湖南省2012届高三级十二校联考第二次考试理数

合集下载

湖南省十二校届高三数学第二次联考试题理

湖南省十二校届高三数学第二次联考试题理

湖南省2012届高三•十二校联考第二次考试数学理科总分:150分时量:120分钟考试时间:2012年4月7曰下午3:00〜5:00得分:一、选择题:本大题共8小题;每小题5分;共40分.在每小题给出的四个选项中;只有一项是符合题目要求的.1.i是虚数单位;则复数等于A. — 1B. –iC. 1D. i2下列命题中是假命题的是A.B. "a>0"是“ | a |〉0”的充分不必要条件C.D. “a .b>0"是“a;b的夹角为锐角”的充要条件3. 当时;函数的值域为A. B. C. D.4. 下图是一个几何体的三视图;已知侧视图是一个等边三角形;根据图中尺寸单位:cm;可知这个几何体的表面积是A. B.C. D.5. 由函数的图象;直线x= 2及x轴所围成的图象面积等于A. B.C. D.6. 已知实数;;执行如下图所示的程序框图;则输出的x不小于47的概率为A. B. C. D.7. 若实数a、b、c使得函数的三个零点分别为椭圆、双曲线、抛物线的离心率e1;e2;e3 ;则a;b;c的一种可苹平值依次为A. -2;-1;2B. 2;0;-2C. D.8. 记集合T= {0;1;2;3;4;5;6;7;8;9} ;M=;将M 中的元素按从大到小排列;则第2012个数是A. B.C. D.二、填空题:本大题共7小题;每小题5分;共35分;把答案填在答题卡中对应题号后的横线上.9. 若实数x;y满足;则s = x- y的最小值为________.10. 已知向量a=4;3;b=—2;1;如果向量与b垂直;则的值为_______11. 已知双曲线的离心率为2;则它的一焦点到其中一条渐近线的距离为_______12. 设成等差数列;公差;且的前三项和为;则的通项为_______13. 已知的展开式中第二项与第四项的系数相等;则展开式的二项式系数之和为_______.14. 函数1 若a=0;则方程fx=0的解为_______.2 若函数fx有两个零点;则a的取值范围是_______.15. 已知数列{a n}的各项均为正整数;对于n=1;2;3;…;有其中k为使a n+1为奇数的正整数.1 当a1 =11 时;a2012 =________2 若存在;当n>m且a n为奇数时;a n恒为常数p;则p的值为_______.三、解答题:本大题共6小题;共75分.解答应写出文字说明;证明过程或演算步骤.16. 本小题满分12分选做题请考生在第16题的三个小题中任选两题作答;如果全做;则按前两题记分;要写出必要的推理与演算过程1 几何证明选讲选做题:如图;已知RtΔABC的两条直角边BC;AC的长分别为3 cm;4 cm;以AC为直径作圆与斜边AB交于点D;试求BD的长.2 极坐标与参数方程选做题已知曲线C的参数方程为为参数;求曲线C上的点到直线x—y+1=0的距离的最大值.3不等式选做题若a;b是正常数;;则;当且仅当时上式取等号.请利用以上结论;求函数;的最小值.17. 本小题满分12分为了解今年某校高三毕业班准备报考飞行员学生的体重情况;将所得的数据整理后;画出了频率分布直方图如图;已知图中从左到右的前3个小组的频率之比为1:2:3;其中第2小组的频数为12.1 求该校报考飞行员的总人数;2 以这所学校的样本数据来估计全省的总体数据;若从全省报考飞行员的同学中人数很多任选二人;设X表示体重超过60公斤的学生人数;求X的分布列和数学期望.18. 本小题满分12分如图;正四棱柱A B C D—A1B1C1D1即底面为正方形的直四棱柱中;A A1=2A B =4;点E在C C1上且C1E=3E C.1 证明:A1C丄平面BED;2求直线A1C与平面A1D E所成角的正弦值.19 本小题满分13分某工厂统计资料显示;产品次品率p与日产量n 件;且的关系表如下:又知每生产一件正品盈利a元;每生产一件次品损失元a〉0.1 将该厂日盈利额T元表示为日产量n件的一种函数关系式;2 为了获得最大盈利;该厂的日产量应定为多少件20 本小题满分13分设函数.1 当a+b= 1时;试用含A的表达式研究fx的单调区间;2 当a= 0;b=- 1时;方程有唯一实数解;求正数M的值.21.本小题满分13分已知抛物线;其中p>0;点M2;2;若抛物线l上存在不同两点A、B满足1 求实数P的取值范围;2 当p= 2时;抛物线l上是否存在异于A;B的点C;使得经过A;B;C三点的圆和抛物线L 在点C处有相同的切线;若存在;求出点C的坐标;若不存在;请说明理由.。

