苏科版八年级数学(上册)第三章《中心对称图形》试题
苏科版数学八年级下册中心对称和中心对称图形
中心对称和中心对称图形-培优拔尖精练
一、相关概念1.下列命题中正确的命题的个数有()①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;②关于某一点成中心对称的两个三角形能重合;③两个能重合的图形一定关于某点中心对称;④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;⑤成中心对称的两个图形中,对应线段互相平行或共线;
A .1个
B .2个
C .3个
D .4个
二、中心对称的性质的坐标是.
第2题图第3题图第4题图
四、对称点的坐标推导
4.如图,将ABC 绕点()0,1C -旋转180︒得到A B C ''' .设点A '的坐标为(),a b ,则点A 的坐标为()
A .(,)
a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b ---三、对称中心的确定
5.如图,在平面直角坐标系中,RtΔABC 的三个顶点分别是A (-3,2)
、B (0,4)、C (0,2).(1)将ΔABC 以点C 为中心旋转180°,画出旋转后对应的△A 1B 1C ;
(2)平移△ABC ,若点A 的对应点A 2的坐标为(1,-4)
,画出平移后对应的△A 2B 2C 2;(3)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标;
练习9.2第4题图第5题图xOy 中的位置如图所示,小正方形的边长为1个单位.
111A B C △.
(3)在x 轴上有一点P ,使1PA +______.。
苏科版八年级上 第三章中心对称图形(教案)
·O
2.已知线段AB和点O,画出线段AB绕点O按逆时针方向旋转100°后的图形。
B
·O A
3.画出将ΔABC绕点O按顺时针方向旋转120°后的对应三角形。A
B C·O
BC
五、练习
P94.练习1. 2
习题1.
六、反思
叙述一节课的主要内容。
学生操作
学生可以争论结果是图形的位置改变大小,形状不变
量一量
五、举例
如图A’B’∥AB,B’C’∥BC,C’A’∥CA.图中有几个平行四边形?将它们表示出来,并说明理由。
A
C’ B’
B C
A’
解:图中共有3个平行四边形
ABCB’ C’BCA ABA’C
因为A’B’∥AB,B’C’∥BC
所以四边形ABCB’是平行四边形
理由是:2组对边分别平行的四边形是平行四边形。
所以ABCD绕点O旋转180°后,与原来的图形重合。
三、平行四边形的性质:
(1)平行四边形的对边平行
(2)平行四边形的对边相等
(3)平行四边形的对角相等
(4)平行四边形的对角线相互平分
性质的另一种表示法:
A D
B C
(1)因为四边形ABCD是平行四边形
所以AB∥CD AD∥BC
四、练一练
P108 1、2
教学目标
学生应能懂得平行四边形的由来;会应用平行四边形的性质解决有关问题
重点
平行四边形的性质
难点
理解性质的由来
教学方法
讲练结合、探索交流
课型
新授课
教具
尺、规
教师活动
学生活动
一、情景创设
画一画:如图BO是ΔABC的边AC上的中线。画出ΔABC关于点O对称图形。
八上第三章中心对称图形(复习)
中心对称图形(复习)-- ( 教案)班级 姓名 学号学习目标在探索了平行四边形的有关性质和四边形是平行四边形的条件后,以例题的讲解进一步掌握,培养学生有条理的表达能力,规范书写格式。
学习难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。
教学过程一、知识结构以反映图形的变化二、知识回顾与典型例题(一)图形的旋转:定义、性质、画法(二)中心对称、中心对称图形的概念以及这两个概念的联系与区别【例1】在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是 ()(三)中心对称的性质:对称点连线都经过,且被 平分晴(A )冰雹(B )雷阵雨(C )大雪(D )【例2】如图,两个三角形对中心对称,请确定其对称中心。
【例3】已知四边形ABCD 和O 点,画出四边形ABCD 关于O 点的对称图形。
(四)设计中心对称图案【例4】图案设计:图例:小明在4×3的网格上,设计了由个数相同的白色方块与黑色方块组成的一幅图案,如左下图。
请你仿照此图案,在下列网格中分别设计出符合要求的图案。
(注:①不得与原图案相同;②黑、白方块的个数要相同)(五)几种特殊的中心对称图形的定义、性质、判定平行四边形矩 形菱 形正 方 形定义对称性边角性质对角线判定(1)是轴对称图形,又是中心对称图形(2)是轴对称图形,但不是中心对称图形(3)是中心对称图形,但不是轴对称图形OB D CA【例5】(1)能判断一个四边形是平行四边形的为( )A 、一组对边平行,另一组对边相等B 、一组对边平行,一组对角相等C 、一组对边平行,一组对角互补D 、一组对边平行,两条对角线相等(2)矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是( )A 、6 B 、 C 、2(1+) D 、1+3233(3)若菱形ABCD 的周长为20,一条对角线AC 长为6,求菱形的面积 。
苏科版八年级下册数学课件:第9章中心对称图形复习
中心对称图形(复习)
1.平行四边形与矩形、菱形、正方形的关系:
矩形
平行四边形
一组邻边相等、 一个角是直角
正方形
菱形
2.平行四边形与矩形、菱形、正方形的性质:
边
角
对角线
对称性
平行四边形 对边平行且相等 对角相等
互相平分 中心对称图形
矩形
对边平行且相等 四个角都是直角 互相平分且相等
1.已知:如图,四边形ABDE、ACFG是正方 形,EC、BG交于点M. (1) 求证:BG=CE (2)试猜想BG与CE的关系.
E
A
G
D
M
F
B
例题讲授 2.已知:如图,E为正方形ABCD的边BC的中
点,AE平分∠BAF.
求证:AF=BC+CF.
D
FC
D
FC
G
G
E
E
A
B
A
B
例题讲授
4.如图,在矩形ABCD中,AB=4cm, AD=12cm,点P在AD边上以每秒1cm的速度 从点A向点D运动,点Q在BC边上,以每秒4cm 的速度从点C出发,在CB间往返运动,两个点 同时出发,当点P到达点D时停止(同时点Q也 停止),在这段时间内,t为何值时,ABQP是 矩形?
4.平行四边形ABCD周长为16cm,AC、BD相 交于点O, OE⊥AC交AC于E,则△DCE的周 长是_8_c_m___
A
ED
O
B
C
5.A、B、C、D在同一平面内,从①AB∥CD;
② AB=CD;③BC∥AD;④BC=AD,这四个
条件中任意选两个,能使四边形ABCD是平行
四边形的选法有( B )种.
