2016年浙江省高考数学试卷(文科)
2016年高考文科数学浙江卷-答案
【解析】
{2,4,6}U
P =){2,4,6}{1,2,4}{1,2,4,6}(U P Q ==【提示】先求出
U
P ,再得出()U P Q
【考点】集合运算. 交于直线l ,
n
d h,可
211
n n n n
S S S S
+++
=
--,则数列{}
n
S为等差数列,故选A.
体积为28
=cm;所以几何体的表面积为64242280
+-⨯=cm,体积为32840
+=cm
定理求出D F '的最小值即可得出.
||||||||
a e
b e
a e
b e e e +=
+,其几何意义为a 在e 上的投影的绝对值与b 在e 上投影的绝对值的和,当e 与a b +共线时,取得最大值.∴22max (||||)||||||27a e b e a b a b a b +=+=++=.
||||a e b e +为a 在e 上的投影的绝对值与b 在e 上投影的绝对值的和,e 与a b +共线时,||||a e b e +取得最大值,即||a b +
【考点】平面向量的数量积运算. 三、解答题
⊥.所以BF⊥平面ACFD.为等边三角形,且F为CK的中点,则BF CK
+∞.
,0)(2,)
)利用抛物线的性质和已知条件求出抛物线方程,进一步求得的方程,与抛物线联立,求出
三点共线,可求出M。
浙江省高考数学试卷 文科
2016年浙江省高考数学试卷(文科)一、选择题1.(5分)(2016?浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,P)∪Q=()5},Q={1,2,4},则(?UA.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}2.(5分)(2016?浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.(5分)(2016?浙江)函数y=sinx2的图象是()A.B.C.D.4.(5分)(2016?浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A .B .C .D .5.(5分)(2016?浙江)已知a ,b >0且a≠1,b≠1,若log a b >1,则( ) A .(a ﹣1)(b ﹣1)<0 B .(a ﹣1)(a ﹣b )>0 C .(b ﹣1)(b ﹣a )<0 D .(b ﹣1)(b ﹣a )>06.(5分)(2016?浙江)已知函数f (x )=x 2+bx ,则“b<0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件7.(5分)(2016?浙江)已知函数f (x )满足:f (x )≥|x|且f (x )≥2x ,x∈R.( )A .若f (a )≤|b|,则a≤bB .若f (a )≤2b ,则a≤bC .若f (a )≥|b|,则a≥bD .若f (a )≥2b ,则a≥b8.(5分)(2016?浙江)如图,点列{A n }、{B n }分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n ≠A n+1,n∈N *,|B n B n+1|=|B n+1B n+2|,B n ≠B n+1,n∈N *,(P≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A n B n B n+1的面积,则( )A.{Sn }是等差数列B.{Sn2}是等差数列C.{dn }是等差数列D.{dn2}是等差数列二、填空题9.(6分)(2016?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.(6分)(2016?浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.(6分)(2016?浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A= ,b= .12.(6分)(2016?浙江)设函数f (x )=x 3+3x 2+1,已知a≠0,且f (x )﹣f (a )=(x ﹣b )(x ﹣a )2,x∈R,则实数a= ,b= .13.(4分)(2016?浙江)设双曲线x 2﹣=1的左、右焦点分别为F 1、F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是 .14.(4分)(2016?浙江)如图,已知平面四边形ABCD ,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC 将△ACD 翻折成△ACD′,直线AC 与BD′所成角的余弦的最大值是 .15.(4分)(2016?浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是 .三、解答题16.(14分)(2016?浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b+c=2acosB . (1)证明:A=2B ;(2)若cosB=,求cosC的值.17.(15分)(2016?浙江)设数列{an }的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)求数列{|an﹣n﹣2|}的前n项和.18.(15分)(2016?浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)(2016?浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)(2016?浙江)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)(2016?浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,P)∪Q=()5},Q={1,2,4},则(?UA.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}【考点】交、并、补集的混合运算.P={2,4,6},【解答】解:?UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.(?U故选C.【点评】本题考查了集合的运算,属于基础题.2.(5分)(2016?浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【考点】直线与平面垂直的判定.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m?β或m⊥β,l?β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)(2016?浙江)函数y=sinx2的图象是()A.B.C.D.【考点】函数的图象.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.4.(5分)(2016?浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B. C.D.【考点】简单线性规划.【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,故选:B.【点评】本题考查了平面区域的作法,距离公式的应用,属于基础题.5.(5分)(2016?浙江)已知a,b>0且a≠1,b≠1,若logb>1,则()aA.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【考点】不等关系与不等式.【解答】解:若a >1,则由log a b >1得log a b >log a a ,即b >a >1,此时b ﹣a >0,b >1,即(b ﹣1)(b ﹣a )>0,若0<a <1,则由log a b >1得log a b >log a a ,即b <a <1,此时b ﹣a <0,b <1,即(b ﹣1)(b ﹣a )>0, 综上(b ﹣1)(b ﹣a )>0, 故选:D .【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.6.(5分)(2016?浙江)已知函数f (x )=x 2+bx ,则“b<0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【考点】必要条件、充分条件与充要条件的判断. 【解答】解:f (x )的对称轴为x=﹣,f min (x )=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.则fmin∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.7.(5分)(2016?浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【考点】函数恒成立问题.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b 不一定成立,故A 错误, B .若f (a )≤2b, 则由条件知f (x )≥2x ,即f (a )≥2a ,则2a ≤f(a )≤2b , 则a≤b,故B 正确,C .若f (a )≥|b|,则由条件f (x )≥|x|得f (a )≥|a|,则|a|≥|b|不一定成立,故C 错误,D .若f (a )≥2b ,则由条件f (x )≥2x ,得f (a )≥2a ,则2a ≥2b ,不一定成立,即a≥b 不一定成立,故D 错误, 故选:B【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.8.(5分)(2016?浙江)如图,点列{A n }、{B n }分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n ≠A n+1,n∈N *,|B n B n+1|=|B n+1B n+2|,B n ≠B n+1,n∈N *,(P≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A n B n B n+1的面积,则( )A .{S n }是等差数列B .{S n 2}是等差数列C .{d n }是等差数列D .{d n 2}是等差数列 【考点】数列与函数的综合.【解答】解:设锐角的顶点为O ,|OA 1|=a ,|OB 1|=b , |A n A n+1|=|A n+1A n+2|=b ,|B n B n+1|=|B n+1B n+2|=d , 由于a ,b 不确定,则{d n }不一定是等差数列, {d n 2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n ,由三角形的相似可得==,==,两式相加可得,==2,即有h n +h n+2=2h n+1,由S n =d?h n ,可得S n +S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n , 则数列{S n }为等差数列. 故选:A .【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.二、填空题9.(6分)(2016?浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 80 cm 2,体积是 40 cm 3.【考点】由三视图求面积、体积.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题.10.(6分)(2016?浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(﹣2,﹣4),半径是 5 .【考点】圆的一般方程.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.11.(6分)(2016?浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A= ,b= 1 .【考点】两角和与差的正弦函数.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.12.(6分)(2016?浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a= ﹣2 ,b= 1 .【考点】函数与方程的综合运用.【解答】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x ﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),故答案为:﹣2;1.【点评】本题考查函数与方程的应用,考查化简能力和方程思想,属于中档题.13.(4分)(2016?浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.【考点】双曲线的简单性质.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().【点评】本题考查双曲线的简单性质,考查双曲线定义的应用,考查数学转化思想方法,是中档题.14.(4分)(2016?浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【考点】异面直线及其所成的角.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.【点评】本题考查了空间位置关系、空间角,考查了空间想象能力、推理能力与计算能力,属于难题.15.(4分)(2016?浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【考点】平面向量数量积的运算.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.三、解答题16.(14分)(2016?浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【考点】正弦定理.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2016?浙江)设数列{a n }的前n 项和为S n ,已知S 2=4,a n+1=2S n +1,n∈N *.(Ⅰ)求通项公式a n ;(Ⅱ)求数列{|a n ﹣n ﹣2|}的前n 项和. 【考点】数列递推式.【解答】解:(Ⅰ)∵S 2=4,a n+1=2S n +1,n∈N *. ∴a 1+a 2=4,a 2=2S 1+1=2a 1+1, 解得a 1=1,a 2=3,当n≥2时,a n+1=2S n +1,a n =2S n ﹣1+1, 两式相减得a n+1﹣a n =2(S n ﹣S n ﹣1)=2a n , 即a n+1=3a n ,当n=1时,a 1=1,a 2=3, 满足a n+1=3a n ,∴=3,则数列{a n }是公比q=3的等比数列,则通项公式a n =3n ﹣1.(Ⅱ)a n ﹣n ﹣2=3n ﹣1﹣n ﹣2,设b n =|a n ﹣n ﹣2|=|3n ﹣1﹣n ﹣2|, 则b 1=|30﹣1﹣2|=2,b 2=|3﹣2﹣2|=1, 当n≥3时,3n ﹣1﹣n ﹣2>0,则b n =|a n ﹣n ﹣2|=3n ﹣1﹣n ﹣2,此时数列{|a n ﹣n ﹣2|}的前n 项和T n =3+﹣=,则T n ==.【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{a n }是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行数列求和.18.(15分)(2016?浙江)如图,在三棱台ABC ﹣DEF 中,平面BCFE⊥平面ABC ,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【考点】直线与平面所成的角;直线与平面垂直的判定.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF?平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.19.(15分)(2016?浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【考点】直线与椭圆的位置关系;抛物线的简单性质.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y 1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.20.(15分)(2016?浙江)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.【考点】导数在最大值、最小值问题中的应用.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.【点评】本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.参与本试卷答题和审题的老师有:zhczcb;zlzhan;maths;双曲线;742048;sxs123;gongjy;沂蒙松(排名不分先后)菁优网2016年6月18日。
2016年浙江省高考数学试卷及答案(文科)
绝密★考试结束前2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式 台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目求的).1.已知全集{}12,3456U =,,,,,集合{}13,5P =,,{}124Q =,,,则()U P Q =U ð( ).A.{}1B.{}3,5C.{}1,2,4,6 D.{}1,2,3,4,52.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足//m α,n β⊥,则( ). A. //m lB. //m nC. n l ⊥D. m n ⊥3.函数2sin y x =的图像是( ).A. B. C. D.4.若平面区域30230230x y x y x y +-⎧⎪--⎨⎪-+⎩…„… 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是().5.已知a ,0b >,且1a ≠,1b ≠,若log >1a b ,则( ). A.()()110a b --< B. ()()10a a b --> C.()()10b b a --<D. ()()10b b a -->6.已知函数()2f x x bx =+,则“0b <”是“()()f f x 的最小值与()f x 的最小值相等”的( ).A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知函数()f x 满足:()f x x …且()2,xf x x ∈R …. A.若()f a b „,则a b „ B.若()2bf a „,则a b „ C.若()f a b …,则a b … D.若()2b f a …,则a b … 8.如图所示,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N (P Q ≠表示点P 与Q 不重合) .若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).A .{}n S 是等差数列 B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2n d 是等差数列二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______2cm , 体积是______3cm.10. 已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____, 半径是______.11. 已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =________,b =________. 12.买《全归纳》即赠完整word 版高考真题设函数()3231f x x x =++.已知0a ≠,且()()()()2–––f x f a x b x a =,x ∈R ,则实数a =_____,b =______.13.设双曲线22–13y x =的左、右焦点分别为1F ,2F .若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是_______.14.如图所示,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =90ADC ∠=︒.沿直线AC 将ACD △翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是______.俯视图D 'ABCD •••n+115.已知平面向量a ,b ,1=a ,2=b ,·1=a b .若e 为平面单位向量,则··+a e b e 的最大值是______. 三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cosC 的值.17.(本题满分15分)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*n ∈N . (1)求通项公式n a ;(2)求数列{}2n a n --的前n 项和.18.(本题满分15分)如图所示,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.FEBCDA19.(本题满分15分)如图所示,设抛物线()220y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于1AF -. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.NF M BAx yO20. (本题满分15分)设函数()311f x x x=++,[]0,1x ∈.证明: (1)()21f x x x -+…; (2)。
2016年浙江省高考文科数学试卷及参考答案与试题解析