2012年理数高考试卷答案与解析-湖南

2012年理数高考试卷答案与解析-湖南

2012 年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分 .在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合 M={-1,0,1} , N={x|x 2≤ x},则M ∩ N=A.{0}B.{0,1} C.{-1,1} D.{-1,0,0}【答案】 B【解析】N 0,1 M={-1,0,1} M ∩ N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出N 0,1 ,再利用交集定义得出 M∩ N.2.命题“若α = ,则 tan α =1”的逆否命题是4A.若α≠,则 tanα ≠1 B. 若α = ,则 tanα ≠ 14 4C. 若 tanα ≠ 1,则α≠ D. 若 tanα ≠1,则α =4 4【答案】 C【解析】因为“若 p ,则 q ”的逆否命题为“若p ,则q ”,所以“若α = ,则 tanα =1”的逆否命题是“若4tan α ≠ 1,则α ≠” .4【点评】本题考查了“若 p,则 q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】 D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1 所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.第 1 页共 17 页【点评】本题主要考查空间几何体的三视图,考查空间想象能力 .是近年高考中的热点题型 .4.设某大学的女生体重 y (单位: kg )与身高 x (单位: cm )具有线性相关关系,根据一组样本数据( x i ,y i )( i=1, 2 ,⋯, n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是 A.y 与 x 具有正的线性相关关系B.回归直线过样本点的中心(x , y ) C.若该大学某女生身高增加 1cm ,则其体重约增加 0.85kgD.若该大学某女生身高为 170cm ,则可断定其体重比为 58.79kg【答案】 D【解析】【解析】由回归方程为 y =0.85x-85.71 知 y 随 x 的增大而增大,所以 y 与 x 具有正的线性相关关系,由最y bx a bx y bx (a y bx ) ,所以回归直线过样本点的中心(x ,小二乘法建立的回归方程得过程知? y ),利用回归方程可以预测估计总体,所以 D 不正确 .【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易 错 .5. 已知双曲线 C : x 2 y 2 =1 的焦距为 10 ,点 P (2,1)在 C 的渐近线上,则 C 的方程为a 2 - 2 bx 2 y 2x 2 - y 2 x 2 y 2x 2 y 2A .-=1 B. 5 20=1 C. - =1D.-=120 5 80 2020 80【答案】 A【解析】设双曲线 C: x 2 y 2 =1 的半焦距为 c ,则 2c10, c 5 .a 2 - 2b 又 C 的渐近线为 ybx ,点 P ( 2,1)在 C 的渐近线 1 b 2 ,即 a 2b .上,a a又 c2a2b2, a 2 5,b5 , C的方程为x2- y2 =1.20 5【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型 .第 2 页共 17 页6. 函数 f (x) =sinx-cos(x+ )的值域为6A. [ -2 ,2] B.[-3 , 3 ] C.[-1,1 ]D.[-3 3, ]2 2【答案】B【解析】 f( x) =sinx-cos(x+ ) sin x 3 cos x 1 sin x 3 sin( x ) ,sin( x )1,1 ,f (x) 值6 2 2 6 6 域为 [- 3 , 3 ].【点评】利用三角恒等变换把f ( x) 化成Asin( x) 的形式,利用sin( x )1,1 ,求得 f (x) 的值域 .7. 在△ ABC中, AB=2, AC=3, AB BC = 1 则 BC ___ .中 &% 国教 *^ 育出版网A. 3B. 7C.2 2D. 23【答案】A【解析】由下图知AB BC = AB BC cos( B) 2 BC ( cos B) 1.cosB 1 .又由余弦定理知cos B AB 2BC 2AC2,解得BC 3 .2B C 2 AB BCAB C【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意AB, BC 的夹角为 B 的外角 .8 .已知两条直线l1: y=m和 l8(m> 0), l1与函数ylog2 x 的图像从左至右相交于点A, B ,l2 2: y=2m 1与函数 y log 2 x 的图像从左至右相交于bC,D .记线段 AC和 BD 在 X 轴上的投影长度分别为 a ,b ,当m 变化时,a的最小值为来源 %&: 中国教育出版网A. 16 2 B.8 2 C.8 4 D. 4 4【答案】B第 3 页共 17 页【解析】在同一坐标系中作出y=m ,y= 8(m >0), y log 2 x 图像如下图,2m 1由 log 2 x = m ,得 x 1 2m , x 2 2m , log 2 8 8 8x = ,得 x 32 2 m 1 , x 4 2 m 1 2 . 2m 1 8 依照题意得 a 2 m 2 2 m1, b 2m 2 82 m12m 2 , ba 2 m 2 8 2m1 8 8 2m 2m 1 m8 2 2 2 m1 . 2m 1m 8 m 1 4 1 4 1 3 1 , ( b )min 8 2 .2m 1 2 1 2 2 2 a m 2y log 2 xDy 8C2m 1 A By m O1 x【点评】在同一坐标系中作出y=m , y= 8(m >0), y log 2 x 图像,结合图像可解得 .2m 1二 、填空题: 本大题共8 小题,考生作答 7 小题,每小题 5 分 ,共 35 分,把答案填在答题卡中对应题号后的 横线上 .(一)选做题(请考生在第 9、 10、 11 三题中任选两题作答,如果全做,则按前两题记分 )9. xOy 中,已知曲线C1:x t 1, x a sin ,在直角坐标系y 1(t 为参数 )与曲线C2:3cos 2t y( 为参数,a0 ) 有一个公共点在 X 轴上,则 a __ .【答案】32【解析】曲线C1x t 1,y 3 2 x ,与 x 轴交点为 ( 3 ,0) ;:1直角坐标方程为y 2t 2x asin, x2y21,其与 x 轴交点为( a,0),( a,0) ,曲线 C2:3cos 直角坐标方程为29y a第 4 页共 17 页由 a 0,曲线 C 1 与曲线 C 2 有一个公共点在 3X 轴上,知 a.2【点评】 本题考查直线的参数方程、 椭圆的参数方程, 考查等价转化的思想方法等 .曲线 C 1 与曲线 C 2 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得 . 10.不等式 |2x+1|-2|x-1|>0 的解集为_______.【答案】 x x143,( x 1) 2 【解析】令f ( x) 2x 1 2 x 1 ,则由 f (x)4x 1,( 1x 1) 得 f ( x) 0 的解集为 x x 1 . 2 4 3,( x 1)【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组) .11.如图 2,过点 P 的直线与圆 O 相交于 A ,B 两点 .