【精编版】中考数学轴对称与中心对称专题复习讲义
苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。
下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。
苏科版八上数第三章单元测试(2)
— 1 —第三章 中心对称图形(二)一.选择题1.在矩形ABCD 中,AB =2AD ,E 是CD 上一点,且AE =AB ,则∠CBE = ( )A .30°B .22.5°C .15°D .以上都不对 2.菱形的周长为20㎝,两邻角的比为1∶3㎝ A .25B .16C .D .3.下列命题不正确的是( )A .任何一个成中心对称的四边形是平行四边形B .平行四边形既是轴对称图形又是中心对称图形C .线段、平行四边形、矩形、菱形、正方形都是中心对称图形D .等边三角形、矩形、菱形、正方形都是轴对称图形4.四边形的四边长顺次为a 、b 、c 、d ,且a 2+b 2+c 2+d 2=ab +bc +cd +ad ,则此四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形5.以线段a =16,b =13,c =6为边作梯形,其中a ,c 为梯形的两底,这样的梯形( ) A .有一个B .有两个C .有三个D .以上都不对6.梯形ABCD 的面积是6cm 2,P 是腰BC 的中点,则S △APD 等于( )A .1cm 2B .1.5cm 2C .2cm 2D .3cm 27.三角形三条中位线的长为3、4、5,则此三角形的面积为( )A .12B .24C .36D .488和( )A .12BC .D .9.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为( )A .15°B .30°C . 45°D .60°10.直角梯形ABCD 中,AB ∥CD ,∠A =30°,AB +CD =m ,BC +AD =n ,则梯形ABCD— 2 —《同步课程》试卷 八年级数学(上)ABCDEGH的面积为 ( )A .1mn 4B .1mn 5C .1mn 6D .1mn 8二.填空题11.梯形的上底长为3cm ,中位线长为5cm ,底边上的高为5cm ,则梯形面积为______ cm 2,下底长为__________cm .12.已知等腰梯形一底角为60°,两底的和为30cm ,且对角线平分60°的底角,则此等腰梯形的周长为__________cm .13.如图:正方形ABCD 的边长为a ,E 为AD 的中点,BM ⊥BC 于M ,则BM 的长为___________.14.如图:DE 是△ABC 的中位线,且DE=5cm ,GH 是梯形DECB 的中位线,则GH=___________.15.如图:延长正方形ABCD 的边BC 至E ,使CE=AC ,连接AE 交CD 于F ,则∠AFC=___________.16. 梯形的高为5cm ,中位线为14cm ,则此梯形的面积为____________. 17.等腰梯形两对角线互相垂直,中位线长为a ,则此梯形的面积为___________. 18.如图,在□ABCD 中,E 、F 分别是AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,以下结论:① BE=DF ;② AG=GH=HC ;③ EG=21BG ;F— 3 —《同步课程》试卷 八年级数学(上)A BCDM NBACD ④ S △ABE =3S △AGE其中,正确的有________________. 三.解答题19.矩形ABCD 中,AC 、BD 相交于点O ,E 为矩形ABCD 外一点,若AE ⊥CE ,求证BE ⊥DE .20.在梯形ABCD 中,∠B=45°,∠C=60°,CD=4cm , AD=2cm ,求梯形ABCD 的周长及面积.21.在△ABC 中, AB=2AC ,AF=41AB ,D 、E 分别为AB 、AC 的中点,EF 与CA 的延长线交于点G ,求证:AF=AG .22.如图:梯形ABCD 中,AD ∥BC ,S △ADC :S △ABC =2:3,而对角线中点M 、N 的连线段为10cm ,ABCEDF G— 4 —《同步课程》试卷 八年级数学(上)EABCDE 求梯形两底的长.23.△ABC 中E 是AB 的中点,CD 平分∠ACD ,AD ⊥CD与点D ,求证:DE=21(BC-AC ).24.如图:AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O ,求证:OF=21CE .第三章 中心对称图形(二)1.C 2.C 3.B 4.C 5.D 6.D 7.B 8.A 9.D 10.C 11.25、7;12.50、 13;14.7.5; 15.112.5° 16.70㎝217.2a ; 18.①、②、③、④;19.提示:连结OE ,证OE =OA ,又OA =OB =OC =OD ,则OE =OB =OD 即得;《同步课程》试卷八年级数学(上)20.周长为10+、面积为6+;21.提示:取AC的中点M,连结EM;22.AD=40,BC=60;23.提示:延长AD交BC于F,说明AC=CF,DE是△ABF的中位线;24.提示:过O点作OP∥BC交AE于P,则OP=12CE,再证OP=OF.— 5 —。
苏科版八上 3.2中心对称与中心对称图形 案例1
中心对称与中心对称图形连云港市新海实验中学乔乃英义务教育课程标准实验教科书数学(苏科版)八年级上册第三章第2节第1课时一、教学目标:1.了解中心对称图形及其基本性质2.在探索的过程中培养学生有条理地表达,及与人交流合作的能力。
3.经历观察、操作、发现、探究中心对称图形的有关概念和基本性质的过程,培养学生观察能力和动手操作能力,感受对称、匀称、均衡的美感,积累一定的审美体验。
二、学情分析:学生刚学习了图形的旋转,知道图形旋转的性质。
中心对称是一种特殊的旋转,所以学生能理解它的概念和性质。
在日常生活中,也可以找到中心对称的实例。
学生对此有感性认识,因此中心对称的概念无论从知识储备还是从认知水平较能为学生所接受。
所以但学生在今后的学习中容易和轴对称概念混淆。
所以有必要在本节课把两种概念进行比较,加深学生对中心对称的理解。
也渗透类比思想方法。
三、教学重、难点:理解中心对称的概念及其基本性质。
四、教学准备:多媒体教学设备。
学生课前准备较透明的白纸、图钉。
五、教学过程:(一)创设问题情境1.利用课件展示几幅图片,(1)几幅轴对称的图片。
(2)几幅中心对称的图片师:(1)中的两个图形有什么特点? 生:都成轴对称。
师:什么样的两个图形成轴对称?生:……师:(2)中的两个图形是不是成轴对称?生:不是。
师:(2)中的两个图形有什么特点? 他们怎么才能重合呢?生:把其中一个图形绕着一个点旋转180°能和另一个图形重合。
(利用几组对称图片的播放,引导学生对轴对称进行复习,通过学生对轴对称概念、性质的回答来了解学生对该问题的掌握程度,也为下一步中心对称与轴对称概念的区别的教学作铺垫。
同时让学生自己发现,有几组图片也是对称,但却不是轴对称,这是一种新的对称,从而引出课题)2实践操作师:让我们一起来操作。
拿出课前准备的较透明的白纸,图钉,按书上的要求进行操作。
(通过实际操作活动,激发学生的好奇心,和主动学习的欲望,为学生能概括出中心对称的概念,作铺垫。
八年级数学上册第三章单元测试试题
时间:2022.4.12 单位:……***创编者:十乙州第三章中心对称图形〔一〕一.选择题:1.在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形中,既是中心对称图形又是轴对称图形的有 ( )A.1个 B.2个 C.3个 D.4个2.正方形具有而菱形不一定具有的性质是〔〕A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角3.平行四边形的对角线长为x、y,一边长为12,那么x、y的值可能是〔〕A.8和14 B.10和14 C.18和20 D.10和344.以下说法中,正确的选项是 ( ) A.一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形 D.对角线互相垂直平分的四边形是正方形5.以下说法中,不正确的选项是 ( ) A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形时间:2022.4.12 单位:……***创编者:十乙州6.下面说法正确的选项是 〔 〕A .一个三角形中,至多只能有一个锐角B .一个四边形中,至少有一个锐角C .一个四边形中,四个内角可能全是锐角D .一个四边形中,不能全是钝角 7.如图:在□ABCD 中,AE⊥BC 于E ,AF⊥CD 于F 。
