函数的概念导学案

合集下载

《指数函数的概念 》导学案

《指数函数的概念 》导学案

任务一: 阅读课本111页—113页的内容,回答下列问题探究指数函数的定义问题1: 阅读课本,第111页至112页,分析A 、B 两地景区游客人次y 与年份x 的变化规律。

A 地景区的游客人次近似______,______(填“年增长量”或“年增长率”)是一个常数;B 地景区的游客人次是非线性增长,________ (填“年增长量”或“年增长率”)越来越大,但其__________(填“年增长量”或“年增长率”)都约0.11,是一个常数。

问题2:阅读课本,第111页至112页,分析A 、B 两地景区游客人次y 与年份x 的对应关系。

A 地景区的游客人次年增长量相等,故游客人次自2001年后增加量记为y ,则y 与年份x 的对应关系可表示为_________________________,是一个 函数。

B 地景区的游客人次年增长率相等,故游客人次为2001年的倍数记为y ,则y 与年份x 的对应关系可表示为__________________________,是一个函数,其中指数x 是自变量。

问题3:阅读课本,第113页,可知,生物体内碳14含量y 与死亡年数x 的对应关系可表示为__________________________,是一个函数,其中 (填“指数”、“底数”或“幂”)x 是自变量。

如用字母a 代替函数 1.11(0)x y x =≥中的常数1.11与函数y =[(12)15730]x (0x ≥)中的常数(12)15730,以上两个函数的解析式都可以表示为 的形式,其中 (填“指数”、“底数”或“幂”)x 是自变量,底数a 是一个大于0且不等于1的常量。

知识一.指数函数的定义一般地,函数 叫做指数函数,其中 是自变量,定义域是 。

思考:1.指数函数的结构特征:(1)解析式中x a 的系数为 ;(2)底数 a 是,满足 ; (3)自变量 x 是 且 x. 2.为什么指数函数y =a x 的底数规定大于0,且不等于1?提示:(1)如果a <0,如y =(-4)x ,当x =14,12时,函数无意义. (2)如果a =0,y =0x ,当x >0时,,0x =0;当x ≤0时,0x 无意义.(3)如果a =1,y =1x =1,是一个常函数,没有研究的必要.为了避免上述各种情况,所以规定a >0,且a ≠1.任务二:用所学知识解决问题题型一:指数函数的概念例1.下列函数中,哪些是指数函数?(1)y =10x ; (2) y =2x +1 (3)y =-4x ; (4)y =x α(α是常数).(5)y =x 3 (6)y =3·2x (7)y =3-x (8) y =x x (x >0) 练习1.若函数x a y )12(-=是指数函数,则a 的取值范围为______.2.若函数f(x)=(a 2-3a +3)a x 是指数函数,求a 的值。

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

【新教材】3.1.1 函数的概念(人教A版)1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

一、预习导入阅读课本60-65页,填写。

1.函数的概念(1)函数的定义:设A,B是,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域:函数y=f(x)中,x叫做,叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.2.区间概念(a,b为实数,且a<b)3.其它区间的表示1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示. ( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞]. ( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合. ( ) 2.函数y =1x +1的定义域是 ( )A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0) 3.已知f (x )=x 2+1,则f ( f (-1))= ( ) A .2 B .3 C .4 D .5 4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.跟踪训练五1.求下列函数的值域: (1)y = √2x +1 +1;(2)y =1−x 21+x 2.1.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},由下列图形给出的对应f 中,不能构成从A 到B 的函数有( )个A.1个B.2个C.3个D.4个2.函数()2121f x ax x =++的定义域为R ,则实数a 的取值范围为( )A .a >1B .0<a <1C .a <0D .a <13.函数f (x )=√x−1x+3的定义域为 A .{x|1≤x <3或x >3} B .{x|x >1} C .{x|1≤x <2} D .{x|x ≥1}4.已知函数f (2x +1)的定义域为(−2,0),则f (x )的定义域为( ) A.(−2,0)B.(−4,0)C.(−3,1)D.(−12,1)5.下列各组函数中,()f x 与()g x 相等的是( )A .()()2,2f x x g x x =-=-B .()()32,f x x g x ==C .()()22,2x f x g x x x=+=+D .()()22,1x x x f x g x x x-==- 6.集合A ={x |x ≤5且x ≠1}用区间表示____________.7.已知函数8()2f x x =-(1)求函数()f x 的定义域; (2)求(2)f -及(6)f 的值. 8.求下列函数的值域: (1)f (x )=211x x -+;(2)f (x )=x .答案小试牛刀1.(1)× (2) × (3)√ (4)× (5 )× 2.C 3.D4. (1)[10,100] (2)(1,+∞) 自主探究 例1 【答案】D 跟踪训练一【答案】C 例2 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 跟踪训练二【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 例3 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 跟踪训练三【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3).例4【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 跟踪训练四【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 例5【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.跟踪训练五【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 当堂检测1-5.CADCD 6.(,1)(1,5]-∞7.【答案】(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f = 【解析】(1)依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞. (2)()8223122f -=+-+=---,()8663562f =+=-. 8. 【答案】(1)(–∞,2)∪(2,+∞); (2)[–54,+∞). 【解析】(1)因为f (x )=()2131x x +-+=2–31x +,所以f (x )≠2, 所以函数f (x )的值域为(–∞,2)∪(2,+∞).(21x +(t≥0),则x=t 2–1,所以y=t 2–t –1(t≥0). 因为抛物线y=t 2–t –1开口向上,对称轴为直线t=12∈[0,+∞),所以当t=12时,y取得最小值为–54,无最大值,所以函数f(x)的值域为[–54,+∞).。

3.1.1 第2课时 函数的概念(二)

3.1.1   第2课时 函数的概念(二)
定义域为R,定义域和对应关系与y=x+1相同,为同一函数,故C正确;y=
的定义
x−1
域为{x∈R|x≠1},与函数y=x+1的定义域不同,不是同一函数,故D错误.
返回导航
1
1
2
4 . 已 知 f(x) =
(x≠ - 1) , g(x) = x + 2 , 若
1+x
f g x
=4,则x=
________.
(2)因为36=22×32,则f(36)=f(22×32)=f(22)+f(32),
再次利用f(ab)=f(a)+f(b)求解即可.
返回导航
03.课后检测案 (19)
返回导航
基础强化
1.(5分)不等式(x+2)(x-3)>0的解集用区间表示为(
A.(-∞,-2)
B.(3,+∞)
C.(-2,3)
D.(-∞,-2)∪ 3, + ∞
值域也相同,都是[0,4],但它们不是同一个函数.
返回导航
【即时练习】 下列函数中哪个与函数y=x是同一个函数(
A.y=