若 PA=1, AB=2, PO=3,则圆 O 的半径等于 _______.O BPA【答案】 6【解析】设 PO 交圆 O 于 C , D ,如图,设圆的半径为 R ,由割线定理知PA PB PC PD,即1 (1 2) (3- r )(3 r ), r 6. DOC PB A【点评】本题考查切割线定理,考查数形结合思想,由切割线定理知PA PB PC PD ,从而求得圆的半径 .(二 )必做题( 12~16 题)12.已知复数 z (3 i )2 (i 为虚数单位 ),则 |z|=_____.第 5 页共 17 页【答案】 10【解析】 z (3i )2= 9 6i i 2 8 6i , z82 62 10 .【点评】本题考查复数的运算、复数的模 .把复数化成标准的 abi ( a, b R) 形式,利用z a 2 b 2 求得 .13.( 2 x - 1 )6 的二项展开式中的常数项为 .(用数字作答)x【答案】 -160【 解 析 】 ( 2 x - 1 )6 的 展 开 式 项 公 式 是 T r 1C 6r (2 x )6 r( 1 )r C 6r 26 r ( 1)r x 3 r . 由 题 意 知 x x3 r 0 r, 3 T 4C 6 2 ( 1) 160 .,所以二项展开式中的常数项为 3 3 3 【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.如果执行如图3 所示的程序框图,输入 x 1 ,n=3,则输出的数 S=. 【答案】4 【 解 析 】 输 入 x 1 ,n=3, , 执 行 过 程 如 下 : i 2: S 6 2 3 3 ; i 1: S 3( 1) 1 15 ; i 0: S 5( 1) 0 1 4 ,所以输出的是 4 .【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错 .15.函数f( x)=sin (x )的导函数y f (x) 的部分图像如图4 所示,其中,P 为图像与y 轴的交点,A,C 为图第6 页共17页像与 x 轴的两个交点, B 为图像的最低点 .( 1)若,点 P 的坐标为( 0 , 3 3),则;62( 2)若在曲线段 ABC 与 x 轴所围成的区域内随机取一点,则该点在△ ABC 内的概率为 .【答案】(1) 3;( 2)4【解析】(1) y f ( x)cos( x ) ,当 ,点 P 的坐标为( 0,3 3)时 6 2 cos3 3 , 3 ; 6 2T21 AC( 2)由图知AC , SABC 2 ,设 A, B 的横坐标分别为 a,b .2 22设曲线段 ABC 与 x 轴所围成的区域的面积为 S 则 S b f (x)dx f ( x) a bsin( a ) sin( b ) 2, a由几何概型知该点在△ABC 内的概率为P SABC 2 .S 2 4【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点 P 在图像上求 , ( 2)几何概型,求出三角形面积及曲边形面积,代入公式即得.n* , n ≥ 2),将 N 个数 x 1,x 2 ,⋯, x N 依次放入编号为 1,2,⋯, N 的 N 个位置,得到排列 P0=x1x2⋯16.设 N=2( n∈ NxN.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前N 和后N个位置,得到排列2 2P1=x1 x3⋯ xN-1x2x4⋯ xN,将此操作称为C 变换,将 P1分成两段,每段N 个数,并对每段作C 变换,得到p2;当22第 7 页共 17 页≤ i ≤ n-2 时,将 P i 分成 2i 段,每段 N个数,并对每段C 变换,得到 Pi+1,例如,当 N=8 时,P2=x1x5x3x7x2x6x4x8, 2i此时 x 7 位于 P 2 中的第 4 个位置 .( 1)当 N=16 时, x 7 位于 P 2 中的第 ___个位置;( 2)当 N=2n ( n ≥ 8)时, x 173 位于 P 4 中的第 ___个位置 .【答案】(1) 6;( 2) 3 2n 4 11【解析】(1)当 N=16 时 ,P 0 x 1 x 2 x 3x 4 x 5x 6 x 16 ,可设为 (1,2,3,4,5,6,,16) , P 1 x 1 x 3 x 5 x 7 x 15 x 2 x 4 x6 x 16 ,即为(1,3,5,7,9,2,4,6,8, ,16) ,P 2 x 1 x 5 x 9 x 13 x 3x 7 x 11x 15 x 2 x 6 x 16 ,即 (1,5,9,13,3,7,11 ,15,2,6,,16) , x7 位于 P2 中的第 6 个位置 ,;( 2)方法同(1) ,归纳推理知 x 173 位于 P 4 中的第 3 2n4 11 个位置 . 【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题. 三、解答题:本大题共 6 小题,共75 分 .解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100 位顾客的相关数 据,如下表所示 .一次购物量 1 至 4 件 5 至 8 件 9 至 12 件 13 至 16 件 17 件及以上顾客数(人) x30 25 y 10 结算时间 (分钟 /人) 1 1.5 2 2.5 3已知这 100 位顾客中的一次购物量超过 8 件的顾客占 55% .(Ⅰ)确定 x , y 的值,并求顾客一次购物的结算时间 X 的分布列与数学期望; [&% 中国 教育出版网*#(Ⅱ) 若某顾客到达收银台时前面恰有2 位顾客需结算, 且各顾客的结算相互独立, 求该顾客结算前的等候时间 不超过... 2.5 分钟的概率 .(注:将频率视为概率) 中 %# 国教 育出版网 【解析】(1)由已知 ,得25y 10 55, x y 35, 所以 x 15, y 20. 该超市所有顾客一次购物的结算时间组成一个总体, 所以收集的100 位顾客一次购物的结算时间可视为总体的一 个容量随机样本,将频率视为概率得p( X 1 ) 1 53 ,p (X 1. 5 ) 3 03 p , X ( 2 )2 51,1 00 2 0 1 0 0 1 0 1 00 4p( X 2 . 5 ) 2 01 p,X( 3 )1 0 1 .1 00 5 1 00 1 0X 的分布为X 1 1.5 2 2.5 3P 3 3 1 1 120 10 4 5 10 X 的数学期望为第 8 页共 17 页331 1 1E( X ) 11. 5 22. 53 . 1. 9 2 0 1 0451 0(Ⅱ)记 A 为事件“该顾客结算前的等候时间不超过 2.5 分钟”, X i (i2)1,为该顾客前面第 i 位顾客的结算时 间,则P( A) P( 1X 且1 2X 1) P (1X 且 1 2X 1. 5 ) P 1 X( 且 1. 25X.1 )由于顾客的结算相互独立,且 X 1 , X 2 的分布列都与 X 的分布列相同,所以P( A) P( X 1 ) ( P 2X 1) P 1( X 1) P 2 (X 1. 5 )P X( 1. 5P) X ( 1)1 1 23333 339 20 20 20 10 10 20 .80故该顾客结算前的等候时间不超过 2.5 分钟的概率为 9.80 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问 中根据统计表和100 位顾客中的一次购物量超过 8 件的顾客占 55%知 25 y 10 100 55%,x y 35, 从而解得 x, y ,计算每一个变量对应的概率, 从而求得分布列和期望;第二 问,通过设事件,判断事件之间互斥关系,从而求得该顾客结算前的等候时间不超过... 2.5 分钟的概率 . 18.(本小题满分 12 分)如图 5,在四棱锥 P-ABCD 中, PA ⊥平面 ABCD ,AB=4, BC=3, AD=5,∠ DAB=∠ABC=90°, E 是 CD 的中点 .