北京市丰台区2013-2014学年八年级下期末数学试卷及答案

合集下载

2014-2015学年北京市丰台区八下期末数学试卷

2014-2015学年北京市丰台区八下期末数学试卷

2014-2015学年北京丰台八下期末数学一、选择题(共10小题;共50分)1. 函数y=√x−2的自变量x的取值范围是( )A. x≥2B. x>2C. x≤2D. x<22. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.3. 正五边形的每个外角等于( )A. 360∘B. 108∘C. 72∘D. 60∘4. 某校对200名男生的身高进行了测量,如果身高在1.65~1.70(单位:m)这一组的频率为0.25,则该组的人数为( )A. 25B. 50C. 100D. 2005. 如图,在△ABC中,D,E分别是AB,AC的中点,若DE=2cm,则BC的长为( )A. 2cmB. 3cmC. 4cmD. 5cm6. 已知点P1(x1,y1),点P2(x2,y2)是一次函数y=x+1图象上的两个点,且x1<x2,则y1与y2的大小关系是( )A. y1=y2B. y1<y2C. y1>y2D. 无法判断7. 在平行四边形ABCD中,如果∠A=2∠B,那么∠C的度数是( )A. 30∘B. 60∘C. 100∘D. 120∘8. 用配方法解方程x2+2x−1=0时,原方程应变形为( )A. (x +1)2=0B. (x −1)2=0C. (x +1)2=2D. (x −1)2=2 9. 如图,已知函数 y =x +1 和 y =ax +3 的图象交于点 P ,点 P 的横坐标为 1,则 a 的值是( )A. 1B. −1C. 2D. −210. 李阿姨每天早晨坚持慢跑.表示李阿姨离开家的距离 y (单位:米)与时间 t (单位:分)的函数关系的图象大致如图所示,则李阿姨跑步的路线可能是 ( ) ( P 点表示李阿姨家的位置)A. B.C. D.二、填空题(共6小题;共30分)11. 在平面直角坐标系中,点 A (2,−1) 关于 x 轴对称的点的坐标是 .12. 甲、乙两人进行射击比赛,在相同条件下各射击 10 次.已知他们的平均成绩相同,方差分别是S 甲2=2.6,S 乙2=3,那么甲、乙两人成绩较为稳定的是 .13. 已知关于 x 的方程 mx 2+2x +1=0 有两个不相等的实数根,则 m 应满足 . 14. 如图,O 是矩形 ABCD 的对角线 AC 的中点,E 是 AD 的中点,若 AB =5,AD =12,则四边形ABOE 的周长为 .15. 在学习了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD是平行四边形,请添加一个条件,使得平行四边形ABCD是菱形.”经过思考,小明说:“添加AC=BD.”小红说:“添加AB=BC.”你同意的观点,理由.16. 矩形纸片ABCD中,AB=√6,BC=√10.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;设O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,⋯.按上述方法折叠,第n次折叠后的折痕与BD交于点O n,则BO2=,BO n=.三、解答题(共9小题;共117分)17. 解方程:2x2−4x−3=0.18. 已知:点A(3,0),B(0,−1)在直线m上.(1)求直线m的解析式;(2)如果将直线m向上平移2个单位得到直线n,写出直线n的解析式并在坐标系中画出直线n.19. 已知关于x的一元二次方程x2−2(m−1)x−m(m+2)=0.(1)求证:此方程总有两个不相等的实数根;(2)若x=−2是此方程的一个根,求实数m的值.20. 一辆汽车,新车购买价为20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值12.96万元,求这辆车第二、三年的年折旧率.21. 为了进一步了解八年级学生的身体素质情况,体育老师随机抽取了八年级40名学生进行一分钟跳绳测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:请结合图表完成下列问题:(1)表中的a=,b=;(2)请把频数分布直方图补充完整;(3)若八年级学生一分钟跳绳的成绩标准是:x<120为不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.如果该年级有320名学生,根据以上信息,请你估算计该年级跳绳不合格的人数为;优秀的人数为.22. 已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB,交AB的延长线于点F.求证:AD=CF.23. 小明从家骑自行车出发,沿一条直路到相距 2400 m 的邮局办事,小明出发的同时,他的爸爸以96 m/min 的速度从邮局沿同一条道路步行回家,小明在邮局停留 2min 后沿原路以原速返回,设他们出发后经过 t (min ) 时,小明与家之间的距离为 s 1(m ),小明爸爸与家之间的距离为 s 2(m ),图中折线 OABD ,线段 EF 分别表示 s 1,s 2 与 t 之间的函数关系的图象.(1)求 s 2 与 t 之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中与爸爸相遇?这时他们距离家还有多远? 24. 如图,在正方形 ABCD 中,△AEF 的顶点 E ,F 分别在 BC ,CD 边上,高 AG 与正方形的边长相等.(1)∠EAF 的度数为 .(2)若 EG =4,GF =6,求 AG 的长.(3)连接 BD 分别交 AE ,AF 于点 M ,N ,试判断 BM ,MN ,ND 之间的数量关系,并说明理由.25. 在平面直角坐标系 xOy 中,对于点 M (m,n ) 和点 N (m,nʹ),给出如下定义:若 nʹ={n (m ≥2),−n (m <2),则称点 N 为点 M 的变换点.例如:点 (2,4) 的变换点的坐标是 (2,4),点 (−1,3) 的变换点的坐标是 (−1,−3).(1)①点(√5,1)的变换点的坐标是;②在点A(−1,2),B(4,−8)中有一个点是函数y=2x图象上某一个点的变换点,这个点是;(填“A”或“B”)(2)若点M在函数y=x+2(−4≤x≤3)的图象上,求其变换点N的纵坐标nʹ的取值范围;(3)若点M在函数y=−x+4(−1≤x≤a,a>−1)的图象上,其变换点N的纵坐标nʹ的取值范围是−5≤nʹ≤2,求a的取值范围.答案第一部分1. A2. B3. C4. B5. C6. B7. D 8. C 9. B 10. D第二部分11. (−2,1)12. 甲13. m <1 且 m ≠014. 2015. 小红;有一组邻边相等的平行四边形是菱形16. 32;3n−122n−3第三部分17. ∵ a =2,b =−4,c =−3,∴ Δ=40,∴ x =4±2√104, ∴ x 1=2+√102,x 2=2−√102. 18. (1) 设直线 m 的解析式为 y =kx +b .∵ 直线 m 过点 A (3,0),B (0,−1),∴ {3k +b =0,b =−1.∴ {k =13,b =−1.∴ 直线 m 的解析式为 y =13x −1. (2) 直线 n 的解析式为 y =13x +1.图19. (1)Δ=4(m−1)2+4m(m+2) =8m2+4>0,∴此方程总有两个不相等的实数根.(2)由题意,得4+4(m−1)−m(m+2)=0,解得m1=0,m2=2.∴m的值为0或2.20. 设这辆车第二、三年的年折旧率为x.根据题意,得20×(1−20%)(1−x)2=12.96,解得x1=0.1,x2=1.9.其中x2=1.9不合题意,舍去.∴x=0.1=10%.答:这辆车第二、三年的年折旧率10%.21. (1)a=11;b=8.(2)(3)96;2422. ∵四边形ABCD是平行四边形,∴AD∥BC且AD=BC.∵DE∥AC,∴四边形ADEC是平行四边形.∴AD=CE.∴BC=CE.∵ EF ⊥AB ,∴ CF =CB .∴ AD =CF .23. (1) 2400÷96=25,∴ F (25,0).设 s 2=kt +b ,∴ {25k +b =0,b =2400,∴ {k =−96,b =2400.∴ s 2=−96t +2400.(2) 设直线 BD 的解析式为 y =mt +n ,由题意可知 D (22,0),且过点 B (12,2400),∴ {12m +n =2400,22m +n =0.∴ {m =−240,n =5280.∴ 直线 BD 的解析式为 y =−240t +5280.∵ 点 C 是直线 EF 与 BD 的交点,∴ −96t +2400=−240t +5280.解得 t =20.∴ 点 C (20,480).答:小明从家出发,经过 20 分钟在返回途中与爸爸相遇,这时他们距离家还有 480 米. 24. (1) ∠EAF =45∘.(2) ∵ 在正方形 ABCD 中,∴ ∠BAD =∠B =∠C =∠D =90∘.在 Rt △ABE 和 Rt △AGE 中,AB =AG ,AE =AE ,∴ △ABE ≌△AGE .∴ BE =EG .同理可得 DF =FG .设 AG =x ,则 CE =x −4,CF =x −6.∵ CE 2+CF 2=EF 2,∴ (x −4)2+(x −6)2=102.解得 x 1=12,x 2=−2(舍去负根).∴ AG =12.(3) 判断:BM 2+ND 2=MN 2.连接 MG ,NG .∵ 在正方形 ABCD 中,∴ ∠ABM =45∘.易证 △ABM ≌△AGM ,∴ BM =GM ,∠ABM =∠AGM =45∘.同理可得 ND =NG ,∠ADN =∠AGN =45∘.∴ ∠MGN =90∘.∴ MG 2+GN 2=MN 2.∴ BM 2+ND 2=MN 2.25. (1) ① (√5,1);② A .(2) 依题意,函数 y =x +2(−4≤x ≤3) 图象上的点 M 的变换点必在函数 y =x +2(2≤x ≤3) 或 y =−x −2(−4≤x <2) 的图象上.当 x =−4 时,y =−(−4)−2=2,当 x =2 时,y =−2−2=−4 或 y =2+2=4,当 x =3 时,y =2+3=5,由图象可知,变换点 N 的纵坐标 nʹ 的取值范围是 −4<nʹ≤2 或 4≤nʹ≤5.(3) 图象 y =−x +4(x ≥−1) 上点 M 的变换点必在函数 y ={−x +4(x ≥2)x −4(−1≤x ≤2)的图象上. 当 y =−5 时,−5=−x +4 或 −5=x −4.∴ x =9 或 −1.当 y =−2 时,−2=−x +4.∴ x =6.由图象可知,a 的取值范围是 6≤a ≤9.第11页(共11 页)。