2
3
B.y= 3
C.y= 2
)
2
D.y=

答案:B
解析:对于A,函数的定义域为{x|x≥0},两个函数的定义域不同;对于B,函
数的定义域为R,两个函数的定义域和对应关系相同,是同一函数;对于C,函
故C错误;对于D,f(x)的定义域为[1,+∞),g(x)的定义域为(-∞,
-1]∪ 1, + ∞ ,定义域不相同,故D错误.
返回导航
学习目标三
例3
求函数的值
1
已知f(x)= (x∈R,x≠-1),g(x)=x2+2(x∈R).

函数的概念及其表示(4)导学案 高一上学期数学人教A版(2019)必修第一册

函数的概念及其表示(4)导学案 高一上学期数学人教A版(2019)必修第一册

3.1 函数的概念及其表示(4)【学习目标】1.会求解一些函数概念的综合应用题(数学运算)2.了解函数概念问题中含参问题的解题方法(逻辑推理、数学运算)【重点难点】重点:函数的概念及其应用难点:含参问题的求解课前基础自查:(1)下列对应关系是实数集上的函数的是( )A :f 把x 对应到13+xB :g 把x 对应到1+xC :h 把x 对应到xx 13+ D :r 把x 对应到13+x (2)下列那组函数是同一个函数( ) ①1)(,1)(2-=-=x x x g x x f ②42)()(,)(x x g x x f ==③1)(,1)(2-=-=xx x g x x f (3)求下列函数的定义域①43)(-=x x x f ②2)(x x f = ③1236)(2-+-=x x x f (4)已知253)(2+-=x x x f ,求)2(-f ,)(a f -,)3(+a f ,)3()(f a f +的值。

(5)若函数c bx x x f ++=2)(,且0)3(,0)1(==f f ,求)1(-f 的值。

题例选讲,能力提升1、 求抽象函数的定义域导问引领:若函数()f x 的定义域是[]1,3,那么(1)f x +中的x 能得3吗? 例题1.已知函数(1)f x +的定义域为[1,5],则函数(2)f x 的定义域为( ) A .[1,3]B .[1,4]C .[0,8]D .[2,6]例题2.若函数()21f x -的定义域为[]1,1-,则函数11f x y x -=- ) A .(]1,2-B .[]0,2C .[]1,2-D .(]1,2方法总结,新知升华:(1) 已知()f x 的定义域,求(())f g x 的定义域:若()f x 的定义域为[],a b ,则(())f g x 中()a g x b ≤≤,从中解出x 的取值集合即为(())f g x 的定义域;(2) 已知(())f g x 的定义域,求()f x 的定义域:若(())f g x 的定义域为[],a b ,即a xb ≤≤,求得()g x 的取值范围,即()g x 的值域即为()f x 的定义域;(3) 多个限制条件的函数定义域,求各个条件解集的交集。

高中数学《函数的概念》导学案

高中数学《函数的概念》导学案

第一章 集合与函数概集合 1.2.1 函数的概念一、学习目标1.理解函数的概念,了解构成函数的三要素;2.会判断给出的两个函数是否是同一函数;3.能正确使用区间表示数集,会求函数定义域、值域及函数相等的判断。

【重点、难点】重点:理解函数的概念,用区间符号正确表示数的集合;难点:对函数概念及符号y=f(x)的理解,求函数定义域和值域。

二、学习过程【情景创设】初中的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。

【导入新课】问题1:对教科书中第15页的实例(1),你能得出炮弹飞行1s,5s,10s,20s 时距地面多高吗?其中t 的取值范围是什么?(点拨:用解析式刻画变量之间的对应关系,关注t 和h 的范围)解:h(1)= ,h(5)= , h(10)= , h(20)= 炮弹飞行时间t 的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- (*)。

从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有唯一确定的高度h 和它对应。

问题2:对教科书中第15页的实例(2),你能从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞面积大约为2000万平方千米?其中t 的取值范围是什么?(点拨:用图像刻画变量之间的对应关系)。

例子(2)中数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。

函数的概念1

函数的概念1
迁安一中数学组导学案 上课时间 课 题 学习目标 上课班级 编写人 宓红宇 审核人 函数的概念(一) (1)通过丰富实例,学习用集合与对应的语言来刻画函数; (2)构成函数的三要素; 学习重点 学习难点 理解函数的模型化思想,用集合与对应的语言来刻画函数。 理解函数的模型化思想,用集合与对应的语言来刻画函数。 学习过 程 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义:在一个变化过程中,有两个变量 x 和 y,对于 x 的每一个确定的值, y 都有唯一的值与之对应,此时 y 是 x 的函数,x 是自变量,y 是因变量。 二、讲授新课: (一)函数的概念: 思考 1:(课本 P15)给出三个实例: A.一枚炮弹发射,经 26 秒后落地击中目标,射高为 845 米,且炮弹距地面高度 h(米)与 时间 t(秒)的变化规律是 h 130t 5t 。

函数的概念 ,值域是 。 。
2.构成函数的三要素: , 3.如何判断两个函数是否为同一函数?
2
三. 例题讲解:
2 例 1.已知函数 f ( x) x 2x 3 ,求 f(0)、f(1)、f(2)、f(-1)的值。
2 变式:求函数 y x 2x 3,
x {1,0,1,2} 的值域
f ( x) x 3
例 2.已知函数 (1).求函数的定义域;
1 x2,
2
x2 x2
,值域也是
(3)f ( x ) = x ;f ( x ) =(x 1) 五. 板书设计
(4)f ( x ) = | x | ;g ( x ) =
(2)二次函数 y ax bx c (a≠0)的定义域是 当 a﹤0 时,值域 。