假设AE=4,AF=6,且□ABCD 的周长为40,那么ABCD 的面积为〔 〕 A .24B .36C .40D .488.顺次连接四边形四边中点所组成的四边形是菱形, 那么原四边形为〔 〕A .平行四边形B .菱形C .对角线相等的四边形D .直角梯形9.平行四边形ABCD 的周长为2a ,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大b ,那么AB 的长为〔 〕A .2ba -B .2ba +C .22ba + D .22ba + 10.假如菱形的边长是3,一条对角线的长也是3,那么菱形的一个锐角是 ( ) A .50° B .55° C .60° D 120° 11.菱形的周长为20cm ,两邻角的比为1:2,那么较长的对角线长为〔 〕 A .4.5 cmB .4 cmC .53 cmD .43 cm12.在四边形ABCD 中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD 中任选两个使四边形ABCD为平行四边形的选法有〔 〕 A .3B .4C .5D .6二.填空题 :时间: 2022.4.12 单位: ……*** 创编者: 十乙州时间: 2022.4.12 单位: ……*** 创编者: 十乙州13.一个正方形要绕它的中心至少旋转_______度,才能与原来的图形重合. 14.从数学对称的角度看:下面的几组大写英文字母:①ANEG;②KBXM;③XIHO;④HWDZ 不同于另外三组的一组是__________,这一组的特点是_______________.15.假设一个正方形的周长为x cm ,面积为x cm 2,那么它的对角线长为_________.16.如图:DE 是△ABC 的中位线,且DE=5cm ,GH 是梯形DECB 的中位线,那么GH=___________.17.一个菱形的两条对角线长分别为6cm 、8cm ,那么这个菱形的面积S 为___________.18.假设矩形的一个角的平分线分一边为4cm 和3cm 的两局部,那么矩形的周长为__________.19.如图,正方形ABCD 旋转后得到正方形AB ′C ′D ′. (1)旋转角是__________;(2)假设AB=1,C ′D=__________.20.把边长为3、5、7的两个全等三角形拼成四边形,一一共能拼成____________种不同的四边形,其中有____________个平行四边形.21.如图:点E 、F 分别是菱形ABCD 的边BC 、CD 上的点且∠EAF=∠D=60°,∠FAD=45°,那么∠CFE=___________.22.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,那么长边的长为___________.DBACEFABDCE23.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,且AB =AD ,连结BD ,过A 点作BD 的垂线,交BC 于E 。
八上数学第3章 中心对称图形(一)第1课时 图形的旋转
八年级数学(上)第三章中心对称图形(一)(附答案)第1课时图形的旋转1.如图,线段AO绕点O顺时针旋转得到线段BO,存这个旋转过程中,旋转中心是_______,旋转角是_________.2.如图,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,则∠ABC=__________.3.如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P′AC,则∠PAP′=__________.4.如图,在网格图(每小格均是边长为1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1 C 1.(2)作出△A 1 B 1 C 1绕点B 1顺时针方向旋转90°后的△A2B1C2.(3)求△A2B1C2的周长.5.如图,把△ABC顺时针旋转60°后能与△A′BC′重合.(1)找出旋转中心.(2)指出对应顶点和对应边.(3)指出旋转角.(4)连接AA′、CC′,则△ABA′和△CBC′是什么三角形?为什么?6.下列运动属于旋转的是( ) A.篮球的运动B.气球升空的运动C.钟表钟摆的摆动D.一个图形沿某直线对折的过程7.如图,将正方形图案绕中心O旋转180°后,得到的图案是( )8.下列说法正确的是( ) A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以沿某方向平移一定的距离,也可以沿某方向旋转一定的距离D.在平移和旋转图形中,对应角相等,对应线段相等且平行9.如图,正方形A1B1C1D1是正方形ABCD按顺时针方向旋转一定的角度而形成的,其中∠CBC1=40°,则旋转中心是_________,旋转角的度数为_________.10.如图,△ABC是等腰直角三角形,BC是斜边,P是△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合.如果AP=3,那么线段PP′的长为_______.11.如图,四边形ABCD是正方形,△DAE旋转后能与△DCF重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)连接EF,则△DEF是怎样的三角形?(4)若BC=7,CF=4,求BE的长.12.如图,在10×10的正方形网格中,每个小正方形的边长均为1个单位.将△ABC绕点P顺时针旋转180°,得到△A′B′C′,再将△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′(不要求写画法).13.如图,当半径为30 cm的转动轮转过90°时,传送带上的物体甲平移的距离是多少?转过120°呢?参考答案1.点O ∠AOB 2.90°3.60°4.(1)略(2)略(3)4+5.略6.C 7.C8.B 9.点B 40°10.11.(1)点D (2)90°(3)△DEF是等腰直角三角形(4)3 12.略13.15πcm 20πcm。
八上第三章中心对称图形(复习)
中心对称图形(复习) [ 教案]班级 姓名 学号学习目标在探索了平行四边形的有关性质和四边形是平行四边形的条件后,以例题的讲解进一步掌握,培养学生有条理的表达能力,规范书写格式。
学习难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。
教学过程一、知识结构在虚线框内填写合适的条件, 以反映图形的变化二、知识回顾与典型例题(一)图形的旋转:定义、性质、画法(二)中心对称、中心对称图形的概念以及这两个概念的联系与区别【例1】在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是 ()(三)中心对称的性质:对称点连线都经过 ,且被平分晴 (A )冰雹 (B )雷阵雨 (C )大雪 (D )【例2】如图,两个三角形对中心对称,请确定其对称中心。
【例3】已知四边形ABCD 和O 点,画出四边形 ABCD 关于O 点的对称图形。
(四)设计中心对称图案【例4】图案设计:图例:小明在4×3的网格上,设计了由个数相同的白色方块与黑色方块组成的一幅图案,如左下图。
请你仿照此图案,在下列网格中分别设计出符合要求的图案。
(注:①不得与原图案相同;②黑、白方块的个数要相同)(五)几种特殊的中心对称图形的定义、性质、判定(1)是轴对称图形, 又是中心对称图形(2)是轴对称图形,但不是中心对称图形(3)是中心对称图形, 但不是轴对称图形BDA【例5】(1)能判断一个四边形是平行四边形的为( )A 、一组对边平行,另一组对边相等B 、一组对边平行,一组对角相等C 、一组对边平行,一组对角互补D 、一组对边平行,两条对角线相等(2)矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是( )A 、6 B 、32 C 、2(1+3) D 、1+3(3)若菱形ABCD 的周长为20,一条对角线AC 长为6,求菱形的面积 。
(4)如图,点E 是正方形ABCD 的边BC 延长线上的一点,且CE=AC ,若AE 交CD 于点F ,则∠E= °;∠AFC= °(5)图1是边长为4的正方形硬纸片ABCD ,点E 、F 分别是AB 、BC 的中点,若沿图1的虚线剪开并拼成图2的“小屋”,则图中阴影部分的面积 ( ) (A )2 ( B )4( C )8 ( D )10 (6)平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC=6cm ,BD=8cm 则边AB 长度x 的取值范围是 。
最新苏科版八年级数学上册 设计轴对称图案(含解析)