2013-2014学年北京市丰台区九年级(上)期末数学练习试卷

2013-2014学年北京市丰台区九年级(上)期末数学练习试卷

2013-2014学年北京市丰台区九年级(上)期末数学练习试卷一、选择题(本题共36分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.(4分)已知3x=4y(xy≠0),则下列比例式成立的是( )A.=B.=C.=D.=2.(4分)如图,在△ABC中,D、E分别是AB、AC边上的点,且DE∥BC,如果DE:BC=3:5,那么AE:AC的值为( )A.3:2B.2:3C.2:5D.3:53.(4分)已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是( )A.相交B.相切C.相离D.不确定4.(4分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.B.C.D.5.(4分)在小正方形组成的网格图中,直角三角形的位置如图所示,则sinα的值为( )A.B.C.D.6.(4分)当x>0时,函数y=﹣的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限7.(4分)如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A.4B.6C.8D.108.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y= x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2B.4C.8D.169.(4分)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC 运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形二.填空题(本题共20分,每小题4分)10.(4分)两个相似三角形的面积比是5:9,则它们的周长比是 .11.(4分)在Rt△ABC中,∠C=90°,如果tanA=,那么∠A= °.12.(4分)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为 cm2.13.(4分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是 .14.(4分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= ,A n B n= .(n为正整数)三、解答题(本题共19分,第15题4分,第16题5分,第17题5分,第18题5分)15.(4分)计算:3tan30°﹣2cos45°+2sin60°.16.(5分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.17.(5分)如图,在⊙O中,C、D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130°,AB=2.求:(1)的长;(2)∠D的度数.18.(5分)如图,在△ABC中,∠C=90°,sinA=,D为AC上一点,∠BDC=45°,DC=6,求AB的长.四、解答题(本题共17分,第19题5分,第20题6分,第21题6分)19.(5分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.20.(6分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.21.(6分)已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G,求证:AB2=BG•BC.五.解答题(本题共28分,第22题6分,第23题7分,第24题7分,第25题8分)22.(6分)如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B 处.(参考数据:≈1.414,≈1.732,≈2.449)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.23.(7分)如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.24.(7分)已知直线y=kx﹣3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D坐标;若不存在,请说明理由.25.(8分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G.(1)如图1,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论.2013-2014学年北京市丰台区九年级(上)期末数学练习试卷参考答案与试题解析一、选择题(本题共36分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.(4分)已知3x=4y(xy≠0),则下列比例式成立的是( )A.=B.=C.=D.=【分析】根据两內项之积等于两外项之积对各选项进行计算,然后利用排除法求解.【解答】解:A、由=得,xy=12,故本选项错误;B、由=得,3x=4y,故本选项正确;C、由=得,4x=3y,故本选项错误;D、由=得,4x=3y,故本选项错误.故选:B.【点评】本题考查了比例的性质,熟记两內项之积等于两外项之积是解题的关键.2.(4分)如图,在△ABC中,D、E分别是AB、AC边上的点,且DE∥BC,如果DE:BC=3:5,那么AE:AC的值为( )A.3:2B.2:3C.2:5D.3:5【分析】由DE∥BC,根据平行于三角形一边的直线截其它两边所得的三角形与原三角形相似得到△ADE∽△ABC,再根据相似三角形对应边的比相等得到AE:AC的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AE:AC,∵DE:BC=3:5,∴AE:AC的值为3:5,故选:D.【点评】本题考查了相似三角形的判定与性质:平行于三角形一边的直线截其它两边所得的三角形与原三角形相似;相似三角形对应边的比相等.3.(4分)已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是( )A.相交B.相切C.相离D.不确定【分析】根据直线和圆的位置关系的内容判断即可.【解答】解:∴⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,∴3.5<4,∴直线l与⊙O的位置关系是相交,故选:A.【点评】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.4.(4分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.B.C.D.【分析】由一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种情况,∴向上一面的数字不小于3的概率是:=.故选:C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.(4分)在小正方形组成的网格图中,直角三角形的位置如图所示,则sinα的值为( )A.B.C.D.【分析】根据勾股定理求得三角形的斜边长,然后利用三角函数的定义即可求解.【解答】解:斜边长是:=,则sinα==.故选:D.【点评】本题考查了勾股定理以及三角函数,理解三角函数的定义是关键.6.(4分)当x>0时,函数y=﹣的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限【分析】先根据反比例函数的性质判断出反比例函数的图象所在的象限,再求出x>0时,函数的图象所在的象限即可.【解答】解:∵反比例函数中,k=﹣5<0,∴此函数的图象位于二、四象限,∵x>0,∴当x>0时函数的图象位于第四象限.故选:A.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k<0时,双曲线的两支分别位于第二、第四象限.7.(4分)如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A.4B.6C.8D.10【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】解:如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE==4,∴AB=2AE=8,故选:C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE.8.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y= x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2B.4C.8D.16【分析】根据抛物线解析式计算出y=的顶点坐标,过点C作CA⊥y轴于点A,根据抛物线的对称性可知阴影部分的面积等于矩形ACBO的面积,然后求解即可.【解答】解:过点C作CA⊥y,∵抛物线y==(x2﹣4x)=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴顶点坐标为C(2,﹣2),对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4,故选:B.【点评】本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.9.(4分)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC 运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:(1)结论A正确.理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm;(2)结论B正确.理由如下:如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC===;(3)结论C正确.理由如下:如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=,NC=,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.二.填空题(本题共20分,每小题4分)10.(4分)两个相似三角形的面积比是5:9,则它们的周长比是 :3 .【分析】根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形的周长的比等于相似比解答.【解答】解:∵两个相似三角形的面积比是5:9,∴它们的相似比是:3,∴它们的周长比是:3.故答案为::3.【点评】本题考查了相似三角形的性质,熟记性质并求出两三角形的相似比是解题的关键.11.(4分)在Rt△ABC中,∠C=90°,如果tanA=,那么∠A= 60 °.【分析】根据∠C=90°,tanA=,可求得∠A的度数.【解答】解:在Rt△ABC中,∵tanA=,∴∠A=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.(4分)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为 3π cm2.【分析】根据扇形的面积公式即可求解.【解答】解:扇形的面积==3πcm2.故答案是:3π.【点评】本题主要考查了扇形的面积公式,正确理解公式是解题关键.13.(4分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是 .【分析】根据题意列出表格得出所有等可能的情况数,找出颜色不同的情况数,即可求出所求的概率.【解答】解:列表如下:白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(红,红)所有等可能的情况有9种,其中两次摸出棋子颜色不同的情况有5种,则P(颜色不同)=.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= 6 ,A n B n= n(n+1) .(n为正整数)【分析】根据OA1=1,求出A1A2、A2A3、A3A4的值,推出A n A n﹣1的值,根据平行线分线段成比例定理得出=,代入求出A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),推出A n B n=n(n+1)即可.【解答】解:∵OA1=1,∴A1A2=2×1=2,A2A3=3×1=3,A3A4=4,…A n﹣2A n﹣1=n﹣1,A n﹣1A n=n,∵A1B1∥A2B2∥A3B3∥A4B4∥…,∴=,∴=,∴A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),…,∴A n B n=n(n+1),故答案为:6,n(n+1).【点评】本题考查了平行线分线段成比例定理的应用,解此题的关键是根据求出的结果得出规律,题型较好,但是有一定的难度.三、解答题(本题共19分,第15题4分,第16题5分,第17题5分,第18题5分)15.(4分)计算:3tan30°﹣2cos45°+2sin60°.【分析】本题可根据特殊的三角函数值解出tan30°、cos45°、sin60°的值,再代入原式中即可.【解答】解:原式=,=,=.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.16.(5分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.【分析】(1)配方后直接写出顶点坐标即可;(2)确定对称轴后根据其开口方向确定其增减性即可;(3)令y=0后求得x的值后即可确定与x轴的交点坐标;【解答】解:(1)y=x2+2x﹣1=(x+1)2﹣2,∴顶点坐标为:(﹣1,﹣2);(2)∵y=x2+2x﹣1=(x+1)2﹣2的对称轴为:x=﹣1,开口向上,∴当x>﹣1时,y随x的增大而增大;(3)令y=x2+2x﹣1=0,解得:x=﹣1﹣或x=﹣1+,∴图象与x轴的交点坐标为(﹣1﹣,0),(﹣1+,0).【点评】本题考查了二次函数的性质,解题的关键是了解抛物线的有关性质.17.(5分)如图,在⊙O中,C、D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130°,AB=2.求:(1)的长;(2)∠D的度数.【分析】(1)直接利用弧长公式求出即可;(2)利用邻补角的定义以及圆周角定理得出即可.【解答】解:(1)∵∠AOC=130°,AB=2,∴===;(2)由∠AOC=130°,得∠BOC=50°,又∵∠D=∠BOC,∴∠D=×50°=25°.【点评】此题主要考查了弧长公式以及圆周角定理,熟练记忆弧长公式是解题关键.18.(5分)如图,在△ABC中,∠C=90°,sinA=,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【分析】由已知得△BDC为等腰直角三角形,所以CD=BC=6,又因为已知∠A 的正弦值,即可求出AB的长.【解答】解:∵∠C=90°,∠BDC=45°∴BC=CD=6又∵sinA=∴AB=6÷=15.【点评】直角三角形知识的牢固掌握和三角函数的灵活运用.四、解答题(本题共17分,第19题5分,第20题6分,第21题6分)19.(5分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.【分析】根据PA,PB分别是⊙O的切线得到PA⊥OA,PB⊥OB,在四边形AOBP中根据内角和定理,就可以求出∠P的度数.【解答】解:连接OB,∴∠AOB=2∠ACB,∵∠ACB=70°,∴∠AOB=140°;∵PA,PB分别是⊙O的切线,∴PA⊥OA,PB⊥OB,即∠PAO=∠PBO=90°,∵四边形AOBP的内角和为360°,∴∠P=360°﹣(90°+90°+140°)=40°.【点评】本题主要考查了切线的性质,切线垂直于过切点的半径.20.(6分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.【分析】(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入反比例函数解析式,求出k的值即可得出反比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题注意数形结合思想的运用,数形结合是数学解题中经常用到的,同学们注意熟练掌握.21.(6分)已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G,求证:AB2=BG•BC.【分析】因为直径所对的圆周角是直角,所以作辅助线:连接AD;利用同角的余角相等,可得∠BAG=∠D,又由同弧所对的圆周角相等,可得∠C=∠D,证得∠C=∠BAG,又因为∠ABG是公共角,即可证得△ABG∽△CBA;由相似三角形的对应边成比例,即可证得AB2=BG•BC.【解答】解:连接AD,∵BD是⊙O的直径,∴∠BAD=90°,∴∠BAF+∠DAF=90°,∵AF⊥BD,∴∠D+∠DAF=90°,∴∠BAG=∠D,∵∠C=∠D,∴∠C=∠BAG,∵∠ABG=∠ABC,∴△ABG∽△CBA,∴AB:CB=BG:AB,∴AB2=BG•BC.【点评】此题考查了相似三角形的判定与性质与圆的性质.解此题的关键是掌握辅助线的作法,在圆中,构造直径所对的角是直角是常见辅助线,同学们应注意掌握.五.解答题(本题共28分,第22题6分,第23题7分,第24题7分,第25题8分)22.(6分)如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B 处.(参考数据:≈1.414,≈1.732,≈2.449)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)如图,作PC⊥AB于点C,在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣60°=30°,∴PC=PA•cos30=100×=50,在Rt△PCB中,∠PCB=90°,∠PBC=90°﹣45°=45°,∴PB=PC=50≈122.5,∴B处距离P有122.5海里.(2)没有危险.理由如下:OB=OP﹣PB=190﹣50,(190﹣50)﹣50=140﹣50>0即OB>50,∴无危险【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.(7分)如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.【分析】(1)由图形可知这是一条抛物线,根据图形也可以知道抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),设出抛物线的解析式将两点代入可得抛物线方程;(2)第二题中要求灯的距离,只需要把纵坐标为4代入,求出x,然后两者相减,就是他们的距离.【解答】解:(1)抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1)(2分)设抛物线的解析式是y=a(x﹣5)2+5(3分)把(0,1)代入y=a(x﹣5)2+5得a=﹣(5分)∴y=﹣(x﹣5)2+5(0≤x≤10);(6分)(2)由已知得两景观灯的纵坐标都是4(7分)∴4=﹣(x﹣5)2+5∴(x﹣5)2=1∴x1=,x2=(9分)∴两景观灯间的距离为﹣=5米.(10分)【点评】此题考查对抛物线等二次函数的应用,从图中可以看出的坐标是解题的关键.24.(7分)已知直线y=kx﹣3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D坐标;若不存在,请说明理由.【分析】(1)将A点坐标代入直线的解析式中,即可求得k的值,从而确定该直线的解析式;将A、C的坐标代入抛物线的解析式中,可求得m、n的值,从而确定抛物线的解析式.(2)根据(1)得到的抛物线解析式,可求得点B的坐标,根据P、Q的运动速度,可用t表示出BP、CQ的长,进而可得到AQ、AP的长,然后分三种情况讨论:①∠APQ=90°,此时PQ∥OC,可得到△APQ∽△AOC,根据相似三角形所得比例线段即可求得t的值;②∠AQP=90°,亦可证得△APQ∽△ACO,同①的方法可求得此时t的值;③∠PAQ=90°,显然这种情况是不成立的.(3)过D作y轴的平行线,交直线AC于F,设出点D的横坐标,根据抛物线和直线AC的解析式可表示出D、F的纵坐标,进而可求得DF的长,以DF 为底,A点横坐标的绝对值为高即可得到△ADC的面积表达式(或由△ADF、△CDF的面积和求得),由此可求出关于△ADC的面积和D点横坐标的函数关系,根据函数的性质即可求得△ADC的面积最大值及对应的D点坐标.【解答】解:(1)∵直线y=kx﹣3过点A(4,0),∴0=4k﹣3,解得k=.∴直线的解析式为y=x﹣3.(1分)由直线y=x﹣3与y轴交于点C,可知C(0,﹣3).∵抛物线经过点A(4,0)和点C,∴,解得m=.∴抛物线解析式为.(2分)(2)对于抛物线,令y=0,则,解得x1=1,x2=4.∴B(1,0).∴AB=3,AO=4,OC=3,AC=5,AP=3﹣t,AQ=5﹣2t.①若∠Q1P1A=90°,则P1Q1∥OC(如图1),∴△AP1Q1∽△AOC.∴,∴,解得t=;(3分)②若∠P2Q2A=90°,∵∠P2AQ2=∠OAC,∴△AP2Q2∽△ACO.∴,∴解得t=;(4分)③若∠QAP=90°,此种情况不存在.(5分)综上所述,当t的值为或时,△PQA是直角三角形.(3)答:存在.过点D作DF⊥x轴,垂足为E,交AC于点F(如图2).∴S△ADF=DF•AE,S△CDF=DF•OE.∴S△ACD=S△ADF+S△CDF=DF•AE+DF•OE=DF×(AE+OE)=×(DE+EF)×4=×()×4=.(6分)∴S△ACD=(0<x<4).又∵0<2<4且二次项系数,∴当x=2时,S△ACD的面积最大.而当x=2时,y=.∴满足条件的D点坐标为D(2,).(7分)【点评】此题考查了用待定系数法确定函数解析式的方法、直角三角形的判定、相似三角形的判定和性质、图形面积的求法等知识,(3)题中,将图形面积的最大(小)值问题转化为二次函数的最值问题是此类题常用的解法.25.(8分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G.(1)如图1,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论.【分析】(1)如图1,连接FE、FC,构建全等三角形△ABF≌△CBF(SAS),则易证∠BAF=∠2,FA=FC;根据垂直平分线的性质、等量代换可知FE=FA,∠1=∠BAF,则∠5=∠6.然后由四边形内角和是360°、三角形内角和定理求得∠5+∠6=∠3+∠4,则∠5=∠4,即∠EAF=∠ABD;(2)FM=FN.理由如下:由△AFG∽△BFA,易得∠AGF=∠BAF,所以结合已知条件和图形得到∠MBG=∠BMG.易证△AGF∽△DGA,则对应边成比例:==.即==.设GF=2a(a>0),AG=3a,则GD=a,FD=a;利用平行线(BE∥AD)截线段成比例易得=,则==.设EG=2k(k>0),所以BG=MG=3k.如图2,过点F作FQ∥ED交AE于点Q.则===,又由FQ∥ED,易证得==,所以FM=FN.【解答】(1)证明:如图1,连接FE、FC.∵点F在线段EC的垂直平分线上,∴FE=FC,∴∠1=∠2.∵△ABD和△CBD关于直线BD对称(点A的对称点是点C),∴AB=CB,∠4=∠3,∵在△ABF与△CBF中,,∴△ABF≌△CBF(SAS),∴∠BAF=∠2,FA=FC,∴FE=FA,∠1=∠BAF,∴∠5=∠6.∵∠1+∠BEF=180°,∴∠BAF+∠BEF=180°∵∠BAF+∠BEF+∠AFE+∠ABE=360°,∴∠AFE+∠ABE=180°.又∵∠AFE+∠5+∠6=180°,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF=∠ABD;(2)FM=FN.理由如下:如图2,由(1)知,∠EAF=∠ABD.又∵∠AFB=∠GFA,∴△AFG∽△BFA,∴∠AGF=∠BAF.又∵∠MBF=∠BAF,∴∠MBF=∠AGF.∵∠AGF=∠MBG+∠BMG,∴∠MBG=∠BMG,∴BG=MG.∵AB=AD,∴∠ADB=∠ABD=∠EAF.又∵∠FGA=∠AGD,∴△AGF∽△DGA,∴==.∵AF=AD,∴==.设GF=2a(a>0),AG=3a,∴GD=a,∴FD=a∵∠CBD=∠ABD,∠ABD=∠ADB,∴∠CBD=∠ADB,∴BE∥AD,∴=,∴==.设EG=2k(k>0),∴BG=MG=3k.如图2,过点F作FQ∥ED交AE于点Q.则===,∴GQ=QE,∴GQ=EG=k,MQ=3k+k=k.∵FQ∥ED,∴==,∴FM=FN.第31页(共31页)【点评】本题综合考查了相似三角形的判定与性质,平行线分线段成比例,三角形内角和定理以及四边形内角和是360度等知识点.难度较大,综合性较强.。