函数(复习)导学案

函数(复习)导学案

函数总复习导学案备考攻略:函数及其图象是初中数学的重要内容.函数关联着丰富的几何知识,且与许多知识有深刻的内在联系,又是进一步学习的基础,所以,以函数为背景的问题,题型多变,可谓函数综合题长盛不衰,实际应用题异彩纷呈,图表分析题形式多样,开放、探索题方兴未艾,函数在中考中占有重要的地位. 函数与图象常用的数学思想有数形结合思想、分类讨论思想、函数与方程思想等.中考时常见的题型有图象信息题、代数几何综合题、函数探索开放题、函数创新应用题等.应用以上数学思想解决函数问题的题目是中考压轴题的首选.一、复习函数的概念及其表达式1、写出三种函数的解析式:一次函数:反比例函数: ① ② ③二次函数: ① ② ③ (留意各函数的最高次数和不同的表示形式) 2、 二、说出三种函数的图像: (1)一次函数:A B C D说出上面各图中k 和b 的符号练习:1、y=(m-1)x是正比例函数,则m= ,该函数的图像经过第 象限。

右图中函数表达式为: ( a,b 思考:这个函数中的与 α的关系:a bk结论:练习2:将一次函数y=2x+3往下平移5个单位所得到函数表达式为(2)、反比例函数:(k ≠0)反比例函数:(k ≠0)中k 的含义是:图像上的任意一点向两坐标引垂线所围成的矩形的面积。

(如图)S=│K │练习:1、 点A 为反比例函数图像上一点过点A 作 x 轴于点B ,连接OA, 则的面积为x ky =x ky =x y 4-=As2、函数, (a≠0)与y=a(x-1), (a≠0)在同一坐标系中的大至位置是( )A B C D2+bx+c(a,b,c 是常数,a≠0)图象C的交点位置xay=OAB例题:二次函数y=ax2+bx+c(a≠0)的图象如图3-4-1,下列结论:①b2-4ac>0;②4a+c>2b;③(a+c)2>b2;④ax2+bx≤a-b.其中结论正确的是________.练习1、一次函数y=ax+b(a≠0) 与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图像可能是()A B C D三、函数综合题如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0) ,C (2,3) 两点,与y 轴交于点N,其顶点为D。

3.1.1 函数的概念第一课时-【新教材】人教A版(2019)高中数学必修第一册导学案

3.1.1 函数的概念第一课时-【新教材】人教A版(2019)高中数学必修第一册导学案

§3.1.1 函数的概念导学目标:1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。

2.了解构成函数的要素,能求简单函数的定义域.(预习教材P59~ P66,回答下列问题)回忆:初中学习的函数概念是什么?设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,则称x是自变量,y是x的函数;其中自变量x的取值的集合叫做函数的定义域,和自变量x的值对应的y的值叫做函数的值域。

情景:请同学们考虑以下两个问题:①1y=是函数吗?②y x=和2xyx=是同一个函数吗?为了得到函数更准确的定义,我们一起看下面几个函数,回答相应的问题:问题一:某“复兴号”高速列车加速到350km后保持匀速运行半小时,这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为350S t=.①思考1:有人说:“根据对应关系350S t=,这趟列车加速到50/km t后,运行1h就前进了350km.”你认为这个说法正确吗?本题中,t和S是两个变量,而且对于t的每一个确定的值,S都有唯一确定的值与之对应,所以S是t的函数.第二章 一元二次函数、方程和不等式- 2 -问题二:某电气维修公司要求工人每周工作至少1天,至多不超过6天如果公司确定的工资标准是每人每天350元,而且每周付一次工资。

显然,工人一周的工资w (元)和他一周工作天数d (天)的关系可表示为350w d .②思考2:问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?问题三:下图是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻t 的空气质量指数的值I ?思考3:本题中变量I 是变量t 的函数吗?问题四:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。