来源 %:* 中 国 教育出 @ 版 网(Ⅰ)证明: CD ⊥平面PAE ;(Ⅱ)若直线 PB 与平面 PAE 所成的角和 PB 与平面 ABCD 所成的角相等,求四棱锥 P-ABCD 的体积 .【解析】解法 1(Ⅰ如图( 1)),连接 AC,由 AB=4, BC 3,ABC 90 , 得 AC 5. 又 AD 5,E是CD的中点,所以CD AE.第 9 页共 17 页PA 平面 ABCD, CD 平面 ABCD, 所以 PA CD .而 PA, AE是平面 PAE内的两条相交直线,所以CD⊥平面 PAE. (Ⅱ)过点B作BG CD, 分别与 AE, AD相交于 F ,G,连接 PF . 由(Ⅰ) CD⊥平面 PAE知,BG⊥平面 PAE于.是 BPF 为直线PB与平面 PAE 所成的角,且 BG AE .由 PA 平面 ABCD 知, PBA 为直线 PB 与平面 ABCD 所成的角 .AB 4, AG 2, BG AF , 由题意,知PBA BPF ,因为 sin PBA PA ,sin BPF BF , 所以 PA BF .PB PB由DAB ABC 90 知, AD / / BC, 又BG / /CD , 所以四边形 BCDG 是平行四边形,故 GDBC 3.于是AG 2.在 Rt BAG 中, AB 4, AG2, BG AF , 所以BG AB2AG2 2 5, BF AB216 8 5 .BG 2 5 5 于是 PA BF 8 5 .5又梯形 ABCD 的面积为S 1 (5 3) 4 16, 所以四棱锥P ABCD 的体积为2V1S PA 1 168 5 128 5 .3 3 5 15第 10 页共 17 页解法 2:如图( 2),以 A 为坐标原点,AB, AD , AP 所在直线分别为x 轴, y轴, z轴建立空间直角坐标系 .设PA h, 则相关的各点坐标为:A(4,0,0), B(4,0,0), C (4,3,0), D (0,5,0), E(2,4,0), P(0,0, h).(Ⅰ)易知 CD ( 4,2,0), AE (2,4,0), AP (0,0, h). 因为CD AE 8 8 0 0,CD AP 0, 所以 CD AE, CD AP.而 AP, AE 是平面 PAE 内的两条相交直线,所以 CD 平面 PAE .( Ⅱ )由题设和(Ⅰ)知,CD, AP 分别是平面 PAE ,平面 ABCD 的法向量,而PB 与平面 PAE 所成的角和PB 与平面 ABCD 所成的角相等,所以cos CD, PB cos PA, PB , 即CD PB PA PB .CD PB PA PB由(Ⅰ)知,CD ( 4,2,0), AP (0,0, h), 由 PB (4,0, h), 故160 0 0 0 h2.2 5 16 h2h 16h285解得 h .513) 4 16 ,所以四棱锥PABCD 的体积为又梯形 ABCD的面积为S (521S PA 1 8 5 1 2 8 5V 165 15 .3 3【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明PA CD即可,第二问算出梯形的面积和棱锥的高,由积.19.(本小题满分12 分)1V S PA 算得体积,或者建立空间直角坐标系,求得高几体3已知数列 {an}的各项均为正数,记 A(n)=a1 +a2+⋯⋯ +an ,B( n)=a2+a3+⋯⋯ +an+1,C ( n)=a3+a4+⋯⋯ +an+2,n=1,2,⋯⋯ [来 ^& 源 :中教网 @~%]( 1)若 a1=1, a2 =5,且对任意n∈ N﹡,三个数A( n),B ( n), C( n)组成等差数列,求数列{ an }的通项公式.( 2)证明:数列 { an }是公比为 q 的等比数列的充分必要条件是:对任意nN ,三个数 A( n),B( n),C( n)第 11 页共 17页组成公比为q 的等比数列 .【解析】解(1)对任意 n N ,三个数 A(n), B(n),C (n) 是等差数列,所以B(n) A(n) C( n)B( n),即 a n 1a1a n 2 , 亦即 a n2a n1a2a14.故数列 a 是首项为1,公差为4的等差数列.于是 a 1 ( n 1) 4 4n 3.n n(Ⅱ)(1)必要性:若数列a n是公比为q的等比数列,则对任意n N ,有a n 1 a nq . 由a n0 知, A(n), B(n), C( n) 均大于0,于是B(n) a2a3... a n1q(a1a2... a n)q, A(n) a1a2...a n a1a2... a nC(n) a3a4... a n2 q(a2a3... a n 1)q, B(n) a2a3 ...a n a2a3... a n1 1即B(n)=C (n)= q ,所以三个数A(n), B(n), C (n) 组成公比为 q 的等比数列 .A(n) B(n)(2)充分性:若对于任意n N ,三个数 A( n), B(n), C ( n) 组成公比为 q 的等比数列,则B( n) q A( n) , C ( n) ,q B n于是 C(n) B( n)q B( n) A(n) , 得 a n2a2q(a n 1 a1), 即a n2qa n 1 a 2 a .由 n 1有 B(1) qA(1), 即a2qa1,从而 a n2qa n 10 .因为 a n 0a n 2 a2q ,故数列a n是首项为 a1,公比为 q 的等比数列,,所以a1a n 1综上所述,数列a n是公比为 q 的等比数列的充分必要条件是:对任意n∈ N﹡,三个数 A(n), B(n),C (n)组成公比为 q 的等比数列 .【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.第 12 页共 17 页20.(本小题满分 13 分) 来 源 中教 %&*网某企业接到生产3000 台某产品的 A ,B ,C三种部件的订单, 每台产品需要这三种部件的数量分别为2 ,2 ,1(单 位:件) .已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件 .该企业计划安排200名工人分 成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k ( k 为正整数) . (1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时 具体的人数分组方案 .【解析】解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为T 1( x), T 2 ( x),T 3 (x), 由题设有2 3 0 0 0 1 0 0 0 2 0 0 0 1 5 0 0T ( x) ,T ( x ) ,T (x ) ,1 6 x23 2 0 0 ( 1 k )xx k x 期中 x, kx,200 (1 k) x 均为 1 到 200 之间的正整数 .(Ⅱ)完成订单任务的时间为f ( x) max T 1( x),T 2 ( x), T 3 ( x) , 其定义域为 x 0 x 200 , x N. 易知, T 1( x),T 2 ( x) 为减函数, T 3( x) 为增函数 .注意到1 k2 于是T 2 ( x) k T 1( x),( 1)当 k2 时, T 1(x) T 2 (x), 此时f ( x) max T 1( x), T 3 ( x) max1000 , 1500 ,x 200 3x由函数 T 1 (x), T 3 (x) 的单调性知,当1000 1500时 f ( x) 取得最小值,解得x 200 3x 400x .由于944 4045, 而 f(44)T1(44) 250 , f (45) T3 (45) 300 , f (44) f (45) .9 11 13故当 x 44 时完成订单任务的时间最短,且最短时间为250.f (44)11375 , (x) max T1( x),T ( x)易( 2)当k 2 时, T1( x)T2( x),由于 k 为正整数,故k3 ,此时 T(x)50 x知 T ( x) 为增函数,则f ( x)max T1 ( x), T3( x)第 13 页共 17 页max T1 (x),T (x)( x) max 1000 375. x,x51000 375(x) x 400. 