy-2y+1。
其中,3、5、-2和1是系数,x^2、xy和y是字母的乘方。
整式中的字母乘方表示该字母连乘的结果,例如x^2表示x连乘两次,即x的平方。
字母的系数表示该字母乘方的倍数,例如3x^2中的系数3表示x^2的系数为3。
整式的合并是将相同字母乘方的项相加,例如5xy和3xy可以合并为8xy。
二、整式的乘法运算规则根据整式的基本概念,我们可以得出整式的乘法运算规则。
整式相乘时,需要将每个项的系数相乘,字母的乘方相加,并将结果相加得到最终的整式。
例如:(3x-2)(2x+4)的乘法运算过程如下:1. 将被乘数和乘数的每一项进行相乘:3x * 2x = 6x^23x * 4 = 12x-2 * 2x = -4x-2 * 4 = -82. 合并同类项:6x^2 + 12x - 4x - 83. 将合并后的项相加得到最终结果:6x^2 + 12x - 4x - 8 = 6x^2 + 8x - 8三、整式乘法运算的例题为了更好地理解整式的乘法运算,下面列举几个例题进行详细解析。
例题1:(2x+3y)(4x-5y)解析:按照乘法运算的规则,我们将每个项相乘并合并同类项。
2x * 4x = 8x^22x * -5y = -10xy3y * 4x = 12xy3y * -5y = -15y^2将合并后的项相加得到最终结果:2x * 4x + 2x * -5y + 3y * 4x + 3y * -5y = 8x^2 - 10xy + 12xy - 15y^2= 8x^2 + 2xy - 15y^2例题2:(a+2b)(a-2b)解析:按照乘法运算的规则,我们将每个项相乘并合并同类项。
人教版八年级数学上册14.1整式的乘法(教案)
在今天的课程中,我们探讨了整式的乘法,这是数学中的一个重要概念。我发现,同学们在理解单项式与单项式相乘时,普遍能够掌握得比较好,但是当涉及到多项式与多项式相乘时,尤其是分配律的运用上,大家就显得有些吃力了。
我意识到,分配律的概念虽然基础,但在整式乘法中的应用却非常关键。在讲授过程中,我尝试通过多个例子的逐步解析,来帮助学生理解这个难点。从学生的反馈来看,这种方法似乎有所帮助,但仍有一部分同学需要更多的练习和指导。
2.教学难点
-理解并掌握多项式乘以多项式的运算过程,特别是分配律的灵活应用。
-在实际问题中,将问题抽象为整式乘法问题,并进行正确建模。
-对乘法公式(平方差公式、完全平方公式)的理解和记忆,以及在实际计算中的运用。
举例解释:
-难点在于多项式乘法中分配律的多次应用,如(x+2)*(x+3)=x^2+3x+2x+6,学生容易在计算过程中遗漏或错误分配。
举例解释:
-重点讲解同类项合并法则在单项式乘法中的应用,如(3x^2)*(4x^2)=12x^4。
-强调分配律在整式乘法中的重要性,如(x+1)*(x+2)=x^2+2x+x+2。
-通过实例展示平方差公式(a^2-b^2=(a+b)(a-b))和完全平方公式((a+b)^2=a^2+2ab+b^2)在整式乘法中的应用。
-在实际问题中,如计算长方体的体积时,学生需要将长、宽、高表示为整式,并正确应用整式乘法进行计算。
-学生在运用乘法公式时,常出现记错公式或不会正确代入变量的问题,需要通过反复练习和讲解来突破这一难点。
四、教学流程
(一)导入新课(用时5分钟)
人教版数学八上 14-1-4 整式的乘法
探究新知
14.1 整式的乘法/
方法点拨
1. 在计算时,应先确定积的符号,积的系数等于各因式
系数的积;
2. 注意按顺序运算;
3. 不要漏掉只在一个单项式里含有的字母因式;
4. 此性质对三个及以上单项式相乘仍然适用.
巩固练习
14.1 整式的乘法/
1.下面各题的计算结果对不对?如果不对,应当怎样改正?
回
顾
旧
知
积的乘方法则:(ab)n=anbn ( m、n都是正整数).
x9
2.计算:(1)x2 ·x3 ·x4=
(2)(x3)6=
(4)
(a2)3
5
x18
·a4=
12 6
; (3)(–2a4b2)3= –8a b ;
a10
;
5
(5) - 5 - 3 =
3 5
;
1
.
素养目标
(2)(2x)3(–5xy3).