高一数学导学案全套

高一数学导学案全套

高一数学导学案全套第一节:函数和方程的基本概念在高一数学学习中,函数和方程是重要的基础概念。

函数描述了两个变量之间的关系,方程则表示了一个等式。

下面将介绍函数和方程的基本概念及其应用。

一、函数的基本概念函数是指在数学中,一个变量的值与另一个变量的值之间存在唯一对应关系的规则。

通常用符号f(x)来表示函数,其中x为自变量,f(x)为函数值或因变量。

函数可以用图像、公式或描述性的语言表示。

1. 定义域和值域函数的定义域是自变量的取值范围,值域是函数值可能取得的范围。

例如,函数y = x²的定义域为实数集,值域为非负实数集。

2. 函数图像通过绘制函数图像,我们可以直观地看到函数的形状和特点。

函数图像是在坐标系中绘制的一条曲线,横坐标表示自变量,纵坐标表示函数值。

3. 奇偶性函数的奇偶性是指函数图像对称于坐标轴的特点。

若函数满足f(-x) = f(x),则称该函数为偶函数;若函数满足f(-x) = -f(x),则称该函数为奇函数。

二、方程的基本概念方程是数学中描述两个量相等关系的等式。

方程中包含未知数,通过求解方程,可以确定未知数的值。

1. 一元方程和二元方程一元方程只含有一个未知数,例如2x + 1 = 5。

二元方程含有两个未知数,例如x + y = 7。

2. 解和解集解是指使方程成立的未知数的值。

解集是所有满足方程的解的集合。

例如,方程2x + 1 = 5的解为x = 2,解集为{x = 2}。

3. 方程的解的判定通过将解代入方程中,可以判断一个值是否是方程的解。

若代入后等式成立,则该值为方程的解。

第二节:一元一次方程一元一次方程是非常基础且常见的方程类型。

在这一节中,我们将学习解一元一次方程的方法。

一、一元一次方程的定义一元一次方程是指方程中只含有一个未知数,且未知数的最高次数为1的方程。

一元一次方程的一般形式为ax + b = 0,其中a和b为已知数,a ≠ 0。

二、解一元一次方程的方法在解一元一次方程时,可以使用反运算的原则,将方程转化为等价的形式。

函数的概念及表示导学案

函数的概念及表示导学案

1.2 《函数的概念及表示》导学案【导入新课】回顾问题导入:1.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量.新授课阶段(一)函数的概念:1. 函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称 为从集合A 到集合B 的一个 (function ),记作:(),y f x x A=∈. 其中,x 叫自变量,x 的取值范围A 叫作 (domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫 (range ).显然,值域是集合B 的子集. 1.判断下列图中对应关系是否是函数2.下列函数中,哪些函数相等?①y x = ②||y x =③y ④2y = ⑤3y =(判别方法:函数是否为同一个函数,主要看 和 是否相同.)3.已知函数 f (x )=12 x +1 求: f (0),f (1),f (-2), f (a )2. 区间及写法:设a 、b 是两个实数,且a<b ,则:满足不等式a x b≤≤的实数x 的集合叫做 ,表示为 ; 满足不等式a x b<<的实数x 的集合叫做 ,表示为 ; 满足不等式a x b a x b≤<<≤或的实数x 的集合叫做 ,表示为[)(],,,ab ab ; 这里的实数a 和b 都叫做相应区间的 .(数轴表示见课本P 17表格)符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”.我们把满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞. 例1 对范围1x a-≤≤用区间表示正确的为( ) A .()1,a - B .[]1,a - C .[)1,a - D .(]1,a -1.将下列集合与区间互化 ⑴ {}32≤≤-x x ⇔ ⑵{}20<<x x ⇔ ⑶x ∈{}xm x n <≤⇔ ⑷x ∈{}13-≤<-x x⇔ ⑸x ∈{}x x h ≥⇔ ⑹{}3<x x ⇔ (7)(),x∈-∞+∞⇔ (8)(),x b ∈-∞⇔ (9)()[]2,53,7⋂⇔3. 函数定义域的求法:函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指 .1.()45f x x =-+ 2. 8()2f x x =+3. ()f x★4. 0()(1)f x x =-例2 函数x x y 22-=的定义域为{}3,2,1,0,那么其值域为 ( ) A .{}3,0,1- B .{}3,2,1,0 C .{}31≤≤-y y D .{}30≤≤y y 例3 如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式()y f x=,并写出它的定义域.(二)函数的三种表示方法:1. 结合课本P 15 给出的三个实例,说明三种表示方法的适用范围及其优点:解析法:就是用 表示两个变量之间的对应关系;优点:简明扼要;给自变量求函数值.图象法:就是用 表示两个变量之间的对应关系;优点:直观形象,反映两个变量的变化趋势.列表法:就是列出 来表示两个变量之间的对应关系.优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等.例4 函数||)(x x x f =的图象是( )2. 分段函数的定义:在函数的定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数通常叫做 ,如以下的例9的函数就是分段函数.说明:(1)分段函数是一个函数而不是几个函数,处理分段函数问题时,首先要确定自变量的数值属于哪个区间段,从而选取相应的对应法则;画分段函数图象时,应根据不同定义域上的不同解析式分别作出;(2)分段函数只是一个函数,只不过x 的取值范围不同时,对应法则不相同.例5画出下列函数的图象.(1)y =x -2,x ∈Z 且|x |2≤;(2)y =-22x +3x ,x ∈(0,2];(3)y =|x |; (4)3232232x y x x x ⎧⎪⎨⎪⎩≤≥<-,=--<-..例6已知⎩⎨⎧>-<+=0404)(x x x x x f ,则)3([-f f ]的值为 .练习1.下列说法中正确的是 ( )A.函数定义中的集合B 就是值域B.实数集可以表示为区间[,]-∞+∞C.任何一个集合都可以用区间来表示D.一个函数只要定义域和对应关系确定,那么这个函数就是确定的2.判断下列各组中的两个函数是否相等,若不相等,请说明理由。

数学高效课堂导学案-函数的概念

数学高效课堂导学案-函数的概念

A B C D .已知函数一个面积为2100cm的等腰梯形,上底长为cmx,下底长为上底长的3倍,则把它的高的函数为( ).()()()) >>>500;(B) y=100;(C) y=0; (D) y=.x x x x x第 3 页 共 4 页 第 4页 共4页类型2.由原函数求复合函数,即由()f x 求(())f g x . 例3.已知 2()1f x x =-,求2()f x x + 、1()f x .类型3.由复合函数求原函数即由(())f g x 求()f x 例4.21)f x =+()f x .类型4.对于变量出现互为相反数,倒数的情况时,常用解方程组法. 例5.()f x 满足.()2()32f x f x x --=+,求()f x . 探究三 图象法问题1. 图象法的优点有哪些? 问题2. 说出你对分段函数的理解 例6. 设22, (41)(), (12)2, (24)x x f x x x x x +-≤-⎧⎪=-<<⎨⎪≤≤⎩≤(1)((1))f f -=_______________ ;(2)若()3f x =则x =_________;(3)求函数()f x 的定义域,值域,并画出函数图象.探究四 常见含有绝对值的函数的图象的画法 例7.画出函数()f x x =的图象.变式1.画出函数()1f x x =-的图象.变式2.画出函数()12f x x x =-++的图象.变式3.画出函数2()23f x x x =--的图象. 变式4.画出函数2()23f x x x =--的图象. 探究五 映射问题1.映射的概念是什么?问题2.函数与映射有哪些区别与联系?例8.从集合A 到集合B 一些对应法则,哪些是映射?(1)A ={P | P 是数轴上的点},B =R ; 对应关系f :数轴上的点与它所代表的实数对应 (2)A ={三角形},B ={圆};对应关系f :每个三角形都有对应它的内切圆;(3)A ={ P | P 是平面直角体系中的点},{(,)|,}B x y x R y R =∈∈;对应关系f :平面直角坐标系中的点与它的坐标对应;(4)A ={建始一中高一班级},B = {建始一中高一学生}.对应关系f :每个班级都对应班里的学生;巩固案A 级1 某商场新进了10台彩电,每台售价3000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.2. 已知一次函数)(x f y =满足()46f f x x ⎡⎤⎣⎦=+,则()f x =________.3.下列曲线中,能表示函数)(x f y =的有 个.B 级4.已知二次函数()f x 满足(0)=0f ,且对任意x ∈R 总有(+1)=()++1f x f x x ,求()f x . C级5. 动点P 从单位正方形ABCD 顶点A 开始运动一周,设沿正方形ABCD 的运动路程为自变量x ,写出P 点与A 点距离y 与x 的函数关系式.。

1.2.1函数的概念导学案

1.2.1函数的概念导学案

1.2.1《函数的概念》导学案【使用说明】1、认真阅读课本,提前预习,明确基本概念,完成课前导学与自测部分, 要求:人人参与并独立完成;2、课堂积极讨论,大胆展示,发挥高效学习小组作用,完成合作探究部分;3、针对学生在预习环节可能解决不了的问题,课堂上教师进行点拨指导。