2016年浙江省高考文科数学试卷及参考答案与试题解析一、选择题1.(5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q =( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n3.(5分)函数y=sinx2的图象是( )A. B. C. D.4.(5分)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A. B. C. D.5.(5分)已知a,b>0且a≠1,b≠1,若logab>1,则( )A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>06.(5分)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.( )A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b8.(5分)如图,点列{An }、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|Bn Bn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△A n BnBn+1的面积,则( )A.{Sn }是等差数列 B.{Sn2}是等差数列C.{dn }是等差数列 D.{dn2}是等差数列二、填空题9.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.(6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.12.(6分)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,则实数a=,b=.13.(4分)设双曲线x2-=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.14.(4分)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.15.(4分)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.三、解答题16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB. (1)证明:A=2B;(2)若cosB=,求cosC的值.17.(15分)设数列{an }的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)求数列{|an-n-2|}的前n项和.18.(15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC =1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1-x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q =( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}【分析】先求出∁U P,再得出(∁UP)∪Q.【解答】解:∁UP={2,4,6},(∁UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选:C.【点评】本题考查了集合的运算,属于基础题.2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m与β相交,l⊂β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)函数y=sinx2的图象是( )A. B. C. D.【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:∵sin(-x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.4.(5分)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A. B. C. D.【分析】作出平面区域,找出距离最近的平行线的位置,求出直线方程,再计算距离. 【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x-1,y=x+1,即x-y-1=0,x-y+1=0.∴平行线间的距离为d==,故选:B.【点评】本题考查了平面区域的作法,距离公式的应用,属于基础题.5.(5分)已知a,b>0且a≠1,b≠1,若logab>1,则( )A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0【分析】根据对数的运算性质,结合a>1或0<a<1进行判断即可.【解答】解:若a>1,则由loga b>1得logab>logaa,即b>a>1,此时b-a>0,b>1,即(b-1)(b-a)>0,若0<a<1,则由loga b>1得logab>logaa,即b<a<1,此时b-a<0,b<1,即(b-1)(b-a)>0,综上(b-1)(b-a)>0,故选:D.【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.6.(5分)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.(x)=-.【解答】解:f(x)的对称轴为x=-,fmin(1)若b<0,则->-,∴当f(x)=-时,f(f(x))取得最小值f(-)=-,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)设f(x)=t,则f(f(x))=f(t),∴f(t)在(-,-)上单调递减,在(-,+∞)上单调递增,若f(f(x))=f(t)的最小值与f(x)的最小值相等,则-≤-,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选:A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.7.(5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.( )A.若f(a)≤|b|,则a≤bB.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥bD.若f(a)≥2b,则a≥b【分析】根据不等式的性质,分别进行递推判断即可.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,故选:B.【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.8.(5分)如图,点列{A n }、{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +1,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +1,n ∈N *,(P ≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A nB n B n +1的面积,则( )A.{S n }是等差数列B.{S n 2}是等差数列C.{d n }是等差数列D.{d n 2}是等差数列【分析】设锐角的顶点为O ,再设|OA 1|=a ,|OB 1|=c ,|A n A n +1|=|A n +1A n +2|=b ,|B n B n +1|=|B n +1B n +2|=d ,由于a ,c 不确定,判断C ,D 不正确,设△A n B n B n +1的底边B n B n +1上的高为h n ,运用三角形相似知识,h n +h n +2=2h n +1,由S n =d •h n ,可得S n +S n +2=2S n +1,进而得到数列{S n }为等差数列.【解答】解:设锐角的顶点为O ,|OA 1|=a ,|OB 1|=c , |A n A n +1|=|A n +1A n +2|=b ,|B n B n +1|=|B n +1B n +2|=d , 由于a ,c 不确定,则{d n }不一定是等差数列, {d n 2}不一定是等差数列,设△A n B n B n +1的底边B n B n +1上的高为h n ,由三角形的相似可得==,==,两式相加可得,==2,即有h n +h n +2=2h n +1,由S n =d •h n ,可得S n +S n +2=2S n +1,即为S n +2-S n +1=S n +1-S n , 则数列{S n }为等差数列.另解:可设△A 1B 1B 2,△A 2B 2B 3,…,A n B n B n +1为直角三角形, 且A 1B 1,A 2B 2,…,A n B n 为直角边, 即有h n +h n +2=2h n +1,由S n =d •h n ,可得S n +S n +2=2S n +1, 即为S n +2-S n +1=S n +1-S n , 则数列{S n }为等差数列. 故选:A.【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.二、填空题9.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80 cm2,体积是40 cm3.【分析】根据几何体的三视图,得出该几何体下部为长方体,上部为正方体的组合体,结合图中数据求出它的表面积和体积即可.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24-2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题.10.(6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(-2,-4) ,半径是 5 .【分析】由已知可得a2=a+2≠0,解得a=-1或a=2,把a=-1代入原方程,配方求得圆心坐标和半径,把a=2代入原方程,由D2+E2-4F<0说明方程不表示圆,则答案可求. 【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=-1或a=2.当a=-1时,方程化为x2+y2+4x+8y-5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(-2,-4),半径为5;当a=2时,方程化为,此时,方程不表示圆, 故答案为:(-2,-4),5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.11.(6分)已知2cos 2x +sin2x =Asin(ωx+φ)+b(A >0),则A =,b = 1 .【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案. 【解答】解:∵2cos 2x +sin2x =1+cos2x +sin2x =1+(cos2x +sin2x)=sin(2x +)+1,∴A =,b =1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.12.(6分)设函数f(x)=x 3+3x 2+1,已知a ≠0,且f(x)-f(a)=(x -b)(x -a)2,x ∈R ,则实数a = -2 ,b = 1 .【分析】根据函数解析式化简f(x)-f(a),再化简(x -b)(x -a)2,根据等式两边对应项的系数相等列出方程组,求出a 、b 的值. 【解答】解:∵f(x)=x 3+3x 2+1,∴f(x)-f(a)=x 3+3x 2+1-(a 3+3a 2+1) =x 3+3x 2-(a 3+3a 2)∵(x -b)(x -a)2=(x -b)(x 2-2ax +a 2)=x 3-(2a +b)x 2+(a 2+2ab)x -a 2b , 且f(x)-f(a)=(x -b)(x -a)2,∴,解得或(舍去),故答案为:-2;1.【点评】本题考查函数与方程的应用,考查化简能力和方程思想,属于中档题.13.(4分)设双曲线x 2-=1的左、右焦点分别为F 1、F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是.【分析】由题意画出图形,以P 在双曲线右支为例,求出∠PF 2F 1和∠F 1PF 2为直角时|PF 1|+|PF 2|的值,可得△F 1PF 2为锐角三角形时|PF 1|+|PF 2|的取值范围. 【解答】解:如图,由双曲线x 2-=1,得a 2=1,b 2=3,∴.不妨以P 在双曲线右支为例,当PF 2⊥x 轴时, 把x =2代入x 2-=1,得y =±3,即|PF 2|=3,此时|PF 1|=|PF 2|+2=5,则|PF 1|+|PF 2|=8; 由PF 1⊥PF 2,得,又|PF 1|-|PF 2|=2,①两边平方得:,∴|PF 1||PF 2|=6,② 联立①②解得:, 此时|PF 1|+|PF 2|=.∴使△F 1PF 2为锐角三角形的|PF 1|+|PF 2|的取值范围是().故答案为:().【点评】本题考查双曲线的简单性质,考查双曲线定义的应用,考查数学转化思想方法,是中档题.14.(4分)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD′,直线AC 与BD′所成角的余弦的最大值是 .【分析】如图所示,取AC的中点O,AB=BC=3,可得BO⊥AC,在Rt△ACD′中,AC=.作D′E⊥AC,垂足为E,D′E=.CO=,CE==,EO=CO-CE=.过点B 作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,BF=EO=.EF=BO=.则∠FED′为二面角D′-CA-B的平面角,设为θ.利用余弦定理求出D′F2的最小值即可得出.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO-CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′-CA-B的平面角,设为θ.则D′F2=+-2×cosθ=-5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.也可以考虑利用向量法求解.故答案为:.【点评】本题考查了空间位置关系、空间角,考查了空间想象能力、推理能力与计算能力,属于难题.15.(4分)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.三、解答题16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【分析】(1)由b+c=2acosB,利用正弦定理可得:sinB+sinC=2sinAcosB,而sinC=sin(A +B)=sinAcosB+cosAsinB,代入化简可得:sinB=sin(A-B),由A,B∈(0,π),可得0<A-B<π,即可证明.(II)cosB=,可得sinB=.cosA=cos2B=2cos2B-1,sinA=.利用cosC =-cos(A+B)=-cosAcosB+sinAsinB即可得出.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB =sinAcosB -cosAsinB =sin(A -B),由A ,B ∈(0,π),∴0<A -B <π,∴B =A -B ,或B =π-(A -B),化为A =2B ,或A =π(舍去). ∴A =2B.(II)解:cosB =,∴sinB ==.cosA =cos2B =2cos 2B -1=,sinA ==.∴cosC =-cos(A +B)=-cosAcosB +sinAsinB =+×=.【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.17.(15分)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (Ⅰ)求通项公式a n ;(Ⅱ)求数列{|a n -n -2|}的前n 项和.【分析】(Ⅰ)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{a n }是公比q =3的等比数列,即可求通项公式a n ;(Ⅱ)讨论n 的取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|a n -n -2|}的前n 项和.【解答】解:(Ⅰ)∵S 2=4,a n +1=2S n +1,n ∈N *. ∴a 1+a 2=4,a 2=2S 1+1=2a 1+1, 解得a 1=1,a 2=3,当n ≥2时,a n +1=2S n +1,a n =2S n -1+1, 两式相减得a n +1-a n =2(S n -S n -1)=2a n , 即a n +1=3a n ,当n =1时,a 1=1,a 2=3, 满足a n +1=3a n ,∴=3,则数列{a n }是公比q =3的等比数列,则通项公式a n =3n -1.(Ⅱ)a n -n -2=3n -1-n -2,设b n =|a n -n -2|=|3n -1-n -2|,则b 1=|30-1-2|=2,b 2=|3-2-2|=1, 当n ≥3时,3n -1-n -2>0, 则b n =|a n -n -2|=3n -1-n -2, 此时数列{|a n -n -2|}的前n 项和T n =3+-=,则T==.n【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{a}是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行n数列求和.18.(15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC =1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【分析】(Ⅰ)根据三棱台的定义,可知分别延长AD,BE,CF,会交于一点,并设该点为K,并且可以由平面BCFE⊥平面ABC及∠ACB=90°可以得出AC⊥平面BCK,进而得出BF⊥AC.而根据条件可以判断出点E,F分别为边BK,CK的中点,从而得出△BCK为等边三角形,进而得出BF⊥CK,从而根据线面垂直的判定定理即可得出BF⊥平面ACFD;(Ⅱ)由BF⊥平面ACFD便可得出∠BDF为直线BD和平面ACFD所成的角,根据条件可以求出BF=,DF=,从而在Rt△BDF中可以求出BD的值,从而得出cos∠BDF的值,即得出直线BD和平面ACFD所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【分析】(Ⅰ)利用抛物线的性质和已知条件求出抛物线方程,进一步求得p值;(Ⅱ)设出直线AF的方程,与抛物线联立,求出B的坐标,求出直线AB,FN的斜率,从而求出直线BN的方程,根据A、M、N三点共线,可求出M的横坐标的表达式,从而求出m的取值范围.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=-1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2-4sy-4=0.y 1y2=-4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=-,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(-∞,0)∪(2,+∞).【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1-x+x2(Ⅱ)<f(x)≤.【分析】(Ⅰ)根据题意,1-x+x2-x3=,利用放缩法得≤,即可证明结论成立;(Ⅱ)利用0≤x≤1时x3≤x,证明f(x)≤,再利用配方法证明f(x)≥,结合函数的最小值得出f(x)>,即证结论成立.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1-x+x2-x3==,所以≤,所以1-x+x2-x3≤,即f(x)≥1-x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+-+=+≤;由(Ⅰ)得,f(x)≥1-x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.【点评】本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.。
2016年高考文科数学浙江卷-答案
联立方程组 ,解∴平行线间的距离为 ,故选B.
【提示】作出平面区域,找出距离最近的平行线的位置,求出直线方程,再计算距离.
【考点】平面区域的作法,距离公式.
5.【答案】D
【解析】若 ,则由 得 ,即 ,此时 , ,即 ,若 ,则由 得 ,即 ,此时 , ,即 ,综上 ,故选D.
【提示】设锐角的顶点为 ,再设 , , , ,由于 , 不确定,判断C,D不正确,设 的底边 上的高为 ,运用三角形相似知识, ,由 可得 ,进而得到数列 为等差数列.
【考点】等差数列,三角形的相似和等差数列的性质.
非选择题部分
二、填空题
9.【答案】80
40
【解析】根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为 ,体积为 ;上部为正方体,其棱长为2,表面积是 ,体积为 ;所以几何体的表面积为 ,体积为
【考点】两直线关系的判断.
3.【答案】D
【解析】∵ ,∴函数 是偶函数,即函数的图象关于 轴对称,排除A,C;当 时,则 ,所以排除B,故选D.
【提示】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.
【考点】函数图象的识别和判断,函数奇偶性和函数零点的性质.
4.【答案】B
【解析】作出平面区域如图所示:∴当直线 分别经过 , 时,平行线间的距离相等.
.作 ,垂足为 , . , ,∴ .过点 作 ,作 交于点 ,则 .连接 . 为直线 与 所成的角.则四边形 为矩形,∴ . .则 为二面角 的平面角,设为 .则 , 时取等号.
∴ 的最小值 .∴直线 与 所成角的余弦的最大值 .
【提示】如图所示,取 的中点 , ,可得 ,在 中, .作 ,垂足为 , . , , .过点 作 ,作 交 于点 ,则 .连接 . 为直线 与 所成的角.则四边形 为矩形, . .则 为二面角 的平面角,设为 .利用余弦定理求出 的最小值即可得出.