2.3 设计轴对称图案一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1 B.2 C.3 D.45.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有种.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有种.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.答案与解析一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了轴对称图形的概念.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④【分析】根据轴对称图形的概念求解.【解答】解:有3个使之成为轴对称图形分别为:②,③,④.故选:A.【点评】此题主要考查了轴对称变换,正确把握轴对称图形的性质是解题关键.3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1 B.2 C.3 D.4【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.5.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【解答】解:如图所示:,共5种,故选:C.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了利用轴对称设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④【分析】根据轴对称图形的特点进行判断即可.【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.【点评】本题考查的是利用轴对称设计图案,轴对称图形是要寻找对称轴,沿对称轴对折后与两部分完全重合.8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个【分析】直接利用平移的性质结合轴对称图形的性质得出答案.【解答】解:如图所示:正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD所在直线平移,所组成的两个正方形组成轴对称图形.故选:C.【点评】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键.9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个【分析】对称轴的位置不同,结果不同,根据轴对称的性质进行作图即可.【解答】解:如图所示,满足题意的涂色方式有3种,故选:C.【点评】本题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有 5 种.【分析】根据轴对称图形的定义即可解决问题;【解答】解:如图有5种方法:故答案为5.【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的定义,属于中考常考题型.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 3 种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有 3 种.【分析】根据轴对称图形的性质进行作图即可.【解答】解:如图所示,新图形是一个轴对称图形.故答案为:3.【点评】本题主要考查了利用轴对称变换进行作图,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有6 种.【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:共6种.故答案为:6.【点评】本题考查了利用轴对称设计图案,培养学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 2 个.【分析】利用轴对称图形的性质,分别得出符合题意的答案.【解答】解:如图所示:一个涂成黑色的图形成为轴对称图形.故答案为:2.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有 4 种.【分析】根据题意再添加一个正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形即可.【解答】解:如图所示:故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.【分析】本题可以选择画长为2宽为1的长方形、上底为1下底为3的等腰梯形及边长为的正方形.【解答】解:所画图形如下:【点评】此题考查了在正方形组成的网格中画一定面积的轴对称四边形,对于此类题目要熟悉掌握几种常见的轴对称图形,然后结合题意要求的面积进行设计作图.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【分析】如图,在四个图形中分别将两个小正方形涂黑,并使阴影部分成为轴对称图形.【解答】解:如图所示:【点评】本题考查了轴对称的性质和图案设计,熟练掌握轴对称的定义是关键,涂黑二个小正方形后,以是否沿一条直线折叠后能重合,作为依据,能则组成轴对称图形,反之则不能.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.。
2.3设计中心对称图形 课件 (苏科版八年级上)
①
②
◆你对中心对称有哪些认识?
图案欣赏
图案欣赏
相关链接 ■如果一个图形绕着一个
定点旋转一个角度能够与原来的图形 重合,那么这个图形就叫做旋转对称
图形,例如等边三角形,绕着它的中
心旋转1200能够与原来图形重合,因
而等边三角形是旋转对称图形. 想一想,中心对称图形与旋转对称
图形有何关系?
相关链接 ■如图所示,旋转对称图形
数学实验室 1.用圆和线段可以构造具有某种含义的中 心对称图案。 2.下面的图案分别表示怎样的含义?
3.请你也用圆和线段设计一些中心对称图 案,并与同学交流设计的含义。
随堂练习 1.在计算器上按出两位数
“69”,这个电子数字可以看成一
个中心对称图案,你还能写出多少 个组成中心对称图案的两位数?三
是_____,中心对称图形是_____0后与自身重合.
位数?
随堂练习 2.如图所示是一个中心对 称图形的一半,你能补出另一半吗?
3.如图,由4个全等的正方形组成的L形图案,请按 下列要求画图: ⑴在图案①中添加1个正方形,使它成轴对称图形; ⑵在图案②中添画1个正方形,使它成中心对称图形; ⑶在图案中改变1个正方形的位置,画成图案③,使它 既成中心对称图形,又成轴对称图形.
苏科版数学 八年级(上)
2.3设计中心对称图形
生活中,我们经常见到一些美 丽的图案,下列图案有特点?
生活中,你还见过哪些中心对 称图案?举例说明.
动手操作 用6个全等的正方形可以拼成
如下的一些中心对称图案,请用它 们再构造一些中心对称图案,并与 同学们交流.
你能用它们再构造出既是中心 对称图案又是轴对称的图案吗?
八年级数学上册 3.3设计中心对称图形导学稿(无答案) 苏科版
3.3设计中心对称图形导学稿班级姓名一、教学目标:1经历对生活中中心对称图案的欣赏、观察、分析等过程,发展空间观念,增强审美意识。
2、认识中心对称图案在生活中的应用,会设计一些中心对称图案。
二重点:1、在观察、欣赏图案的基础上,会用所学知识分析它们的形成过程。
2、设计中心对称图案。
三难点:分析图案形成过程,设计中心对称图案。
四、教学过程1.用6个全等的正方形可以拼成如下的一些中心对称图案,请用这6个正方形再设计一些中心对称图案2 你能用6个全等的正方形设计既是中心对称,又是轴对称的图案吗?3、由5个全等的正方形组成L形图案,请按照下列要求画图:(1)在图案中添画1个正方形,使它成轴对称图形(2)在图案中添画1个正方形,使它成中心对称图形(3)在图形中改变1个正方形的位置,使它既成中心对称图案又成轴对称图案。
4. 在计算器上按出两位数“69”,这个电子数字可以组成一个中心对称图案。
你还能写出几个能组成中心对称图案的两位数或三位数?5.如图,在正方形ABCD 的中间有一个圆,其圆心是正方形对角线的交点O ,E 是圆上任意一点,请在圆上按逆时针顺次再取三点F 、G 、H ,连结AG 、BH 、CE 、DF ,把正方形中圆外的部分分成形状和大小都相同的四块6. 用四块如图(1)所示的黑白两色正方形瓷砖拼成一个新的正方形,使拼成对称图案,请至少给出三种不同的拼法:①设计既是中心对称图形又是轴对称的图案;②设计是中心对称图形但不是轴对称的图案;③设计不是中心对称图形但是轴对称的图案。
(四)课堂小结 :通过这节课的学习活动你你对中心对称有哪些认识?3.3设计中心对称图形作业 姓名1.如图,学校的圆形花坛中放有24盆花,构成圆内的正三角形,且三角形的三个顶点都在A(1)圆上,则该花坛构成的图形 ( )A.是轴对称图形,又是中心对称图形B.是轴对称图形,但不是中心对称图形C.是中心对称图形,但不是轴对称图形D.既不是轴对称图形,也不是中心对称图形2.如图,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把一张牌旋转了180º,魔术师解除蒙具后,看到4张扑克牌如图所示,那么旋转了()A.方块5B.梅花6C.黑桃7D.红桃9(变化前) (变化后)3.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同),(1)设计一个图形,使它既是轴对称图形,又是中心对称图形,请把你所设计的图案在图(1)中表示出来;(2)设计一个图形,使它是轴对称图形,但不是中心对称图形,请把你所设计的图案在图(2)中表示出来;(3)设计一个图形,使它是中心对称图形,但不是轴对称图形,,请把你所设计的图案在图(3)中表示出来M 4.如图,在梯形ABCD 中,AD//BC,E 是CD 的中点,连接AE 并延长交BC 的延长线于点F(1) 图中哪两个图形成中心对称?(2) 梯形ABCD 的面积与图中哪个三角形的面积相等?(3) 若AB=AD+BC,∠B=70°,求∠DAF 的度数5.如图,点O 是边长为2的正方形ABCD 的对称中心,过O 作OM ⊥ON ,交正方形的边于M 、N ,求四边形OMCN 的面积.。
((苏科版))[[初二数学几何试题](含答案)