【学习目标】1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2、了解构成函数的要素,会求简单函数的定义域与值域;3、能够正确使用“区间”的符号表示某些集合.【课前导学与自测】预习教材第15-18页,找出疑惑之处,完成新知学习阅读课本,理解函数、定义域与值域的概念。

函数的定义:设A 、B 是 ,如果按照某种确定的对应关系f ,使对于集合A 中的 一个数x ,在集合B 中都有 确定的数()f x 和它对应,那么称::f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.(简称:函数()f x )其中,x 叫自变量,x 的取值范围A 叫作 (domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫 (range ).1. 在实例(1)中对应关系“f ”可以用一个式子来表示,我们就把该式子称作函数的解析式,实例(1)中的函数解析式为:2()1305h f t t t ==-,其定义域为___________;值域为___________.2.(1)已知2()23f x x x =-+,求(0)f 、(1)f 、(2)f 、(1)f -的值.(2)函数223,{1,0,1,2}y x x x =-+∈-值域是 .4.用区间表示.(1){x |x ≥a }= 、{x |x >a }= 、{x |x ≤b }= 、{x |x <b }= .(2){|01}x x x <>或= .(3)函数y 的定义域是 ,值域是 . (观察法)5.已知函数()f x =(1)求(3)f 的值;(2)求函数的定义域(用区间表示);(3*)求2(1)f a -的值.我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。

函数的概念与性质导学案

函数的概念与性质导学案

函数的概念与性质(小结)导学案主编人:李宗军 审阅:朱 成班次 姓名【学习目标】1、 深刻理解函数的有关概念,理解对应法则、图象等有关性质2、 掌握函数的单调性和奇偶性的判定方法和步骤,并会运用解决实际问题.【课前导学】复习教材第15-45页,找出疑惑之处,完成知识归纳1、函数的三要素:定义域、解析式、值域;2、 函数的单调性、最大(小)值、奇偶性的研究.【预习自测】1. 下列哪组中的两个函数是同一函数(A )2y =与y x = (B )3y =与y x =(C )y =2y = (D )y =2x y x = 2. 下列集合A 到集合B 的对应f 是映射的是(A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方;(B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方;(C ),,A Z B Q f ==:A 中的数取倒数;(D ),,A R B R f +==:A 中的数取绝对值;3. 已知函数11)(22-+-=x x x f 的定义域是( ) (A )[-1,1](B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4. 已知()12+=x x f ,则()[]1-f f 的值为( )A .2B .3C .4D .55. 若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( )(A )必是增函数(B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性【课中导学】首先独立思考探究,然后合作交流展示一、函数定义域与值域问题例1:已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A.[]052, B.[]-14, C.[]-55, D.[]-37,二、分段函数问题例2已知函数21)(+--=x x x f .(1)用分段函数的形式表示该函数;(2)在右边所给的坐标第中画出该函数的图象;(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明).变式训练2:在水果产地批发水果,100kg 为批发起点,每100kg40元;100至1000kg8折优惠;1000kg 至5000kg ,超过1000部分7折优惠;5000kg 至10000kg ,超过5000kg 的部分6折优惠;超过10000kg ,超过部分5折优惠。

人教版高中数学必修一全册导学案

人教版高中数学必修一全册导学案

人教版高中数学必修一全册导学案尊敬的读者:在这篇文章中,我将为您提供人教版高中数学必修一全册导学案。

这是一份由数学教师编写的全面指导学生学习高中数学课程的材料。

以下是每个单元的导学案,旨在帮助您更好地理解和掌握相关的数学概念和技巧。

第一单元:函数的概念与基本性质本单元导学案旨在帮助学生们理解函数的基本概念和性质。

在这个单元中,学生将掌握如何用映射、关系、对应等方式描述函数的概念,并了解函数的定义域、值域和图像等基本性质。

第二单元:一次函数与二次函数在这个单元的导学案中,学生将学习一次函数和二次函数的图像、性质和应用。

学生将学会如何识别一次函数和二次函数的特点,并学习如何利用函数的图像解决实际问题。

第三单元:指数与对数函数这一单元的导学案将帮助学生们理解指数函数和对数函数的概念和性质。

学生们将学习指数函数和对数函数的性质、图像以及它们的运算法则,并能够应用指数和对数函数解决实际问题。

第四单元:三角函数本单元的导学案将介绍三角函数的基本概念和性质。

学生将学习正弦函数、余弦函数和正切函数的性质和图像,并掌握化简三角函数表达式的方法。

第五单元:数列与数学归纳法这个单元的导学案旨在帮助学生理解数列的概念和性质,并学习数列的求和公式和通项公式。

学生们将学习如何应用数学归纳法解决数列相关的问题。

第六单元:排列与组合在这个单元的导学案中,学生将学习排列和组合的基本概念和性质。

通过学习排列和组合的问题,学生可以培养解决实际问题的能力。

第七单元:概率与统计在概率与统计的导学案中,学生将学习如何计算事件的概率和统计数据,并了解一些常见的概率分布和统计方法。

第八单元:二次函数的图像与性质在这个单元的导学案中,学生将深入学习二次函数的图像和性质。

学生将学习如何识别二次函数的图像特点,并学习如何应用二次函数解决实际问题。

第九单元:三角函数的图像与性质这个单元的导学案将介绍更多关于三角函数的图像和性质。

学生将学习如何识别三角函数的图像特点,并学会通过图像推导三角函数的性质和公式。

函数概念(导学案)

函数概念(导学案)

§2.1函数概念学习目标:(1)理解函数的概念;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;学习重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;学习难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;预习案1、函数的概念前提:A、B是_______的________。

对应:A中_______一个数x−−→−对应)(________B xf的数中有。

结论:BAf→:称为_________________的一个函数,记作____________.(2 )函数的定义域与值域函数y=f(x)中x叫自变量,________________叫函数的定义域,与x的值相对应的y值叫做___________,函数值的集合_____________叫做函数的值域。

显然,值域是集合B的_________.2 、函数的三要素:(1)函数的三要素是函数的________ 、________ 、_________.(2)函数相等:由于函数的值域是由_________ 和_________确定的,所以如果两个函数的_________相同,并且__________完全一致,就称这两个函数相等。