浙江省高考数学试卷(文科)
2016年浙江省高考数学试卷(文科)一、选择题1.(5分)(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1}B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n ⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.(5分)(2016•浙江)函数y=sinx2的图象是()A.B.C.D.4.(5分)(2016•浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C.D.5.(5分)(2016•浙江)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>06.(5分)(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.(5分)(2016•浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b8.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列二、填空题9.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.(6分)(2016•浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.12.(6分)(2016•浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=,b=.13.(4分)(2016•浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.14.(4分)(2016•浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.15.(4分)(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.三、解答题16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.17.(15分)(2016•浙江)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1}B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}【分析】先求出∁U P,再得出(∁U P)∪Q.【解答】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选C.【点评】本题考查了集合的运算,属于基础题.2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n ⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)(2016•浙江)函数y=sinx2的图象是()A.B.C.D.【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.4.(5分)(2016•浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C.D.【分析】作出平面区域,找出距离最近的平行线的位置,求出直线方程,再计算距离.【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,故选:B.【点评】本题考查了平面区域的作法,距离公式的应用,属于基础题.5.(5分)(2016•浙江)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【分析】根据对数的运算性质,结合a>1或0<a<1进行判断即可.【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.6.(5分)(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,则f min(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.7.(5分)(2016•浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【分析】根据不等式的性质,分别进行递推判断即可.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C 错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b 不一定成立,故D错误,故选:B【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.8.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,判断C,D不正确,设△A n B n B n+1的底边B n B n+1上的高为h n,运用三角形相似知识,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.二、填空题9.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80cm2,体积是40cm3.【分析】根据几何体的三视图,得出该几何体下部为长方体,上部为正方体的组合体,结合图中数据求出它的表面积和体积即可.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题.10.(6分)(2016•浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(﹣2,﹣4),半径是5.【分析】由已知可得a2=a+2≠0,解得a=﹣1或a=2,把a=﹣1代入原方程,配方求得圆心坐标和半径,把a=2代入原方程,由D2+E2﹣4F<0说明方程不表示圆,则答案可求.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.11.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b= 1.【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.12.(6分)(2016•浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=﹣2,b=1.【分析】根据函数解析式化简f(x)﹣f(a),再化简(x﹣b)(x﹣a)2,根据等式两边对应项的系数相等列出方程组,求出a、b的值.【解答】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),故答案为:﹣2;1.【点评】本题考查函数与方程的应用,考查化简能力和方程思想,属于中档题.13.(4分)(2016•浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.【分析】由题意画出图形,以P在双曲线右支为例,求出∠PF2F1和∠F1PF2为直角时|PF1|+|PF2|的值,可得△F1PF2为锐角三角形时|PF1|+|PF2|的取值范围.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().【点评】本题考查双曲线的简单性质,考查双曲线定义的应用,考查数学转化思想方法,是中档题.14.(4分)(2016•浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【分析】如图所示,取AC的中点O,AB=BC=3,可得BO⊥AC,在Rt△ACD′中,AC=.作D′E⊥AC,垂足为E,D′E=.CO=,CE==,EO=CO﹣CE=.过点B 作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,BF=EO=.EF=BO=.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.利用余弦定理求出D′F2的最小值即可得出.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC 与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.【点评】本题考查了空间位置关系、空间角,考查了空间想象能力、推理能力与计算能力,属于难题.15.(4分)(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.三、解答题16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【分析】(1)由b+c=2acosB,利用正弦定理可得:sinB+sinC=2sinAcosB,而sinC=sin(A+B)=sinAcosB+cosAsinB,代入化简可得:sinB=sin(A﹣B),由A,B∈(0,π),可得0<A ﹣B<π,即可证明.(II)cosB=,可得sinB=.cosA=cos2B=2cos2B﹣1,sinA=.利用cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB即可得出.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2016•浙江)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【分析】(Ⅰ)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{a n}是公比q=3的等比数列,即可求通项公式a n;(Ⅱ)讨论n的取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,a n+1=2S n+1,a n=2S n﹣1+1,两式相减得a n+1﹣a n=2(S n﹣S n﹣1)=2a n,即a n+1=3a n,当n=1时,a1=1,a2=3,满足a n+1=3a n,∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{a n}是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行数列求和.18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【分析】(Ⅰ)根据三棱台的定义,可知分别延长AD,BE,CF,会交于一点,并设该点为K,并且可以由平面BCFE⊥平面ABC及∠ACB=90°可以得出AC⊥平面BCK,进而得出BF⊥AC.而根据条件可以判断出点E,F分别为边BK,CK的中点,从而得出△BCK为等边三角形,进而得出BF⊥CK,从而根据线面垂直的判定定理即可得出BF⊥平面ACFD;(Ⅱ)由BF⊥平面ACFD便可得出∠BDF为直线BD和平面ACFD所成的角,根据条件可以求出BF=,DF=,从而在Rt△BDF中可以求出BD的值,从而得出cos∠BDF的值,即得出直线BD和平面ACFD所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【分析】(Ⅰ)利用抛物线的性质和已知条件求出抛物线方程,进一步求得p值;(Ⅱ)设出直线AF的方程,与抛物线联立,求出B的坐标,求出直线AB,FN的斜率,从而求出直线BN的方程,根据A、M、N三点共线,可求出M的横坐标的表达式,从而求出m的取值范围.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.【分析】(Ⅰ)根据题意,1﹣x+x2﹣x3=,利用放缩法得≤,即可证明结论成立;(Ⅱ)利用0≤x≤1时x3≤x,证明f(x)≤,再利用配方法证明f(x)≥,结合函数的最小值得出f(x)>,即证结论成立.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.【点评】本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.参与本试卷答题和审题的老师有:zhczcb;zlzhan;maths;双曲线;742048;sxs123;gongjy;沂蒙松(排名不分先后)菁优网2016年8月16日。
高考浙江文科数学试题及答案 解析版
2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2016年浙江,文1,5分】已知全集{}1,2,3,4,5,6U =,集合{}1,3,5P =,{}1,2,4Q =,则()U P Q =U ð( )(A ){}1 (B ){}3,5 (C ){}1,2,4,6 (D ){}1,2,3,4,5 【答案】C【解析】{}2,4,6U P =ð,(){}{}{}2,4,61,2,41,2,4,6U P Q ==U U ð,故选C .【点评】本题考查了集合的运算,属于基础题. (2)【2016年浙江,文2,5分】已知互相垂直的平面α,β交于直线l .若直线m ,n 满足//m α,n β⊥,则( )(A )//m l (B )//m n (C )n l ⊥ (D )m n ⊥ 【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足//m α,∴//m β或m β⊂或m β⊥,l β⊂,∵n β⊥,∴n l ⊥,故选C .【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. (3)【2016年浙江,文3,5分】函数2sin y x =的图象是( )(A ) (B ) (C ) (D )【答案】B【解析】∵()22sin sin x x -=,∴函数2sin y x =是偶函数,即函数的图象关于y 轴对称,排除A ,C ;由2sin 0y x ==, 则2x k π=,0k ≥,则,0x k k π=±≥,故函数有无穷多个零点,故选B . 【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.(4)【2016年浙江,文4,5分】若平面区域30230230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,夹在两条斜率为l 的平行直线之间,则这两条平行直线间的距离的最小值是( )(A )35 (B )2 (C )32 (D )5【答案】B【解析】作出平面区域如图所示:∴当直线y x b =+分别经过A ,B 时,平行线间的距离相等.联立方程组30230x y x y +-=⎧⎨--=⎩,解得()2,1A ,联立方程组30230x y x y +-=⎧⎨-+=⎩,解得()1,2B .两条平行线分别为1y x =-,1y x =+,即10x y --=,10x y -+=.∴平行线间的距离为1122d --==,故选B .【点评】本题考查了平面区域的作法,距离公式的应用,属于基础题. (5)【2016年浙江,文5,5分】已知a ,0b >且1a ≠,1b ≠,若log 1a b >,则( )(A )()()110a b --< (B )()()10a a b -->(C )()()10b b a --< (D )()()10b b a -->【答案】D【解析】若1a >,则由log 1a b >得log log a a b a >,即1b a >>,此时0b a ->,1b >,即()()10b b a -->,若01a <<,则由log 1a b >得log log a a b a >,即1b a <<,此时0b a -<,1b <,即()()10b b a -->, 综上()()10b b a -->,故选D .【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.(6)【2016年浙江,文6,5分】已知函数2f x x bx =+(),则“0b <”是“()()f f x 的最小值与()f x 的最小值相等”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】()f x 的对称轴为2b x =-,()2min 4b f x =-.(1)若0b <,则224b b ->-,∴当()2bf x =-时,()()f f x 取得最小值224b b f ⎛⎫-=- ⎪⎝⎭,即()()f f x 的最小值与()f x 的最小值相等.∴“0b <”是“()()f f x 的最小值与()f x 的最小值相等”的充分条件.(2)若()()f f x 的最小值与()f x 的最小值相等,则()min 2bf x ≤-,即242b b -≤-,解得0b ≤或2b ≥.∴“0b <”不是“()()f f x 的最小值与()f x 的最小值相等”的必要条件,故选A .【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题. (7)【2016年浙江,文7,5分】已知函数f x ()满足:()f x x ≥且()2x f x ≥,x R ∈( ) (A )若()f a b ≤,则a b ≤ (B )若()2b f a ≤,则a b ≤ (C )若()f a b ≥,则a b ≥ (D )若()2b f a ≥,则a b ≥【答案】B 【解析】(A )若()f a b ≤,则由条件()f x x ≥得()f a a ≥,即a b ≤,则a b ≤不一定成立,故A 错误,(B )若()2b f a ≤,则由条件知()2x f x ≥,即()2a f a ≥,则()22a b f a ≤≤,则a b ≤,故B 正确,(C )若()f a b ≥,则由条件()f x x ≥得()f a a ≥,则a b ≥不一定成立,故C 错误,(D )若()2b f a ≥,则由条件()2x f x ≥,得()2a f a ≥,则22a b ≥,不一定成立,即a b ≥不一定成立,故D 错误,故选B .【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.(8)【2016年浙江,文8,5分】如图,点列{}n A 、{}n B 分别在某锐角的两边上,且112n n n n A A A A +++=,1n n A A +≠,n N *∈,112n n n n B B B B +++=,1n n B B +≠,n N *∈,(P Q ≠表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +∆的面积,则( ) (A ){}n S 是等差数列 (B ){}2n S 是等差数列 (C ){}n d 是等差数列 (D ){}2n d 是等差数列 【答案】A【解析】设锐角的顶点为O ,1OA a =,1OB b =,112n n n n A A A A b +++==,112n n n n B B B B d +++==,由于a ,b 不确定,则{}n d 不一定是等差数列,{}2nd 不一定是等差数列,设1n n n A B B+∆的底边1n n B B +上的高为n h ,由三角形的相似可得()111n nn n a n b h OA h OA a nb +++-==+,()22111n n n n a n b h OA h OA a nb++++++==+,两式相加可得,21222n n n h h a nb h a nb ++++==+,即有212n n n h h h +++=,由12n n S d h =⋅,可得212n n n S S S +++=, 即为211n n n n S S S S +++=--,则数列{}n S 为等差数列,故选A .【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(9)【2016年浙江,文9,6分】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3. 【答案】80;40【解析】根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为22442464⨯⨯+⨯=cm 2,体积为22432⨯=cm 3;上部为正方体,其棱长为2, 表面积是26224⨯=cm 2,体积为328=cm 3;所以几何体的表面积为264242280+-⨯= cm 2,体积为32840+=cm 3.【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题. (10)【2016年浙江,文10,6分】已知a R ∈,方程()22224850a x a y x y a +++++=表示圆,则圆心坐标是 ,半径是 . 【答案】()2,4--;5【解析】∵方程()22224850a x a y x y a +++++=表示圆,∴220a a =+≠,解得1a =-或2a =.当1a =-时,方程化为224850x y x y +++-=,配方得()()222425x y +++=,所得圆的圆心坐标为()2,4--,半径为5;当2a =时,方程化为225202x y x y ++++=,此时2254144502D E F +-=+-⨯=-<,方程不表示圆.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题. (11)【2016年浙江,文11,6分】已知()()22cos sin 2sin 0x x A x b A ωϕ+=++>,则A = ,b = . 【答案】2;1【解析】∵2222cos sin 21cos 2sin 212cos 2sin 212sin 214x x x x x x x π⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎭, ∴2A =,1b =.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.(12)【2016年浙江,文12,6分】设函数()3231f x x x =++,已知0a ≠,且()()()()2f x f a x b x a -=--,x R ∈,则实数a = ,b = . 【答案】2-,1【解析】∵()3231f x x x =++,∴()()()()32323232313133f x f a x x a a x x a a -=++-++=+-+,∵()()()()()()2223222222x b x a x b x ax a x a b x a ab x a b --=--+=-+++-,且()()()()2f x f a x b x a -=--,∴232223203a b a ab a a a b--=⎧⎪+=⎨⎪+=⎩,解得21a b =-⎧⎨=⎩或03a b =⎧⎨=-⎩(舍去).【点评】本题考查函数与方程的应用,考查化简能力和方程思想,属于中档题.(13)【2016年浙江,文13,4分】设双曲线2213y x -=的左、右焦点分别为1F 、2F ,若点P 在双曲线上,且12F PF ∆为锐角三角形,则12PF PF +的取值范围是 . 【答案】()27,8【解析】如图,由双曲线2213y x -=,得21a =,,∴222c a b =+=.不妨以P 在双曲线右支为例,当2PF x ⊥轴 时,把2x =代入2213y x -=,得3y =±,即23PF =,此时1225PF PF =+=,则128PF PF +=;由12PF PF ⊥,得22221212416PF PF F F c +===,又122PF PF -=,① 两边平方得:22121224PF PF PF PF +-=,∴126PF PF =,②联立①②解得:117PF =+,217PF =-+,此时1227PF PF +=+.∴使12F PF ∆为锐角三角形的12PF PF +的取值范围是()27,8.【点评】本题考查双曲线的简单性质,考查双曲线定义的应用,考查数学转化思想方法,是中档题. (14)【2016年浙江,文14,4分】如图,已知平面四边形ABCD ,3AB BC ==,1CD =,5AD =,90ADC ∠=︒,沿直线AC 将ACD ∆翻折成ACD ∆',直线AC 与BD '所成角的余弦的最大值是 .【答案】6【解析】如图所示,取AC 的中点O ,∵3AB BC ==,∴BO AC ⊥,在Rt ACD ∆'中,()22156AC =+=.作D E AC '⊥,垂足为E ,15306D E ⨯'==.6CO =,266D C CE CA '===,∴6EO CO CE =-=.过点B 作//BF BO ,作//FE BO 交于点F ,则EF AC ⊥.连接D F '.FBD ∠'为直线AC 与BD '所成的角.则四边形BOEF为矩形,∴6BF EO ==.2263032EF BO ⎛⎫==-= ⎪ ⎪⎝⎭.则FED ∠'为二面角D CA B '--的平面角, 设为θ.则2223030303025102cos 5cos 33D F θθ⎛⎫⎛⎫'=+-⨯⨯=-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,cos 1θ=时取等号. ∴D B '的最小值2106233⎛⎫=+= ⎪ ⎪⎝⎭.∴直线AC 与BD '所成角的余弦的最大值6632BF D B ==='. 【点评】本题考查了空间位置关系、空间角,考查了空间想象能力、推理能力与计算能力,属于难题.(15)【2016年浙江,文15,4分】已知平面向量a r ,b r ,1a =r ,2b =r ,1a b ⋅=r r ,若e r 为平面单位向量,则a e b e⋅+⋅r r r r 的最大值是 . 【答案】7【解析】a e b ea eb e e e⋅⋅⋅+⋅=+r r r rr r r r r r ,其几何意义为a r 在e r 上的投影的绝对值与b r 在e r 上投影的绝对值的和,当e r 与a b +r r 共线时,取得最大值.∴()22max27a e b ea b a b a b ⋅+⋅=+=++⋅=r r r rr r r r r r.