北京市房山区2013-2014年八年级下期末数学试卷含答案

北京市房山区2013-2014年八年级下期末数学试卷含答案

A
B
C.
D.
二.填空题(本题共 16 分,每小题 4 分) 9. 如图,在□ABCD中,已知∠B=50°,那么∠C 的度数是
A
. B
D C
10.
已知一个菱形的两条对角线的长度分别为 6 和 8,那么这个菱形的周长


11. 甲和乙一起练习射击,第一轮 10 枪打完后两人的成绩如图所示.通常新手的成绩不太稳定,那么根据
D. D. 第四象限
3. 若一个多边形的内角和等于 720°,则这个多边形的边数是
A. 8
B. 7
C. 6
D. 5
4. 在一个不透明的盒子中放有 2 个黄色乒乓球和 4 个白色乒乓球,所有乒乓球除颜色外完全相同,从中
随机摸出 1 个乒乓球,摸出白色乒乓球的概率为
A. 1 2
B. 1 3
C.
2 3
D. 1 6
14. (本题 5 分)已知:如图,E、F 是□ABCD对角线 AC上两点,AF=CE. 求证:BE∥DF.
15. (本题 5 分)已知 x 2 5x 14 ,求代数式x 12x 1 x 12 1 的值.
16. (本题 5 分) 如 图 , 四 边 形 ABCD 中 , E、 F、 G、 H 分 别 是 AB、 BD、 CD、 AC 的 中 点 .
5
11
3
7
2
(1)请根据所给信息补全统计表;
(2)请你根据“2014年 3 月北京市空气质量等级天数统计表”,计算 2014年 3 月空气质量等级为优和良
的天数出现的频率一共是多少?(精确到 0.01) (3)市环保局正式发布了北京 PM2.5来源的最新研究成果,专家通过论证已经分析出汽车尾气排放是本 地主要污染源.在北京市小客车数量调控方案中,将逐年增加新能源小客车的指标. 已知 2014年的指标为