问题思考:什么样的对应可以构成函数?f(x)与f(a)的含义有何不同?知识点(二)区间与无穷的概念参考课本第17页自己学习有关区间的定义及表示;无穷的概念及区间表示。

注意:区间的书写。

独立自测1、下列对应关系是否为A到B的函数。

(1){}xyxfxxBRA=→≥==:,0,(2)RBRA==,,xyxf1:=→(3){}xyxfBRA=→==:,2,(4)[]{}1:,1,2,2=→=-=yxfBA2、判断下列各组函数是否是相等函数;(1)2)(xxf=,33)(xxg=;(2),)()(2xxf=2)(xxg=;(3)12)(2--=xxxf,12)(2--=tttg;3、用区间表示下列集合:(1){}___________53|=<<-xx(2){}___________53|=≤≤-xx(3){}___________53|=≤<-xx(4){}___________53|=<≤-xx(5){}___________5|=<xx(6){}___________5|=≥xx4、求下列函数的定义域(1)()x x x y --++=1222; (2)()x x y -+=210探究案1、已知)(x f 的定义域为[]3,1-,求)(),1(2x f x f +的定义域2已知)1(+=x f y 的定义域为[]2,1,求)3(),(-x f x f 的定义域例2、函数值及值域问题已知(),221)(R x x x x f ∈-≠+=且)(1)(2R x x x g ∈+=(1)求)2(f ,)1(g 的值;(2)求))2((g f 的值;(3)求)(x f ,)(x g 的值域。

1.2.1函数的概念导学案

1.2.1函数的概念导学案

x ,输入“加工器” f (对 x 实行加工程序 f )后,生产出来产品 y 。 y f x 的
意义是: y 就是 x 在关系 f 下的对应值,而 f 是“对应”得以实现的方法和途径。 如 f x 2 x 6, f 表示 2 倍的自变量再加上 6,如 f 3 2 3 6 12 。“定义 域”就是一堆待加工的原材料,“对应法则”就是加工的程序(方法)。将每一个 原材料 x 经过加工的到相应的产品, 将所有的原材料经过加工得到的全部产品 收集起来,所形成的集合就是函数的值域,“值域”是产品,是被动生成的。函 数的定义域、对应法则、、值域被称为函数的三要素,其实起决定作用的只是 函数的定义域和对应法则。 对于“原料→加工→产品”的生产流程,显然“原料”是重要的。巧妇难为无 米之炊, “米”一定是要有的, 即函数的定义域不能是空集。 而且有什么样的“米”, 有多少“米”,一般都会影响整个加工过程。由此可见,对于函数而言,“米”是 重要的。故要研究函数先看“米”,有人甚至说:“定义域是函数的灵魂!” 从产品的角度来看,既要有“米”,还要看加工的流程工艺(方法)。不
,与 x 值相对应的 y 值叫做 .
2. y x ( x 0) 是函数吗?
3. y
x - 3 1 x 是函数吗?
1
4. 问题 1:下列给出的四个图形中,是函数图象的是: (

A、①
B、①③④
B、①②③
D、③④
5.下列对应是否是 A 到 B 的函数 A:A=Z,B= N ,f:x→y=|x| B:A={0,1,2,4},B={0,1,4,9,64},f:x→y=(x-1) C:A=B=R,f:x→y=
【强调】①值域由_________和______________唯一确定;f(x)是函数符号,f 表示对应 关系,f(x)表示 x 对应的函数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等.函数除了可用符号 f(x)表示外, 还可用 g(x),F(x)等表示. ②常见函数的定义域与值域. 函数 一次函数 二次函数 解析式 定义域 值域

【新导学案】高中数学人教版必修一:121《函数的概念》(1)(2).doc

【新导学案】高中数学人教版必修一:121《函数的概念》(1)(2).doc

1-2.1《函数的概念》(1)导学案【学习目标】1.通垃事富更例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2.了解构成函数的要素;3.能够正确使用“区间”的符号表示某些集合.【重点难点】重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念;难点:对函数概念及符号y于(兀)的理解。