一、细心填一填(本大题共有13小题,20空,每空2分,共40分.请把结果直接填在题中的横线上.) 3.在数轴上与表示3的点距离最近的整数点所表示的数是 .4.如图,△ABC 中,∠ABC =38︒,BC =6cm ,E 为BC 的中点,平移△ABC 得到△DEF ,则∠DEF = ︒,平移距离为 cm.5.正九边形绕它的旋转中心至少旋转 ︒后才能与原图形重合. 6.如图,若□ABCD 与□EBCF 关于BC 所在直线对称,且∠ABE =90°,则∠F = °.7.如图,在正方形ABCD 中,以BC 为边在正方形外部作等边三角形BCE ,连结DE ,则∠CDE 的度数为 .8.如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =DE =1,则□ABCD 的周长等于 .9.在梯形ABCD 中,AD ∥BC ,∠A =2∠B =4∠C ,则∠D 的度数为 °. 10.如图,在△ABC 中,AB =AC =5,BC =6,点E ,F 是中线AD 上的两点,则图中阴影部分的面积是 . 11.直角三角形三边长分别为2,3,m,则m =. 12.矩形ABCD 的周长为24,面积为32,则其四条边的平方和为.13.在四边形ABCD 中,对角线AC 、BD 相交于点O ,其中AC +BD =28,CD =10. (1)若四边形ABCD 是平行四边形,则△OCD 的周长为 ; (2)若四边形ABCD 是菱形,则菱形的面积为 ; (3)若四边形ABCD 是矩形,则AD 的长为 .二、精心选一选(本大题共有7小题,每小题2分,共14分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) 16.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .18.给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m ,4m ,5m (m >0).其中能组ABDCE F第4题ABCDEF第6题ABCDE第8题A BCDE第7题• •ABCDE F第10题成直角三角形的有 ( )A .①②B .②④C .②③D .③④19.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现 一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可 以进行以下哪项操作( )A .先逆时针旋转90︒,再向左平移B .先顺时针旋转90︒,再向左平移C .先逆时针旋转90︒,再向右平移D .先顺时针旋转90︒,再向右平移 20.下列判断中错误..的是( )A .平行四边形的对边平行且相等.B .四条边都相等且四个角也都相等的四边形是正方形.C .对角线互相垂直的四边形是菱形.D .对角线相等的平行四边形是矩形.三、认真答一答(本大题共有8小题,共46分.解答需写出必要的文字说明或演算步骤.) 23.(本题满分4分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式ab a b a a +=+2)(成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式 ; (2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.24.(本题满分5分)在如图的方格纸中(每个小方格的边长都是1个单位)有一个格点△ABC , (1)求出△ABC 的边长,并判断△ABC 是否为直角三角形;(2)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1;(3)画出△ABC 绕点O 按顺时针方向旋转90°后得到的图形△A 2B 2C 2;(4)△A 1B 1C 1可能由△A 2B 2C 2怎样变换得到? (写出你认为正确的一种即可).第19题ABCO第24题a b a ab b第23题aa b a a b bb b 乙甲aab25.(本题满分5分)在□ABCD 中,E 、F 分别为对角线BD 上的两点,且BE =DF . (1)试说明四边形AECF 的平行四边形; (2)试说明∠DAF 与∠BCE 相等.26.(本题满分5分)如图,在△ABC 中,AB =BC ,若将△ABC 沿AB 方向平移线段AB 的长得到△BDE . (1)试判断四边形BDEC 的形状,并说明理由; (2)试说明AC 与CD 垂直.27.(本小题满分5分)如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的点,E 、G 分别是折痕CE 与AB 、AG 与CD 的交点.第26题A BC DE A B CD EF第25题(1)试说明四边形AECG 是平行四边形;(2)若矩形的一边AB 的长为3cm ,当BC 的长为多少时,四边形AECG 是菱形?28.(本题满分6分)如图,在直角梯形ABCD 中,∠B =90°,AD ∥BC ,且AD =4cm ,AB =6cm ,DC =10cm .若动点P 从A 点出发,以每秒4cm 的速度沿线段AD 、DC 向C 点运动;动点Q 从C 点出发以每秒5cm 的速度沿CB 向B 点运动. 当Q 点到达B 点时,动点P 、Q 同时停止运动. 设点P 、Q 同时出发,并运动了t 秒, (1)直角梯形ABCD 的面积为 cm 2.(2)当t = 秒时,四边形PQCD 成为平行四边形? (3)当t = 秒时,AQ =DC ;(4)是否存在t ,使得P 点在线段DC 上且PQ ⊥DC ?若存在,求出此时t 的值,若不存在,说明理由.A B C DEF G H 第27题 A B C D P Q 第28题八年级数学期终试卷参考答案及评分标准2008.1一、细心填一填 1.2± ;32;-8 2.8a ;224n m -;8- 3.2 4.38,3 5.40 6.135 7.15 8.6 9.150 10.6 11.5或13 12.160 13.(1)24 (2)96 (3)96(或填64) 二、精心选一选14.B 15.D 16.D 17.D 18.B 19.A 20.C 三、认真答一答21.(1)原式=243-+-π (2分)=π-1(3分)(2) 原式=224643ab c a ab ÷⋅-(2分)=242c a -(3分)(3)原式=)94()44(2222y x xy y x --++(2分)=2104y xy +(3分)当21=x ,y =-3时,原式=-6+90=84(4分) 22.(1)原式=)12(2+--a a a (2分)=2)1(--a a (3分)(2)原式=)232)(232(b a b a b a b a +-+-++(1分)=b b a 4)24(⨯+(2分)=)2(8b a b +(3分)23.(1)2223))(2(b ab a b a b a ++=++(2分) (2)略(4分) 24.(1)AB =23,AC =24,BC =25(1分,不化简也对)∴222BC AC AB =+∴△ABC 是Rt △(2分)(2)图略(3分) (3)图略(4分)(写出等式与画图各1分,图上不标线段长不得分)(4)先将△A 2B 2C 2绕A 2点按顺时针方向旋转90°,再将所得图形向右平移6个单位即得到△A 1B 1C 1(5分,变换可以不同,只要正确即可)25.证明:(1)连结AC 交BD 于O .(1分)∵ABCD 是平行四边形,∴OA =OC ,OB =OD ,(2分)∵BE =DF ∴OE =OF ∴四边形AECF 的平行四边形(3分)(2)∵四边形AECF 的平行四边形 ∴AF ∥EC ∴∠FAC =∠ECA (4分) ∵ABCD 是平行四边形 AD ∥BC ∴∠DAC =∠BCA ∴∠DAF =∠BCE (5分)26.(1)解:∵△ABC 沿AB 方向平移AB 长得到△BDE ∴AB =CE =BD ,BC =DE ,(1分) ∵AB =BC ∴BD =DE =CE =BC ,(2分)∴四边形BDEC 为菱形.(3分)(2)证明:∵四边形BDEC 为菱形 ∴BE ⊥CD (4分) ∵△ABC 沿AB 方向平移AB 长得到△BDE∴AC ∥BE ∴AC ⊥CD .(5分) 27.(1)由题意,得∠GAH =21∠DAC , ∠ECF =21∠BCA (1分) ∵四边形ABCD 为矩形 ∴AD ∥BC ∴∠DAC =∠BCA ∴∠GAH =∠ECF ∴AG ∥CE (2分) 又∵AE ∥CG ∴四边形AECG 是平行四边形(3分)(2)∵四边形AECG 是菱形 ∴F 、H 重合∴AC =2BC (4分)在Rt △ABC 中,设BC =x ,则AC =2x 在Rt △ABC 中222BC AB AC +=即2223)2(x x +=,解得x =3,即线段BC 的长为3 cm.(5分) 28.解:(1)48(1分) (2)94秒(2分) (3)0.8秒(3分) (4)如图,设QC =5t ,则DP =4t -4,∵CD =10 ∴PC =14-4t ,连结DQ , ∵ AB =6,∴t t AB QC S DQC 15652121=⨯⨯=⨯=∆ 若PQ ⊥CD ,则PQ PQ PQ DC S DQC5102121=⨯⨯=⨯=∆ ∴5PQ =15t , 即PQ =3t (4分)∵PQ ⊥CD 则QC 2=PQ 2+PC 2 ∴222)414()3()5(t t t -+= 解得t =47(5分) 当t =47时, 4<4t <14,此时点P 在线段DC 上,又5t =435<12 点Q 在线段CB 上.∴当P 点运动到DC 上时,存在t =47秒,使得PQ ⊥CD.(6分)A BCDPQ第28题。