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程. (16)【2016年浙江,文16,14分】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=.(1)证明:2A B =;(2)若2cos 3B =,求cosC 的值.解:(1)正弦定理得sin sin 2sin cos B C A B +=,()2sin cos sin sin sin sin cos cos sin A B B A B B A B A B =++=++,于是()sin sin B A B =-.又(),0,A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-,因此A π=(舍去)或2A B =,所以,2A B =.(2)2cos 3B =,∴25sin 1cos B B =-=.21cos cos22cos 19A B B ==-=-,245sin 1cos A A =-=.∴()2154522cos cos cos cos sin sin 3927C A B A B A B ⎛⎫=-+=-+=-⨯-+⨯= ⎪⎝⎭.【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.(17)【2016年浙江,文17,15分】设数列{}n a 的前n 项和为n S ,已知24S =,121n n a S +=+,*n N ∈.(1)求通项公式n a ;(2)求数列{}2n a n --的前n 项和.解:(1)∵24S =,121n n a S +=+,*n N ∈.∴124a a +=,2112121a S a =+=+,解得11a =,23a =,当2n ≥时,121n n a S +=+,121n n a S =+﹣,两式相减得()1122n n n n n a a S S a +==--﹣,即13n n a a +=,当1n =时,11a =,23a =,满足13n n a a +=,∴13n na a +=,则数列{}n a 是公比3q =的等比数列,则通项公式13n n a -=. (2)1232n n a n n ---=--,设1232n n nb a n n -=--=--,则013122b =--=,23221b =--=,当3n ≥时,1320n n --->,则1232n n n b a n n -=--=--,此时数列{}2n a n --的前n 项和()()()2913522351131322n n n n n n n n T --++---+=+-=-,2,12,13,23511,235112,32n n n n nn n T n n n n n n n ⎧⎪==⎧⎪⎪⎪===⎨⎨--+≥⎪⎪--+⎩⎪≥⎪⎩. 【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{a n }是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行数列求和.(18)【2016年浙江,文18,15分】如图,在三棱台ABC DEF -中,已知平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =. (1)求证:EF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值. 解:(1)延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥;所以,AC ⊥平面BCK ,因此,BF AC ⊥.又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK ∆为等边三角形,且F 为CK 的中点,则BF CK ⊥.所以BF ⊥平面ACFD . (2)∵BF ⊥平面ACFD ;∴BDF ∠是直线BD 和平面ACFD 所成的角;∵F 为CK 中点,且//DF AC ;∴DF 为ACK ∆的中位线,且3AC =;∴32DF =;又3BF =;∴在Rt BFD ∆中,92134BD =+=,3212cos 21DF BDF BD ∠===;即直线BD 和平面ACFD 所成角的余弦值为217.【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.(19)【2016年浙江,文19,15分】如图,设抛物线()220y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于1AF -.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上点A 到焦点F 的距离等于A 到直线1x =-的距离,抛物线定义得,12p=,即2p =.(2)由(1)得,抛物线方程为24y x =,()1,0F ,可设()2,2t t ,0t ≠,1t ≠±,∵AF 不垂直y 轴,∴设直线AF :()10x sy s =+≠,联立241y x x sy ⎧=⎨=+⎩,得2440y sy --=.124y y =-,∴212,B t t ⎛⎫- ⎪⎝⎭,又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t -,从而得FN :()2112t y x t -=--,直线BN :2y t =-,则2232,1t N t t ⎛⎫+- ⎪-⎝⎭,设(),0M m ,由A 、M 、N 三点共线,得222222231t t t t t m t t +=+---, 于是22222111t m t t ==--,得0m <或2m >.经检验,0m <或2m >满足题意. ∴点M 的横坐标的取值范围为()(),02,-∞+∞U .【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.(20)【2016年浙江,文20,15分】设函数()311f x x x =++,[]0,1x ∈,证明:(1)()21f x x x -+≥;(2)()3342f x <≤. 解:(1)因为()311f x x x =++,[]0,1x ∈,且()()4423411111x x x x x x x ----+-==+--,所以41111x x x -≤++, 所以23111x x x x-≤-++,即()21f x x x ≥-+. (2)因为01x ≤≤,所以3x x ≤,所以()()()()31211113333111222122x x f x x x x x x x x -+=+≤+=+-+=+≤++++; 由(1)得,()221331244f x x x x ⎛⎫≥-+=-+≥ ⎪⎝⎭,且311119312224412f ⎛⎫⎛⎫=+=> ⎪ ⎪⎝⎭⎝⎭+,所以()34f x >;综上,()3342f x <≤.【点评】本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.。
2016年浙江省高考数学(文科)试题(教师版含解析)
2016年普通高等学校招生全国统一考试浙江卷文科数学答案1. C 解析 由{}13,5P =,,{}12,3456U =,,,,,得{}2,4,6UP =,所以(){}{}{}2,4,61,2,41,2,4,6UP Q ==.故选C.2. C 解析 对于选项A ,因为l αβ=,所以l α⊂.又因为//m α,所以m 与l 平行或异面.故选项A 不正确;对于选项B 和D ,因为αβ⊥,n β⊥,所以n α⊂或//n α.又因为//m α,所以m 与n 的关系平行、相交或异面都有可能.故选项B 和D 不正确;对于选项C ,因为,l αβ=所以,l β⊂因为,n β⊥所以n l ⊥,故选项C 正确,故选C.3. D 解析 易知2sin y x =为偶函数,所以它的图像关于y 轴对称,排除A ,C 选项;当2π2x =,即x =max 1y =,排除B 选项,故选D.4.B 解析 画出不等式组所表示的平面区域如图所示,由23030x y x y -+=⎧⎨+-=⎩,得()1,2A ,由23030x y x y --=⎧⎨+-=⎩,得()2,1B .由题意可知当斜率为1的两条直线分别过点A 和点B 时,阴影部分夹在这两条直线之间,且与这两条直线有公共点,所以这两直线为满足条件的距离最小的一对直线,即AB ==故选B.5. D 解析 对于选项A ,B ,当1a >,由log log 1a a b a >=,得1b a >>,所以()()110a b -->,()()10a a b --<故选项A ,B 不正确;对于选项C ,D ,当1b > 时,由log log 1a a b a >=,得1b a >> ,所以10b -> ,0b a -> ,所以()()10b b a --> ; 当01b << 时,所以01b a <<< ,所以10b -< ,0b a -< ,所以()()10b b a -->.故选项D 正确,选项C 不正确.故选D .6.A 解析 由题意知()22224b b f x x bx x ⎛⎫=+=+- ⎪⎝⎭,当2b x =-时,()f x 取得最小值为24b -.令2t x bx =+,则()()()2222244b b b f f x f t t bt t ⎛⎫==+=+-- ⎪⎝⎭≥,24b t-.要使()f t 也取得最小值24b -,则t 要取得到2b -,即224b b --,解得2b ≥或0b ≤.所以“0b <”是“()()ff x 的最小值与()f x 的最小值相等”的充分不必要条件.故选A.7.B 解析 若()2b f a ,由条件知()2a f a ≤,则22ab ,所以ab .故选项B 正确,其他3个选项可选特殊的函数()2,02,0x x x f x x -⎧=⎨<⎩≥逐一进行排除.故选B .8.A 解析 设点n A 到对面直线的距离为n h ,则112n n n n+S h B B =.由题目中条件可知1n n B B +的长度为定值,则1212n n S h B B =.那么我们需要知道n h 的关系式,过点1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那11tan n n h h A A θ=+⋅,其中θ为两条线的夹角,那么11121(tan )2n n S h A A B B θ=+⋅,由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-.所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 9. 80;40 解析 由三视图知该组合体是一个长方体上面放置了一个小正方体. 长方体的长、宽、高分别为4、4、2,小正方体的棱长为2 ,222=62+24+42422=80S ⨯⨯⨯⨯-⨯表 ,3244240V =+⨯⨯=.10. ()2,4--;5 解析 由于此方程表示圆的方程,所以22a a =+,解得1a =-或2. 当1a =-时,带入得方程为224850x y x y +++-=,即()()222425x y +++=,所以圆心为()2,4--,半径为5;当2a =时,带入得方程为224448100x y x y ++++=,即()2215124x y ⎛⎫+++=- ⎪⎝⎭,此方程不表示圆的方程.由上所述,圆心为()2,4--,半径为5.11.;1 解析2π2cos sin 2214x x x ⎛⎫+=++ ⎪⎝⎭,所以A =1b =.12. 2-;1 解析 解法一:()()32323232313133f x f a x x a a x x a a -=++---=+--,()()()()2322222x b x a x a b x a ab x a b --=-+++-,所以223223203a b a ab a b a a --=⎧⎪+=⎨⎪-=--⎩,解得21a b =-⎧⎨=⎩.解法二:()()()()()2F x f x f a x b x a =-=-- ,所以()'0F a =,由()()()32323232313133F x f x f a x x a a x x a a =-=++---=+--,所以()'236F x x x =+,将a 带入,解得2a =-或0(舍去).即()()()2323412F x x x x x =+-=-+,所以1b =.13. ()解析 由已知得1a =,b =2c =,则2ce a==.设(),P x y 是双曲线上任一点,由对称性不妨设P 在右支上,由于12F PF △为锐角三角形,所以21PF F ∠为锐角.则12x <<.由三角形大边对大角,则12PF F ∠也为锐角.221PF x ====-,12221PF PF x =+=+,12F PF ∠为锐角,则2221212PF PF F F +>,即()()22221214x x ++->,解得x >2x <<.由124PF PF x +=,得128PF PF <+<.14.解析 设直线AC 与BD '所成角为θ.设O 是AC中点,由已知得AC =图所示,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由A ⎛⎫ ⎪ ⎪⎝⎭,B ⎫⎪⎪⎝⎭,0,C ⎛⎫⎪ ⎪⎝⎭,作DH AC ⊥于H ,翻折的过程中,D H '始终与AC 垂直,且D H '的长度始终不变,2CD CH CA ===,则3OH =,6DH ==,因此可设cos ,636D αα⎛⎫' ⎪ ⎪⎝⎭,则30BD αα⎛⎫'=-⎪ ⎪⎝⎭,与CA平行的单位向量为()0,1,0=n . 所以cos cos BD BD BD θ'⋅'=⋅=='⋅n n n所以cos 1α=时,cos θ取最大值6解析 由已知得1cos ,2==ab a b a b ,所以,60=a b .不妨取()1,0=a,(=b ,设()cos,sin ααe =,则cos cos cos cosαααααα+=++++=ae be2cosαα,取等号时cos α与sin α同号.所以()2cos+αααααθ+=+=,(其中sinθ=,cosθ=取θ为锐角).()+7αθ.易知当π+2αθ=时,()sin+αθ取最大值1,此时α为锐角,sinα,cosα同为正,因此上述不等式中等号能同时取到.故所.16.解析(1)由正弦定理得sin+sin2sin cosB C A B=,故2sin cos sin sin()sin sin cos cos sinA B B A B B A B A B=++=++,于是sin sin()B A B=-.又(),0,πA B∈,故0πA B<-<,所以π()B A B=--或B A B=-,因此πA=(舍去)或2A B=,所以2.A B=(2)由2cos3B=,得sin B=21cos22cos19B B=-=-,故1cos9A=-,sin9A=.()22cos cos cos cos sin sin27C A B A B A B=-+=-+=.17.解析(1)由题意得:21221421S a aa a⎧=+=⎨=+⎩,则1213aa=⎧⎨=⎩.因为121n na S+=+,121n na S-=+ ()2n,所以()()1121212n n n n na a S S a+--=+-+=,得13n na a+=()2n≥.又知213a a=,所以数列{}n a的通项公式为13nna-=,*n∈N.(2)对于132nnc n-=--,12c=-,21c=-,当3n时,有0nc>.设n nb c=,*n∈N,12b=,21b=,当3n时,有n nb c=.设数列{}n b的前项和为n T,则12T=,23T=.当3n时,()()2135351161322n nnn n n nT-+--+=+-=-,2n=时也满足此式,所以2*2,13511,2,2nnnT n nn n=⎧⎪=⎨--+∈⎪⎩N.18. 解析 (1)因为此几何体三棱台,延长,,AD BE CF 可相交于一点K ,如图所示. 因为平面BCFE ABC ⊥平面,平面BCFEABC 平面为BC ,AC ABC ⊂平面,且AC BC ⊥,所以AC BCK ⊥平面,因此BF AC ⊥.又因为,1,2BC BE EF FC BC EF ====∥,可以求得60KBC KCB ∠=∠=,所以BCK △为等边三角形,且F 为CK 的中点,则BF CK ⊥.因为,AC CK ACFD ⊂平面,ACCK C =,所以BF ⊥平面ACFD .(2)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角,因为点F 为CK 的中点,//DF AC ,所以1322DF AC ==.在Rt BFD △中,BF =32DF =,得cos 7BDF ∠=.所以直线BD 与平面ACFD所成的角的余弦值为7.19. 解析 (1)因为抛物线上点A 到焦点F 的距离等于点A 到准线2px =-的距离,由已知条件得12p=,即2p =. (2)由(1)知抛物线的方程为24y x =,()1,0F ,可设()2,2A t t ,0t ≠,1t ≠±.由题知AF 不垂直于y 轴,可设直线:1AF x sy =+,()0s ≠,由241y xx sy ⎧=⎨=+⎩消去x 得2440y sy --=,故124y y =-,所以212,B t t ⎛⎫- ⎪⎝⎭.又直线AB 的斜率为221t t -,故直线FN的斜率为212t t --,从而直线()21:12t FN y x t -=--,直线2:BN y t=-,所以KFEBCDA2232,1t N t t ⎛⎫+- ⎪-⎝⎭.设(),0M m ,由A ,M ,N 三点共线得:222222231t t t t t m t t +=+---, 整理得22222211t m t t ==+--,(0t ≠,1t ≠±),此函数为偶函数,且()0,1和()1+∞,上单调递减,分析知0m <或2m >.所以点M 的横坐标的取值范围是()(),02-∞+∞.20. 解析 (1)因为()()442311111x x x x x x x----+-==--+,由于[]0,1x ∈,有41111+x x x-+,即23111+x x xx-+-,所以()21f x x x -+. (2)由01x ,得3x x ,故()()()()31211133112221x x f x x x x x x -+=++-+=++++3322,所以()32f x .由(1)得()221331244f x x x x ⎛⎫-+=-+ ⎪⎝⎭,又因为11932244f ⎛⎫=> ⎪⎝⎭,所以()34f x >.综上,()3342f x <.。
最新2016年高考数学浙江(文科)试题及答案【解析版】
2016年浙江省高考数学试卷(文科)12一.选择题(共8小题)31.【2016浙江(文)】已知全集U={1,2,3,4,5,6},集合P={1,3,5},4Q={1,2,4},则(∁U P)∪Q=()5A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5} 6【答案】C7【解析】解:∁U P={2,4,6},8(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.92.【2016浙江(文)】已知互相垂直的平面α,β交于直线l,若直线m,10n满足m∥α,n⊥β,则()11A.m∥l B.m∥n C.n⊥l D.m⊥n12【答案】C13【解析】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,14∴m∥β或m⊂β或m⊥β,l⊂β,15∵n⊥β,∴n⊥l.163.【2016浙江(文)】函数y=sinx2的图象是()171A .B .C .18D .19【答案】D20【解析】解:∵sin(﹣x)2=sinx2,21∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;22由y=sinx2=0,23则x2=kπ,k≥0,24则x=±,k≥0,25故函数有无穷多个零点,排除B,26274.【2016浙江(文)】若平面区域,夹在两条斜率为1的平28行直线之间,则这两条平行直线间的距离的最小值是()29A .B .C .D .30【答案】B312【解析】解:作出平面区域如图所示:3233∴当直线y=x+b分别经过A,B时,平行线间的距离相等.34联立方程组,解得A(2,1),35联立方程组,解得B(1,2).36两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.37∴平行线间的距离为d==,38395.【2016浙江(文)】已知a,b>0且a≠1,b≠1,若loga b>1,则()40A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 41D.(b﹣1)(b﹣a)>042【答案】D433【解析】解:若a>1,则由loga b>1得logab>logaa,即b>a>1,此时b44﹣a>0,b>1,即(b﹣1)(b﹣a)>0,45若0<a<1,则由loga b>1得logab>logaa,即b<a<1,此时b﹣a<0,b46<1,即(b﹣1)(b﹣a)>0,47综上(b﹣1)(b﹣a)>0,486.【2016浙江(文)】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))49的最小值与f(x)的最小值相等”的()50A.充分不必要条件B.必要不充分条件51C.充分必要条件D.既不充分也不必要条件52【答案】A53【解析】解:f(x)的对称轴为x=﹣,fmin (x)=﹣.54(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值55f (﹣)=﹣,56即f(f(x))的最小值与f(x)的最小值相等.57∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.58(2)若f(f(x))的最小值与f(x)的最小值相等,59则fmin (x )≤﹣,即﹣≤﹣,解得b≤0或b≥2.60∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条61件.6247.【2016浙江(文)】已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,63x∈R.()64A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤b65C.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b66【答案】B67【解析】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,68即|a|≤|b|,则a≤b不一定成立,故A错误,69B.若f(a)≤2b,70则由条件知f(x)≥2x,71即f(a)≥2a,则2a≤f(a)≤2b,72则a≤b,故B正确,73C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|74不一定成立,故C错误,75D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一76定成立,即a≥b不一定成立,故D错误,778.【2016浙江(文)】如图,点列{An }、{Bn}分别在某锐角的两边上,且78|An An+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表79示点P与Q不重合)若dn =|AnBn|,Sn为△AnBnBn+1的面积,则()805681 A .{S n }是等差数列 B .{S n 2}是等差数列 82C .{d n }是等差数列D .{d n 2}是等差数列 83【答案】A84【解析】解:设锐角的顶点为O ,|OA 1|=a ,|OB 1|=b , 85|A n A n+1|=|A n+1A n+2|=b ,|B n B n+1|=|B n+1B n+2|=d , 86由于a ,b 不确定,则{d n }不一定是等差数列, 87{d n 2}不一定是等差数列,88设△A n B n B n+1的底边B n B n+1上的高为h n ,89由三角形的相似可得==,90==,91两式相加可得,==2,92即有h n +h n+2=2h n+1,93由S n =d•h n ,可得S n +S n+2=2S n+1,94即为Sn+2﹣Sn+1=Sn+1﹣Sn,95则数列{Sn }为等差数列.96故选:A.979899二.填空题(共7小题)1009.【2016浙江(文)】某几何体的三视图如图所示(单位:cm),则该几何101体的表面积是cm2,体积是cm3.102103【答案】80;40.104【解析】解:根据几何体的三视图,得;105该几何体是下部为长方体,其长和宽都为4,高为2,106表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;107上部为正方体,其棱长为2,1087表面积是6×22=24 cm2,体积为23=8cm3;109所以几何体的表面积为64+24﹣2×22=80cm2,110体积为32+8=40cm3.11110.【2016浙江(文)】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示112圆,则圆心坐标是,半径是.113【答案】(﹣2,﹣4),5114【解析】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,115∴a2=a+2≠0,解得a=﹣1或a=2.116当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,117配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;118当a=2时,方程化为,119此时,方程不表示圆,12012111.【2016浙江(文)】已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则122A= ,b= .123【答案】;1.124【解析】解:∵2cos2x+sin2x=1+cos2x+sin2x125=1+(cos2x+sin2x)+11268=sin(2x+)+1,127∴A=,b=1,12812.