2013年1海淀、西城区丰台、昌平初二期末数学试题及答案

2013年1海淀、西城区丰台、昌平初二期末数学试题及答案

海淀区八年级第一学期期末数学练习一、选择题(本题共30分,每小题3分) 1.2的平方根 A .21BC. D.2.下列图形不是..轴对称图形的是 A .角 B .等腰三角形 C .等边三角形 D .有一个内角为30 的直角三角形 3.在下列各式的计算中,正确的是A .235+a a a =B .22(1)22a a a a +=+C .3225()ab a b=D .22(2)(+2)2y x y x y x -=-4.已知等腰三角形的两边长分别为7和3,则第三边的长是A .7 B .4 C .3 D .3或75.下列有序实数对表示的各点不在..函数42y x =-的图象上的是 A .16--(,) B .(-2, 6) C .(1, 2) D .(3, 10)6.下列各式不能分解因式的是A .224x x -B .214x x ++C .229x y +D .21m -7.若分式 211x x --的值为0,则x 的值为A .1B .0C .1-D .1±8.已知整数m满足1m m <<+,则m 的值为 A .4 B . 5 C .6D .79.如图,把△A B C 沿E F 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为A . 24°B . 25°C . 30°D . 35°10.已知一次函数y kx b =+中x 取不同值时,y 对应的值列表如下:则不等式0kx b +>(其中k ,b ,m ,n 为常数)的解集为A .1x >B .2x >C .1x <D .无法确定 二、填空题(本题共18分,每小题3分)AABCB 'C 'EF1211.对于一次函数2y kx=-,如果y随x增大而增大,那么k需要满足的条件是.12.计算:111xx x-=--.13.如图,在△ABC中,AB=AC,∠A=20°,线段AB的垂直平分线交AB 于D,交AC于E,连接BE,则∠CBE为度.14.计算:222()ab ab÷-=().15.若关于x的二次三项式2x+kx b+因式分解为(1)(3)x x--,则k+b的值为__________. 16.如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点. 图①~⑥⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”.(1)当内空格点多边形边上的格点数为10时,此多边形的面积为;(2)设内空格点多边形边上的格点数为L,面积为S,请写出用L表示S的关系式.三、解答题:(本题共19分,第18题4分,其余每小题5分)17.()03π--.解:18.如图, 在△A B C中,=A B A C,D是△A B C内一点,且B D D C=.求证:∠ABD =∠ACD.证明:19. 把多项式33312a b ab-分解因式.解:20. 已知12x=,2y=-,求代数式()22(2)(2)x y x y x y+--+的值.解:四、解答题(本题共20分,每小题5分)21.解方程:54 2332xx x+=--.①②③④⑤⑥AB CD解:22. 已知正比例函数的图象过点(12)-,. (1)求此正比例函数的解析式;(2)若一次函数图象是由(1)中的正比例函数的图象平移得到的,且经过点(12),,求此一次函数的解析式. 解:23. 已知等腰三角形周长为12,其底边长为y ,腰长为x .(1)写出y 关于x 的函数解析式及自变量x 的取值范围; (2)在给出的平面直角坐标系中,画出(1)中函数的图象解:24.如图,在A B C △中,A C B C =,90ACB ∠= ,D 为A B C △内一点,15BAD ∠= ,AD AC =,C E AD ⊥于E ,且5C E =.(1)求B C 的长;(2)求证:B D C D =. 解:(1)(2)证明:五、解答题(本题共13分,第25题6分,第26题7分)25. 我们知道,假分数可以化为带分数. 例如: 83=223+=223. 在分式中,对于只含有一ED CBA个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:11x x -+,21xx -这样的分式就是假分式;31x + ,221x x + 这样的分式就是真分式 . 类似的,假分式也可以化为带分式(即:整式与真分式和的形式).例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为带分式;(2)若分式211x x -+的值为整数,求x 的整数值;(3)求函数2211x y x -=+图象上所有横纵坐标均为整数的点的坐标.解:(1)26.在△ABC 中,已知D 为直线BC 上一点,若,ABC x BAD y ∠=∠= .(1)当D 为边BC 上一点,并且CD=CA ,40x =,30y =时,则AB _____ AC (填“=”或“≠”);(2)如果把(1)中的条件“CD=CA ”变为“CD=AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由;(3)若CD= CA =AB ,请写出y 与x 的关系式及x 的取值范围.(不写解答过程,直接写出结果)DCBA海 淀 区 八 年 级 第 一 学 期 期 末 练 习数学试卷答案及评分参考 2013.1说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共30分,每小题3分)DCBA二、填空题(本题共18分,每小题3分)11.k > 0 12.1- 13.60 14. b 2 15. 1- 16.4,112S L =-(第1空1分,第2空2分)三、解答题:(本题共19分,第18题4分,其余每小题5分)17. 解:原式421=-+ …………………………3分 3= …………………………5分 18. 证明:A B A C = ,A B C A C B ∴∠=∠.…………………………1分 B D C D = .12∴∠=∠ . …………………………2分 12A B C A C B ∴∠-∠=∠-∠.即A B D A C D ∠=∠.…………………………4分19.解:原式223(4)ab a b =- …………………………3分3(2)(2)ab a b a b =+- …………………………5分20. 解:原式222244(4)x xy y x y =++-- …………………………2分2222444x xy y x y =++-+248xy y =+…………………………3分当12x =,2y =-时,原式2148(2)2=⨯⨯-+⨯-(2)432=-+28=. …………………………5分四、解答题(本题共20分,每小题5分) 21. 解:两边同乘以23x -得54(23)x x -=-…………………………1分5812x x -=-77x =1x = …………………………4分检验:1x =时,230x -≠,1x =是原分式方程的解.∴原方程的解是1x =. …………………………5分 22. 解:(1)设正比例函数解析式为(0)y ax a =≠,依题意有2a =-∴所求解析式为2y x =-. …………………………2分1AB CD2(2)设一次函数解析式为(0)y kx b k =+≠依题意有22k k b =-⎧⎨+=⎩,解得24k b =-⎧⎨=⎩. …………………………4分∴所求解析式为24y x =-+. …………………………5分23. 解:(1)依题意212y x +=,212y x ∴=-+. …………………………2分x ,y 是三角形的边,故有002x y x y >⎧⎪>⎨⎪>⎩,将212y x =-+代入,解不等式组得36x <<. …………………………3分 (2)…………………………5分24.解:(1)在△ABC 中, A C B C =,90A C B ∠=︒, 45B A C ∴∠=︒. 15B A D ∠=︒, 30C A D ∴∠=︒.C E AD ⊥,5CE =, 10A C ∴=.10B C ∴=. …………………………2分 (2)证明:过D 作D F B C ⊥于F .在△A D C 中,30C A D ∠=︒,AD AC =, 75A C D ∴∠=︒.90A C B ∠=︒,15F C D ∴∠=︒.在△AC E 中,30C A E ∠=︒,C E AD ⊥, 60A C E ∴∠=︒.15E C D A C D A C E ∴∠=∠-∠=︒.E C DF C D ∴∠=∠. …………………………3分D F DE ∴=.在Rt △D C E 与Rt △D C F 中,D C D C ,DE DF .=⎧⎨=⎩∴ Rt △D C E ≌Rt △D C F .5C F C E ∴==.10B C =,B F FC ∴=. …………………………4分D F B C ⊥,B DCD ∴=. …………………………5分五、解答题(本题共13分,第25题6分,第26题7分) 25. 解:(1)12331222x x x x x -(+)-==-+++; …………………………1分 (2)2121332111x x x x x -(+)-==-+++. …………………………2分当211x x -+为整数时,31x +也为整数.1x ∴+可取得的整数值为1±、3±.x ∴的可能整数值为0,-2,2,-4. …………………………3分(3)22212(1)112(1)111x x y x x x x --+===-++++. …………………………4分当x ,y 均为整数时,必有11x +=±.x ∴=0或-2. …………………………5分 相应的y 值分别为-1或-7.∴所求的坐标为(0,-1)或(-2,-7). …………………………6分26.(1)= …………………………1分 (2)成立. …………………………2分 解法一:=.,.=.=.B C B E B A A E C D A B B E C D B E D E C D D E B D C E =∴=∴-- 在上截取,连结即:40,70.B BAE BEA ∠=︒∴∠=∠=︒ED CA4030.=110=70.==110.=.=,=,=.A B D B B A D B D A A D E A D E B E A A E C A D A E A B D A C E A D A E B D A C E A B D C E A B D A C E ∆∠=︒∠=︒∴∠︒∠︒∴∠∠∠︒∴∆∆⎧⎪∠∠⎨⎪⎩∴∆∆在中,,,,在和中,≌.=.A B A C ∴ …………………………4分解法二:如图,作30,DAE DAB AE AB ∠=∠=︒=,A E 交BC 于点F .ABD AED ∆∆在和中,.AD AD D AB D AE AB AE =⎧⎪∠=∠⎨⎪=⎩,, .A B D A E D ∴∆∆≌40,.AED B ADB ADE ∴∠=∠=︒∠=∠ ABD ∆在中,40,30.B BAD ∴∠=︒∠=︒110,70.ADE ADB ADC ∴∠=∠=︒∠=︒40.C D E A D E A D C ∴∠=∠-∠=︒40.C D E A E D ∴∠=∠=︒.F D F E ∴=,AB CD AB AE == ,.C D A E ∴=..CD FD AE FE FC FA ∴-=-=即:,.DFE CFA ACB AED ∠=∠∴∠=∠ B AC B ∴∠=∠..A B A C ∴= …………………………4分(3)解:(ⅰ)当D 在线段BC 上时,3902y x =-(060x <≤)(取等号时B 、D 重合). ……………………5分(ⅱ)当D 在CB 的延长线上时,3902y x =-(6090x <<)(取等号时B 、D 重合). ……………………6分FEDCBA(ⅲ)当D 在BC 的延长线上时,31802y x =-,(090x <<). …………………………7分北京市西城区(北区)2012–2013学年度第一学期期末试卷八年级数学 2013.1(时间100分钟,满分100分)一、选择题(本题共30分,每小题3分) 1.计算23-的结果是( ).A .-9B .-9C .19D .19-2.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( ).A .B .C .D .3.点P (-3,5)关于y 轴的对称点的坐标是( ).A .(3,5)B .(3,-5)C .(5,-3)D .(-3,-5)4.将正比例函数y =3x 的图象向下平移4个单位长度后,所得函数图象的解析式为( ).A .34y x =+B .34y x =-C .3(4)y x =+D . 3(4)y x =- 5.下列各式中,正确的是( ).A .3355x xyy --=- B .a b a b c c +-+-=C .a ba bcc ---=- D .a ab aa b -=--6.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在( ).A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7).A.1与2之间B.2与3之间C.3与4之间D.4与5之间8.一次函数y m x m=+(m为常数且m≠0),若y随x增大而增大,则它的图象经().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.如图,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连结PC,若△ABC的面积为22cm,则△BPC的面积为().A.20.5cm B.21cmC.21.5cm D.22cm10.小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是().A.B.C.D.二、填空题(本题共24分,第13题4分,第18题2分,其余各题每小题3分)11.在函数12yx=-中,自变量x的取值范围是__________.12.在0.14 ,117,,π这五个实数中,无理数的是.13.一次函数21y x=-的图象与x轴的交点坐标为,与y轴的交点坐标为.14.如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连结BD.若AD=12cm,则BC的长为cm.15.若29x=,38y=-,则x+y=.16.某校组织学生到距离学校15千米的西山公园秋游,先遣车队与学生车队同时出发,先B C遣车队比学生车队提前半小时到达公园以便提前做好准备工作.已知先遣车队的速是学生队车速度的1.2倍,若设学生车队的速度为x 千米/时,则列出的方程是 . 17. 如图,在△ABC 中,AB =AC ,D 为BC 边上一点,且∠BAD =30°,若AD =DE ,∠EDC =33°,则∠DAE 的度数为 °18.如果满足条件“∠ABC =30°,AC =1, BC =k (k >0)”的△ABC 是唯一的,那么k 的取值范围是 .三、解答题(本题共28分,第19、20题每小题5分,第21~23题每小题6分) 19.计算:1)++解:20.先化简,再求值:2112()3369m m m m m +÷-+-+,其中9m =.解: 21.解方程:3111x x x -=-+.23.如图,直线y kx b =+经过点A(0,5),B (1,4).(1)求直线AB 的解析式;(2)若直线24y x =-与直线AB 相交于点C,求点C 的坐标; (3)根据图象,写出关于x 的不等式2x -4≥kx +b 的解集. 解:(1) (2)(3)关于x 的不等式2x -4≥kx +b 的解集是 .四、解答题(本题共12分,第24题5分,第25题7分) 24.阅读下列材料:木工张师傅在加工制作家具的时候,用下面的方法在木板上画直角:如图1,他首先在需要加工的位置画一条线段AB ,接着分别以点A 、点B 为圆心,以大于12A B 的适当长为半径画弧,两弧相交于点C ,再以C 为圆心,以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上),连接DB .则∠ABD 就是直角.木工张师傅把上面的这种作直角的方法叫做“三弧法.解决下列问题: (1)利用图1就∠ABD 是直角作出合理解释(要求:先写出已知、求证,再进行证明);(2)图2表示的一块残缺的圆形木板,请你用“三弧法”,在木板上...画出一个以EF 为一条直角边的直角三角形EFG (要求:尺规作图,不写作法,保留作图痕迹). 解:(1) 25.已知:一次函数132y x =+的图象与正比例函数y kx =的图象相交于点A (a ,1).(1)求a 的值及正比例函数y kx =的解析式;(2)点P 在坐标轴上(不与点O 重合),若PA =OA ,直接写出P 点的坐标;(3)直线x m =与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积记为S ,求S 关于m 的函数关系式(写出自变量的取值范围).ACBD图1图2EF五、解答题(本题6分)26.在△ABC 中,AD 是△ABC 的角平分线. (1)如图1,过C 作CE ∥AD 交BA 延长线于点E ,若F 为CE 的中点,连结AF ,求证:AF ⊥AD ;(2)如图2,M 为BC 的中点,过M 作MN ∥AD 交AC 于点N ,若AB =4, AC =7, 求NC 的长.(1) 证明:(2)解:图1 图2北京市西城区(北区)2012–2013学年度第一学期期末试卷八年级数学附加题2013.1一、填空题(本题共6分)1.在平面直角坐标系xOy中,横、纵坐标都为整数的点称为整点.已知一组正方形的四个顶点恰好落在两坐标轴上,请你观察每个正方形四条边上的整点的个数的变化规律.回答下列问题:(1)经过x轴上点(5,0)的正方形的四条边上的整点个数是;(2)经过x轴上点(n,0)(n为正整数)的正方形的四条边上的整点个数记为m,则m与n之间的函数关系是.二、解答题(本题共14分,第2题8分,第3题6分)2.在平面直角坐标系xOy中,直线6=+与x轴交于点A,与y轴交于点B.y x(1)求∠BAO的度数;(2)如图1,P为线段AB上一点,在AP上方以AP为斜边作等腰直角三角形APD.点Q 在AD上,连结PQ,过作射线PF⊥PQ交x轴于点F,作PG⊥x轴于点G.求证:PF=PQ ;(3)如图2,E为线段AB上一点,在AE上方以AE为斜边作等腰直角三角形AED.若P 为线段EB的中点,连接PD、PO,猜想线段PD、PO有怎样的关系?并说明理由.图1 图23.在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是△ABC 的角平分线, DE ⊥AB 于点E .(1)如图1,连接EC ,求证:△EBC 是等边三角形;(2)点M 是线段CD 上的一点(不与点C ,D 重合),以BM 为一边,在BM 的下方作∠BMG =60°,MG 交DE 延长线于点G .请你在图2中画出完整图形,并直接写出MD ,DG 与AD 之间的数量关系; (3)如图3,点N 是线段AD 上的一点,以BN 为一边,在BN 的下方作∠BNG =60°,NG 交DE 延长线于点G .试探究ND ,DG 与AD 数量之间的关系,并说明理由.(1)证明:(2)结论: ;(3)证明 :图1图2图3北京市西城区(北区)2012 — 2013学年度第一学期期末试卷八年级数学参考答案及评分标准 2013.1一、选择题(本题共30分,每小题3分)二、填空题(本题共24分,第13题4分,第18题2分,其余各题每小题3分)三、解答题(本题共28分,第19,20题,每小题5分,第21~23题,每小题6分)19.解: 1)++=24-+·······················································································3分=2. ································································································5分20.解:2112()3369m m m m m +÷-+-+=22(3)(3)(3)2m m m m m-⋅-+···············································································3分=33m m -+. ···································································································4分当9m =时,原式=931932-=+. ···································································5分21.解:方程两边同乘(1)(1)x x -+,得(1)3(1)(1)(1)x x x x x +--=-+.···································································2分化简,得331x x -+=-. (4)分 解得2x =. (5)分检验:当2x =时,(1)(1)0x x -+≠,∴2x=是原分式方程的解. ·········································································6分22.解:(1)∵AE ∥BF ,,,,AE BF A FBD AC BD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△BFD (SAS ). ····································································5分∴EC =FD . ························································································6分23.解:(1)∵直线y kx b =-+经过点A (5,0)、B (1,4),∴50,4.k b k b +=+=⎧⎨⎩ ······················································································1分 解方程得 1,5.kb=-=⎧⎨⎩ ···········································································2分∴直线AB 的解析式为 5.y x =-+ ·························································3分 (2)∵直线24y x =-与直线AB 相交于点C,∴解方程组5,2 4.yx y x =-+=-⎧⎨⎩得3,2.x y==⎧⎨⎩∴点C 的坐标为(3,2). ···································································· 5分 (3)x ≥3. ································································································ 6分四、解答题(本题共12分,第24题5分,第25题7分)24.(1)已知:在△ABD 中, AC =BC =CD .求证:90ABD ∠=︒.证明:∵AC=BC ,∴12∠=∠. ∵BC=CD ,∴34∠=∠. ························ 1分 在△ABD 中,1234180∠+∠+∠+∠=︒.∴1490∠+∠=︒.即90ABD ∠=︒. ········································· 3分(2)如图,△EFG 为所求作的三角形 .······························································································································ 5分25.解:(1)∵一次函数132y x =+的图象与正比例函数y kx =的图象相交于点A (a ,1), ∴1312a +=.解得4a =-.····················································································1分∴A (-4 ,1). ∴41k -=. 解得 14k =-.∴正比例函数的解析式为14y x =-.·················································2分 (2)P 1(-8 ,0)或P 2(0 ,2); ·························································4分阅卷说明:每个结果1分(3)依题意,得点B 的坐标为(m ,132m +),点C 的坐标为(m ,14m -).作AH ⊥BC 于点H ,H 的坐标为(m ,1). ········································5分 以下分两种情况: (ⅰ)当m <-4时,BC =11(3)42m m --+=334m --.AH =4m --.则12ABC S BC AH ∆=⋅=13(3)(4)24m m ----=23368m m ++.(ⅱ)当m >-4时,BC =11(3)24m m++=34AH =4m +.则12ABCS BC AH∆=⋅=13(3)(4)24m m ++=23368m m ++. 综上所述,ABC S ∆=2338m m +五、解答题(本题6分)26.证明:∵AD 为△ABC 的角平分线, ∴12∠=∠. (1)∵CE ∥AD ,∴1E ∠=∠,23∠=∠. ∴3E ∠=∠. ∴AC =AE . 1分 ∵F 为EC 的中点, ∴AF ⊥BC . ∴90AFE FAD ∠=∠=︒.∴AF ⊥AD .2分(2)延长BA 与MN 延长线于点E ,过B 作BF ∥AC 交NM 延长线于点F . ·············· 3分 ∴3C ∠=∠,4F ∠=∠. ∵M 为BC 的中点∴BM =CM .在△BFM 和△CNM 中,4,3,,F C B M C M ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFM ≌△CNM (AAS ). ····················································································· 4分 ∴BF =CN .∵MN ∥AD ,∴1E ∠=∠,245∠=∠=∠. ∴5E F ∠=∠=∠. ∴AE =AN ,BE =BF .设CN =x ,则BF =x , AE =AN =AC -CN =7-x ,BE =AB +AE =4+7-x . ∴4+7-x =x .解得 x =5.5. ∴CN =5.5. 6分北京市西城区(北区)2012 — 2013学年度第一学期期末试卷八年级数学附加题参考答案及评分标准 2013.1一、填空题(本题6分) 1.(1)20; ············································································································ 3分 (2)4mn=. ········································································································ 3分二、解答题(本题共14分,第2题8分,第3题6分) 2.解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B .∴A (-6,0),B (0,6). ∴OA =OB . ·············································································································· 1分 ∴BAOABO∠=∠在△AOB 中,90AOB ∠=︒. ∴45BAO ABO ∠=∠=︒. ························································································ 2分 (2)在等腰直角三角形APD 中,90PDA ∠=︒,DA =DP ,145APD ∠=∠=︒.AMD CBNE F354412 B∴DP ⊥AD 于D .由(1)可得45BAO ∠=︒. ∴1BAO ∠=∠. 又∵PG ⊥x 轴于G , ∴PG = PD . ············································································································ 3分 ∴90AGP PGF D ∠=∠=∠=︒.∴445BAO ∠=∠=︒.∴490APD DPG ∠+∠=∠=︒.即390G P Q ∠+∠=︒. 又∵PQ ⊥PF , ∴290G PQ ∠+∠=︒.∴23∠=∠.········································· 4分在△PGF 和△PDQ 中,,,23,P G F D P G P D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PGF ≌△PDQ (ASA). ∴PF =PQ . ················································································································5分 (3)答:OP ⊥DP ,OP =DP .证明:延长DP 至H ,使得PH =PD . ∵P 为BE 的中点, ∴PB =PE .在△PBH 和△PED 中,,12,,P B P E P H P D =⎧⎪∠=∠⎨⎪=⎩∴△PBH ≌△PED (SAS ). ∴BH =ED . ··················································· 6分 ∴34∠=∠. ∴BH ∥ED .在等腰直角三角形ADE 中, AD =ED ,45DAE DEA ∠=∠=︒. ∴AD =BH ,90DAE BAO DAO ∠+∠=∠=︒. ∴DE ∥x 轴,BH ∥x 轴, BH ⊥y 轴. ∴90DAOHBO ∠=∠=︒.由(1)可得 OA =OB . 在△DAO 和△HBO 中,,,,AD BH D AO H BO O A O B =⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌△HBO (SAS ).x图1图2。