由于由函数 T1 (x),T (x) 的单调性知,当50 x 时取得最小值,解得11x3 64 0 0( 3T61 )2 5 0 2 5 0T, ( 3 7 )3 75 2 5 0,3 而7,( 3 6 ) ( 3 7 )1 1 9 1 1 1 311此时完成订单任务的最短时间大于250.11(3 )当 k 2 时,T1 ( x) T2 ( x),由于k 为正整数,故 k 1 ,此时f ( x)max T2 ( x),T3( x) max 2000 , 750.由函数 T2 ( x),T3 ( x) 的单调性知,x 100 x当 2000 750时 f (x) 取得最小值,解得x 800 x 100 x250 ,大于25011完成订单任务的最短时间为.9 11.类似( 1)的讨论 .此时综上所述,当 k 2 时完成订单任务的时间最短,此时生产A,B,C三种部件的人数分别为 44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.21.(本小题满分 13分) [www.z%zstep.co* ~&m^]在直角坐标系 xOy 中,曲线 C1的点均在 C2:( x-5)2+ y2=9 外,且对 C1上任意一点 M ,M 到直线 x=﹣2 的距离等于该点与圆 C2上点的距离的最小值 . (Ⅰ)求曲线 C1的方程;(Ⅱ)设 P(x0,y0)(y0≠± 3)为圆 C2外一点,过 P 作圆 C2的两条切线,分别与曲线C1相交于点 A, B 和C, D.证明:当 P 在直线 x=﹣4 上运动时,四点 A, B, C, D 的纵坐标之积为定值 .【解析】(Ⅰ)解法 1 :设 M 的坐标为 ( x, y) ,由已知得x 2 (x 5)2y2 3 ,易知圆 C2上的点位于直线 x 2 的右侧 .于是x2 0 ,所以( x 5) 2y2x 5 .化简得曲线 C1的方程为y220x .第 14 页共 17 页解法 2 :由题设知,曲线C1上任意一点 M 到圆心 C2(5,0)的距离等于它到直线x5 的距离,因此,曲线C1是以 (5,0) 为焦点,直线x 5 为准线的抛物线,故其方程为y220x .(Ⅱ)当点P 在直线 x 4 上运动时, P 的坐标为 ( 4, y0 ) ,又 y0 3 ,则过 P 且与圆C2相切得直线的斜率k 存在且不为 0 ,每条切线都与抛物线有两个交点,切线方程为y y0k( x即kx-y+y 0 +4k=0.于是4),5k y04k3.k 2 1整理得72k 218y0k y029 0. ①设过 P 所作的两条切线PA, PC 的斜率分别为k1 , k2,则 k1, k2是方程①的两个实根,故k1k218 y0y0 .②72 4由k1x y y04k10, 得k1y220 y 20( y04k1).③y220x,设四点 A,B,C,D 的纵坐标分别为y1, y2 , y3 , y4,则是方程③的两个实根,所以y1y220( y04k1 ).④k1同理可得y3y420( y04k2 ).⑤k2于是由②,④,⑤三式得y1 y2 y3 y4400( y04k1)( y04k2 )k1k2400y02 4(k1 k2 ) y0 16k1k2k1k2第 15 页共 17 页400y02y0216k1k2k1k26400 .所以,当 P 在直线x 4 上运动时,四点 A, B, C, D 的纵坐标之积为定值 6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法 .第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到A, B,C , D 四点纵坐标之积为定值,体现“设而不求”思想. 22.(本小题满分13 分)已知函数 f( x)= ax ,其中≠ex a0.(1)若对一切 x∈ R, f (x) ≥ 1 恒成立,求 a 的取值集合 .(2)在函数 f ( x) 的图像上取定两点 A( x1, f (x1 )) , B(x2 , f (x2 )) (x1x2 ) ,记直线 AB的斜率为 K,问:是否存在 x0∈( x1,x2),使 f( x0 )k 成立?若存在,求 x的取值范围;若不存在,请说明理由 .【解析】(Ⅰ)若 a 0 ,则对一切x 0 , f ( x) e ax x 1 ,这与题设矛盾,又 a 0,故a 0.而 f (x) ae ax1, 令 f ( x) 0, 得x1 ln 1 .1 1 a a1 1 1 1当xln (x)0, f ( x) 单调递减;当a时, f xln 时, f ( x) 0, f ( x) 单调递增,故当 xln时,a a a a af ( x) 取最小值 f ( 1ln1) 1 1 ln 1 .a a a a a于是对一切 x R, f ( x) 1恒成立,当且仅当1 1 ln 1 1 . ①a a a令 g(t) t t ln t , 则 g(t )ln t.当 0 t 1 时, g (t) 0, g(t ) 单调递增;当t 1时, g (t) 0, g(t ) 单调递减 .故当t 1时, g(t) 取最大值g(1) 1.因此,当且仅当11即 a 1时,①式成立 .a综上所述, a 的取值集合为 1 .f (x2 ) f (x1) axeax(Ⅱ)由题意知,ke 2 1x2x1x21.x1第 16 页共 17 页令 ( x) f ( x) k ae ax e ax 2 e ax1 , 则x 2 x 1( x 1 ) e ax 1 e a( x x ) a( x 2 x 1 ) 1 , x 2 x 1 2 1( x ) e ax 2 a (x 1x 2 ) a( x x ) 1 . e 2 x 2 x 1 1 2令 F(t ) e t t 1,则 F (t) e t 1. 当 t 0 时, F (t ) 0, F (t) 单调递减;当 t 0 时, F (t ) 0, F (t) 单调递增 .故当t 0 , F(t)F (0) 0, 即 e t t 1 0.从而 e a ( x 2 x 1) a( x 2 x 1 ) 1 0 , e a (x 1 x 2 ) a(x 1 x 2 ) 1 0,又 e ax 1 0, e ax2 0,x 2 x 1 x 2 x 1所以 ( x 1 ) 0, (x 2 ) 0.因 为 函 数 y( x) 在 区 间 x , x 上 的 图 像 是 连 续 不 断 的 一 条 曲 线 , 所 以 存 在 x 0 (x 1, x 2 ) 使 1 2 ( x 0 ) 0, ( x) a 2e ax 0, ( x) 单 调 递 增 , 故 这 样 的 c 是 唯 一 的 , 且 c 1 ln e ax2 e ax 1 . 故 当 且 仅 当 a a( x 2 x 1 ) 1 e ax2e ax1 , x2 )时, f ( x 0 ) k .x ( lna( x 2 x 1 ) a综上所述,存在x 0 (x , x ) 使 f ( x ) k 成立 .且 x 的取值范围为 1 2 0 01 e ax2 e ax 1 ( ln a( x 2 , x 2 ) . a x 1 ) 【点评】 本题考查利用导函数研究函数单调性、 最值、不等式恒成立问题等, 考查运算能力, 考查分类讨论思想、函 数 与 方 程 思 想 , 转 化 与 划 归 思 想 等 数 学 思 想 方 法 . 第 一 问 利 用 导 函 数 法 求 出 f ( x) 取 最 小 值f ( 1 ln 1 ) 11 ln 1 .对一切 x∈ R, f(x) 1 恒成立转化为 f ( x)min 1,从而得出 a 的取值集合;第二问在假a a a a a设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.第 17 页共 17 页。