【2016浙江(文)】设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣129f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a= ,b= .130【答案】﹣2;1.131【解析】解:∵f(x)=x3+3x2+1,132∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)133=x3+3x2﹣(a3+3a2)134∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x 135﹣a2b,136且f(x)﹣f(a)=(x﹣b)(x﹣a)2,137∴,解得或(舍去),13813.【2016浙江(文)】设双曲线x2﹣=1的左、右焦点分别为F1、F2,若139点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.140【答案】().141【解析】解:如图,1429由双曲线x2﹣=1,得a2=1,b2=3,143∴.144不妨以P在双曲线右支为例,当PF2⊥x轴时,145把x=2代入x2﹣=1,得y=±3,即|PF2|=3,146此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;147由PF1⊥PF2,得,148又|PF1|﹣|PF2|=2,①149两边平方得:,150∴|PF1||PF2|=6,②151联立①②解得:,152此时|PF1|+|PF2|=.153∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().1541551014.【2016浙江(文)】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,156∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦157的最大值是.158159【答案】160【解析】解:如图所示,取AC的中点O ,∵AB=BC=3,∴BO⊥AC,161在Rt△ACD′中,=.162作D′E⊥AC,垂足为E ,D′E==.163CO=,CE===,164∴EO=CO﹣CE=.165过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′166为直线AC与BD′所成的角.167则四边形BOEF 为矩形,∴BF=EO=.168EF=BO==.169则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.17011则D′F2=+﹣2×cosθ=﹣5cosθ≥,171cosθ=1时取等号.172∴D′B的最小值==2.173∴直线AC与BD′所成角的余弦的最大值===.174故答案为:.17517615.【2016浙江(文)】已知平面向量,,||=1,||=2,=1,若177为平面单位向量,则||+||的最大值是.178【答案】179【解析】解:||+||=,180其几何意义为在上的投影的绝对值与在上投影的绝对值的和,181当与共线时,取得最大值.182∴=.18318412三.解答题(共5小题)18516.【2016浙江(文)】在△ABC中,内角A,B,C所对的边分别为a,b,c,186已知b+c=2acosB.187(1)证明:A=2B;188(2)若cosB=,求cosC的值.189【解析】(1)证明:∵b+c=2acosB,190∴sinB+sinC=2sinAcosB,191∵sinC=sin(A+B)=sinAcosB+cosAsinB,192∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),193∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).194∴A=2B.195(II)解:cosB=,∴sinB==.196cosA=cos2B=2cos2B﹣1=,sinA==.197∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.19817.【2016浙江(文)】设数列{an }的前n项和为Sn,已知S2=4,an+1=2Sn+1,199n∈N*.200(Ⅰ)求通项公式an ;201(Ⅱ)求数列{|an ﹣n﹣2|}的前n项和.20213【解析】解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.203∴a1+a2=4,a2=2S1+1=2a1+1,204解得a1=1,a2=3,205当n≥2时,an+1=2Sn+1,an=2Sn﹣1+1,206两式相减得an+1﹣an=2(Sn﹣Sn﹣1)=2an,207即an+1=3an,当n=1时,a1=1,a2=3,208满足an+1=3an,209∴=3,则数列{an }是公比q=3的等比数列,210则通项公式an =3n﹣1.211(Ⅱ)an ﹣n﹣2=3n﹣1﹣n﹣2,212设bn =|an﹣n﹣2|=|3n﹣1﹣n﹣2|,213则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,214当n≥3时,3n﹣1﹣n﹣2>0,215则bn =|an﹣n﹣2|=3n﹣1﹣n﹣2,216此时数列{|an ﹣n﹣2|}的前n项和Tn=3+﹣217=,21814219则Tn ==.22022118.【2016浙江(文)】如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,222∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.223(Ⅰ)求证:BF⊥平面ACFD;224(Ⅱ)求直线BD与平面ACFD所成角的余弦值.225226【解析】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:227∵平面BCFE⊥平面ABC,且AC⊥BC;228∴AC⊥平面BCK,BF⊂平面BCK;229∴BF⊥AC;230又EF∥BC,BE=EF=FC=1,BC=2;231∴△BCK为等边三角形,且F为CK的中点;232∴BF⊥CK,且AC∩CK=C;233∴BF⊥平面ACFD;23415(Ⅱ)∵BF⊥平面ACFD;235∴∠BD F是直线BD和平面ACFD所成的角;236∵F为CK中点,且DF∥AC;237∴DF为△ACK的中位线,且AC=3;238∴;239又;240∴在Rt△BFD 中,,cos;241即直线BD和平面ACFD 所成角的余弦值为.24224324419.【2016浙江(文)】如图,设抛物线y2=2px(p>0)的焦点为F,抛物245线上的点A到y轴的距离等于|AF|﹣1,246(Ⅰ)求p的值;247(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB 248垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.24916250【解析】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到251直线x=﹣1的距离,252由抛物线定义得,,即p=2;253(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,254t≠±1,255∵AF不垂直y轴,256∴设直线AF:x=sy+1(s≠0),257联立,得y2﹣4sy﹣4=0.258y1y2=﹣4,259∴B(),260又直线AB 的斜率为,故直线FN 的斜率为,261从而得FN :,直线BN:y=﹣,26217则N (),263设M(m,0),由A、M、N 三点共线,得,264于是m==,得m<0或m>2.265经检验,m<0或m>2满足题意.266∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).26726820.【2016浙江(文)】设函数f(x)=x3+,x∈[0,1],证明:269(Ⅰ)f(x)≥1﹣x+x2270(Ⅱ)<f(x )≤.271【解析】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],272且1﹣x+x2﹣x3==,273所以≤,274所以1﹣x+x2﹣x3≤,275即f(x)≥1﹣x+x2;27618(Ⅱ)证明:因为0≤x≤1,所以x3≤x,277所以f(x)=x3+≤x+=x+﹣+=+≤;278由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,279且f ()=+=>,280所以f(x )>;281综上,<f(x )≤.282283284285286287288289290291292293294绝密★启封前2952016年浙江省高考数学试卷(文科)296一、选择题(本大题8小题,每题5分,共40分)2971.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},298则(∁U P)∪Q=()299A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,3005}301192.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥302β,则()303A.m∥l B.m∥n C.n⊥l D.m⊥n3043.函数y=sinx2的图象是()305A .B .306C .D .3074.若平面区域,夹在两条斜率为1的平行直线之间,则这两308条平行直线间的距离的最小值是()309A .B .C .D .3105.已知a,b>0且a≠1,b≠1,若loga b>1,则()311A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0312C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>03136.已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)314的最小值相等”的()315A.充分不必要条件 B.必要不充分条件31620C.充分必要条件 D.既不充分也不必要条件3177.已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()318A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤b 319C.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b 3203213228.如图,点列{An }、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An323≠An+1,324n∈N*,|Bn Bn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若325dn =|AnBn|,Sn为△AnBnBn+1的面积,则()326 327A.{Sn }是等差数列 B.{Sn2}是等差数列 C.{dn}是等差数列328D.{dn 2}是等差数列329330二、填空题(本大题7小题,9、10、11、12每题6分,13、14、15每题4 331分,共36分)3329.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是333cm2,体积是cm3.3342133533610.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标337是,半径是.33833911.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A= ,340b= .34134212.设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x 343﹣a)2,x∈R,则实数a= ,b= .34434513.设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,346且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.3473483493503513522214.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,353沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值354是.35535635715.已知平面向量,,||=1,||=2,=1,若为平面单位向量,358则||+||的最大值是.359360三、解答题(本大题5小题,共74分)36116.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.362(1)证明:A=2B;363(2)若cosB=,求cosC的值.36436536636736836937037137237317.(15分)设数列{an }的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.37423(Ⅰ)求通项公式an ;375(Ⅱ)求数列{|an ﹣n﹣2|}的前n项和.37637737837938038138238338438538638738838918.(15分)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,390BE=EF=FC=1,BC=2,AC=3.391(Ⅰ)求证:BF⊥平面ACFD;392(Ⅱ)求直线BD与平面ACFD所成角的余弦值.39339439539639739839919.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A 400到y轴的距离等于|AF|﹣1,40124(Ⅰ)求p的值;402(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB 403垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.40440540620.(15分)设函数f(x)=x3+,x∈[0,1],证明:407(Ⅰ)f(x)≥1﹣x+x2408(Ⅱ)<f(x )≤.4094104114124134144154164172016年浙江省高考数学试卷(文科)418419一、选择题4201.【解答】解:∁U P={2,4,6},(∁UP)∪Q={2,4,6}∪{1,2,4}={1,2,4214,6}.42225故选C.4234242.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥425α,426∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.427故选:C.4284293.【解答】解:∵sin(﹣x)2=sinx2,430∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;431由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个432零点,排除B,433故选:D4344354.【解答】解:作出平面区域如图所示:43643726∴当直线y=x+b分别经过A,B时,平行线间的距离相等.438联立方程组,解得A(2,1),439联立方程组,解得B(1,2).440两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.441∴平行线间的距离为d==,442故选:B.4434444454465.【解答】解:若a>1,则由loga b>1得logab>logaa,即b>a>1,447此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,448若0<a<1,则由loga b>1得logab>logaa,即b<a<1,449此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,450综上(b﹣1)(b﹣a)>0,451故选:D.4524536.【解答】解:f(x)的对称轴为x=﹣,fmin (x)=﹣.454(1)若b<0,则﹣>﹣,45527∴当f(x)=﹣时,f(f(x))取得最小值f (﹣)=﹣,456即f(f(x))的最小值与f(x)的最小值相等.457∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.458(2)若f(f(x))的最小值与f(x)的最小值相等,459则fmin (x )≤﹣,即﹣≤﹣,解得b≤0或b≥2.460∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条461件.462故选A.4634647.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,465即|a|≤|b|,则a≤b不一定成立,故A错误,466B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)467≤2b,468则a≤b,故B正确,469C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b| 470不一定成立,故C错误,471D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一472定成立,即a≥b不一定成立,故D错误,473故选:B4742829475 8.【解答】解:设锐角的顶点为O ,|OA 1|=a ,|OB 1|=c , 476|A n A n+1|=|A n+1A n+2|=b ,|B n B n+1|=|B n+1B n+2|=d ,477由于a ,c 不确定,则{d n }不一定是等差数列,{d n 2}不一定是等差数列, 478设△A n B n B n+1的底边B n B n+1上的高为h n ,479由三角形的相似可得==,480==,两式相加可得,==2,481即有h n +h n+2=2h n+1,由S n =d•h n ,可得S n +S n+2=2S n+1, 482483 即为S n+2﹣S n+1=S n+1﹣S n , 484则数列{S n }为等差数列. 485故选:A .486487488 二、填空题4899.【解答】解:根据几何体的三视图,得;490该几何体是下部为长方体,其长和宽都为4,高为2,491表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;492上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;493所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.494故答案为:80;40.49549610.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,497∴a2=a+2≠0,解得a=﹣1或a=2.498当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,499配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;500当a=2时,方程化为,501此时,方程不表示圆,502故答案为:(﹣2,﹣4),5.50350411.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)505+1506=sin(2x+)+1,∴A=,b=1,507故答案为:;1.5083050912.【解答】解:∵f(x)=x3+3x2+1,510∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)511∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x 512﹣a2b,513且f(x)﹣f(a)=(x﹣b)(x﹣a)2,514∴,解得或(舍去),515故答案为:﹣2;1.51613.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.517不妨以P在双曲线右支为例,当PF2⊥x轴时,518把x=2代入x2﹣=1,得y=±3,即|PF2|=3,519此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;520由PF1⊥PF2,得,521又|PF1|﹣|PF2|=2,①两边平方得:,522∴|PF1||PF2|=6,②联立①②解得:,523此时|PF1|+|PF2|=.52431∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案525为:().52652752814.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,529在Rt △ACD′中,=.作D′E⊥AC,垂足为E,530D′E==.531CO=,CE===,∴EO=CO﹣CE=.532过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′533为直线AC与BD′所成的角.534则四边形BOEF为矩形,∴BF=EO=.EF=BO==.535则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.536则D′F2=+﹣2×cosθ=﹣5cosθ≥,537cosθ=1时取等号.538∴D′B的最小值==2.53932∴直线AC与BD′所成角的余弦的最大值===.故答案为:.54015.【解答】解:||+||=,541其几何意义为在上的投影的绝对值与在上投影的绝对值的和,542当与共线时,取得最大值.543∴=.故答案为:.544545三、解答题54616.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,547∵sinC=sin(A+B)=sinAcosB+cosAsinB,548∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),549∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).550∴A=2B.551(II)解:cosB=,∴sinB==.552cosA=cos2B=2cos2B﹣1=,sinA==.553∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.5545553317.【解答】解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.556∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,557当n≥2时,an+1=2Sn+1,an=2Sn﹣1+1,两式相减得an+1﹣an=2(Sn﹣Sn﹣1)=2an,558即an+1=3an,当n=1时,a1=1,a2=3,满足an+1=3an,559∴=3,则数列{an }是公比q=3的等比数列,则通项公式an=3n﹣1.560(Ⅱ)an ﹣n﹣2=3n﹣1﹣n﹣2,561设bn =|an﹣n﹣2|=|3n﹣1﹣n﹣2|,562则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,563当n≥3时,3n﹣1﹣n﹣2>0,564则bn =|an﹣n﹣2|=3n﹣1﹣n﹣2,565此时数列{|an ﹣n﹣2|}的前n项和566Tn =3+﹣= ,567则Tn ==.56856918.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:570∵平面BCFE⊥平面ABC,且AC⊥BC;57134∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;572又EF∥BC,BE=EF=FC=1,BC=2;573∴△BCK为等边三角形,且F为CK的中点;574∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;575(Ⅱ)∵BF⊥平面ACFD;576∴∠BDF是直线BD和平面ACFD所成的角;577∵F为CK中点,且DF∥AC;578∴DF为△ACK的中位线,且AC=3;∴;579又;580∴在Rt△BFD 中,,cos;581即直线BD和平面ACFD 所成角的余弦值为.5825835843519.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A 585到直线x=﹣1的距离,由抛物线定义得,,即p=2;586(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,587t≠±1,588∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),589联立,得y2﹣4sy﹣4=0. y1y2=﹣4,∴B (),590又直线AB 的斜率为,故直线FN 的斜率为,591从而得FN :,直线BN:y=﹣,则N (),592设M(m,0),由A、M、N 三点共线,得,593于是m==,得m<0或m>2.594经检验,m<0或m>2满足题意.595∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).59659720.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],59836且1﹣x+x2﹣x3==,所以≤,599所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;600(Ⅱ)证明:因为0≤x≤1,所以x3≤x,601所以f(x)=x3+≤x+=x+﹣+=+≤;602由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,603且f ()=+=>,所以f(x )>;604综上,<f(x )≤.60560660760860937。