解:(1) (–5a2b)(–3a)
(2) (2x)3(–5xy3)
= [(–5)×(–3)](a2•a)b
=8x3(–5xy3)
= 15a3b;
=[8×(–5)](x3•x)y3
= –40x4y3.
单项式与单项式相乘
转化
乘法交换律
和结合律
有理数的乘法与同底数幂的乘法
基础巩固题
1.计算 3a2·2a3的结果是( B )
A.5a5
B.6a5
C.5a6
D.6a6
2.计算(–9a2b3)·8ab2的结果是( C )
A.–72a2b5
B.72a2b5
C.–72a3b5
D.72a3b5
初中数学 什么是整式的乘法
初中数学什么是整式的乘法整式的乘法指的是将两个或多个整式相乘得到一个新的整式。
整式是由常数、变量及它们的乘积和幂次的和或差组成的代数式。
下面将详细介绍整式的乘法运算的定义、性质以及如何进行整式的乘法。
一、整式的乘法定义设有两个整式A和B,表示为:A = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀B = bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀其中,aₙ、aₙ₋₁、...、a₂、a₁、a₀和bₙ、bₙ₋₁、...、b₂、b₁、b₀为常数系数,x为变量,n和m 为幂次。
整式A和B的乘积表示为A * B,即:A *B = (aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀) * (bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀)二、整式乘法的性质整式的乘法具有以下性质:1. 乘法交换律:对于任意两个整式A和B,有A * B = B * A。
即整式的乘法满足交换律。
2. 乘法结合律:对于任意三个整式A、B和C,有(A * B) * C = A * (B * C)。
即整式的乘法满足结合律。
3. 乘法分配律:对于任意三个整式A、B和C,有A * (B + C) = A * B + A * C。
即整式的乘法满足左分配律。
三、整式的乘法运算整式的乘法运算可以通过展开和合并同类项的方法进行。
例如,设有两个整式A和B,表示为:A = 2x² + 3xy - 4y²B = 5x - 2y我们将A与B相乘,即A * B,得到:A *B = (2x² + 3xy - 4y²) * (5x - 2y)按照乘法分配律的定义进行展开和合并,得到:A *B = 2x² * 5x + 2x² * (-2y) + 3xy * 5x + 3xy * (-2y) - 4y² * 5x - 4y² * (-2y)进一步计算,得到:A *B = 10x³ - 4x²y + 15x²y - 6xy² - 20xy² + 8y³将上述结果进行合并同类项,得到最后的乘积结果:A *B = 10x³ + 11x²y - 26xy² + 8y³总结:整式的乘法是将两个或多个整式相乘得到一个新的整式。
整式的乘法与因式分解知识点
整式的乘法与因式分解知识点整式的乘法和因式分解是初中数学中的重要知识点,也是后续学习代数、方程和不等式的基础。
本文将详细介绍整式的乘法和因式分解的定义、性质和方法。
一、整式的乘法整式是由常数和单项式相加(减)得到的代数式,其中单项式是指只包含一个变量的项。
整式的乘法是指将两个或多个整式相乘的运算。
1.单项式的乘法:单项式的乘法遵循以下运算法则:-同底数幂相乘,底数不变,指数相加。
例如,a^m*a^n=a^(m+n)。
-不同底数幂相乘,指数相乘。
例如,a^m*b^n=a^m*b^n。
- 系数相乘。
例如,k * t = kt。
2.多项式的乘法:多项式的乘法通过将每一项都与另一个多项式的每一项相乘,并将结果相加得到。
例如,(a+b+c)(x+y+z) = ax+ay+az+bx+by+bz+cx+cy+cz。
这个过程通常称为“分配律”。
二、整式的因式分解整式的因式分解是指将一个整式表示成几个单项式的乘积的运算。
因式分解的基本思路是找到整式的公因式,然后使用“提公因式法”将整式表示为公因式与其余部分的乘积。
1.提公因式法:假设整式ax+bx有一个公因式x,则可以将其改写为x(a+b)。
这个过程是因式分解中最基本的方法。
根据此原理,我们可以使用提公因式法因式分解更复杂的整式。
2.完全平方公式的因式分解:完全平方公式是指一个二次三项式(即一元二次多项式)的平方可以被因式分解成两个平方的和或差。
例如,a^2+2ab+b^2可以因式分解为(a+b)^2,而a^2-2ab+b^2可以因式分解为(a-b)^23.完全立方公式的因式分解:完全立方公式是指一个三次三项式(即一元三次多项式)的立方可以被因式分解成两个立方的和或差。
例如,a^3+3a^2b+3ab^2+b^3可以因式分解为(a+b)^3,而a^3-3a^2b+3ab^2-b^3可以因式分解为(a-b)^34.分组分解法:分组分解法是指根据整式中各项之间的关系将整式进行分组,以便使用提公因式法进行因式分解。