[数学]-专项9.1 旋转与中心对称【十大题型】(举一反三)(苏科版)(原版)
专题9.1 旋转与中心对称【十大题型】【苏科版】【题型1 关于原点对称的点的坐标】 (1)【题型2 利用旋转的性质求角度】 (2)【题型3 利用旋转的性质求线段长度】 (3)【题型4 旋转中的坐标与图形变换】 (4)【题型5 作图-旋转变换】 (6)【题型6 中心对称图形及旋转对称图形】 (8)【题型7 旋转中的周期性问题】 (9)【题型8 旋转中的多结论问题】 (10)【题型9 旋转中的最值问题】 (12)【题型10 旋转的综合】 (13)【题型1 关于原点对称的点的坐标】【例1】(2022春•平阴县期末)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为.【变式1-1】(2022秋•雨花区期末)若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为.【变式1-2】(2022秋•常熟市期末)已知点P(2m﹣1,﹣m+3)关于原点的对称点在第三象限,则m的取值范围是.【变式1-3】(2022春•永新县期末)已知点P(3+2a,2a+1)与点P′关于原点成中心对称,若点P′在=3的解是.第二象限,且a为整数,则关于x的分式方程2x−ax+1【题型2 利用旋转的性质求角度】【例2】(2022春•梅州校级期末)如图,点O是等边△ABC内一点,∠AOB=110°,将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接OD,若OD=AD,则∠BOC的度数为.【变式2-1】(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°【变式2-2】(2022•天津一模)如图,在△ABC中,AB=AC,∠BAC=40°,点D在边AB上,将△ADC 绕点A逆时针旋转40°,得到△AD'B,且D',D,C三点在同一条直线上,则∠ACD的大小为()A.20°B.30°C.40°D.45°【变式2-3】(2022•城步县模拟)如图,P为等边三角形ABC内一点,∠APB:∠APC:∠CPB=5:6:7,则以P A,PB,PC为三边构成的三角形的三个内角从小到大的度数之比为()A.1:2:3 B.2:3:4 C.3:4:5 D.5:6:7【题型3 利用旋转的性质求线段长度】【例3】(2022春•仪征市期末)如图,边长为1的正方形ABCD绕点A逆时针旋转60°得到正方形AEFG,连接CF,则CF的长是()A.1 B.√2C.√3D.3√2−3【变式3-1】(2022春•如皋市期末)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连接BB′,则B′B的长为()A.2√3B.5 C.2√5D.6【变式3-2】(2022•东莞市校级一模)如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O 逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为()A.3√5B.12√55C.9√55D.16√55【变式3-3】(2022春•和平区期末)如图,△ABC与△CDE都是等边三角形,连接AD,BE,CD=4,BC=2,若将△CDE绕点C顺时针旋转,当点A、C、E在同一条直线上时,线段BE的长为()A.2√3B.2√7C.√3或√7D.2√3或2√7【题型4 旋转中的坐标与图形变换】【例4】(2022秋•黄石期末)如图,线段AB与线段CD关于点P对称,若点A(a,b)、B(5,1)、D(﹣3,﹣1),则点C的坐标为()A.(﹣a,﹣b)B.(﹣a+2,﹣b)C.(﹣a﹣1,﹣b+1)D.(﹣a+1,﹣b﹣1)【变式4-1】(2022秋•本溪期末)如图,在△AOB中,OA=4,OB=6,AB=2√7,将△AOB绕原点O逆时针旋转90°,则旋转后点A的对应点A′的坐标是()A.(﹣4,2)B.(﹣2√3,4)C.(﹣2√3,2)D.(﹣2,2√3)【变式4-2】(2022秋•西湖区期末)如图,在平面直角坐标系中,△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2),则点M1的坐标为()A.(﹣2,﹣1)B.(1,2)C.(2,1)D.(﹣1,﹣2)【变式4-3】(2022•新抚区模拟)如图,Rt△AOB的斜边AO在y轴上,OB=√3,∠AOB=30°,直角顶点B在第二象限,将Rt△AOB绕原点O顺时针旋转120°后得到△A′OB',则A点的对应点A′的坐标是()A.(√3,﹣1)B.(1,−√3)C.(2,0)D.(√3,0)【题型5 作图-旋转变换】【例5】(2022春•化州市校级期中)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2.【变式5-1】(2022春•洪雅县期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.【变式5-2】(2022春•蒲城县期末)在如图所示的平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点坐标分别为A(1,1),B(3,0),C(2,3).(1)将△ABC向左平移4个单位长度得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,请画出△A1B1C1,并写出点C1的坐标;(2)以原点O为旋转中心,将△ABC顺时针旋转90°得到△A2B2C2,点A、B、C的对应点分别为A2、B2、C2,请画出△A2B2C2.【变式5-3】(2022秋•利通区期末)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)画出△ABC绕B点顺时针旋转90°后的△A1B1C1;并写出A1、B1、C1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2;并写出A2、B2、C2的坐标.【题型6 中心对称图形及旋转对称图形】【例6】(2022秋•单县校级月考)如图所示的图案中,是轴对称图形而不是中心对称图形的个数是.【变式6-1】(2022秋•普陀区期末)在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形,其中有个旋转对称图形.【变式6-2】(2022秋•孝义市期中)2022年2月4日﹣2月20日,北京冬奥会将隆重开幕,北京将成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的城市.下面图片是在北京冬奥会会徽征集过程中,征集到的一幅图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转°能与原雪花图案重合.【变式6-3】(2022春•景德镇期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添加1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案③中改变1个正方形的位置,从而得到一个新图形,使它既成中心对称图形,又成轴对称图形.【题型7 旋转中的周期性问题】【例7】(2022春•高新区校级月考)如图,在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转30°得到点P1,延长OP1到P2,使得OP2=2OP1;再将点P2绕着原点O按逆时针方向旋转30°得到P3,延长OP3到P4,使得OP4=2OP3……如此继续下去,点P2023坐标为()A.(﹣21010,√3•21010)B.(0,21011)C.(21010,√3•21010)D.(√3•21010,21010)【变式7-1】(2022秋•中原区校级期末)将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为(1,√3),将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为()A.(−1,√3)B.(−√3,1)C.(−√33,1)D.(−1,√33)【变式7-2】(2022•开封一模)如图,在平面直角坐标系中,将正方形OABC绕O点顺时针选择45°后,得到正方形OA1B1C1,以此方式,绕O点连续旋转2022次得到正方形OA2022B2022C2022,如果点C 的坐标为(0,1),那么点B2022的坐标为()A.(0,−√2)B.(−√2,0)C.(﹣1,1)D.(﹣1,﹣1)【变式7-3】(2022春•高州市期中)如图,矩形ABCD的顶点A,B分别在x轴、y轴上,OA=OB=2,AD=4√2,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点C的坐标为()A.(6,4)B.(﹣6,4)C.(4,﹣6)D.(﹣4,6)【题型8 旋转中的多结论问题】【例8】(2022•益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有()A.