2016年浙江高考数学试[卷][文科]
2016年浙江省高考数学试卷(文科)参考答案与试题解析一.选择题(共8小题)1.(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】先求出∁U P,再得出(∁U P)∪Q.【解答】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选C.【点评】本题考查了集合的运算,属于基础题.2.(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【考点】直线与平面垂直的判定.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(2016•浙江)函数y=sinx2的图象是()A.B.C.D.【考点】函数的图象.【专题】对应思想;转化法;函数的性质及应用.【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.4.(2016•浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C. D.【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出平面区域,找出距离最近的平行线的位置,求出直线方程,再计算距离.【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,故选:B.【点评】本题考查了平面区域的作法,距离公式的应用,属于基础题.5.(2016•浙江)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【考点】不等关系与不等式.【专题】分类讨论;转化法;函数的性质及应用;不等式的解法及应用.【分析】根据对数的运算性质,结合a>1或0<a<1进行判断即可.【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.6.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】函数思想;综合法;简易逻辑.【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,则f min(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.7.(2016•浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【考点】函数恒成立问题.【专题】转化思想;转化法;不等式的解法及应用.【分析】根据不等式的性质,分别进行递推判断即可.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,故选:B【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.8.(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列【考点】数列与函数的综合.【专题】转化思想;分析法;等差数列与等比数列.【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=b,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,b不确定,判断C,D不正确,设△A n B n B n+1的底边B n B n+1上的高为h n,运用三角形相似知识,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,b不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.二.填空题(共7小题)9.(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80cm2,体积是40cm3.【考点】由三视图求面积、体积.【专题】数形结合;分割补形法;空间位置关系与距离.【分析】根据几何体的三视图,得出该几何体下部为长方体,上部为正方体的组合体,结合图中数据求出它的表面积和体积即可.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题.10.(2016•浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(﹣2,﹣4),半径是5.【考点】圆的一般方程.【专题】计算题;方程思想;数学模型法;直线与圆.【分析】由已知可得a2=a+2≠0,解得a=﹣1或a=2,把a=﹣1代入原方程,配方求得圆心坐标和半径,把a=2代入原方程,由D2+E2﹣4F<0说明方程不表示圆,则答案可求.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.11.(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=1.【考点】两角和与差的正弦函数.【专题】综合题;函数思想;综合法;三角函数的求值.【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.12.(2016•浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=﹣2,b=1.【考点】函数与方程的综合运用.【专题】方程思想;综合法;函数的性质及应用.【分析】根据函数解析式化简f(x)﹣f(a),再化简(x﹣b)(x﹣a)2,根据等式两边对应项的系数相等列出方程组,求出a、b的值.【解答】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),故答案为:﹣2;1.【点评】本题考查函数与方程的应用,考查化简能力和方程思想,属于中档题.13.(2016•浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.【考点】双曲线的简单性质.【专题】综合题;对应思想;综合法;圆锥曲线的定义、性质与方程.【分析】由题意画出图形,以P在双曲线右支为例,求出∠PF2F1和∠F1PF2为直角时|PF1|+|PF2|的值,可得△F1PF2为锐角三角形时|PF1|+|PF2|的取值范围.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().【点评】本题考查双曲线的简单性质,考查双曲线定义的应用,考查数学转化思想方法,是中档题.14.(2016•浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【考点】异面直线及其所成的角.【专题】数形结合;转化思想;空间角.【分析】如图所示,取AC的中点O,AB=BC=3,可得BO⊥AC,在Rt△ACD′中,AC=.作D′E⊥AC,垂足为E,D′E=.CO=,CE==,EO=CO﹣CE=.过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,BF=EO=.EF=BO=.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.利用余弦定理求出D′F2的最小值即可得出.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC 与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.【点评】本题考查了空间位置关系、空间角,考查了空间想象能力、推理能力与计算能力,属于难题.15.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.三.解答题(共5小题)16.(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【考点】正弦定理.【专题】方程思想;转化思想;三角函数的求值;解三角形.【分析】(1)由b+c=2acosB,利用正弦定理可得:sinB+sinC=2sinAcosB,而sinC=sin(A+B)=sinAcosB+cosAsinB,代入化简可得:sinB=sin(A﹣B),由A,B∈(0,π),可得0<A﹣B<π,即可证明.(II)cosB=,可得sinB=.cosA=cos2B=2cos2B﹣1,sinA=.利用cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB即可得出.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.17.(2016•浙江)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【考点】数列递推式.【专题】分类讨论;转化思想;转化法;等差数列与等比数列.【分析】(Ⅰ)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{a n}是公比q=3的等比数列,即可求通项公式a n;(Ⅱ)讨论n的取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,a n+1=2S n+1,a n=2S n﹣1+1,两式相减得a n+1﹣a n=2(S n﹣S n﹣1)=2a n,即a n+1=3a n,当n=1时,a1=1,a2=3,满足a n+1=3a n,∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{a n}是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行数列求和.18.(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【考点】直线与平面所成的角;直线与平面垂直的判定.【专题】计算题;证明题;数形结合;空间位置关系与距离;空间角.【分析】(Ⅰ)根据三棱台的定义,可知分别延长AD,BE,CF,会交于一点,并设该点为K,并且可以由平面BCFE⊥平面ABC及∠ACB=90°可以得出AC⊥平面BCK,进而得出BF⊥AC.而根据条件可以判断出点E,F分别为边BK,CK的中点,从而得出△BCK为等边三角形,进而得出BF⊥CK,从而根据线面垂直的判定定理即可得出BF⊥平面ACFD;(Ⅱ)由BF⊥平面ACFD便可得出∠BDF为直线BD和平面ACFD所成的角,根据条件可以求出BF=,DF=,从而在Rt△BDF中可以求出BD的值,从而得出cos∠BDF的值,即得出直线BD和平面ACFD所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.19.(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【考点】直线与椭圆的位置关系;抛物线的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)利用抛物线的性质和已知条件求出抛物线方程,进一步求得p值;(Ⅱ)设出直线AF的方程,与抛物线联立,求出B的坐标,求出直线AB,FN的斜率,从而求出直线BN的方程,根据A、M、N三点共线,可求出M的横坐标的表达式,从而求出m的取值范围.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.20.(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.【考点】导数在最大值、最小值问题中的应用.【专题】转化思想;综合法;配方法;函数的性质及应用;不等式.【分析】(Ⅰ)根据题意,1﹣x+x2﹣x3=,利用放缩法得≤,即可证明结论成立;(Ⅱ)利用0≤x≤1时x3≤x,证明f(x)≤,再利用配方法证明f(x)≥,结合函数的最小值得出f(x)>,即证结论成立.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.【点评】本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.。
2016年浙江高考数学(文科)试题及答案
2016 年一般高等学校招生全国一致考试(浙江卷)数学(文科)一、选择题(本大题共 8 小题,每题 5 分,共 40 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.)1.已知全集U ={1 , 2, 3, 4, 5,6} ,会合 P={1 ,3, 5} ,Q={1 , 2,4} ,则( e U P)U Q =A.{1}B.{3 , 5}C.{1 , 2,4, 6}D.{1 , 2, 3,4, 5}2.已知相互垂直的平面,交于直线l.若直线 m,n 知足 m∥ α, n⊥β,则A. m∥ lB.m∥ nC.n⊥ lD. m⊥ n3.函数 y=sinx2的图象是x y 30,4.若平面地区 2x y30, 夹在两条斜率为 1 的平行直线之间,则这两条平行直线间的距离的最小值是x 2 y30352 C.325A. B. D.525.已知 a,b>0,且 a≠1, b≠1,若 log 4 b>1 ,则A. (a 1)(b 1) 0B. (a 1)(a b)0C. (b 1)(b a ) 0D. (b 1)(b a)06.已知函数f( x) =x2+bx,则“b<0”是“f( f( x))的最小值与f( x)的最小值相等”的A. 充足不用要条件B.必需不充足条件C.充足必需条件D. 既不充足也不用要条件7.已知函数 f ( x) 知足: f ( x) x 且 f ( x) 2x, x R .A. 若f (a) b ,则 a bB.若f (a)2b,则 a bC.若f (a) b ,则 a bD.若f (a)2b,则 a b8.如图,点列A n , B n分别在某锐角的两边上,且A n A n 1A n 1A n 2 , A n A n 2 , n N*,B n B n 1B n 1 B n 2 , B n B n 2 , n N*.(P≠Q 表示点 P 与 Q 不重合 )若d n A n B n,S为△AB B的面积,则n n n n 1A. S n是等差数列B. S n2是等差数列C. d n是等差数列D. d n2是等差数列二、填空题(本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.)9.某几何体的三视图如下图(单位:cm),则该几何体的表面积是______cm2,体积是 ______cm 3.10.已知a R ,方程 a2 x2(a 2) y24x 8y 5a 0 表示圆,则圆心坐标是_____,半径是 ______.11.某几何体的三视图如下图(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.12.设函数f(x)=x3+3 x2+1.已知 a≠ 0,且 f(x)– f(a)=( x–b)( x– a)2, x∈ R,则实数a=_____ , b=______ .2y2F 1, F 2.若点 P 在双曲线上,且△ F 1PF 2为锐角三角形,则13.设双曲线 x –=1 的左、右焦点分别为3|PF |+|PF|的取值范围是 _______ .1214.如图,已知平面四边形 ABCD ,AB=BC=3,CD =1,AD =5,∠ ADC =90°.沿直线 AC 将△ ACD 翻折成△ ACD' ,直线 AC 与 BD' 所成角的余弦的最大值是 ______ .15.已知平面向量a, b, |a|=1, |b|=2, a· b=1.若 e 为平面单位向量,则|a· e|+|b· e|的最大值是 ______.三、解答题(本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤.)16.(此题满分14 分)在△ ABC 中,内角 A, B, C 所对的边分别为a,b, c.已知 b+c=2acos B.(Ⅰ)证明:A=2B;(Ⅱ)若cosB= 2,求 cosC 的值.317.(此题满分15 分)设数列 { a n } 的前n项和为S n .已知S2 =4,a n 1 =2 S n +1,n N *.( I )求通项公式a n;( II )求数列 { a n n 2 }的前n项和.18.(此题满分15 分)如图,在三棱台ABC-DEF 中,平面 BCFE ⊥平面 ABC,∠ ACB=90°,BE=EF=FC =1,BC =2, AC=3.(I )求证: BF ⊥平面 ACFD ;(II )求直线 BD 与平面 ACFD 所成角的余弦值 .19(.此题满分 15 分)如图,设抛物线y2 2 px( p0) 的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.( I )求 p 的值;( II )若直线 AF 交抛物线于另一点 B,过 B 与 x 轴平行的直线和过 F 与 AB 垂直的直线交于点N, AN 与 x 轴交于点 M .求 M 的横坐标的取值范围 .20.(此题满分15 分)设函数f ( x) = x 31, x[0,1] 证明:1x.( I )f ( x) 1 x x2;(II)3f ( x)3. 422016 年一般高等学校招生全国一致考试(浙江卷)数学(文科)一、选择题1.【答案】 C2.【答案】 C3.【答案】 D4.【答案】 B5.【答案】 D6.【答案】 A7.【答案】 B8.【答案】 A二、填空题9.【答案】 80 ;40.10.【答案】( 2, 4) ;5.11.【答案】 2 ;1.12.【答案】- 2; 1.13.【答案】(27,8) .14.【答案】6915.【答案】7三、解答题16.【答案】(1)证明详看法析;( 2)cosC 22. 27【分析】试题剖析:此题主要考察三角函数及其变换、正弦和余弦定理等基础知识,同时考察运算求解能力.试题分析:( 1)由正弦定理得sin B sin C2sin A cosB ,故 2sin Acos B sin B sin( A B)sin B sin A cosB cos Asin B ,于是, sin B sin( A B) ,又 A,B(0,) ,故0A B,所以 B(A B)或B A B ,所以, A(舍去)或A2B,所以, A2B .( 2)由cos B2,得 sin B5, cos 2B 2cos2 B 11,339故 cos A 145, sin A,9922cosC cos( A B)cos Acos B sin Asin B.27考点:三角函数及其变换、正弦和余弦定理.【结束】17.3n 1 ,n N *2,n 1【答案】(1) a n;(2) Tnn 25n 11 , n 2, n N * .n32【分析】试题剖析:此题主要考察等差、等比数列的基础知识,同时考察数列基本思想方法,以及推理论证能力.a 1 a 2 4a 1 1试题分析:( 1)由题意得:2a 1 1,则,a 2 a 23又当 n2 时,由 a n 1 a n (2 S n 1) (2 S n 1 1) 2a n ,得 a n 1 3a n ,所以,数列 { a n } 的通项公式为 a n 3n 1, n N * .( 2)设 b n | 3n 1 n 2 | , n N * , b 1 2, b 2 1.当 n3 时,因为 3n 1 n 2 ,故 b n 3n 1 n 2, n 3 .设数列 {b n } 的前 n 项和为 T n ,则 T 1 2,T 2 3 .当 n39(1 3n 2 )(n 7)( n 2)3n n 25n 11 时, T n 332,122,n 1所以, T n 3nn25n 11 , n 2, n N * .2考点:等差、等比数列的基础知识.【结束】18.【答案】(1)证明详看法析;( 2)21. 7【分析】试题剖析:此题主要考察空间点、线、面地点关系、线面角等基础知识,同时考察空间想象能力和运算求解能力.试题分析:( 1)延伸AD , BE ,CF订交于一点K ,如下图,因为平面 BCFE平面ABC,且AC BC ,所以AC 平面 BCK ,所以 BF AC ,又因为 EF / /BC , BE EF FC 1, BC 2 ,所以BCK 为等边三角形,且 F 为CK的中点,则BF CK ,所以 BF平面ACFD.( 2)因为BF平面ACK,所以BDF 是直线 BD 与平面 ACFD 所成的角,在 Rt BFD 中,BF3, DF 321,得 cos BDF,27所以直线 BD 与平面ACFD所成的角的余弦值为21. 7考点:空间点、线、面地点关系、线面角.【结束】19.【答案】(1) p=2;(2),0 U 2,.【分析】试题剖析:此题主要考察抛物线的几何性质、直线与抛物线的地点关系等基础知识,同时考察分析几何的基本思想方法和综合解题方法 .试题分析: (Ⅰ ) 由题意可得抛物线上点A 到焦点 F 的距离等于点 A 到直线 x=-1 的距离 .由抛物线的第一得p1,即 p=2.2( Ⅱ ) 由 (Ⅰ ) 得抛物线的方程为 y 24x,F 1,0 ,可设 A t 2 ,2 t ,t 0, t1.因为 AF 不垂直于 y 轴,可设直线 AF:x=sy+1,s 0 y 2 4x, 由消去 x 得x sy 1y24sy 4 0 ,故 y 1 y 24,所以 B12,2 .tt又直线 AB 的斜率为2t,故直线 FN 的斜率为 t 2 12t ,t 21进而的直线 FN: yt 2 1x 1 ,直线 BN: y2 ,2tt所以N t 2 3, 2t 2 1 ,t2t2t 2设 M(m,0), 由 A,M,N 三点共线得:tt 2t 2 ,2tm3t 2 1于是 m2t 2,经查验, m<0或 m>2知足题意 .t21综上,点 M 的横坐标的取值范围是,0 U2,.考点:抛物线的几何性质、直线与抛物线的地点关系.【结束】20.【答案】(Ⅰ)证明详看法析; (Ⅱ)证明详看法析 .【分析】试题剖析:此题主要考察函数的单一性与最值、分段函数等基础知识,同时考察推理论证能力、剖析问题和解决问题的能力1 x 4 1 ,进而获得结论; 第二问,由 0x 13 x ,. 第一问,利用放缩法,获得x1 得 x1 x进行放缩,获得f x3f x3,再联合第一问的结论,获得,进而获得结论 .241x4 4试题分析: ( Ⅰ ) 因为 1 x x 2x 31 x , 1x1 x因为 x0,11x41, 即 1 x x2x31,有x 1 x1,1x所以 f x 1 x x2 .( Ⅱ ) 由0x 1 得x3x ,故 f x x31x133x 1 2x13 3 ,2 x 11 x 1 x 2222所以3f x.223 ,由 ( Ⅰ ) 得f x 1 x x2x13244又因为 f1193,所以 f x3,22444综上,3f x 3 . 42考点:函数的单一性与最值、分段函数.【结束】。
2016年全国高考浙江数学文科试卷及解析
2016年全国高考浙江数学〔文科〕选择题局部〔共40分〕一、选择题:本大题共8小题,每题5分,共40分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.全集{}1,2,3,4,5,6U =,集合{}1,3,5P =,{}1,2,4Q =,那么()U P Q = 〔 〕A .{}1B .{}3,5C .{}1,2,4,6D .{}1,2,3,4,52.互相垂直的平面α,β交于直线l .假设直线m ,n 满足m ‖α,n β⊥,那么 〔 〕 A .m ‖l B .m ‖n C .n l ⊥ D .m n ⊥3.函数2sin y x =的图象是 〔 〕A .B .C .D .4.假设平面区域30230230x y x y x y +-⎧⎪--⎨⎪-+⎩≥,≤,≥夹在两条斜率为1的平行直线之间,那么这两条平行直线间的距离的最小值是 〔 〕 A.5 BC. 2D5.a ,0b >且1a ≠,1b ≠.假设log 1a b >,那么 〔 〕 A .(1)(1)0a b --< B .(1)()0a a b --> C .(1)()0b b a --< D .(1)()0b b a -->6.函数2()f x x bx =+,那么“0b <〞是“(())f f x 的最小值与()f x 的最小值相等〞的〔 〕 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.函数()f x 满足:()||f x x ≥且()2x f x ≥,x ∈R . 〔 〕 A .假设()||f a b ≤,那么a b ≤ B .假设()2b f a ≤,那么a b ≤ C .假设()||f a b ≥,那么a b ≥ D .假设()2b f a ≥,那么a b ≥ 8.如图,点列{}n A ,{}n B 分别在某锐角的两边上,且 112||||n n n n A A A A +++=,2n n A A +≠,n *∈N , 112||||n n n n B B B B +++=,2n n B B +≠,n *∈N . (P Q ≠表示点P 与Q 不重合.)假设||n n n d A B =,n S 为△1n n n A B B +的面积,那么 (第8题图) 〔 〕 A .{}n S 是等差数列 B .{}2n S 是等差数列 C .{}n d 是等差数列 D .{}2n d 是等差数列非选择题局部〔共110分〕二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2016年高考文科数学浙江卷有答案