湖南省2012届高三4月第二次十二校联考理科综合试题()

湖南省2012届高三4月第二次十二校联考理科综合试题()

湖南省2012届高三4月第二次十二校联考(理科综合)(2012。

04)总分:300分时量:150分钟考试时间:2012年4月7日上午9:00〜11:30注意事项:1. 本试题卷分选择题和非选择题两部分,共16页。

时量150分钟,满分300分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡和本试题卷上。

2. 回答选择题时,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试题卷和草稿纸上无效。

3。

回答非选择题时,用0。

5毫米黑色墨水签字笔将答案按题号写在答题卡上。

写在本试题卷和草稿纸上无效.4。

考试结束时,将本试题卷和答题卡一并交回.可能用到的相对原子质量:H〜1 D〜2 C〜12 N〜14 O〜16 F〜19 Na〜23Ca 〜40第I卷(选择题,共126分)―、选择题(本题共13小题,每小题6分,共78分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1。

下列有关细胞的叙述,正确的是①硝化细菌、霉菌、颤藻的细胞都含有核糖体、DNA和RNA②细胞学说揭示了“老细胞为什么要产生新细胞”③柳树叶肉细胞的细胞核、叶绿体和线粒体中均能发生碱基互补配对现象④胆固醇、磷脂、维生素D都属于固醇⑤蛙红细胞、人肝细胞、洋葱根尖分生区细胞并不都有细胞周期,但这些细胞内的化学成分都不断更新A。

①③⑤B。

②④⑤C。

②③④D。

②③⑤2。

近年来大棚种植越来越受到农民朋友的欢迎,不管是在温暖的南方还是在寒冷的东北,都能见到大棚和大棚生产的蔬菜瓜果.下列哪一个不是建设大棚的原因A。

大棚种植可以减少虫害的发生,减少农药的使用量B。

大棚种植,可以改变昼夜温差,增加植物体中有机物的积累C. 大棚种植,可以防止基因突变,防止植物变种D。

大棚种植,可以减少水资源的浪费3。

科学的研究方法是取得成功的关键。

下表中不符合事实的是4。

对下列各图所表示的生物学意义的描述,正确的是A. 甲图中每对基因的遗传都遵守自由组合定律B. 乙图细胞是处于有丝分裂后期的细胞,该生物正常体细胞的染色体数为8条C。

2012年高考理科数学湖南卷(含答案解析)

2012年高考理科数学湖南卷(含答案解析)

绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合21,0,1,{}{|}M N x x x =-=≤,则M N = ( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan 1α=”的逆否命题是( )A .若π4α≠,则tan 1α≠B .若π4α=,则tan 1α≠C .若tan 1α≠,则π4α≠D .若tan 1α≠,则π4α=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是 ( )A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一 组样本数据(,)i i x y (1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下 列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -= D .2212080x y -= 6.函数π()sin cos()6f x x x =-+的值域为 ( )A .[]2,2- B.[ C .[]1,1- D.[227.在ABC △中,2,3AB AC ==,AB BC =1,则BC =( )ABC.D8.已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2|log |y x =的图象从左至右相交于点A B ,,2l 与函数2|log |y x =的图象从左至右相交于点C D ,.记线段AC 和BD 在x轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为 ( )A. B. C. D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线11,:12,x t C y t =+⎧⎨=-⎩(t 为参数)与曲线2sin :3cos x a C y θ,θ,=⎧⎨=⎩(θ为参数,0a >)有一个公共点在x 轴上,则a = . 10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若1,2,PA AB ==3PO =,则圆O 的半径等于 .12.已知复数2i)(3z =+(i 为虚数单位),则|z |= .13.6的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入1,3x n =-=,则输出的数S = . 15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,,A C 为图象与x 轴的两个交点,B 为图象的最低点. (1)若π6ϕ=,点P的坐标为,则ω= ;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC △内的概率 为 .16.设2(,2)n N n n =∈*≥N ,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n -≤≤时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置;(2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购 物的100位顾客的相关数据,如下表所示.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4,3,5,AB BC AD ===90,DAB ABC E ∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记()A n =12n a a a +++,()B n =231n a a a ++++,()C n =342n a a a ++++,=1,2,n .(Ⅰ)若121,5a a ==,且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式;(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个 数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件 的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6 件,或B 部件3 件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最 短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交 于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为 定值.22.(本小题满分13分)已知函数()e axf x x =-,其中0a ≠.(Ⅰ)若对一切x ∈R ,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题CBDPE图5A1.【答案】B 【解析】{0,1}N =,{1,0,1}M =-,{0,1}M N ∴=.【提示】先求出{0,1}N =,再利用交集定义得出MN .【考点】集合的基本运算(交集) 2.【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以“若π4α=,则t a n 1α=”的逆否命题是“若tan 1,α≠则π4α≠”.【提示】根据命题“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,即可求它的逆否命题. 【考点】四种命题及其之间的关系 3.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C ,都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【提示】根据已知的平面图形的正视图和侧视图,即可求出它的俯视图. 【考点】平面图形的直观图与三视图 4.【答案】D【解析】由回归方程为0.85571ˆ8.x y-=知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程的过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(,)x y ,利用回归方程可以预测估计总体,所以D 不正确.【提示】根据两变量之间的回归方程,即可判断两者之间的关系. 【考点】线性回归分析 5.【答案】A【解析】设双曲线22221x a C yb -=:的半焦距为c ,则210c =,5c =, 又C 的渐近线为by x a=±,点P (2,1)在C 的渐近线上,12ba∴=⨯,即2a b =,又222c a b =+,a ∴=b =C ∴的方程为221205x y -=.【提示】根据给出的双曲线的焦距及其渐近线上一点,即可求出双曲线的标准方程.【考点】双曲线的标准方程 6.【答案】B【解析】π1π()sin cos sin sin 626f x x x x x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪⎝⎭⎝⎭, πsin [1,1]6x ⎛⎫-∈- ⎪⎝⎭,()f x ∴值域为[.【提示】根据给出的三角函数表达式,结合两角差的正弦即可求出其值域. 【考点】两角差的正弦,三角函数的值域 7.【答案】A【解析】由图知,||||cos(π)2||(cos )1AB BC AB BC B BC B =-=⨯⨯-=,1cos 2B BC∴=-,又由余弦定理知222cos 2AB BC AC B AB BC +-=,解得BC =.【提示】根据给出的三角形两边及数量积,结合数量积运算及余弦定理即可求解另一边. 【考点】平面向量的数量积运算,余弦定理8.【答案】B【解析】在同一坐标系中作出y m =,8(0)21y m m =>+,2|log |y x =图象如图, 由2|log |x m =,得12m x -=,22mx =,由28|log |21x m =+,得82132m x -+=,82142m x +=,依照题意得82122mm a --+=-,82122m mb +=-,8218218218212222222m m mm mm m m b a++++--+-===-,8141114312122222m m m m +=++-≥-=++,minb a ⎛⎫∴= ⎪⎝⎭【提示】根据给出的三个函数表达式,画出函数图象,结合图象与不等式即可判断b a最小值.【考点】函数图象的应用,基本不等式 二、填空题 9.【答案】32【解析】曲线1112x t C y t=+⎧⎨=-⎩:,直角坐标方程为32y x =-,与x 轴交点为3,02⎛⎫ ⎪⎝⎭;曲线2sin 3cos x a C y θθ=⎧⎨=⎩:,直角坐标方程为22219x y a +=,其与x 轴交点为(,0)a -,(,0)a , 由0a >,曲线1C 与曲线2C有一个公共点在x 轴上,知32a =. 【提示】根据给出的两条直线的参数方程与极坐标方程,分别转化成直角坐标方程,根据题意设交点求解.【考点】参数方程与普通方程的转化,极坐标方程与普通方程的转化10.【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()|21|2|1|f x x x =+--,则由13,()21()41,(1)23,(1)x f x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩,得()0f x >的解集为14x x ⎧⎫>⎨⎬⎩⎭.【提示】设函数表达式,求其等价的分段函数,再分段求其大于零时的解集即可. 【考点】绝对值不等式 11.【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为r ,由割线定理知PA PB PC PD =, 即1(12)(3)(3)r r ⨯+=-+,r ∴=.【提示】根据给出的线段长,由切割线定理PA PB PC PD =,即可求出圆的半径. 【考点】切割线定理 12.【答案】10【解析】22(3i)96i i 86i z =+=++=+,||10z ==. 【提示】根据给出的复数表达式,进行四则运算,即可求出其模. 【考点】复数代数形式的四则运算 13.【答案】160-【解析】6⎛ ⎝的展开式项公式是6631662(1)rr r r r r rr T C C x ---+⎛==- ⎝, 由题意知30r -=,3r =,所以二项展开式中的常数项为333462(1)160T C =-=-. 【提示】根据给出的二项式,即可求出其展开式的常数项.【考点】二项式定理 14.【答案】4-【解析】输入1x =-,3n =,执行过程如下:2i =,6233S =-++=-;1i =,3(1)115S =--++=;0i =,5(1)014S =-++=-,所以输出的是4-.【提示】根据程序框图的逻辑关系,并根据程序框图即可求出S 的值. 【考点】循环结构的程序框图 15.【答案】3π4【解析】①()cos()y f x x ωωϕ'==+,当π6ϕ=,点P的坐标为⎛ ⎝⎭时,πcos 6ω= 3ω∴=;②由图知2ππ22T AC ωω===,1π22ABC S AC ω==△, 设A ,B 的横坐标分别为a ,b ,设曲线段弧ABC 与x 轴所围成的区域的面积为S , 则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为π2π24ABC S P S ===△. 【提示】根据给出的函数导数的图象判断ω的大小,由定积分求面积,并结合概率求解即可.【考点】函数图象的应用,定积分的几何意义,几何概型 16.【答案】643211n -⨯+【解析】①当16N =时,0123456P x x x x x x x =…,可设为(1,2,3,4,5,6,…,113571524616P x x x x x x x x x =……,即为(1,3,5……,2159133711152616P x x x x x x x x x x x =…,即(1,5,9,13,3,7,11,15,2,6,,16)…,7x 位于2P 中的第6个位置;②方法同①,归纳推理知173x 位于4P 中的第43211n -⨯+个位置.【提示】根据题意归纳推理求解即可. 【考点】归纳推理 三、解答题17.【答案】(Ⅰ)由已知,得251055y ++=,35x y +=,所以15x =,20y =,该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率,得:153(1)10020P X ===, 303( 1.5)10010P X ===,251(2)1004P X ===,X 的数学期望为()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=;(Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且,由于顾客的结算相互独立,且1X ,2X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X PX P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【提示】根据给出的数据求分布列与期望,判断事件之间互斥关系,从而求得对立事件的概率即可.