【知识链接】(预习教材PQ Pm找出疑惑之处)复习1:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?复习2:(初中对函数的定义)在一个变化过程中,有两个变量兀和y,对于兀的每一个确定的值,y 都有唯一的值与之对应,此时y是兀的函数,x是自变量,y是因变量.表示方法有:解析法、列表法、图象法.【学习过程】探学习探究探究任务一:函数模型思想及函数概念问题:研处下面三个实例:A.一枚炮弹发射,经26秒后落地击屮目标,射高为845米, 且炮弹距地面高度h(米)与吋间t(秒)的变化规律是/? = 130r-5r2.B.近儿十年,大气层屮臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.C.国际上常用恩格尔系数(食物支出金额三总支出金额)反映一个国家人民生活质量的高低.“八五”计划以來我们城镇居民的恩格尔系数如下表.年份19911992199319941995• • •恩格尔系53.852.950. 149.949.9• • •数%讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集力屮的每一个x,按照某种对应关系在数集〃屮都与唯一确定的y和它对应,记作:£A T B.新知:函数定义.设儿〃是非空数集,如果按照某种确定的对应关系使对于集合/中的任意一个数兀,在集合B中都有唯一确定的数/(x)和它对应,那么称f A T B为从集合A到集合B的一个函数(/unction),记作:y = /'(x), XG A.其中,x叫自变量,无的取值范围力叫作定义域(domain),与兀的值对应的y值叫函数值,函数值的集合{/(X)\XE A}叫值域(range).试试:(1)已知/(X)= X2-2X +3,求/(0)、/(I)、/⑵、/(-I)的值.(2)函数尸兀$ 一?兀+ 3, {-1,0,1,2}值域是,反思:(1)值域与〃的关系是__________ ;构成函数的三要素是________________(2)常见函数的定义域与值域.探究任务二:区间及写法新知:设e?、b是两个实数,且曰〈力,贝】J:{x\a<x<b} = [a9b]叫闭区间;{x\a<x<b} = (a,b)叫开区间;{x\a<x<b} = [a,b) , {x\a<x<b} = (a,b]都叫半开半闭区间.实数集R用区间(-OO,+OO)表示,其中“8”读“无穷大”;“一8”读“负无穷大”;“+8”读“正无穷大”・试试:用区间表示.(1){x\x^a\ -_____________ 、{x\x>a} = __________{兀 | xW份二________ 、{x | x< b} = _________(2){无|兀vO弧>1}= __________ .(3)函数y=旅的定义域_____________ ,值域是 ___________ .(观察法)探典型例题例1已知函数f(X)= Vx + 1 .(1)求于⑶的值;(2)求函数的定义域(用区间表示);(3)求f(a2-})的值.变式: 己知函数f(x)=(1)求/⑶的值;(2)求函数的定义域(用区间表示);(3)求的值.探动手试试练].已知函数f(x) = 3x2+5x-29求/⑶、/(-血)、f(a +1)的值.练2.求函数/心治的定义域.【学习反思】探学习小结①函数模型应用思想;②函数概念;③二次函数的值域;④区间表示. 探知识拓展求函数定义域的规则:①分式:y 则&(兀)工0;• g(x)②偶次根式:y = 2V7w(«e/v4),贝Ij/(x)>o;③零次幕式:y = [/(x)]°,则/(x)^0.【基础达标】探自我评价你完成本节导学案的情况为( ).A.很好B.较好C. 一般D.较差探当堂检测(时量:5分钊|满分:10分)计分:1.已知函数g(/) = 2/2—l,贝ijg(l)=( ).A. 一1 ・・B. 0C. 1D. 22.函数f(x) = Vl-2x的定义域是( ).A- [g,+°°)丘(*,+°°)C.(-°°,*]D.(-汽*)3.已知函数/(x) = 2x + 3,若f(a) = i ,则沪().A. -2B. -1C. 1D. 24.函数y = x2,XG {-2,-1,0,1,2}的值域是__________ .25.函数y =--的定义域是__________________________ ,值域是 _______________ (用区间表示)心…丄拓展提升】1.求函数y =—的定义域与值域.x-12.已知y = f ⑴=&- 2 , t(x) = x2 +2x+ 3 .(1)求r(0)的值;(2)求/⑴的定义域;(3)试用x表示y.亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的, 在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!。

北师大版2.2.1 函数的概念导学案

北师大版2.2.1 函数的概念导学案

课题:2.1函数的概念自主备课 一、学习目标 1. 体会函数是描述变量之间的关系的数学模型,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2. 了解构成函数的要素;3. 能够正确使用“区间”的符号表示某些集合二、教学过程【导学释疑】认真阅读教材 P26—27页,认真独立完成本节的题目.1、函数的概念.一般地,设A ,B 是_______数集,如果按照______________,使对于集合A 中____________,在集合B 中都有______________,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈=其中,x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的 .注意:①值域C=})({A x x f ∈是集合B 的子集.②定义域与值域必须用集合表示。

2、函数的实质: B A f →:(从集合A 到B 的一种对应关系)3、函数的三要素:定义域、对应关系、值域。

其中,定义域和对应关系共同决定值域。

4、判断两函数是否为同一函数:定义域和对应关系是否完全相同。

5、区间的概念(看课本理解填空)定义 名称符号 几何表示{x|a ≤x ≤b}{x|a <x <b}{x|a ≤x <b}{x|a <x ≤b} (1)实数a ,b 都叫相应区间的 。

(2)思考总结:区间包括端点值用 不包括端点值用 。

(3)a 与b 大小关系是(4)区间不能表示单元素集或离散型元素的集合,仅表示连续型范围,是集合的一种表示形式,但并非所有的集合都能用区间表示。

6.看课本P27填空 练一练:1.{x|-3≤x <5}=2.{x|π<x <6}=3.{x|x ≥7}=4.{x|x <2}=5.{x|x <1或x ≥7}=6.{}230x x x -<≤≠且=【做一做】下列对应中,哪些表示函数?f:求平方 f:开方 f:找首都 (1) (2) (3)【例题讲解】例1 、某山海拔7500m ,海平面温度为25℃,气温是海拔高度的函数,而且高度每升高100m,气温下降0.6℃.请你用解析表达式表示出气温T 随海拔高度x 变化的函数关系,并指出函数的定义域和值域.2201,()11(3)(),()1(0)11(4)(),()f x x x x x f x g x x x f x x g x x f x x g t t x t -=+-==≠=+=+例题2、判断下列函数是否为同一函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) f x x2 x , g x x 1 ;
x
(2) f x x , g x x ;
x
x
(3) f x x2 , g x x 12 ;
(4) f x x , g x x2 .
-6-
1. 设 M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合 M 到集合 N 的函数关系的有( )
思考 4:
思考 5:上述四个问题有何异同点: 不同点: 实例(1)(2)是用解析式刻画变量之间的对应关系,但有不同的取值范围; 实例(3)是用图象刻画变量之间的对应关系; 实例(4)是用表格刻画变量之间的对应关系. 相同点:
(1)都包含两个非空数集,用 A , B 来表示;
(2)都有一个对应关系;
(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集 A 中的任意一个数
(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而
应该用并集符号“ ”连接.
自我检测 3:函数 f x x 1 的定义域是( )
x 1
A.[-1,1)
B.[-1,1)∪(1,+∞)
C.[-1,+∞)
D.(1,+∞)
【知识点四】两函数为同一函数的判断方法 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对 应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.
【知识点二】区间的概念 1.区间的几何表示
定义
名称
符号
数轴表示
{x|a≤x≤b}
闭区间
[a,b]
{x|a<x<b}
开区间
(a,b)
{x|a≤x<b}
半开半闭区间
[a,b)
{x|a<x≤b}
半开半闭区间
(a,b]
2.实数集 R 的区间表示
实数集 R 可以用区间表示为(-∞,+∞),“∞”读作“无穷大”;
“-∞”读作“负无穷大”;“+∞”读作“正无穷大”.
3.无穷大的几何表示
定义
符号
数轴表示
{x|x≥a}
[a,+∞)
{x|x>a}
(a,+∞)
{x|x≤b}
(-∞,b]
{x|x<b}
(-∞,b)
自我检测 2:试用区间表示下列实数集
(1)
x
1
x
5
____
2
(2) x x 1或2 x 3 _____
思考 5:上述四个问题有何异同点: 不同点: 相同点:
-2-
【知识点一】函数的概念 1.函数的概念
一般地,设 A,B 是非空的实数集,如果对于集合 A 中的任意一个数 x,按照某种确 定的对应关系 f,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数(function),记作 y=f(x),x∈A. 2.函数的定义域和值域
思考 1:根据问题的条件,我们不能判断列车以 350 km/h 运行半小时后的情况,所以上 述说法不正确、显然,其原因是没有关注到 t 的变化范圈.
思考 2:问题 1 和问题 2 中的函数不是同一个函数,因为问题 1 中 t 的取值集合与问题 2 中 d 的取值集合不同.
思考 3:变量 I 是变量 t 的函数.
x≠1,