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式 锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =+柱体的体积公式其中1S ,2S 分别表示台体的上、下底面积, V Sh =h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}P =,{1,2,4}Q =,则()U P Q =ð ( )A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( )A .m l ∥B .m n ∥C .n l ⊥D .m n ⊥3.函数2y sinx =的图象是( )ABCD4.若平面区域30,230,230,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )ABC D 5.已知,0a b >且1,1a b ≠≠.若log 1a b >,则( )A .(1)(1)0a b --<B .(1)()0a a b -->C .(1)()0b b a --<D .(1)()0b b a --> 6.已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知函数()f x 满足:()f x |x|≥且()2,x f x x ∈R ≥.( )A .若()f a |b|≤,则a b ≤B .若()2b f a ≤,则a b ≤C .若()f a |b|≥,则a b ≥D .若()2b f a ≥,则a b ≥8.如图,点列{}{},n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合).若||n n n d A B =,n S 为1n n n A B B +△的面积,则 ( )A .{}n S 是等差数列B .{}2n S是等差数列C .{}n d 是等差数列D .{}2nd 是等差数列非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.10.已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是 ,半径是 .11.已知22cos sin 2=sin()(A 0)x x A x b ωϕ+++>,则A = ,b = . 12.设函数32()31f x x x =++.已知0a ≠,且2()()(–––)()f x f a x b x a =,x ∈R ,则实数a = ,b = .13.设双曲线22–13y x =的左、右焦点分别为1F ,2F .若点P 在双曲线上,且12F PF △为锐角三角形,则12||||PF PF +的取值范围是 .14.如图,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =,90ADC ∠=︒.沿直线AC 将ACD △翻折成'ACD △,直线AC 与'BD 所成角的余弦的最大值是 .15.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a·e |+|b·e |的最大值是 .---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c acosB +=. (Ⅰ)证明:2A B =; (Ⅱ)若23cosB =,求cos C 的值.17.(本小题满分15分)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*N n ∈. (Ⅰ)求通项公式n a ;(Ⅱ)求数列{}|2|n a n --的前n 项和.18.(本小题满分15分)如图,在三棱台A B C D E F -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.19.(本小题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -.(Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.20.(本小题满分15分)设函数31()1f x x x=++,[0,1]x ∈.证明: (Ⅰ)2()1f x x x -+≥; (Ⅱ)33()42f x <≤.){2,4,6}{1,2,4}{1,2,4,6}Q ==)U P Q ðn d h ,可得S 为211n n n n S S S S +++=--,则数列{}n S 为等差数列,故选A .cm,体积为32840+=cm1+26D B'用余弦定理求出D F'的最小值即可得出.||||||||a eb ea eb e e e +=+,其几何意义为a 在e 上的投影的绝对值与b 在e 上投影的绝对值的和,当e 与a b +共线时,取大值.22max (||||)||||||27a e b e a b a b a b +=+=++=.【提示】由题意可知,||||a e b e +为a 在e 上的投影的绝对值与b 在e 上投影的绝对值的和,由此可知,当e 与a b +共线时,||||a e b e +取得最大值,即||a b + 【考点】平面向量的数量积运算.112为等边三角形,且F 为CK 的中点,则BF CK ⊥.所以BF ⊥平面ACFD .,0)(2,)+∞.)利用抛物线的性质和已知条件求出抛物线方程,进一步求得的方程,与抛物线联立,求出。
2016年高考文科数学浙江卷及答案解析
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式 锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =+柱体的体积公式其中1S ,2S 分别表示台体的上、下底面积, V Sh =h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}P =,{1,2,4}Q =,则()U P Q =ð ( )A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( )A .m l ∥B .m n ∥C .n l ⊥D .m n ⊥3.函数2y sinx =的图象是( )ABCD4.若平面区域30,230,230,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )ABC D 5.已知,0a b >且1,1a b ≠≠.若log 1a b >,则( )A .(1)(1)0a b --<B .(1)()0a a b -->C .(1)()0b b a --<D .(1)()0b b a --> 6.已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知函数()f x 满足:()f x |x|≥且()2,x f x x ∈R ≥.( )A .若()f a |b|≤,则a b ≤B .若()2b f a ≤,则a b ≤C .若()f a |b|≥,则a b ≥D .若()2b f a ≥,则a b ≥8.如图,点列{}{},n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合).若||n n n d A B =,n S 为1n n n A B B +△的面积,则 ( )A .{}n S 是等差数列B .{}2n S是等差数列C .{}n d 是等差数列D .{}2nd 是等差数列非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.10.已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是 ,半径是 .11.已知22cos sin 2=sin()(A 0)x x A x b ωϕ+++>,则A = ,b = . 12.设函数32()31f x x x =++.已知0a ≠,且2()()(–––)()f x f a x b x a =,x ∈R ,则实数a = ,b = .13.设双曲线22–13y x =的左、右焦点分别为1F ,2F .若点P 在双曲线上,且12F PF △为锐角三角形,则12||||PF PF +的取值范围是 .14.如图,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =,90ADC ∠=︒.沿直线AC 将ACD △翻折成'ACD △,直线AC 与'BD 所成角的余弦的最大值是 .15.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a·e |+|b·e |的最大值是 .---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c acosB +=. (Ⅰ)证明:2A B =; (Ⅱ)若23cosB =,求cos C 的值.17.(本小题满分15分)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*N n ∈.(Ⅰ)求通项公式n a ;(Ⅱ)求数列{}|2|n a n --的前n 项和.18.(本小题满分15分)如图,在三棱台A B C D E F -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.19.(本小题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -.(Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.20.(本小题满分15分)设函数31()1f x x x=++,[0,1]x ∈.证明: (Ⅰ)2()1f x x x -+≥; (Ⅱ)33()42f x <≤.){2,4,6}{1,2,4}{1,2,4,6}Q ==)U P Q ð2nd h,可得S为211n n n nS S S S+++=--,则数列{}nS为等差数列,故选A.cm,体积为32840+=cm1+26D B'用余弦定理求出D F'的最小值即可得出.【解析】||||||||a eb ea eb ee e+=+,其几何意义为a在e上的投影的绝对值与b在e上投影的绝对值的和,当e与a b+共线时,取大值.22max(||||)||||||27a eb e a b a b a b+=+=++=.【提示】由题意可知,||||a eb e+为a在e上的投影的绝对值与b在e上投影的绝对值的和,由此可知,当e与a b+共线时,||||a eb e+取得最大值,即||a b+【考点】平面向量的数量积运算.112为等边三角形,且F 为CK 的中点,则BF CK ⊥.所以BF ⊥平面ACFD .,0)(2,)+∞.)利用抛物线的性质和已知条件求出抛物线方程,进一步求得的方程,与抛物线联立,求出。
2016年高考数学浙江(文科)试题及答案【解析版】
2016年浙江省高考数学试卷(文科)一.选择题(共8小题)1.【2016浙江(文)】已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6}D.{1,2,3,4,5}【答案】C【解析】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.2.【2016浙江(文)】已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.3.【2016浙江(文)】函数y=sinx2的图象是()A.B.C.D.【答案】D【解析】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,4.【2016浙江(文)】若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C. D.【答案】B【解析】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,5.【2016浙江(文)】已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【答案】D【解析】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b ﹣a)>0,综上(b﹣1)(b﹣a)>0,6.【2016浙江(文)】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等"的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,则f min(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.7.【2016浙江(文)】已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.() A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【答案】B【解析】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,8.【2016浙江(文)】如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A nB n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列【答案】A【解析】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,b不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.二.填空题(共7小题)9.【2016浙江(文)】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.【答案】80;40.【解析】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.10.【2016浙江(文)】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.【答案】(﹣2,﹣4),5【解析】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,11.【2016浙江(文)】已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.【答案】;1.【解析】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,12.【2016浙江(文)】设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x ﹣a)2,x∈R,则实数a=,b=.【答案】﹣2;1.【解析】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),13.【2016浙江(文)】设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.【答案】().【解析】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().14.【2016浙江(文)】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【答案】【解析】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.15.【2016浙江(文)】已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【答案】【解析】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.三.解答题(共5小题)16.【2016浙江(文)】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解析】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.17.【2016浙江(文)】设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解析】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,a n+1=2S n+1,a n=2S n﹣1+1,两式相减得a n+1﹣a n=2(S n﹣S n﹣1)=2a n,即a n+1=3a n,当n=1时,a1=1,a2=3,满足a n+1=3a n,∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.18.【2016浙江(文)】如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【解析】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.19.【2016浙江(文)】如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【解析】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).20.【2016浙江(文)】设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.【解析】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.绝密★启封前2016年浙江省高考数学试卷(文科)一、选择题(本大题8小题,每题5分,共40分)1.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}2.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n3.函数y=sinx2的图象是()A.B.C.D.4.若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C.D.5.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>06.已知函数f(x)=x2+bx,则“b<0"是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b8.如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列二、填空题(本大题7小题,9、10、11、12每题6分,13、14、15每题4分,共36分) 9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.12.设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=,b=.13.设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.14.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC 将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.15.已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.三、解答题(本大题5小题,共74分)16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.17.(15分)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.18.(15分)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)一、选择题1.【解答】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选C.2.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.故选:C.3.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B, 故选:D4.【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,故选:B.5.【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.6.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等"的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,则f min(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.∴“b<0"不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选A.7.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b 不一定成立,故D错误,故选:B8.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.二、填空题9.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.10.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.11.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,故答案为:;1.12.【解答】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),故答案为:﹣2;1.13.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().14.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC 与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.15.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.三、解答题16.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.17.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,a n+1=2S n+1,a n=2S n﹣1+1,两式相减得a n+1﹣a n=2(S n﹣S n﹣1)=2a n, 即a n+1=3a n,当n=1时,a1=1,a2=3,满足a n+1=3a n,∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣= ,则T n==.18.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK; ∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C; ∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.19.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y1y2=﹣4, ∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).20.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.。
2016年浙江省高考数学试卷文科【精】