北京市西城区2013—2014年八年级下期末考试数学试卷及答案

北京市西城区2013—2014年八年级下期末考试数学试卷及答案

北京市西城区2013—2014学年度第二学期期末考试八年级数学试卷2014.7试卷满分:100分,考试时间:100分钟一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列各组数中,以它们为边长的线段能构成直角三角形的是( ).A .31,41,51 B .3,4,5 C .2,3,4 D .1,1,32.下列图案中,是中心对称图形的是( ).3.将一元二次方程x 2-6x -5=0化成(x -3)2=b 的形式,则b 等于( ).A .4B .-4C .14D .-14 4.一次函数12+=x y 的图象不.经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ). A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,AC =4cm , ∠AOD =120º,则BC 的长为( ).A . 34 B. 4 C . 32 D. 27.中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是( ).A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,58.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行. 直线y =x +3与x 轴、y 轴分别交于点E ,F . 将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ).A .3 B. 4 C. 5 D. 6二、填空题(本题共25分,第9~15题每小题3分,第16题4分) 9.一元二次方程022=-x x 的根是 .10.如果直线x y -=向上平移3个单位后得到直线AB ,那么直线AB 的解析式是_________. 11.如果菱形的两条对角线长分别为6和8,那么该菱形的面积为_________. 12.如图,Rt △ABC 中,∠BAC =90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF =3,则AE = .13.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空).14.在平面直角坐标系xOy 中,点A 的坐标为(3,2),若将线段OA 绕点O 顺时针旋转90°得到线段A O ',则点A '的坐标是 .15.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2) 则关于x 的不等式1x +≥mx n +的解集为 .16.如图1,五边形ABCDE 中,∠A =90°,AB ∥DE ,AE ∥BC ,点F ,G 分别是BC ,AE 的中点. 动点P 以每秒2cm 的速度在五边形ABCDE 的边上运动,运动路径为F →C →D →E →G ,相应的△ABP 的面积y (cm 2)关于运动时间t (s)的函数图象如图2所示.若AB =10cm ,则(1)图1中BC 的长为_______cm ;(2) 图2中a 的值为_________.三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分) 17.解一元二次方程:2420x x +-=. 解:18.已知:在平面直角坐标系xOy 中,一次函数4y kx =+的图象与y 轴交于点A ,与x 轴的正半轴交于点B ,2OA OB =. (1)求点A 、点B 的坐标;(2)求一次函数的解析式.解:19.已知:如图,点A 是直线l 外一点,B ,C 两点在直线l 上,90BAC ∠=︒,2BC BA =. (1)按要求作图:(保留作图痕迹) ①以A 为圆心,BC 为半径作弧,再以C 为圆心,AB 为半径作弧,两弧交于点D ; ②作出所有以A ,B ,C ,D 为顶点的四边形;(2)比较在(1)中所作出的线段BD 与AC 的大小关系. 解:(1)(2)BD AC .20.已知:如图, ABCD 中,E ,F 两点在对角线BD 上,BE=DF . (1)求证:AE=CF ; (2)当四边形AECF 为矩形时,直接写出BD ACBE-的值.(1)证明:(2) 答:当四边形AECF 为矩形时,BD ACBE-= .21.已知关于x 的方程2(2)210x k x k -++-=.(1)求证:方程总有两个不相等的实数根;(2)如果方程的一个根为3x =,求k 的值及方程的另一根. (1)证明:(2)解:四、解答题(本题7分)22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发改委在对居民年用水量进行统计分析的基础上召开水价听证会后发布通知,从2014 年5月1日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水 价分档递增,对于人口为5人(含)以下的家庭,水价标准如图1所示,图2是小明 家在未实行新水价方案时的一张水费单(注:水价由三部分组成).若执行新水价方 案后,一户3口之家应交水费为y (单位:元),年用水量为x (单位:3m ),y 与x 之间的函数图象如图3所示.图1 图2五、解答题(本题共14分,每小题7分)23.已知:正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,2BF AF =. 画出EDF ∠,猜想EDF ∠的度数并写出计算过程. 解: EDF ∠的度数为 . 计算过程如下:xO24.已知:如图,在平面直角坐标系xOy 中,(0,4)A ,(0,2)B ,点C 在x 轴的正半轴上, 点D 为OC 的中点. (1) 求证:BD ∥AC ; (2) 当BD 与AC 的距离等于1时,求点C 的坐标;(3)如果OE ⊥AC 于点E ,当四边形ABDE 为平行四边形时,求直线AC 的解析式. 解:(1)(2)(3)北京市西城区2013—2014学年度第二学期期末试卷八年级数学参考答案及评分标准2014.7一、选择题(本题共24分,每小题3分)二、填空题(本题共25分,第9~15题每小题3分,第16题4分)9.120,2x x ==. 10.3y x =-+. 11.24. 12.3. 13.>. 14.(2,3)-. 15.x ≥1(阅卷说明:若填x ≥a 只得1分) 16.(1)16;(2)17.(每空2分)三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分) 17.解:2420x x +-=.1a =,4b =,2c =-. …………………………………………………………1分 224441(2)24b ac ∆=-=-⨯⨯-=.…………………………………………… 2分方程有两个不相等的实数根x ………………………… 3分==.所以原方程的根为12x =-22x =- (各1分)……………… 5分 18.解:(1)∵ 一次函数4y kx =+的图象与y 轴的交点为A ,∴ 点A 的坐标为(0,4)A .………………………………………………… 1分 ∴ 4OA =.………………………………………………………………… 2分 ∵ 2OA OB =, ∴ 2OB =.………………………………………………………………… 3分 ∵ 一次函数4y kx =+的图象与x 轴正半轴的交点为B , ∴ 点B 的坐标为(2,0)B (2)将(2,0)B 的坐标代入4y kx =+,得 02= 解得 2k =-.………………………… 5 ∴ 一次函数的解析式为 24y x =-+.………………………………… 619.解:(1)按要求作图如图1所示,四边形1ABCD 和四边形2ABD C 分别是所求作的四边形;………………………………… 4分 (2)BD ≥ AC . …………………………………………………………… 6分阅卷说明:第(1)问正确作出一个四边形得3分;第(2)问只填BD >AC 或BD =AC 只得1分.20.(1)证明:如图2.∵ 四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD .…………… 1分 ∴ ∠1=∠2.……………………… 2分图1D在△ABE 和△CDF 中,, 12, , AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩………………………3分 ∴ △ABE ≌△CDF .(SAS ) ………………………………………… 4分 ∴ AE=CF .…………………………………………………………… 5分(2) 当四边形AECF 为矩形时,BD ACBE-= 2 . ………………………………6分 21.(1)证明:∵ 2(2)210x k x k -++-=是一元二次方程,[]2224(2)41(21)48b ac k k k k ∆=-=-+-⨯⨯-=-+ ………… 1分2(2)4k =-+,…………………………………………………… 2分 无论k 取何实数,总有2(2)k -≥0,2(2)4k -+>0.……………… 3分 ∴ 方程总有两个不相等的实数根.…………………………………… 4分 (2)解:把3x =代入方程2(2)210x k x k -++-=,有233(2)210k k -++-=.………………………………………………… 5分 整理,得 20k -=.解得 2k =.………………………………………………………………… 6分 此时方程可化为 2430x x -+=. 解此方程,得 11x =,23x =.∴ 方程的另一根为1x =.………………………………………………… 7分四、解答题(本题7分)22.解:(1) 4 .……………………………………………………………………………1分解法二:当180<x ≤260时,设y 与x 之间的函数关系式为y kx b =+(k ≠0). 由(2)可知:(180,900)A ,(260,1460)B .得180900,2601460.k b k b +=⎧⎨+=⎩ 解得7,360.k b =⎧⎨=-⎩∴ 7360y x =- .……………………………………………… 7分 五、解答题(本题共14分,每小题7分)23.解:所画EDF ∠如图3所示.……………………………………………………… 1分EDF ∠的度数为45. …………………………… 2分解法一:如图4,连接EF ,作FG ⊥DE 于点G . …… 3分 ∵ 正方形ABCD 的边长为6,∴ AB=BC=CD= AD =6,90A B C ∠=∠=∠=︒. ∵ 点E 为BC 的中点, ∴ BE=EC=3. ∵ 点F 在AB 边上,2BF AF =, ∴ AF =2,BF =4.在Rt △ADF 中,90A ∠=︒, 222226240DF AD AF =+=+=. 在Rt △BEF ,Rt △CDE 中,同理有222223425EF BE BF =+=+=,222226345DE CD CE =+=+=.在Rt △DFG 和Rt △EFG 中,有 22222FG DF DG EF EG =-=-.设DG x =,则224025)x x -=-. ……………………………… 4分 整理,得60=.解得x =即DG = ………………………………………… 5分 ∴FG =∴ DG FG =.……………………………………………………………… 6分 ∵ 90DGF ∠=︒, ∴ 180452DGFEDF ︒-∠∠==︒. ………………………………………7分 解法二:如图5,延长BC 到点H ,使CH=AF ,连接DH ,EF .………………… 3分 ∵ 正方形ABCD 的边长为6,∴ AB=BC=CD=AD =6,=90A B ADC DCE ∠=∠=∠=∠︒. ∴ 180=90DCH DCE ∠=︒-∠︒,A DCH ∠=∠. 在△ADF 和△CDH 中,, , , AD CD A DCH AF CH =⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△CDH .(SAS ) ……………4分 ∴ DF=DH , ① 12∠=∠.图3EB 图4E B 图5八年级期末 数学试卷 第 11 页 (共 12∴ 2190FDH FDC FDC ADC ∠=∠+∠=∠+∠=∠=︒.……………… 5分∵ 点E 为BC 的中点,∴ BE=EC=3.∵ 点F 在AB 边上,2BF AF =,∴ CH= AF=2,BF=4.∴ 5EH CE CH =+=.在Rt △BEF 中,90B ∠=︒,5EF ==.∴ EF EH =.②又∵ DE= DE ,③由①②③得△DEF ≌△DEH .(SSS ) …………………………………… 6分 ∴ 452FDH EDF EDH ∠∠=∠==︒. ………………………………… 7分 24.解:(1)∵ (0,4)A ,(0,2)B ,∴ OA =4,OB =2,点B 为线段OA 的中点.…………………………… 1分 ∵ 点D 为OC 的中点,∴ BD ∥AC .……………………………………………………………… 2分(2)如图6,作BF ⊥AC 于点F ,取AB 的中点G ,则(0,3)G .∵ BD ∥AC ,BD 与AC 的距离等于1,∴ 1BF =.∵ 在Rt △ABF 中,90AFB ∠=︒,AB =2,点G 为AB 的中点,∴ 12AB FG BG ===. ∴ △BFG 是等边三角形,60ABF ∠=︒. ∴ 30BAC ∠=︒. 设OC x =,则2AC x =,OA . ∵ OA =4, ∴ x =.……………………………………… 3分 ∵ 点C 在x 轴的正半轴上, ∴ 点C 的坐标为.……………………………………………… 4分 (3)如图7,当四边形ABDE 为平行四边形时,AB ∥DE . ∴ DE ⊥OC . ∵ 点D 为OC 的中点,∴ OE=EC .八年级期末 数学试卷 第 12 页 (共 12 页) ∵ OE ⊥AC ,∴ 45OCA ∠=︒.∴ OC=OA =4.………………………………… 5分∵ 点C 在x 轴的正半轴上,∴ 点C 的坐标为(4,0).………………………………………………… 6分 设直线AC 的解析式为y kx b =+(k ≠0).则40,4.k b b +=⎧⎨=⎩ 解得1,4.k b =-⎧⎨=⎩∴ 直线AC 的解析式为4y x =-+ .………………………………………7分。

2013-2014学年八年级上数学期末试题及答案

2013-2014学年八年级上数学期末试题及答案

2013-2014学年(上)期末教学质量测评试题八年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1.下列语句中,是命题的是A .延长线段AB 到C B .垂线段最短 C .过点O 作直线a ∥bD .锐角都相等吗2.下列关于5的说法中,错误..的是 A .5是无理数 B .2<5<3 C .5的平方根是5 D .2552-=-3.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这A .25.6,26B .26,25.5C .26,26D .25.5,25.54.如图所示,AB ⊥EF 于B ,CD ⊥EF 于D ,∠1=∠F =30°,则与∠FCD 相等的角有A .1个B .2个C .3个D .4个5.将平面直角坐标系内某图形上各个点的横坐标都乘以1-,纵坐标不变,所得图形与原图形的关系是 A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 沿x 轴向下平移1个单位长度6.若正整数a ,b ,c 是直角三角形三边,则下列各组数一定还是直角三角形三边的是 A .a+1,b+1,c+1 B .a 2,b 2,c 2 C .2a ,2b ,2cD .a -1,b -1,c -17.一次函数y =-2x +2的图象是A .BC .D .8.已知点A (-3,y 1)和B (-2,y 2)都在直线y = 121--x 上,则y 1,y 2的大小关系是 A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .大小不确定9.已知一个两位数,它的十位上的数字x 比个位上的数字y 大1.若颠倒个位与十位数字 的位置,得到的新数比原数小9,求这两个数所列的方程组正确的是A.1()()9x y x y y x -=⎧⎨+++=⎩, B.1109x y x y y x =+⎧⎨+=++⎩,C.110109x y x y y x =+⎧⎨+=+-⎩, D.110109x y x y y x =+⎧⎨+=++⎩10.一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了A. 20分钟 B . 22分钟 C . 24分钟 D . 26分钟二、填空题(每小题3分,共l 5分) 11.已知32=x ,则x =_______.12.如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为______.13.如图,点O 是三角形两条角平分线的交点,若∠BOC =110°,则∠A = . 14.直线13+=x y 向左平移2个单位长度后所得到的直线的解析式是 .15.已知24x y =⎧⎨=⎩是方程组73228x y x y -=⎧⎨+=⎩的解,那么由这两个方程得到的一次函数y =_________和y =_________的图象的交点坐标是 .三、解答题(本大题共5个小题,共55分) 16.(每小题5分,共20分) (1)计算: 32-512+618(2))21(3)解方程组:⎩⎨⎧=-=+421y x y x ②① (4)解方程组:132(1)6x y x y ⎧+=⎪⎨⎪+-=⎩17.(本小题满分8分)如图所示,已知∠AED=∠C ,∠3=∠B ,请写出∠1与∠2的数量关系,并A对结论进行证明.18.(本小题满分8分)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格进行计算,证明你的结论.19.(本小题满分8分) 下表是某地2012年2月与2013年2月8天同期的每日最高气温,根据表(1)2012年2月气温的极差是 ,2013年2月气温的极差是 .由此可见, 年2月同期气温变化较大.(2)2012年2月的平均气温是,2013年2月的平均气温是. (3)2012年2月的气温方差是 , 2013年2月的气温方差是 ,由此可见, 年2月气温较稳. 20.(本小题满分11分)如图,在平面直角坐标系xOy 中,直线l 经过(0,4)A 和(2,0)B 两点. (1)求直线l 的解析式及原点到直线l 的距离; (2)C 、D 两点的坐标分别为(4,2)C 、(,0)D m ,且⊿ABO ≌⊿OCD 则m 的值为 ;(直接写出结论) (3)若直线l 向下平移n 个单位后经过(2)中的点D ,求n 的值.B 卷(共50分)一、填空题(每小题4分,共20分) 21.若32-=x ,则122+-x x = .22.三元一次方程组⎪⎩⎪⎨⎧===++4:5:2:3:111z y x y z y x 的解是 .23.在锐角三角形ABC 中,BC =23,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 最小值是 . 24.一个一次函数图象与直线y=54x+954平行,•与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-20),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有 个. 25.如图,已知直线l :x y 3=,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 6的坐标为__________. 二、解答题(本大题共有3个小题,共30分)26.(本小题满分8分)为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的? (2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?27.(本小题满分10分)如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 绕点B 逆时针旋转60°得到线段BO ′.(1)求点O 与O ′的距离; (2)证明:∠AOB =150°;(3)求四边形AOBO ′的面积. (4)直接写出△AOC 与△AOB 的面积和为________.28.(本小题满分12分)如图1所示,直线AB 交x 轴于点A (4,0),交y 轴于点B (0,-4),(1)如图,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标; (2)在(1)的条件下,如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.2013-2014学年(上)期末教学质量测评试题八年级数学参考答案及评分标准一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。