八年级上册数学- 整式的乘除
第十四章 整式的乘法与因式分解第19讲 整式的乘除知识导航1.幂的运算:同底数幂的乘法,幂的乘方,积的乘方;2.整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式;3.整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式【板块一】幂的运算运算法则:(1)同底数幂相乘:同底数幂相乘,底数不变,指数相加,用式子表示为:m n m n a a a +⋅=(m ,n 都是正整数).(2)幂的乘方:幂的乘方,底数不变,指数相乘,用式子表示为:()n m mn a a =(m ,n 都是正整数).(3)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,用式子表示为:()n n n ab a b =(n 都是正整数).(4)同底数幂相除:同底数的幂相除,底数不变,指数相减,用式子表示为:m n m n a a a -÷=(m >n )(5)规定:01a =(a ≠0),零的零次幂无意义.(6)负整数幂的运算法则:1n na a -=(n 是正整数,a ≠0).方法技巧:1.从已知出发,构造出结果所需要的式子;2.从结果出发,构造符合已知条件的式子.题型一 基本计算【例1】计算:(1)()()32x x -⋅-;(2)()()2332a a -⋅-;(3)()22248x yy ÷; (4)323221334a b ab ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭.【例2】计算:()()()2014201420150.12524-⨯-⨯-.题型二 逆向运用幂运算 【例3】(1)已知2228162x x ⋅⋅=,求x 的值;(2)已知4a y =,16b y =,求22a b y +的值.题型三 灵活进行公式变形【例4】已知:5210a b ==,求11a b+的值.题型四 比较大小【例5】已知552a =,334b =,225c =,试比较a ,b ,c 的大小.针对练习11.计算:(1)3224a a a a a ⋅⋅+⋅;(2)()57x x -⋅;(3)()()57x y x y +⋅--;(4)()()2332y y ⋅.2.计算:(1)6660.12524⨯⨯;(2)599329961255⎛⎫⨯ ⎪⎝⎭;(3)()()2018201720172 1.513⎛⎫⨯⨯- ⎪⎝⎭;(4)4322023452%3%4%5%103456⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯⨯-⨯⨯-⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.3.(1)若()3915n m a b ba b =,求m ,n 的值;(2)已知27a =,86b =,求()322a b +的值;(3)若a +3b -2=0,求327a b ⋅的值;(4)已知:21233324m m ++=,求m 的值;(5)已知124x y +=,1273x -=,求x -y 的值;(6)已知129372n n +-=,求n 的值.4.已知252000x =,802000y =,求11x y+的值.5.已知k >x >y >z ,且16522228k x y z +++=,k ,x ,y ,z 是整数,求k 的值.6.是否存在整数a ,b ,c 使9101628915a b c⎛⎫⎛⎫⎛⎫⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭?若存在,求出a ,b ,c 的值;若不存在,说明理由.7.比较653,524,396,2615四个数的大小.8.你能比较两个数20122011和20112012的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n +n 的大小(n 是自然数),然后,我们分析1n =,2n =,3n =,⋯中发现规律,经过归纳,猜想得出结论.(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”、“ =”、“<”号)①21 12;②32 23;③43 34;④54 45;⑤65 56….(2)从第(1)题的结果经过归纳,可猜想出1n n +与(1)n n +的大小关系是 .(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小20122011,20112012.9.(1)已知()432a =,()342b =,()423c =,()234d =,()324e =,比较a ,b ,c ,d ,e 的大小关系;(2)已知:220002001200220012002200120022001200220012002a =+⨯+⨯++⨯+⨯,20022002b =,试比较a 与b 的大小.