|x|+x≠0,
x>0,
所以 x>0 且 x≠1,
所以所求函数的定义域为(0,1)∪(1,+∞).
【例 4】答案:
序号 是否相同
原因
(1)
不同
(2)
不同
(3)
不同
(4)
相同
定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R 对应关系不同,f(x)= 1 ,g(x)= x x 定义域相同,对应关系不同 定义域和对应关系相同
x2
(1)求函数的定义域;
(2)求
f
3 ,
f
2 3

(3)当 a 1 时,求 f a , f a 1 .
Байду номын сангаас
第二章 一元二次函数、方程和不等式
【例 3-2】求下列函数的定义域.
① f x
x
2
x2
1 x
6

② f x x 10 .
x x
题型四 两函数为同一函数的判断方法
【例 4】试判断下列函数是否为同一函数.
【例 1-2】写出下列函数的对应法则、定义域、值域
题型二 集合的区间表示法
【例 2】试用区间表示下列实数集
(1) x 5 x 6
(2) x x 9
(3) x x 1x 5 x 2
(4) x x 9x 9 x 20
题型三 函数定义域的求法
【例 3-1】已知函数 f x x 3 1 .

×
x=1 时,在 N 中有两个元素与之对应,不满足唯一性
答案:B
2.函数 f x x 1 的定义域为( )
x2
A.(1,+∞)
B.[1,+∞)
C.[1,2) 答案:D
D.[1,2)∪(2,+∞)
3.下列各组函数表示同一函数的是( )
A. y x2 9 与 y=x+3 x3
C.y x0 与 y 1 x 0
(2) u 3 v3 ; (4) y x2
x
题型一 函数的定义 【例 1-1】根据函数的定义判断下列对应关系是否为从集合 A 到集合 B 的函数:
(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8; (2)A={1,2,3},B={4,5,6},对应关系如右图所示; (3)A=R,B={y|y>0},f:x→y=|x|; (4)A=Z,B={-1,1},n 为奇数时,f(n)=-1,n 为偶数时,f(n)=1.
1. 设 M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合 M 到集合 N 的函数关系的有( )
A.0 个 C.2 个
图号 ①
正误 ×
B.1 个 D.3 个
原因 x=2 时,在 N 中无元素与之对应,不满足任意性
- 10 -


同时满足任意性与唯一性

×
x=2 时,对应元素 y=3∉N,不满足任意性
4.已知函数 f(x)=-1,则 f(2)的值为( )
A.-2
C.0
5.求下列函数的定义域:
(1
f
x
x2
6 3x
2

(2) f x x 10 ;
x x
(3) f x 2x 3 1 1 .
2x x
B.-1 D.不确定
【参考答案】
第二章 一元二次函数、方程和不等式
情景:①是;②不是.
设在一个变化过程中有两个变量 x 与 y ,如果对于 x 的每一个值, y 都有唯一的值与它 对应,则称 x 是自变量, y 是 x 的函数;其中自变量 x 的取值的集合叫做函数的定义域, 和自变量 x 的值对应的 y 的值叫做函数的值域。
情景:请同学们考虑以下两个问题:
① y 1是函数吗? ② y x 和 y x2 是同一个函数吗?
B. y x2 1与 y x 1 D.y x 1, x Z 与 y x 1, x Z
答案:C
4.已知函数 f(x)=-1,则 f(2)的值为( )
【例 2】试用区间表示下列实数集
(1) [5, 6) (2) [9, ) (3) (, 1] [5, 2) (4) (, 9) (9, 20)
【例 3-1】已知函数 f x x 3 1 .
x2
(1)3, 2 2, ;
第二章 一元二次函数、方程和不等式
(2)
f
3
1 ;
f
2 3
33 3 ; 38
(3) f a a 3 1 , f a 1 a 2 1 .
a2
a 1
【例 3-2】
答案:①要使函数有意义,需满足
x+2≥0,
x≥-2,

x2-x-6≠0,
x≠-2 且 x≠3,
得 x>-2 且 x≠3.
所以所求函数的定义域为(-2,3)∪(3,+∞).
②要使函数有意义,需满足
x-1≠0,
x ,按照对应关系,在数集 B 中部有唯一确定的数 y 和它对应.
【自我检测 1】
-1,5
【自我检测 2】答案:(1) 2
(2)(-∞,1)∪(2,3]
【自我检测 3】答案:B
【自我检测 3】答案:(2)
-8-
【例 1-1】答案:对于集合 A 中的任意一个值,在集合 B 中都有唯一的值与之对应, (1)(4)中对应关系 f 是从集合 A 到集合 B 的一个函数. (2)集合 A 中的元素 3 在集合 B 中没有对应元素,且集合 A 中的元素 2 在集合 B 中有两个 元素(5 和 6)与之对应,故所给对应关系不是集合 A 到集合 B 的函数. (3)A 中的元素 0 在 B 中没有对应元素,故所给对应关系不是集合 A 到集合 B 的函数. 【例 1-2】写出下列函数的对应法则、定义域、值域
_; ___.
第二章 一元二次函数、方程和不等式
【知识点三】函数定义域的求法
(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:
①分式的分母不为 0; ②偶次根式的被开方数非负;③ y x0 要求 x 0 .
(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得 各式子都有意义的公共部分的集合.
x
为了得到函数更准确的定义,我们一起看下面几个函数,回答相应的问题:
问题一:某“复兴号”高速列车加速到 350km 后保持匀速运行半小时,这段时间内,列 车行进的路程 S (单位:km)与运行时间 t(单位:h)的关系可以表示为 S 350t .①
相关文档
最新文档