人教版初中数学八年级上册期末试卷及答案

人教版初中数学八年级上册期末试卷及答案

人教版初中数学八年级上册期末试卷及答案2013-2014学年度第一学期期末质量检查八年级数学科试卷说明】本卷满分120分,考试时间100分钟。

一、选择题(本大题共10小题,每小题3分,共30分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A。

1,2,6B。

2,2,4C。

1,2,3D。

2,3,42.若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A。

直角三角形B。

锐角三角形C。

钝角三角形D。

等边三角形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A。

60°B。

70°C。

80°D。

90°4.观察下列图标,从图案看是轴对称图形的有()A。

1个B。

2个C。

3个D。

4个5.若分式的值为x=-2,则()x+2A。

x=-2B。

x=±2C。

x=2D。

x=06.计算2x/(x-2)的结果是()A。

B。

1C。

-1D。

x7.下列各运算中,正确的是()A。

3a+2a=5aB。

(-3a)²=9a²C。

a÷a=1D。

(a+2)²=a²+4a+48.如图,△ABC中,AB=AC,∠A=40°,则∠B的度数是()A。

70°B。

55°C。

50°D。

40°9.如图,在四边形ABCD中,AB=AD,CB=CD,若连结AC、BD相交于点O,则图中全等三角形共有()A。

1对B。

2对C。

3对D。

4对10.已知(m-n)=8,(m+n)=2,则m+n的值为()A。

10B。

6C。

5D。

3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a-4b=(a+2b)()。

12.正十边形的每个内角的度数为()。

13.若m+n=1,mn=2,则(2/m+1/n)的值为()。

14.已知实数x,y满足|x-4|+(y-8)²=(),则以x,y的值为两边长的等腰三角形的周长是()。

北京市丰台区2013-2014学年八年级上期末数学试卷及答案

北京市丰台区2013-2014学年八年级上期末数学试卷及答案

1
=.
2
……4 分 ……5 分
22.解:设一台 A 型计算机的售价是 x 元,则一台 B 型计算机的售价是(x +400)元.根据题意列
方程,得
224000 240000 x x 400
……1 分 ……3分
解这个方程,得 x 5600
……4分
经检验, x 5600 是所列方程的解,并且符合实际问题的意义.
,第 n ( n 1,且 n 是整数)行的第 2 个数
三、解答题(本题共 20 分,每题 5 分) 17. 计算: 3 8 12 3 2 .
18.
计算:
a 1
a2
2a 1 .
a 2 2a 4
19. 解方程: 1 3 1 x . x2 2x
20. 已知:如图,点 B,E,C,F 在同一条直线上, AB∥DE,AB=DE,BE=CF.
例如: x 1 (x- 1)+2 x 1 2 1 2 ; x 1 x 1 x 1 x 1 x 1
x2 x2 4 4 (x 2 )(x 2) 4 x 2 4 .
x2 x2
x2
x2
x 1
(1)将分式
化为整式与真分式的和的形式;
∴AC= DF.(全等三角形对应边相等)…5 分
四、解答题(本题共 11 分,第 21 题 5 分,第 22 题 6 分)
21.解:原式=

x y
x y2

x

y
x y


x y
∵ x 3y 0 ,
……1 分 ……2 分
∴ x=3y .
……3 分
3y y

2023-2024学年北京市朝阳区八年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区八年级(下)期末数学试卷+答案解析

2023-2024学年北京市朝阳区八年级(下)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A. B. C.D.3.在中,,,的对边分别为a ,b ,c ,下列条件中可以判断的是()A.,,B.,,C.,, D.,,4.如图,,AD ,BC 相交于点O ,下列两个三角形的面积不一定相等的是() A.和 B.和C.和D.和5.在奥运会跳水项目中,多名评委对同一位选手打分,去掉一个最高分和一个最低分后再计算该选手的成绩.去掉这两个分数的前后,一定不发生变化的统计量是()A.平均数B.中位数C.众数D.方差6.满足下列条件的四边形一定是正方形的是()A.对角线互相平分的四边形 B.有三个角是直角的四边形C.有一组邻边相等的平行四边形 D.对角线相等的菱形7.下列函数的图象是由正比例函数的图象向左平移1个单位长度得到的是()A.B.C.D.8.我们知道,四边形具有不稳定性.如图,边长为2的菱形ABCD 的形状可以发生改变,在这个变化过程中,设菱形ABCD 的面积为y ,AC 的长度为x ,则下列图象中,可以表示y 与x 的函数关系的图象大致是()A. B.C. D.二、填空题:本题共8小题,每小题3分,共24分。

9.二次根式在实数范围内有意义,则自变量x的取值范围是______.10.写出一个图象经过第二、三、四象限的一次函数表达式______.11.下表是某校排球队队员的年龄分布,该排球队队员的平均年龄是______岁.年龄/岁12131415频数113312.如图,DE是的中位线,若的周长为10,则的周长为______.13.如图,在正方形ABCD的外侧,作等边三角形ADE,则______14.如图,在中,,,,P为射线AB上一点,若是等腰三角形,则AP的长为______.15.直线一定经过一个定点,这个定点的坐标是______.16.如图1,华容道是一种古老的中国民间益智游戏,一些棋子紧密地摆放在矩形木框内,其中有5个完全一样的小矩形木块代表“五虎上将”,它们有4个纵向摆放,1个横向摆放,把其他棋子拿掉后,这5个小矩形木块排列示意图如图2所示.若图2中阴影部分面积为40,则一个小矩形木块的对角线的长为______.三、解答题:本题共9小题,共52分。

北京市大兴区2013-2014学年八年级数学下学期期末考试试题

北京市大兴区2013-2014学年八年级数学下学期期末考试试题

2013-2014学年市大兴区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列每小题的四个选项中,只有一个是正确的.请将1-10各小题正确选项前的字母填写在下表相应题号下面的空格内.1.方程:x(x+1)=3(x+1)的解的情况是()A. x=﹣1 B. x=3 C. x1=﹣1,x2=3 D.以上答案都不对考点:解一元二次方程-因式分解法.专题:计算题.分析:解此题采用因式分解法最简单,此题中的公因式为(x+1),提取公因式即可求得.解答:解:∵x(x+1)=3(x+1)∴x(x+1)﹣3(x+1)=0∴(x+1)(x﹣3)=0∴x1=﹣1,x2=3故选:C.点评:此题提高了学生的计算能力,解题时要注意解题方法的选择,特别要注意虽然因式分解法不适用于所有一元二次方程,但是只要可以用,它就是最简单的方法.2.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为()A. 15°B. 30°C. 45°D. 60°考点:等腰梯形的性质.分析:过点D作DE∥BC,可知△ADE是等边三角形,从而得到∠C=60°.解答:解:如图,过点D作DE∥BC,交AB于点E.∴DE=CB=AD,∵AD=AE,∴△ADE是等边三角形,所以∠A=60°.故选:D .点评: 此题考查等腰梯形的性质及梯形中常见的辅助线的作法.3.将方程x 2+4x+1=0配方后,原方程变形为( )A.3)2(2=+xB.3)4(2=+xC.3)2(2-=+xD.5)2(2-=+x考点: 解一元二次方程-配方法.专题: 配方法.分析: 配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答: 解:∵x2+4x+1=0,∴x2+4x=﹣1,∴x2+4x+4=﹣1+4,∴(x+2)2=3.故选:A .点评: 此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定考点:方差;折线统计图;算术平均数;中位数;极差.分析:结合折线统计图,利用数据逐一分析解答即可.解答:解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.点评:此题主要结合折线统计图,利用极差、中位数、平均数以及方差来进行分析数据,找到解决问题的突破口.5.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C . 四个角相等的菱形是正方形D . 两条对角线相等的四边形是矩形考点: 正方形的判定;菱形的判定;矩形的判定;直角梯形.分析: 做题时首先知道各种四边形的判定方法,然后作答.解答: 解:A 、邻边相等的平行四边形是菱形,有两边相等的平行四边形是菱形,并没有说明是邻边,故A 错误;B 、有一个角是直角的四边形是直角梯形,还可能是正方形或矩形,故B 错误;C 、四个角相等的菱形是正方形,故C 正确;D 、两条对角线相等的四边形是矩形,还可能是梯形或正方形,故D 错误.故选:C .点评: 本题主要考查各种四边形的判定,基础题要细心.6.若一元二次方程x 2+2x+m=0有实数解,则m 的取值X 围是( )A. 1-≤mB. 21≤m C. 1≤m D.4≤m考点: 根的判别式.专题: 计算题.分析: 由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m 的不等式,求出不等式的解集即可得到m 的取值X 围.解答: 解:∵一元二次方程x 2+2x+m=0有实数解,∴b 2﹣4ac=22﹣4m ≥0,解得:m ≤1,则m 的取值X 围是m ≤1.故选:C .点评: 此题考查了一元二次方程解的判断方法,一元二次方程ax 2+bx+c=0(a ≠0)的解与b 2﹣4ac 有关,当b 2﹣4ac >0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b 2﹣4ac <0时,方程无解.7.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是()考点:频数(率)分布直方图.专题:图表型.分析:根据频率的求法,频率=,计算可得答案.解答:解:(15+20)÷(5+10+15+20)=0.7,故选:D.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.梯形的上底长为6cm,过上底一个顶点引一腰的平行线,交下底所得的三角形的周长是19cm,那么这个梯形的周长等于()A. 31cm B. 28cm C. 25cm D. 19cm考点:梯形.分析:根据题意,画出图形,根据图形写成已知条件,将梯形划分为一个平行四边形和一个三角形,利用平行四边形的性质将线段的长度转化,可求梯形的周长.解答:解:如梯形ABCD中,AB∥CD,AD∥BC,CD=6cm,AD+DE+AE=19cm,根据平行四边形的判定可知,四边形BCDE为平行四边形,∴BA=CD=6cm,∴BE+BC+CD+DE=AB+AE+DE+CD+AD=6+6+19=31cm ,即梯形周长为31cm ;故选:A .点评: 本题考查了梯形、平行四边形的判定与性质,要充分运用线段相等的关系将周长进行转化.9.一件商品的原价是100元,经过两次提价后的价格为121元.如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x -=B . 100(1)121x +=C .2100(1)121x -=D . 2100(1)121x +=考点: 由实际问题抽象出一元二次方程.专题: 增长率问题.分析: 设平均每次提价的百分率为x ,根据原价为100元,表示出第一次提价后的价钱为100(1+x )元,然后再根据价钱为100(1+x )元,表示出第二次提价的价钱为100(1+x )2元,根据两次提价后的价钱为121元,列出关于x 的方程.解答: 解:设平均每次提价的百分率为x ,根据题意得:100(1+x )2=121,故选:D .点评: 此题考查了一元二次方程的应用,属于平均增长率问题,一般情况下,假设基数为a ,平均增长率为x ,增长的次数为n (一般情况下为2),增长后的量为b ,则有表达式a (1+x )n =b ,类似的还有平均降低率问题,注意区分“增”与“减”.10.一个多边形有9条对角线,则这个多边形有多少条边( )A . 6B . 7C . 8D . 9考点: 多边形的对角线.分析: 可根据多边形的对角线与边的关系列方程求解.解答: 解:设多边形有n 条边,则=9,解得n1=6,n2=﹣3(舍去),故多边形的边数为6.故选:A.点评:这类根据多边形的对角线,求边数的问题一般都可以化为求一元二次方程的解的问题,求解中舍去不符合条件的解即可.二、填空题(本题共32分,每小题4分)11.若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为±.考点:一元二次方程的解.分析:方程的解就是能使方程左右两边相等的未知数的值,把x=2代入方程,即可得到一个关于a的方程,即可求得a的值.解答:解:把x=2代入方程x2﹣x﹣a2+5=0得:4﹣2﹣a2+5=0,解得:a=±.故答案为:±.点评:本题主要考查了方程的解得定义,是需要掌握的基本内容.12.如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值X围是c>9 .考点:根的判别式.分析:根据关于x的一元二次方程没有实数根时△<0,得出△=(﹣6)2﹣4c<0,再解不等式即可.解答:解:∵关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,∴△=(﹣6)2﹣4c<0,即36﹣4c<0,解得:c>9.故答案为:c>9.点评:本题考查了一元二次方程的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.13.将两个形状相同的三角板放置在一X矩形纸片上,按图示画线得到四边形ABCD,则四边形ABCD 的形状是等腰梯形.考点:等腰梯形的判定.分析:一组对边平行,一组对边不平行的是梯形,两底角相等的梯形是等腰梯形,因为放在一X 矩形纸上可先判断出是梯形,然后证明两底角相等.解答:解:∵放置在一X矩形纸片上,∴AD∥BC,AB和DC不平行,∴四边形ABCD是梯形.∵∠ABC=∠EDC,∠BCD=∠EDC,∴∠ABC=∠DCB,∴四边形ABCD是等腰梯形.故答案为:等腰梯形.点评:本题考查梯形的概念和等腰梯形的判定,一组对边平行,另一组对边不平行的四边形是梯形,底角相等的梯形是等腰梯形,本题先判定是梯形,再判定是等腰梯形.14.已知关于x的一元二次方程的一个根是1,写出一个符合条件的方程:x2=1(答案不唯一).考点:一元二次方程的解.专题:开放型.分析:由于方程有一个根是1,并且是一元二次方程,所以答案不唯一,但一定有一个因式是(x ﹣1).解答:解:∵关于x的一元二次方程的一个根是1,∴方程有很多,例如x2﹣x=0.故答案为:x2=1(答案不唯一).点评:此题是开放性试题,答案不唯一,主要考查的是一元二次方程的根即方程的解的定义.15.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是 1 m(可利用的围墙长度超过6m).考点:一元二次方程的应用.专题:几何图形问题.分析:设垂直墙的篱笆的长为x,那么平行墙的篱笆长为(6﹣2x),(6﹣2x)和x就是鸡场的长和宽.然后用面积做等量关系可列方程求解.解答:解:设AB长为x米,则BC长为(6﹣2x)米.依题意,得x(6﹣2x)=4.整理,得x2﹣3x+2=0.解方程,得x1=1,x2=2.所以当x=1时,6﹣2x=4;当x=2时,6﹣2x=2(舍去).答:AB的长为1米.故答案为:1.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题是用6米的篱笆围成三个边.16.(4分)一组数据3、4、5、a、7的平均数是5,则它的方差是 2 .考点:方差.分析:先由平均数的公式计算出a的值,再根据方差的公式计算.解答:解:由题意得:a=5×5﹣(3+4+5+7)=6∴数据的方差S2=[(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故答案为:2.点评:本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.(4分)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为10 .考点:根与系数的关系.专题:阅读型.分析:根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据,代入数值计算即可.解答:解:由题意知,x1+x2=﹣=﹣6,x1x2=3,所以==10.点评:本题考查了代数式变形,难度中等,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.(4分)如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.考点:梯形;平行四边形的判定.专题:动点型.分析:分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.解答:解:∵E是BC的中点,∴BE=CE=BC=×12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CE﹣CQ=6﹣2t,∴4﹣t=6﹣2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CQ﹣CE=2t﹣6,∴4﹣t=2t﹣6,解得:t=,∴当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2或.点评:此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解方程(本题共10分)19.(5分)解方程:(2x+3)2﹣2x﹣3=0.考点:解一元二次方程-因式分解法.分析:通过提取公因式(2x+3)对等式的左边进行因式分解.解答:解:原方程化为(2x+3)2﹣(2x+3)=0.提取公因式(2x+3)(2x+3﹣1)=0.即 2(2x+3)(x+1)=0.解得,x2=﹣1.点评:本题考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20.(5分)用配方法解方程:2x2+1=3x.考点:解一元二次方程-配方法.专题:计算题.分析:首先把方程的二次项系数变成1,然后方程两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.解答:解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.点评:配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a ≠0)的形式,然后再配方求解.四、解答题(本题共28分)21.(5分)(根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:时间分组(小时)频数(人数)频率100.5≤t<1101.5≤t<25合计 1请你将频数分布表和频数分布直方图补充完整.考点:频数(率)分布直方图;频数(率)分布表.专题:图表型.分析:首先根据所有频率之和为1求出未知的那个小组的频率,然后根据表格中已知的一组数据可以求出抽样调查的总人数,然后分别乘以各个所求小组的频率,就可以求出所有未知小组的频数,最后即可补全频数分布直方图.解答:解:依题意得2≤t<2.5小组的频率为:1﹣0.2﹣0.4﹣0.2﹣0.1=0.1,根据0≤t<0.5这组数据可得抽样调查的总人数为10÷0.2=50人,∴50×0.4=20人,50×0.1=5人,∴频数分布表和频数分布直方图补充如图所示:时间分组(小时)频数(人数)频率10200.5≤t<1101.5≤t<2 55合计 50 1点评:本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力,根据表格和图形的信息是解决问题的关键.22.(5分)己知一元二次方程x2﹣3x+m﹣1=0.(1)若方程有两个不相等的实数根,某某数m的取值X围;(2)若方程有两个相等的实数根,求此时方程的根.考点:根的判别式.分析:(1)方程有两个不相等的实数根,即△>0,即可求得关于m的不等式,从而得m的X围;(2)方程有两个相等的实数根,当△=0时,即可得到一个关于m的方程求得m的值.解答:解:△=(﹣3)2﹣4(m﹣1),(1)∵方程有两个不相等的实数根,∴△>0,解得m<.(2)∵方程有两个相等的实数根,∴△=0,即9﹣4(m﹣1)=0解得m=∴方程的根是:x1=x2=.点评:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.(6分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:等量关系为:矩形面积﹣四个全等的小正方形面积=矩形面积×80%,列方程即可求解.解答:解:设小正方形的边长为xcm,由题意得10×8﹣4x2=80%×10×8,80﹣4x2=64,4x2=16,x2=4.解得:x1=2,x2=﹣2,经检验x1=2符合题意,x2=﹣2不符合题意,舍去;所以x=2.答:截去的小正方形的边长为2cm.点评:读懂题意,找到合适的等量关系是解决本题的关键,实际问题中需注意负值应舍去.24.(6分)如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形.考点:等腰梯形的性质;等边三角形的判定;含30度角的直角三角形.专题:证明题.分析:根据梯形的两腰平行和等腰梯形的性质证得2CB=BD,然后证明∠BDE=60°,利用有一个角为60°的等腰三角形为等边三角形来证明等边三角形.解答:证明:∵DC∥AB,AD=BC,∠A=60°,∴∠A=∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=30°,∵DC∥AB,∴∠BDC=∠ABD=30°,∴∠CDB=∠D BE∴∠CBD=∠CDB,∴CB=CD,∵CF⊥BD,∴F为BD的中点,∵DE⊥AB,∴DF=BF=EF,由∠ABD=30°,得∠BDE=60°,∴△DEF为等边三角形.点评:本题考查了等腰梯形的性质及等边三角形的判定方法,等边三角形最常用的判定方法是有一个角是60°的等腰三角形是等边三角形.25.(6分)阅读理解:方程ax2+bx+c=0(a≠0)的根是x=.方程y2+by+ac=0的根是x=.因此,要求ax2+bx+c=0(a≠0)的根,只要求出方程y2+by+ac=0的根,再除以a就可以了.举例:解方程72x2+8x+=0.解:先解方程y2+8y+72×=0,得y1=﹣2,y2=﹣6.∴方程72x2+8x+=0的两根是x1=,x2=.即x1=﹣,x2=﹣.请按上述阅读理解中所提供的方法解方程49x2+6x﹣=0.考点:解一元二次方程-公式法.专题:阅读型.分析:根据阅读材料中的方法计算即可求出解.解答:解:先解方程y2+6y﹣49×=0,即y2+6y﹣7=0,分解因式得:(y﹣1)(y+7)=0,解得:y1=1,y2=﹣7,∴方程49x2+6x﹣=0解为:x1=,x2=﹣.点评:此题考查了解一元二次方程﹣公式法,弄清题中的方法是解本题的关键.。