【板块二】整式的乘法方法技巧:(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a +b +c 为单项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++.题型一 基本计算【例6】计算:(1)()()23234x y x y -⋅= ;(2)()()223234x y x y -⋅= ; (3)()254342x x y xy -⋅-= ;(4)()()22323253a b ab a b ⋅-+= ;(5)()()322a b x y +-= ;(6)()()332a b a b +-= .题型二 混合运算 【例7】计算:()()()()242422325235333x x x x x x +++-+++.题型三 展开后不含某项【例8】若()()2283x ax x x b ++-+的乘积中不含x 2项和x 3项,则a = ,b = .题型四 比较对应项的系数求值【例9】已知()()2226x my x ny x xy y ++=+-,求()m n mn +的值.【板块二】整式的乘法方法技巧(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为: m (a+b+c) =ma+mb+mc,其中m为单项式,a+b+c为多项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:(m+n)( a+b) =ma+mb+na+nb.题型一基本计算【例6】计算:(1)(-3x2y)·(4x3y2)=__________;(2)(-3x2y) 2·(4x3y2)=__________;(3)-3x2·(4x5y-2xy4)=__________;(4)(2a2b3)·(-5ab2+3a3b)=__________;(5)(3a+2b)·(2x-y)=__________;(6)(3a+b)·(3a-2b)=__________;题型二混合运算【例7】计算:(3x2+2)( 5x4+2x2+3)-(5x4+x2+3)( 3x2+3)题型三展开后不含某项【例8】若(x2+ax+8)( x2-3x+b)的乘积中不含x2和x3项,则a=__________,b=__________.题型四比较对应项的系数求值【例9】已知(x+my)( x-ny)=x2+2xy-6y2,求(m+n) mn的值题型五巧设特殊值【例10】设()5=a5x5+a4x4+a3x3+a2x2+a 1x+a0(1)a1+a2+a3+a4+a5+a0的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值;针对练习21.计算:(1)(x+2y)(4a+3b)=__________;(2)(3x-y)( x+2y)=__________;(3)(x+3)( x-4)=__________;(4)(43a2b-83a3b2+1)×(-0.25ab)=__________;(5)3a b2 [(-ab) 2-2b2 (a2-23a3b)]=__________;(6)(5x3+2x-x2-3)(2-x+4x2)=__________;2.计算:(1)(x2-2x+3)(x-1)( x+1);(2)[(12x-y)2+(12x+y)2] (12x2-2y2);(3)(-x3+2x2-5)(2x2-3x+1);(4)(x+y)( x2-xy+y2);(5)(x-y)( x2+xy+y2);(6)(-2x-y)(4x2-2xy+y2).3.(1)多项式x2+ax+2和x2+2x-b的积中没有x2和x3两项,求a,b的值;(2)若(1+x)(2x2+ax+1)的结果中x2项的系数为-2,求a的值;(3)已知多项式3x2+ax+1与bx2+x+2的积中不含x2和x项,求系数a,b的值.4.(1)已知多项式x4+x3+x2+2=(x 2+m x+1)( x 2+n x+2),求m与n的值;(2)若不论x取何值,多项式x3-2x3-4x-1与(x+1)(x2+m x+n)都相等,求m和n的值;(3)已知(x+a y)(2 x-b y)=2x2-3xy-5y 2,则2a2b-ab2的值.5.已知ab2=6,求ab (a 2b5-ab3-b)的值.6.已知x-y=-1,xy=2,求(x-1)( y+1)的值.7.已知2 a 2+3 a-6,求3a (2a+1)-(2a+1)( 2a-1)的值.8.已知x2-8x-3=0,求(x-1)( x-3)( x-5)( x-7)的值.9.已知2 x+3x (x+1)( x+2)( x+3)的值.【板块三】整式的除法方法技巧(1)单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.(2)多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:(3)多项式除以多项式:大除法.题型一基本计算【例11】计算:(1)(23a4b2-19a2b8)÷(-12ab3)2(2)(35a3b7-65a3b4-1.8a2b3)÷0.6ab2题型二大除法【例12】计算:(1)(x3-1)÷(x-1);(2)(3 x4-5x3+x2+2)÷(x2+3);。