①②③B.①②④C.①③④D.②③④【变式8-1】(2022春•邗江区期末)如图,在正方形ABCD中,AB=8,若点E在对角线AC上运动,将线段DE绕点D逆时针旋转90°得到线段DF,连接EF、CF.点P在CD上,且CP=3PD.给出以下几个结论①EF=√2DE,②EF2=AE2+CE2,③线段PF的最小值是4√2,④△CFE的面积最大是16.其中正确的是()A.①②④B.②③④C.①②③D.①③④【变式8-2】(2022春•双牌县期末)一副三角板如图摆放,点F是45°角三角板ABC的斜边的中点,AC =4.当30°角三角板DEF的直角顶点绕着点F旋转时,直角边DF,EF分别与AC,BC相交于点M,N.在旋转过程中有以下结论:①MF=NF;②四边形CMFN有可能是正方形:③MN长度的最小值为2;④四边形CMFN的面积保持不变.其中正确结论的个数是()A.1 B.2 C.3 D.4【变式8-3】(2022春•德州期中)如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O 的一个顶点,而且这两个正方形的边长相等.给出如下四个结论:①∠OEF=45°;②正方形A1B1C1O 绕点O旋转时,四边形OEBF的面积随EF的长度变化而变化;③△BEF周长的最小值为(1+√2)OA;④AE2+CF2=2OB2.其中正确的结论有()A.①③B.②③C.①④D.③④【题型9 旋转中的最值问题】【例9】(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF=,FB+FD的最小值为.【变式9-1】(2022春•大埔县期中)如图,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AC=AD =3,AB=AE=5.连接BD,CE,将△ADE绕点A旋转一周,在旋转的过程中当∠DBA最大时,S△ACE =()A.6 B.6√2C.9 D.9√2【变式9-2】(2022春•龙岗区期末)如图,点E是等边三角形△ABC边AC的中点,点D是直线BC上一动点,连接ED,并绕点E逆时针旋转90°,得到线段EF,连接DF.若运动过程中AF的最小值为√3+1,则AB的值为()A.2 B.4√3C.2√3D.4【变式9-3】(2022春•南京期末)如图,在正方形ABCD中,AB=4,E为AB边上一点,点F在BC边上,且BF=1,将点E绕着点F顺时针旋转90°得到点G,连接DG,则DG的长的最小值为()A.2 B.2√2C.3 D.√10【题型10 旋转的综合】【例10】(2022春•长沙期末)如图,有一副直角三角板如图1放置(其中∠D=45°,∠C=30°),P A,PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)在图1中,∠DPC=;(2)①如图2,若三角板PBD保持不动,三角板P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;②如图3,在图1基础上,若三角板P AC的边P A从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,当PC转到与P A重合时,两三角板都停止转动,在旋转过程中,当∠CPD=∠BPM时,求旋转的时间是多少?【变式10-1】(2022春•南川区期末)如图,四边形ABCD是正方形,点E在AB的延长线上,连接EC,EC绕点E逆时针旋转90°得到EF,连接CF、AF,CF与对角线BD交于点G.(1)若BE=2,求AF的长度;(2)求证:AF+2BG=√2AD.【变式10-2】(2022•平邑县一模)在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90°得到EF,连接BF.(1)如图1,点E在BC边上.①依题意补全图1;②若AB=6,EC=2,求BF的长;(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系.【变式10-3】(2022•泰安一模)如图,将矩形ABCD绕着点B逆时针旋转得到矩形GBEF,使点C恰好落到线段AD上的E点处,连接CE,连接CG交BE于点H.(1)求证:CE平分∠BED;(2)取BC的中点M,连接MH,求证:MH∥BG;(3)若BC=2AB=4,求CG的长.。
苏科版八年级数学上册轴对称尺规作图专题:轴对称、等腰三角形、将军饮马培优
轴对称尺规作图专题:轴对称、等腰三角形、将军饮马培优一.【轴对称类】: Eg1.【方格类轴对称】:【例】: 作图题:如图是由5个小正方形组成的图形,请你用4种不同的方法分别在每个图中各添加一个小正方形,使所得的图形是轴对称图形。
[来源:学科网]【跟踪练习1】:如图,阴影部分是由3个小正方形组成的图形,请用3种方法分别在下图方格内添涂黑1个小正方形,使阴影部分成为轴对称图形.【跟踪练习2】:如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.【跟踪练习3】:如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用三种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.Eg2.【格点类轴对称】:【例1】:在3×3的正方形网格图中,有格点三角形ABC 和格点三角形DEF ,且ABC ∆和DEF ∆ 关于某条直线成轴对称,请在如图①~⑥所示的网格中画出六个这样的DEF ∆.(每种方案均不相同)【跟踪练习】:请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形与图中三角形成轴对称,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)EABC D【例2】:如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1 ; (2)在直线DE 上画出点Q ,使最小.【跟踪练习1】:如图,在正方形网格上的一个△ABC . ⑴ 作△ABC 关于直线MN 的对称图形(不写作法);⑵ 以P 为一个顶点作与△ABC 全等的三角形(规定点P 与点B 对应,另两顶点都在图中网格交点处),则可作出____________个三角形与△ABC 全等. (3) 在直线MN 上找一点Q ,使QB+QC 的长最短.【跟踪练习2】:.如图,点A,B,C 都在方格纸的格点上,请你再找一个格点D,使点A,B,C,D组成一个轴对称图形.这QC QA样的点D最多能找到个.【跟踪练习2】:. 如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.【跟踪练习3】:方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.(1)在图1中画出一个以A、B、C、D为顶点的格点四边形,使其为轴对称图形;(2)在图2中画一个格点正方形,使其面积等于20;(3)直接写出图3中△FGH的面积是________________.【跟踪练习4】:.在图示的方格纸中,(1)画出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?(3)在直线MN上找一点P,使得PB+PA最短.(不必说明理由).★【跟踪练习5】:在如图所示的网格中,线段AB和直线l如图所示:(1)借助图中的网格,在图1中作锐角..△ABC,满足以下要求:①C为格点(网格线交点);②AB=AC.(2)在(1)的基础上,请只用直尺(不含刻度)在图(1)中找一点P,使得P到AB、AC的距离相等,且PA =PB.(友情提醒:请别忘了标注字母!)(3)在图2中的直线l上找一点Q,使得△QAB的周长最小,并求出周长的最小值是.【跟踪练习6】:如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN,点A,B,M,N 均在小正方形的顶点上.(1).在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上), 使四边形ABCD 是以直线MN 为对称轴的轴对称图形,点A 的对称点为点D, 点B 的对称点为点C;(2).请直接写出四边形ABCD 的周长和面积.Eg3.【等腰三角形类】:【例】:如图,直线l 1、l 2相交于点A ,点B 是直线外一点,在直线l 1、l 2上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有( ) A .2个 B .4个C .6个D .8个(图1)B Al(图2)B Al⊥,点P是AB上一点,在射线AM与BN上分别作点C、【跟踪练习】:如图,射线AM与BN,MA AB⊥,NB AB点D满足:CPD△为等腰直角三角形,这样的等腰直角三角形可以画().A.1个B.2个C.3个D.4个【例】:图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);【跟踪练习】:如图A、B在方格纸的格点位置上.若要再找一个格点C,使它们所构成的三角形为轴对称图形,则这样的格点C在图中共有()A.4个B.6个C.8个D.10个l 2BAl 1Eg4.【垂直平分线与角平分线类】:【例】:“西气东输”是造福子孙后代的创世工程,现有两条高速公路l 1、l 2和两个城镇A 、B (如图),准备建一个燃气控制中心站P ,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置。