北京市大兴区2013-2014学年八年级下期末数学试题及答案

北京市大兴区2013-2014学年八年级下期末数学试题及答案

2013-2014学年第二学期大兴区初二数学期末试题一、选择题(本题共30分,每小题3分)下列每小题的四个选项中,只有一个是正确的.请将1-8各小题正确选项前的字母填写在下表相应题号下面的空格内.1.方程的解的情况是A. B. C. D. 以上答案都不对2 .等腰梯形的两底之差等于腰长,则腰与下底的夹角为A.120°. B.60°C.45°D.30°3..将方程配方后,原方程变形为A. B. C. D.4.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的的中位数大于乙运动员得分的的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定5.下列命题中,真命题是A.有两边相等的平行四边形是菱形. B.有一个角是直角的四边形是直角梯形.C.四个角相等的菱形是正方形. D.两条对角线相等的四边形是矩形.6.若一元二次方程有实数解,则m的取值范围是A. B.C. D.7.为了了解某校八年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以次数人数2015105下同),请根据统计图计算成绩在20~30次的频率是A. 0.4B.0.5C 0.6 D. 0.78.梯形的上底长为6cm,过上底一个顶点引一腰的平行线,交下底所得的三角形的周长是19cm,那么这个梯形的周长等于A.31cmB.28cmC.25cmD.19cm9.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是,根据题意,下面列出的方程正确的是A. B.C. D.10.一个多边形有9条对角线,则这个多边形的边数是A. 6B. 7C. 8D.9二填空题(本题共32分,每小题4分)11.若x=2是关于x的方程的一个根,则a 的值为______.12.如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是.13.将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD,则四边形ABCD的形状是.14. 已知关于的一元二次方程的一个根是1,写出一个符合条件的方程: .15.如图,邻边不等..的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是m(可利用的围墙长度超过6m).16.一组数据3、4、5、、7的平均数是5,则它的方差是.17.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-,x1·x2=.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则+的值为.18.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.三、解方程(本题共10分)19.(本小题5分)解方程:.20.(本小题5分)用配方法解一元二次方程:..四、解答题(本题共28分)21.(本小题5分)根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:频数分布表:时间分组(小时)频数(人数)频率﹤0.5 10 0.2﹤1 0.4﹤1.5 10 0.2﹤2 5 0.1﹤2.5 5合计 1请你将频数分布表和频数分布直方图补充完整.答案:时间分组(小时)频数(人数)频率﹤0.5 10 0.2﹤1 20 0.4﹤1.5 10 0.2﹤2 5 0.1﹤2.5 5 0.1合计50 122.(本小题5分)己知一元二次方程.(1)若方程有两个不相等的实数根,求实数的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.23.(本小题6分)已知:如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)

XXX 2014-2015学年八年级下学期期末数学试卷(含答案)XXX2014-2015学年度下学期期末质量监测八年级数学试卷一、选择题:本大题共12个小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列根式中,是最简二次根式的是()A。