14.1.4整式的乘法(三)说课稿2022-2023学年人教版八年级数学上册
14.1.4 整式的乘法(三)说课稿一、教材分析本节课是人教版八年级数学上册第14章《代数式的运算》的第1节《整式的乘法(三)》。
通过本节课的学习,学生将深入了解整式的乘法运算规律,掌握整式的乘法运算方法,为进一步学习多项式提供基础。
二、教学目标知识与能力目标1.理解整式的乘法运算规律;2.掌握整式的乘法运算方法,包括单项式与单项式相乘、单项式与多项式相乘;3.运用整式的乘法运算方法解决实际问题。
过程与方法目标1.通过教师讲解和例题演示,引导学生了解整式的乘法运算规律;2.通过练习和讨论,激发学生的思维能力和分析问题的能力;3.通过探究和实践,培养学生的合作意识和探索精神。
三、教学重点与难点教学重点1.整式的乘法运算规律;2.整式的乘法运算方法。
教学难点1.单项式与多项式相乘的运算方法;2.在解决实际问题中运用整式的乘法运算。
四、教学准备1.教学课件;2.板书工具;3.教学素材:习题、例题、实际问题。
五、教学过程1. 导入新课通过提问方式导入新课,引导学生回顾上节课所学内容,激发学生的学习兴趣。
2. 提出新课问题教师提出问题:如何进行单项式与多项式的乘法运算?3. 教师授课讲解整式的乘法运算规律和运算方法,包括单项式与单项式相乘、单项式与多项式相乘。
4. 例题演示通过设计合适的例题,演示整式的乘法运算过程。
5. 学生练习学生进行个人练习,巩固所学知识。
6. 小组合作学生分成小组,共同解决习题,提高合作能力。
7. 案例探究通过让学生尝试解决实际问题,引导学生将所学知识应用于实际生活中。
8. 总结归纳教师与学生一起共同总结整式的乘法运算规律和运算方法。
9. 家庭作业布置相关的课后习题,巩固复习所学内容。
六、板书设计板书内容:14.1.4 整式的乘法(三)整式的乘法运算规律:1.单项式与单项式相乘–同底数相乘,指数相加;–不同底数相乘,保持底数,指数相加。
2.单项式与多项式相乘–用单项式的每一项分别与多项式相乘,结果相加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算: 例1 计算:
2 2 1 解: ab − 2ab • ab 3 2 2 2 1 1 = ab • ab + (−2ab) • ab 3 2 2
2 2 1 (2) ab − 2ab • ab 3 2
1 2 3 2 2 = a b −a b 3
单项式与多项式相乘时,分三个阶段: 单项式与多项式相乘时,分三个阶段:
计算: 计算: (-2ab)3(5a2b–2b3)
解:原式=(-8a3b3)(5a2b–2b3) 原式=(=( =(b)+ )(=(-8a3b3)(5a2b)+(-8a3b3)(-2b3) =-40a5b4+16a3b6
说明:先进行乘方运算, 说明:先进行乘方运算,再进行 单项式与多项式的乘法运算。 单项式与多项式的乘法运算。
下课!谢谢大家 下课!
例2
计算: 计算:
2(ab+b2)-5a(a2b-ab2) -2a
原式= 解:原式=-2a3b-2a2b2-5a3b+5a2b2
b+5 =-2a3b-2a2b2-5a3b+5a2b2 =-7a3b+3a2b2
注意: 注意: 看成性质符号 1.将-2a2与-5a的“-”看成性质符号 单项式与多项式相乘的结果中, 2. 单项式与多项式相乘的结果中 , 应将 同类项合并。 同类项合并。
m(a+b+c)=ma+mb+mc (m、 (m、a、b、c都是单项式) 都是单项式)
单项式与多项式相乘法则
单项式与多项式相乘, 单项式与多项式相乘, 就是用单项式去乘多项式的 每一项, 每一项,再把所得的积相加
m(a+b+c)=ma+mb+mc (m、 (m、a、b、c都是单项式) 都是单项式)
2y-xy2)(-3xy) )((1)(3x
3 2 1 2 5 3 2 (2)( x y − xy − y ) ⋅ (−4 xy ) 4 2 6
一.判断
巩固练习
1.m(a+b+c+d)=ma+b+c+d( 1.m(a+b+c+d)=ma+b+c+d(
×)
(
1 1 3 1 2 2 2. a(a + a + 2) = a + a + 1 2 2 2
化简值: 化简求值: +9y-12)– yn(yn +9y-12)–3(3yn+1-4yn), 其中y=其中y=-3,n=2. y= 9y-12)– 解:yn(yn + 9y-12)–3(3yn+1-4yn) =y2n+9yn+1-12yn–9yn+1+12yn =y2n