中心对称与中心对称图形
想一想
中心对称与轴对称有什
中心对称 有一个对称中心---点 图形绕对称中心旋转 1800后重合 对称点连线经过对称中 心,且被对称中心平分
么区别?又有什么联系?
轴对称 有一条对称轴---直线 图形沿对称轴对折(翻 折1800)后重合 对称点的连线被对称轴 垂直平分
随堂练习
如图,2块同样的三角
尺,它们是否关于某点成中心对称?
初中数学八年级上册 (苏科版) 3.2中心对称与中心对称图形(1)
观察下列各组图形,你能发现什么?
观察下面两个图形,怎样变换可 以使它们重合? H
F A D O G E C
B
中心对称
把一个图形绕某一点旋转 0,如果它能够与另一个图形 180 重合,那么称这两个图形关于这 点对称,也称这两个图形成中心 对称,这个点叫做对称中心,两个 图形中的对应点叫做对称点.
若是,请确定它的对称中心.
想一想 如何判断两个图形是否关于
某点对称呢?
如果两图形的对应点连线都经 过某一点,并且 都被这一点平分, 那么它们关于这一点对称.
■下列说法正确的是()
A.关于中心对称的两个图形中,对应线段 相等
B.成中心对称的两个图形的对称点的连线 段中点就是对称中心 C.平行四边形一组对边关于对角线交点对称 D.如果两点到某点的距离相等,则它们关于 这点对称
中心对称 一个图形绕某一点旋转1800 是一种特殊的旋转,因此成中 心对称的两个图形具有图形旋 转的一切性质.
中心对称还有哪些性质呢?
成中心对称的 两个图形,对称点连线都经过对 称中心,并且被对称中心平分. 成中心对称的两个图形,对 应角相等,对应线段平行(或 在同一条直线上)且相等.
中心对称的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级数学(上册)第三章《中心对称图形(一)》试题一.选择题(共14小题)1.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.1种B.2种C.4种D.无数种2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对4.顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE 的周长()A.4B.6C.8D.106.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°7.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm8.如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.B.C.1D.9.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补10.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组11.如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是()A.平行四边形B.矩形C.等腰梯形D.直角梯形12.如图为菱形ABCD与△ABE的重迭情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE 的长度为何?()A.8B.9C.11 D.1213.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q14.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB 的长度是()A.4B.5C.6D.7二.填空题(共12小题)15.已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是_________cm.16.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.先将△ADE沿DE折叠,点A 落在三角形所在平面内的点为A1,则∠BDA1的度数为_________.17.如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是_________.(填上你认为正确的一个答案即可)18.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于_________cm.19.如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=_________°.20.如图,DE是△ABC的中位线,M、N分别是BD、CE的中点,MN=6,则BC=_________.21.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为_________.22.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= _________cm.23.如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点0.若AC=6,则线段AO的长度等于_________.24.等腰梯形的腰长为5cm,它的周长是22cm,则它的中位线长为_________cm.25.如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=_________.26.如图,DE是△ABC的中位线,DE=2cm,AB+AC=12cm,则BC=_________cm,梯形DBCE 的周长为_________cm.三.解答题(共4小题)27.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE 是菱形.28.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.29.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.30.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.苏科版八年级数学(上册)第三章《中心对称图形(一)》试题参考答案与试题解析一.选择题(共14小题)1.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.1种B.2种C.4种D.无数种考点:平行四边形的性质。
专题:操作型。
分析:根据平行四边形的中心对称性,可知这样的折纸方法有无数种.解答:解:因为平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分四边形的面积,则这样的折纸方法共有无数种.故选D.点评:此题主要考查平行四边形是中心对称图形的性质.平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.考点:生活中的旋转现象;轴对称图形;中心对称图形。
分析:根据轴对称图形与中心对称图形的概念和图形特点求解.解答:解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.点评:掌握好中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有()考点:直角三角形全等的判定;矩形的性质。
分析:先找出图中的直角三角形,再分析三角形全等的方法,然后判断它们之间是否全等.解答:解:图中全等的直角三角形有:△AED≌△FEC,△BDC≌△FDC≌△DBA,共4对.故选B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形考点:菱形的判定;三角形中位线定理;矩形的性质。
分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.5.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE 的周长()考点:菱形的判定与性质;矩形的性质。
分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.6.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°考点:旋转的性质。
分析:根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.解答:解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故选:B.点评:此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.7.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm考点:矩形的性质;等边三角形的判定与性质。