$\frac{1}{2}$ $\sqrt{2}$ B。

3 $\sqrt{2}$ C。

8 D。

12 $\sqrt{2}$2.下列计算正确的是()A。

3+2=5 B。

3×2=6 C。

12-3=9 D。

8÷2=43.下列各点在函数y=2x的图象上的是()A。

(2,-1) B。

(-1,2) C。

(1,2) D。

(2,1)4.下列各数组中,能作为直角三角形三边长的是()A。

1,1,2 B。

2,3,4 C。

2,3,5 D。

3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A。

甲比乙的成绩稳定 B。

乙比甲的成绩稳定 C。

甲、乙两人的成绩一样稳定 D。

无法确定谁的成绩更稳定6.如图,矩形ABCD中,∠AOD=120,AB=3,则BD的长是()A。

$\sqrt{33}$ B。

6 C。

4 D。

$\sqrt{23}$7.若(-4,y1),(2,y2)两点都在直线y=-2x-4上,则y1与y2的大小关系是()A。

y1>y2 B。

y1=y2 C。

y1<y2 D。

无法确定8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB的长为()A。

4cm B。

5cm C。

6cm D。

8cm9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A。

4cm B。

5cm C。

6cm D。

8cm10.为了解某班学生每天使用零花钱的情况,XXX随机调查了该班15名同学,结果如下表:人数。

06.2012-2013年北京市丰台区初二数学第一学期期末试题及答案

06.2012-2013年北京市丰台区初二数学第一学期期末试题及答案

2012~2013年丰台区初二数学期末练习一、选择题(本题共24分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的. 1. 若二次根式2-x 有意义,则x 的取值范围是A.0>xB.0≥xC. 2>xD. 2≥x 2. 下列图形中,是轴对称图形的是A B C DA. B. C. D.3. 如果分式xx x )1(+的值为零,那么x 的值是A.0=xB. 1=xC. 1-=xD. 0=x 或1-=x 4. 若a 为实数,则“二次根式20a ≥”这一事件是A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件 5. 如图,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于点D ,若3cm CD =, 则点D 到AB 的距离是( )A .5cm B.4cm C.3cm D.2cm6. 在等腰ABC ∆中,已知AB=2BC ,AB=20,则ABC ∆的周长为A. 40B. 50C. 40或50D. 无法确定7. 下列命题是真命题的是A. 周长相等的锐角三角形都全等B. 周长相等的直角三角形都全等C. 周长相等的钝角三角形都全等D. 周长相等的等腰直角三角形都全等8. 同学们知道,每一个实数都可以用数轴上唯一的一个点表示;反过来,数轴上的每一个点都表示唯一的一个实数.如图,数轴上表示1、3的对应点分别为A 、B ,若点A 、B 关于直线l 对称,则直线l 与数轴的交点所表示DB的实数是A. 32-B. 132-C.213+ D. 213-二、填空题(本题共25分,9题~15题,每小题3分,16题4分)9. 若式子42-x x 有意义,则x 的取值范围是__________.10. 计算:31-=__________.11. 计算:=-3)2(yx ___________.12. 2的平方根是____________.13. 有5张形状、大小、质地均相同的卡片,正面分别印有点的坐标(2,1)(3,1)(1,2)(1,2)(3,1)-----、、、、. 正面朝下,洗匀后随机抽取一张,点坐标落在第二象限的可能性大小是____________.14. 比较大小:415-________41.(填“>”号或“<”号)15. 如图,在平面直角坐标系中,A(3,0),B(0,4),以AB 为腰作等腰ABC ∆.请写出点C 在y 轴上时的坐标_______________________.16. 一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):word 格式-可编辑-感谢下载支持则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .(n 为正整数)三、解答题(本题共18分,17题4分,18~19题,每小题5分,20题4分)17. 计算:312)36(210÷+- .18. 计算:11112---÷-a aa a a .19. 解分式方程:12423=---x xx .20. 已知02=+y x ,求)(2222y x yxy x yx -⋅+-+的值.四、解答题(本题共10分,每小题5分)21.已知:如图, BC EF ⊥于点F ,AB ED ⊥于点D 交BC 于点M ,BD =EF . 求证:BM =EM .22. 如图,小明家有一块钝角三角形菜地,量得其中的两边长分别为AC=50m 、 BC=40m ,第三边AB 上的高为30m ,请你帮助小明计算这块菜地的面积.(结果保留根号)A五、解答题(本题共11分,23题6分,24题5分)23. 有两个盒子,分别装有若干个除颜色外都相同的球,第一个盒子装有4个红球和6个白球,第二个盒子装有6个红球和6个白球.分别从这两个盒子中各摸出1个球,请你通过计算来判断从哪一个盒子中摸出白球的可能性大.24. 列分式方程解应用题:(温馨提示:你可借助图示、表格等形式“挖掘”等量关系)赵老师为了响应市政府“绿色出行”的号召,上下班由自驾车方式改为骑自行车方式.已知赵老师家距学校20千米,上下班高峰时段,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多95小时.求自驾车速度和自行速度各是多少.六 、解答题(本题共12分,每小题6分)25. 如图,在ABC ∆中,已知AB=BC=CA ,AE=CD ,AD交于点P ,AD BQ ⊥于点Q ,求证:BP=2PQ .26. 阅读下列材料:如图,在四边形ABCD 中,已知105=∠=∠BAD ACB ,45=∠=∠ADC ABC .求证:CD=AB.小刚是这样思考的:由已知可得, 30=∠CAB ,75=∠DAC , 60=∠DCA , 180=∠+∠DAC ACB ,由求证及特殊角度数可联想到构造特殊三角形.即过点A 作AB AE ⊥交BC 的延长线于点E ,则AB=AE ,D E ∠=∠.在ADC ∆与CEA ∆中, 75∠=∠⎧⎪∠=∠=⎨⎪=⎩∵D EDAC ECA AC CA ADC CEA ∆∆∴≌, 得AB AE CD ==.请你参考小刚同学思考问题的方法,解决下面问题: 如图,在四边形ABCD 中,若 180=∠+∠CAD ACB ,D B ∠=∠, 请问:CD 与AB 是否相等?若相等,请你给出证明;若不相等,请说明理BCB由.一、选择题二、填空题9. 4 x ≠ 10. 1- 11. 338 x y- 12. 13. 2 514. > 15.()()() 0,1,0,9,0,4-- 16. 322,2,291-+-n n n三、解答题(本题共18分,17题4分,18~19题,每小题5分,20题4分) 17.计算312)36(210÷+- 解:原式12=+3分 2=+…………………4分 18.计算:11112---÷-a aa a a 解:原式=()()11111a a a a a a ÷--+--………………1分 1)1)(1(11---+⋅-=a aa a a a ………………2分 11--+=a aa a ……………………………3分 )1()1(122----=a a a a a a ………………………4分)1(1--=a a …………………………………5分B A D 19.解分式方程:12423=---x xx 解:公分母为 )2(2-x …………………1分 去分母,得 3-2x=2x-4 …………2分 整理,得 4x=7 …………3分47=x ………………4分经检验,47=x 是原方程的解………5分∴原方程的解是 47=x20.已知02=+y x ,求)(2222y x yxy x yx -⋅+-+的值. 解:原式)()(22y x y x yx -⋅-+=……………………1分yx yx -+=2………………………………2分 当02=+y x 时,y x 2-=………………3分∴原式124=--+-=yy yy ……………………4分四、解答题(本题共10分,每小题5分)21. 已知:已知:如图, BC EF ⊥于点F ,AB ED ⊥于点D 交BC 于点M ,BD =EF .求证:BM =EM .证明:∵AB ED ⊥于点D ,BC EF ⊥于点F ∴∠BDM=∠MFE=90°…………………………1分在△BDM 和△EFM 中12BDM MFE BD EF ∠=∠⎧⎪∠=∠⎨⎪=⎩ ………………………………2分∴△BDM ≌△EFM (AAS )……………………3分∴BM =EM (全等三角形对应边相等)…………4分理由1分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C丰台区2013—2014学年度第二学期期末统考初 二 数 学 2014年7月一、选择题(共24分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的. 1.函数y =中自变量x 的取值范围是A .2x ≠B .2x ≤C .2x >D .2x ≥ 2.五边形的内角和为A .180°B .360°C .540°D .720°3.在平面直角坐标系中,点A (1,2)关于x 轴对称的点的坐标是 A .(1,2) B .(1,-2) C .(-1,2) D .(-1,-2) 4. 下列图形中,既是中心对称图形又是轴对称图形的是A .等边三角形B .平行四边形C .等腰梯形D .矩形 5.已知2x =是一元二次方程2+80x mx -=的一个解,则m 的值是A .2B .2-C .4-D .2或4-6.某工厂由于管理水平提高,生产成本逐月下降. 原来每件产品的成本是1600元,两个月后,降至900元.如果产品成本的月平均降低率是x ,那么根据题意所列方程正确的是A .1600(1)900x -=B .900(1)1600x +=C .21600(1)900x -=D .2900(1)1600x += 7. 10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为2S 甲,2S 乙,则下列关系中完全 正确的是A .x x =甲乙,22S S >乙甲 B .x x =甲乙,22S S<乙甲C .x x >甲乙,22S S>乙甲 D .x x <甲乙,22S S<乙甲8.如图,菱形ABCD 中,AB =2,∠B =120°,点M 是AD 的中点,点P 由点A 出发,沿A →B →C →D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是AB C D二、填空题(共18分,每小题3分)9.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果BC =8,那么DE = .10. 某地未来7日最高气温走势如图所示,那么这组数据的极差为 °C .11. 如图,在菱形ABCD 中,AC ,BD 是对角线,如果∠BAC =70°,那么∠ADC 等于 . 12. 如果把代数式x 2-2x+3化成2()x h k -+的形式,其中h ,k 为常数,那么h +k 的值是 . 13. 如图,在梯形ABCD 中,AD ∥BC ,如果∠ABC =60º,BD 平分∠ABC ,且BD ⊥DC ,CD =4, 那么梯形ABCD 的周长是 . 14.如图,在平面直角坐标系中有一个边长为1的正方形OABC ,边OA ,OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形11OBB C ,再以对角线1OB 为边作第三个正方形122OB B C ,……,照此规律作下去,则点2B 的坐标为_________;点2014B 的坐标为_________. 三、解答题(共20分,每小题5分) 15.解方程:2450x x --=.16. 如图,将△ABC 置于平面直角坐标系中,点A (-1,3),B (3,1),C (3,3).(1)请作出△ABC 关于原点O 的中心对称图形△A ’B ’C ’;(点A 的对称点是点A ’, 点B 的对称点是点B ’, 点C 的对称点是点C ’)(2)判断以A ,B ’,A ’ ,B 为顶点的四边形的形状,并直接写出这个四边形的周长.ED CBA A BCDDCBA17. 已知一次函数112y x =+的图象与x 轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)过B 点作直线B P 与x 轴交于点P ,且使△A B P 的面积为2,求点P 的坐标.18.已知:如图,点E ,F 是□ABCD 中AB ,DC 边上的点,且AE =CF ,联结DE ,BF .求证:DE =BF .四、解答题(共24分,每小题6分)19. 已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.20.为了解某校学生的身高情况,随机抽取该校若干名学生测量他们的身高,已知抽取的学生中,男生、女生的人数相同....,利用所得数据绘制如下统计图表: 身高分组表 女生身高频数分布表 男生身高频数分布直方图ABCD EF请根据以上图表提供的信息,解答下列问题:(1)在女生身高频数分布表中:a= ,b= ,c= ;(2)补全男生身高频数分布直方图;(3)已知该校共有女生400人,男生380人,请估计身高在165≤x<170之间的学生约有多少人.21.为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过180立方米的部分按每立方米5元收费;超过180立方米不超过260立方米的部分按每立方米7元收费;超过260立方米的部分按每立方米9元收费.(1)设每年用水量为x立方米,按“阶梯水价”应缴水费y元,请写出y(元)与x(立方米)之间的函数解析式;(2)明明家预计2015年全年用水量为200立方米,那么按“阶梯水价”收费,她家应缴水费多少元?22.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长;(2)求四边形OFCD的面积.EO F D CB A五、解答题(共14分,每小题7分)23. 如图,在平面直角坐标系xOy 中,直线1l 与x 轴交于点A (3-,0),与y 轴交于点B ,且与直线2l :43y x =的交点为C (a ,4) . (1)求直线1l 的解析式;(2)如果以点O ,D ,B ,C 为顶点的四边形是平行四边 形,直接写出点D 的坐标;(3)将直线1l 沿y 轴向下平移3个单位长度得到直线3l ,点P (m ,n )为直线2l 上一动点,过点P 作x 轴的垂线, 分别与直线1l ,3l 交于M ,N.当点P 在线段..MN 上时,请直接写出m 的取值范围.24.把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.丰台区2013—2014学年度第二学期期末 初二数学试题答案及评分参考 2014年7月二、填空题(共18分,每小题3分)15.解方程:2450x x --=.解:5)(1)0x x -+=(,------- 2分 ∴50x -=或10x +=.∴125, 1.x x ==- ------- 5分 16.解:(1)如右图: ------- 3分(2)正方形; ------- 5分17.解:(1)令y =0,则x =-2;令x =0,则y =1; ∴A 点坐标为(-2,0);B 点坐标为(0,1).(2)∵△ABP 的面积为2,∴122OB AP ⨯=. ------- 3分又∵OB =1,∴AP =4. ∴点P 的坐标为(-6,0),(2,0). ------- 5分18.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD . ------- 2分∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF . ------- 3分 ∴四边形DEBF 是平行四边形. ------- 4分 ∴DE =BF . ------- 5分 其他证法相应给分.四、解答题(共24分,每小题6分)19.解:(1)∵方程04222=-++k x x 有两个不相等的实数根,∴()2=24240k D -->. ------- 2分∴52k <. ------- 3分 (2)∵k 为正整数,∴=1,2k . ------- 4分当=1k 时,原方程为 2220x x +-=,此方程无整数根,不合题意,舍去. ------- 5分 当=2k 时,原方程为 220x x +=,解得,1202x x ==-,. 符合题意. 综上所述,=k 2.------- 6分20. 解:(1)a =0.20,b =40,c =6,------- 3分 ABCD EF(3)84000.15+380=60+76=13640创(人), ∴身高在165≤x <170之间的学生约有136人. ------- 6分 21.解:(1)当0180x# 时,5y x =; ------- 1分当180260x <?时,()5180+7180y x =?,即7360y x =-; -------2分 当260x >时,()()5180+72601809260y x =创-+-,即9880y x =-.综上所述, ()()()5018073601802609880260.x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩;;-------4分 (2)当=200x 时,736072003601040y x =-=?=(元). ∴按“阶梯水价”收费,她家应缴水费1040元. -------6分22.解: (1)∵四边形ABCD 是矩形,∴∠BAD =90°,∴∠EAD =180°—∠BAD =90°. 在Rt △EAD 中,∵AE =6,AD =8,∴10DE . -------1分∵DE ∥AC ,AB ∥CD ,∴四边形ACDE 是平行四边形. ∴AC =DE =10. -------2分在Rt △ABC 中,∠ABC =90°,∵OA =OC ,∴152BO AC ==. -------3分∵BF =BO ,∴BF =5. -------4分 (2)过点O 作OG ⊥BC 于点G ,∵四边形ABCD 是矩形, ∴∠BCD =90°,∴CD ⊥BC .∴OG ∥CD .∵OB =OD ,∴BG =CG ,∴OG 是△BCD 的中位线. -------5分 由(1)知,四边形ACDE 是平行四边形,AE =6,∴CD =AE =6.∴132OG CD ==. ∵AD =8,∴BC =AD =8.∴1242BCD S BC CD D =鬃= , 11522BOF S BF OG D =鬃=. ∴332BCD BOF OFCD S S S D D =-=四边形 . -------6分 其他证法相应给分.五、解答题(共14分,每小题7分) 23.解:(1)∵直线2l :43y x =经过点C (a ,4), ∴44a =, ∴3a =. ------- 1分 EOFDCBAG∴点C (3,4).设直线1l 的解析式为y kx b =+,∵直线1l 与x 轴交于点A (3-,0),且经过点C (3,4), ∴30,3 4.k b k b -+=⎧⎨+=⎩,∴ 232.k b ,⎧=⎪⎨⎪=⎩ ∴直线1l 的解析式为223y x =+. ------- 2分 (2)点D 的坐标是(3,2),(3,6)或(3-,2-). ------- 5分(3)332x -# . ------- 7分25.解:(1)MA =MN 且MA ⊥MN . ------- 2分(2)(1)中结论仍然成立. ------- 3分 证明:联结DE ,∵四边形ABCD 是正方形,∴AB =BC =CD =DA ,∠ABC =∠BCD =∠CDA =∠DAB =90°. 在Rt △ADF 中,∵M 是DF 的中点,∴12MA DF MD MF ===.∴∠1=∠3.∵N 是EF 的中点,∴MN 是△DEF 的中位线.∴12MN DE =,MN ∥DE . ------- 4分∵△BEF 为等腰直角三角形, ∴BE =BF ,∠EBF =90°.∵点E ,F 分别在正方形的边CB ,AB 的延长线上, ∴AB BF CB BE +=+ ,即AF =CE . ∴△ADF ≌△CDE . ------- 5分 ∴DF =DE ,∠1=∠2.∴MA =MN ,∠2=∠3. ------- 6分 ∵∠2+∠4=∠ABC =90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°—(∠3+∠5)=90°. ∴∠7=∠6=90°,MA ⊥MN . ------- 7分 其他证法相应给分.7654321DANMEBCF。

相关文档
最新文档