当y=-3,n=2时, y=n=2时 原式=(=(原式=(-3)2×2=(-3)4=81 =(
算 一 算
= 3 + 4 −1
=6
1 1 1 6× ( + − ) 2 3 6 1 2 1 = 6× + 6× − 6× 2 3 6
m(a+b+c)=ma+mb+mc (m、 都是单项式) (m、a、b、c都是单项式)
看
m
①
ma
② ③
mb mc
图 说 明
a c b a+b+c (1)大长方形的长是________. 大长方形的长是________ (1)大长方形的长是________. (2)① (2)① ② ③ ma mb mc _____________ (3) (1) (2) m(a+b+c)=ma+mb+mc _______________________
4a-4b+4 2.4(a-b+1)=___________________ 2.4( b+1)=___________________ 2-3xy2 2)=___________________ 6x 3.3x(2x3.3x(2x-y )=___________________
-6x2+15xy-18xz 4.-3x(2x-5y+6z)=___________________ 4.-3x(2x-5y+6z)=___________________ -4a5-8a4b+4a4c 5.(2b+c)=___________________ 5.(-2a2)2(-a-2b+c)=___________________
①按乘法分配律把乘积写成单项式与 单项式乘积的代数和的形式; 代数和的形式 单项式乘积的代数和的形式; ②单项式的乘法运算; 单项式的乘法运算 ③再把所得的积相加. 再把所得的积相加
几点注意: 几点注意: 1.单项式乘多项式的结果仍是多项式, 1.单项式乘多项式的结果仍是多项式, 单项式乘多项式的结果仍是多项式 积的项数与原多项式的项数相同。 积的项数与原多项式的项数相同。 2.单项式分别与多项式的每一项相乘时 单项式分别与多项式的每一项相乘时, 2.单项式分别与多项式的每一项相乘时, 要注意积的各项符号的确定: 要注意积的各项符号的确定:同号相乘 得正,异号相乘得负. 得正,异号相乘得负. 3.不要出现漏乘现象,运算要有顺序。 3.不要出现漏乘现象,运算要有顺序。 不要出现漏乘现象
计算: 例1 计算:
(1)(+3x-1); (1)(-4x)(2x2+3x-1);
x)(2 解: (-4x)(2x2+3x-1)
4x)·(= (-4x)·(2x2) + (-4x)·3x + (-4x)·(-1)
=-8x3-12x2+4x
注意: 这项不要漏乘, 注意 :(-1) 这项不要漏乘 , 也不要当 成是1 成是1;
新人教版八年级 上册
整式的乘 §14.2 整式的乘法
2. 单项式与多项式相乘
2011年5月
执教人:陈现鹏 执教人:
1.单项式与单项式相乘法则: 1.单项式与单项式相乘法则: 单项式与单项式相乘法则
)((-ab2)(-3.5a3b5c2) (2)相同字母的幂分别相乘 相同字母的幂分别相乘; (2)相同字母的幂分别相乘; =3.5a =3.5a4b7c2 (3)只在一个单项式因式里含有的 (3)只在一个单项式因式里含有的
什么叫多项式? 2. 什么叫多项式? 几个单项式的和叫做多项式。 几个单项式的和叫做多项式。 什么叫多项式的项? 3. 什么叫多项式的项?
字母, 连同它的指数作为积的一个因式. 字母, 连同它的指数作为积的一个因式.
(1)各单项式的系数相乘 (1)各单项式的系数相乘; 各单项式的系数相乘;
说出多项式2x2+3x-1的项和各项系数 说出多项式,每个单项式叫做多项式的项。 在多项式中,每个单项式叫做多项式的项。 在多项式中 2x +3x-
2-3a+1) 2a)• (-2a)•(2a
2a)•(2a)•1 •( =(-2a)•2a =(-2a)•2a2 +(-2a)•(-3a)+(-2a)•1
(乘法分配律) 乘法分配律)
3+6a2-2a =-4a
(单项式与单项式相乘法则) 单项式与单项式相乘法则)
怎样叙述单项式与多项 式相乘的法则? 式相乘的法则
3.( 2x)•(ax+b-3)=2bx3.(-2x)•(ax+b-3)=-2ax2-2bx-6x(
×)
×)
二.填空
1.单项式与多项式相乘, 1.单项式与多项式相乘,就是用单项式去乘 单项式与多项式相乘 多项式的________,再把所得的积________ ________, 多项式的每一项 再把所得的积________ ________ 相加
三.选择
下列计算错误的是( 下列计算错误的是( D) (A)5x(2x2-y)=10x3-5xy a+b •4xa-b=-12x2a (B)(B)-3x 4x (C)2a2b•4ab2=8a3b3 4ab (D)(-xn-1y2)•(-xym)2=xnym+2 (D)((
n-1y2)•(x2y2m) =(=(-x (x n+1y2m+2 =-x