2016年浙江省高考数学试卷(文科)一、选择题1.(5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.(5分)函数y=sinx2的图象是()A.B.C.D.4.(5分)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C.D.5.(5分)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>06.(5分)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b8.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列 D.{d n2}是等差数列二、填空题9.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.(6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.12.(6分)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x ﹣a)2,x∈R,则实数a=,b=.13.(4分)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.14.(4分)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.15.(4分)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.三、解答题16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.17.(15分)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.18.(15分)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y 轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}【分析】先求出∁U P,再得出(∁U P)∪Q.【解答】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选:C.【点评】本题考查了集合的运算,属于基础题.2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m与β相交,l⊂β,∵n⊥β,∴n⊥l.故选:C.【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)函数y=sinx2的图象是()A.B.C.D.【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.4.(5分)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C.D.【分析】作出平面区域,找出距离最近的平行线的位置,求出直线方程,再计算距离.【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,故选:B.【点评】本题考查了平面区域的作法,距离公式的应用,属于基础题.5.(5分)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0【分析】根据对数的运算性质,结合a>1或0<a<1进行判断即可.【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.【点评】本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础.6.(5分)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)设f(x)=t,则f(f(x))=f(t),∴f(t)在(﹣,﹣)上单调递减,在(﹣,+∞)上单调递增,若f(f(x))=f(t)的最小值与f(x)的最小值相等,则﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选:A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.7.(5分)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【分析】根据不等式的性质,分别进行递推判断即可.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,故选:B.【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.8.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列 D.{d n2}是等差数列【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,判断C,D不正确,设△A n B n B n+1的底边B n B n+1上的高为h n,运用三角形相似知识,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,﹣S n+1=S n+1﹣S n,即为S n+2则数列{S n}为等差数列.另解:可设△A1B1B2,△A2B2B3,…,A n B n B n+1为直角三角形,且A1B1,A2B2,…,A n B n为直角边,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n﹣S n+1=S n+1﹣S n,+2则数列{S n}为等差数列.故选:A.【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.二、填空题9.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80 cm2,体积是40cm3.【分析】根据几何体的三视图,得出该几何体下部为长方体,上部为正方体的组合体,结合图中数据求出它的表面积和体积即可.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题.10.(6分)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(﹣2,﹣4),半径是5.【分析】由已知可得a2=a+2≠0,解得a=﹣1或a=2,把a=﹣1代入原方程,配方求得圆心坐标和半径,把a=2代入原方程,由D2+E2﹣4F<0说明方程不表示圆,则答案可求.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.【点评】本题考查圆的一般方程,考查圆的一般方程化标准方程,是基础题.11.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=1.【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)=sin(2x+)+1,∴A=,b=1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.12.(6分)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x ﹣a)2,x∈R,则实数a=﹣2,b=1.【分析】根据函数解析式化简f(x)﹣f(a),再化简(x﹣b)(x﹣a)2,根据等式两边对应项的系数相等列出方程组,求出a、b的值.【解答】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),故答案为:﹣2;1.【点评】本题考查函数与方程的应用,考查化简能力和方程思想,属于中档题.13.(4分)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.【分析】由题意画出图形,以P在双曲线右支为例,求出∠PF2F1和∠F1PF2为直角时|PF1|+|PF2|的值,可得△F1PF2为锐角三角形时|PF1|+|PF2|的取值范围.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().【点评】本题考查双曲线的简单性质,考查双曲线定义的应用,考查数学转化思想方法,是中档题.14.(4分)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【分析】如图所示,取AC的中点O,AB=BC=3,可得BO⊥AC,在Rt△ACD′中,AC=.作D′E⊥AC,垂足为E,D′E=.CO=,CE==,EO=CO﹣CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,BF=EO=.EF=BO=.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.利用余弦定理求出D′F2的最小值即可得出.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.也可以考虑利用向量法求解.故答案为:.【点评】本题考查了空间位置关系、空间角,考查了空间想象能力、推理能力与计算能力,属于难题.15.(4分)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.三、解答题16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【分析】(1)由b+c=2acosB,利用正弦定理可得:sinB+sinC=2sinAcosB,而sinC=sin (A+B)=sinAcosB+cosAsinB,代入化简可得:sinB=sin(A﹣B),由A,B∈(0,π),可得0<A﹣B<π,即可证明.(II)cosB=,可得sinB=.cosA=cos2B=2cos2B﹣1,sinA=.利用cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB即可得出.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.17.(15分)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【分析】(Ⅰ)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{a n}是公比q=3的等比数列,即可求通项公式a n;(Ⅱ)讨论n的取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1﹣a n=2(S n﹣S n﹣1)=2a n,两式相减得a n+1即a n=3a n,当n=1时,a1=1,a2=3,+1=3a n,满足a n+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=则T n==.【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{a n}是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行数列求和.18.(15分)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【分析】(Ⅰ)根据三棱台的定义,可知分别延长AD,BE,CF,会交于一点,并设该点为K,并且可以由平面BCFE⊥平面ABC及∠ACB=90°可以得出AC⊥平面BCK,进而得出BF⊥AC.而根据条件可以判断出点E,F分别为边BK,CK的中点,从而得出△BCK为等边三角形,进而得出BF⊥CK,从而根据线面垂直的判定定理即可得出BF⊥平面ACFD;(Ⅱ)由BF⊥平面ACFD便可得出∠BDF为直线BD和平面ACFD所成的角,根据条件可以求出BF=,DF=,从而在Rt△BDF中可以求出BD的值,从而得出cos∠BDF的值,即得出直线BD和平面ACFD所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y 轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【分析】(Ⅰ)利用抛物线的性质和已知条件求出抛物线方程,进一步求得p值;(Ⅱ)设出直线AF的方程,与抛物线联立,求出B的坐标,求出直线AB,FN 的斜率,从而求出直线BN的方程,根据A、M、N三点共线,可求出M的横坐标的表达式,从而求出m的取值范围.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.20.(15分)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x )≤.【分析】(Ⅰ)根据题意,1﹣x+x2﹣x3=,利用放缩法得≤,即可证明结论成立;(Ⅱ)利用0≤x≤1时x3≤x,证明f(x )≤,再利用配方法证明f(x )≥,结合函数的最小值得出f(x )>,即证结论成立.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x +=x +﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f ()=+=>,所以f(x )>;综上,<f(x )≤.【点评】本题主要考查了函数的单调性与最值,分段函数等基础知识,也考查了推理与论证,分析问题与解决问题的能力,是综合性题目.第21页(共21页)。
2016年高考文科数学浙江卷及答案
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式 锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =+柱体的体积公式 其中1S ,2S 分别表示台体的上、下底面积, V Sh =h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}P =,{1,2,4}Q =,则()U P Q =ð ( )A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( )A .m l ∥B .m n ∥C .n l ⊥D .m n ⊥ 3.函数2y sinx =的图象是( )ABCD4.若平面区域30,230,230,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )ABC D 5.已知,0a b >且1,1a b ≠≠.若log 1a b >,则( )A .(1)(1)0a b --<B .(1)()0a a b -->C .(1)()0b b a --<D .(1)()0b b a -->6.已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知函数()f x 满足:()f x |x|≥且()2,x f x x ∈R ≥.( )A .若()f a |b|≤,则a b ≤B .若()2b f a ≤,则a b ≤C .若()f a |b|≥,则a b ≥D .若()2b f a ≥,则a b ≥8.如图,点列{}{},n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合).若||n n n d A B =,n S 为1n n n A B B +△的面积,则 ( )A .{}n S 是等差数列B .{}2n S是等差数列C .{}n d 是等差数列D .{}2nd 是等差数列非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.10.已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是 ,半径是 .11.已知22cos sin 2=sin()(A 0)x x A x b ωϕ+++>,则A = ,b = .12.设函数32()31f x x x =++.已知0a ≠,且2()()(–––)()f x f a x b x a =,x ∈R ,则实数a = ,b = .13.设双曲线22–13y x =的左、右焦点分别为1F ,2F .若点P 在双曲线上,且12F PF △为锐角三角形,则12||||PF PF +的取值范围是 .14.如图,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =,90ADC ∠=︒.沿直线AC 将ACD △翻折成'ACD △,直线AC 与'BD 所成角的余弦的最大值是 .15.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a·e |+|b·e |的最大值是 .---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c acosB +=. (Ⅰ)证明:2A B =; (Ⅱ)若23cosB =,求cos C 的值.17.(本小题满分15分)设数列{}n a 的前n 项和为n S .已知24S =,121n n a S +=+,*N n ∈. (Ⅰ)求通项公式n a ;(Ⅱ)求数列{}|2|n a n --的前n 项和.18.(本小题满分15分)如图,在三棱台A B C D E F -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.19.(本小题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -.(Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.20.(本小题满分15分)设函数31()1f x x x=++,[0,1]x ∈.证明: (Ⅰ)2()1f x x x -+≥; (Ⅱ)33()42f x <≤.2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)答案解析){2,4,6}{1,2,4}{1,2,4,6}Q ==)U P Q ðn d h ,可得S 为211n n n n S S S S +++=--,则数列{}n S 为等差数列,故选A .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年浙江省高考数学试卷(文科)一、选择题1.(5分)(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.(5分)(2016•浙江)函数y=sinx2的图象是()A.B.C.D.4.(5分)(2016•浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C. D.5.(5分)(2016•浙江)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>06.(5分)(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.(5分)(2016•浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b8.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列二、填空题9.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.10.(6分)(2016•浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.11.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.12.(6分)(2016•浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=,b=.13.(4分)(2016•浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.14.(4分)(2016•浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.15.(4分)(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.三、解答题16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.17.(15分)(2016•浙江)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.2016年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题1.(5分)(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}【解答】解:∁U P={2,4,6},(∁U P)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.故选C.2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.故选:C.3.(5分)(2016•浙江)函数y=sinx2的图象是()A.B.C.D.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D4.(5分)(2016•浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.B.C. D.【解答】解:作出平面区域如图所示:∴当直线y=x+b分别经过A,B时,平行线间的距离相等.联立方程组,解得A(2,1),联立方程组,解得B(1,2).两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.∴平行线间的距离为d==,故选:B.5.(5分)(2016•浙江)已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.6.(5分)(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,则f min(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选A.7.(5分)(2016•浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.()A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤bC.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,即|a|≤|b|,则a≤b不一定成立,故A错误,B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,则a≤b,故B正确,C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,故选:B8.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,b不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,即为S n+2﹣S n+1=S n+1﹣S n,则数列{S n}为等差数列.故选:A.二、填空题9.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80cm2,体积是40cm3.【解答】解:根据几何体的三视图,得;该几何体是下部为长方体,其长和宽都为4,高为2,表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.故答案为:80;40.10.(6分)(2016•浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(﹣2,﹣4),半径是5.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.11.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b= 1.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1=sin(2x+)+1,∴A=,b=1,故答案为:;1.12.(6分)(2016•浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=﹣2,b=1.【解答】解:∵f(x)=x3+3x2+1,∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,∴,解得或(舍去),故答案为:﹣2;1.13.(4分)(2016•浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().14.(4分)(2016•浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.CO=,CE===,∴EO=CO﹣CE=.过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC 与BD′所成的角.则四边形BOEF为矩形,∴BF=EO=.EF=BO==.则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.∴D′B的最小值==2.∴直线AC与BD′所成角的余弦的最大值===.故答案为:.15.(4分)(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.三、解答题16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.17.(15分)(2016•浙江)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,当n≥2时,a n+1=2S n+1,a n=2S n﹣1+1,两式相减得a n+1﹣a n=2(S n﹣S n﹣1)=2a n,即a n+1=3a n,当n=1时,a1=1,a2=3,满足a n+1=3a n,∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:∵平面BCFE⊥平面ABC,且AC⊥BC;∴AC⊥平面BCK,BF⊂平面BCK;∴BF⊥AC;又EF∥BC,BE=EF=FC=1,BC=2;∴△BCK为等边三角形,且F为CK的中点;∴BF⊥CK,且AC∩CK=C;∴BF⊥平面ACFD;(Ⅱ)∵BF⊥平面ACFD;∴∠BDF是直线BD和平面ACFD所成的角;∵F为CK中点,且DF∥AC;∴DF为△ACK的中位线,且AC=3;∴;又;∴在Rt△BFD中,,cos;即直线BD和平面ACFD所成角的余弦值为.19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,由抛物线定义得,,即p=2;(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,∵AF不垂直y轴,∴设直线AF:x=sy+1(s≠0),联立,得y2﹣4sy﹣4=0.y1y2=﹣4,∴B(),又直线AB的斜率为,故直线FN的斜率为,从而得FN:,直线BN:y=﹣,则N(),设M(m,0),由A、M、N三点共线,得,于是m==,得m<0或m>2.经检验,m<0或m>2满足题意.∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],且1﹣x+x2﹣x3==,所以≤,所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;(Ⅱ)证明:因为0≤x≤1,所以x3≤x,所以f(x)=x3+≤x+=x+﹣+=+≤;由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,且f()=+=>,所以f(x)>;综上,<f(x)≤.参与本试卷答题和审题的老师有:zhczcb;zlzhan;maths;双曲线;742048;sxs123;gongjy;沂蒙松(排名不分先后)菁优网2016年6月17日。