【考点】用样本数字特征估计总体数字特征,对立事件的概率18.【答案】(Ⅰ)如图,连接AC ,由4AB =,3BC =,90ABC ∠=,得5AC =, 又5AD =,E 是CD 的中点,所以CD AE ⊥,PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,而PA ,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE ;(Ⅱ)过点B 作BG CD ∥,分别与AE ,AD 相交于F ,G 连结PF , 由(Ⅰ)CD ⊥平面PAE 知,BG ⊥平面PAE ,于是BPF ∠为直线PB 与平面PAE 所成的角,且BG AE ⊥,由PA ⊥平面ABCD 知,PBA ∠为直线PB 与平面ABCD 所成的角,4AB =,2AG =,BG AF ⊥由题意,知PBA BPF ∠=∠,因为sin PA PBA PB ∠=,sin BFBPF PB∠=,所以PA BF =,由90DAB ABC ∠=∠=, 知,AD BC ∥,又BG CD ∥,所以四边形BCDG 是平行四边形,故3GD BC ==,于是2AG =,在Rt BAG △中,4AB =,2AG =,BG AF ⊥,所以BG =,2AB BF BG ===于是PA BF ==, 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=【解析二】如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA h =,则相关的各点坐标为:(0,0,0)A ,(4,0,0)B ,(4,3,0)C ,(0,5,0)D ,(2,4,0)E ,(0,0,)P h ;(Ⅰ)易知(4,2,0)CD =-,(2,4,0)AE =,(0,0,)AP h =,8800CD AE =-++=,0CD AP =,所以CD AE ⊥,CD AP ⊥,而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE ;(Ⅱ)由题设和(Ⅰ)知,CD ,AP 分别是平面PAE ,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,所以cos ,cos ,CD PB PA PB <>=<>,即||||||||C D P BP A P BC D P B P A P B =,由(Ⅰ)知,(4,2,0)CD =-,(0,0,)AP h=-由(4,0,)PB h =-,故2216516h hh++,解得5h =,又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为1112851633V S PA =⨯⨯=⨯=【提示】根据定理判定线面垂直;找出四棱锥的高求其体积. 【考点】直线与平面垂直的判定,四棱锥的体积19.【答案】(Ⅰ)对任意n *∈N ,三个数()A n ,()B n ,()C n 是等差数列,所以()()()()B n A n C n B n -=-,即1122n n a a a a ++-=-,亦即21214n n a a a a +--=-=,故数列{}n a 是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-; (Ⅱ)①必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=, 由0n a >知,()A n ,()B n ,()C n 均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==, 所以三个数()A n ,()B n ,()C n 组成公比为q 的等比数列;②充分性:若对于任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列, 则()()B n qA n =,()()C n qB n =,于是()()[()()]C n B n q B n A n -=-, 得2211()n n a a q a a ++-=-,即2121n n a qa a a ++-=-, 由1n =有(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=, 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列.【提示】根据给出的三个关系式,根据三者之间的关系结合等差、等比性质求解即可. 【考点】等差数列的通项公式,等比数列的性质20.【答案】(Ⅰ)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为1()T x ,2()T x ,3()T x 由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+,其中x ,kx ,200(1)k x -+均为1到200之间的正整数;(Ⅱ)完成订单任务的时间为{}123()max (),(),()f x T x T x T x =,其定义域为2000,1x x x k *⎧⎫<<∈⎨⎬+⎩⎭N , 易知,1()T x ,2()T x 为减函数,3()T x 为增函数,注意到212()()T x T x k=,于是:①当2k =时,12()()T x T x =,此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数1()T x ,3()T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得4009x =,由于40044459<<,而1250(44)(44)11f T ==,3300(45)(45)13f T ==,(44)(45)f f <, 故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =;②当2k >时,12()()T x T x >,由于k 为正整数,故3k ≥,此时375()50T x x=-,{}1()max (),()x T x T x ϕ=易知()T x 为增函数,则{}{}1311000375()max (),()max (),()()max ,50f x T x T x T x T x x x x ϕ⎧⎫=≥==⎨⎬-⎩⎭,由函数1()T x ,()T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =,由于400363711<<而1250250(36)(36)911T ϕ==>,375250(37)(37)1311T ϕ==>,此时完成订单任务的最短时间大于25011;③当2k <时,12()()T x T x <,由于k 为正整数,故1k =,此时{}232000750()max (),()max ,100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数2()T x ,3()T x 的单调性知, 当2000750100x x =-时()f x 取得最小值,解得80011x =, 类似①的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A ,B ,C 三种部件的人数分别为44,88,68.【提示】根据题意建立模型,判断单调性求最值即可.【考点】分段函数模型,函数单调性的判断,利用函数单调性求最值21.【答案】(Ⅰ)解法一:设M 的坐标为(,)x y,由已知得|2|3x +,易知圆2C 上的点位于直线2x =-的右侧,于是20x +>,5x =+,化简得曲线1C 的方程为220y x =;解法二:由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =;(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4)y y k x -=+,即040kx y y k -++=,于是3=,整理得2200721890k y k y ++-=①,设过P 所作的两条切线PA ,PC 的斜率分别为1k ,2k ,则1y ,2y 是方程①的两个实根,故001218724y y k k +=-=-②,由10124020k x y y k y x -++=⎧⎨=⎩,得21012020(4)0k y y y k -++=③,设四点A ,B ,C ,D 的纵坐标分别为1y ,2y ,3y ,4y ,则1k ,2k 是方程③的两个实根,所以0112120(4)y k y y k +=④,同理可得0234220(4)y k y y k +=⑤,于是由②,④,⑤三式,得0102123412400(4)(4)y k y k y y y y k k ++= 2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦==.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【提示】根据给出的圆的方程及两曲线之间的关系,联立方程由韦达定理即可求解. 【考点】曲线与方程,直线与曲线的位置关系 22.【答案】(Ⅰ){1}(Ⅱ)0x 的取值范围为212211e e ln,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦【解析】(Ⅰ)若0a <,则对一切0x >,()f x e 1ax x =-<,这与题设矛盾,又0a ≠,故0a >,而()e 1ax f x a '=-,令()0f x '=,得11lnx aa =,当11ln x a a<时,()0f x '<,()f x 单调递减;当11ln x a a >时,()0f x '>,()f x 单调递增.故当11ln x a a=时,()f x 取最小值11111ln ln f a a a a a⎛⎫=- ⎪⎝⎭,于是对一切x ∈R ,()1f x ≥恒成立,当且仅当111ln 1a a a-≥,令()ln g t t t t =-,则()ln g t t '=-,当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 单调递减.故当1t =时,()g t 取最大值(1)1g =,因此,当且仅当11a=即1a =时,a 的取值集合为{1}; (Ⅱ)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---,令2121e e ()()e ax ax axx f x k a x x ϕ-'=-=--,则121()12121e ()[e ()1]ax a x x x a x x x x ϕ-=-----,212()21221e ()[e ()1]ax a x x x a x x x x ϕ-=----, 令()e 1tF t t =--,则()e 1tF t '=-.当0t <时,()0F t '<,()F t 单调递减;当0t >时,()0F t '>,()F t 单调递增. 故当0t =,()(0)0F t F >=,即e 10t t -->, 从而21()21e()10a x x a x x ---->,12()12e()10a x x a x x ---->,又121e 0ax x x >-,221e 0ax x x >-, 所以1()0x ϕ<,2()0x ϕ>,因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0x ϕ=,2()e 0axx a ϕ'=>,()x ϕ单调递增,故这样的c 是唯一的,且21211e e ln ()ax ax c a a x x -=-,故当且仅当212211e e ln ,()ax ax x x a a x x ⎡⎤-∈⎢⎥-⎣⎦时,0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立,且0x 的取值范围为212211e e ln ,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦. 【提示】给出函数解析式,利用导数判断函数单调性求参数的取值范围;利用导数判断段单调性并求不等式.【考点】利用导数判断或求函数的单调区间,利用导数解决不等式问题。

湖南省十二校高三第二次联考理数试题含答案

湖南省十二校高三第二次联考理数试题含答案

7.定义在R 上的函数)(x f 满足)(,2,0)()4(x f x x f x f 当单调递增,如果
04224212121x x x x x x 且,则)()(21x f x f 的值
A .恒小于0
B .恒大于0
C .可能为0
D .可正可负8.若]([],[)
(x x x x 表示不超过x 的最大整数),则方程}{201220131x x 的实数解的个数是
A .1
B .0
C .2
D .4 21.抛物线C 的方程为)0(2a ax y ,过抛物线C 上一点P (00,y x )(x 0≠0)
,作斜率为k 1,k 2的两条直线,分别交抛物线
C 于A (x 1,y 1),B (x 2,y 2)两点(P 、A 、B 三点互不相同),且满足2k +)1-0(01且k .
(1)求抛物线C 的焦点坐标和准线方程;
(2)设直线AB 上一点M 满足MA BM ,证明:线段PM 的中点在y 轴上;
(3)当λ=l 时,若点P 的坐标为(1,一1),求么.PAB 为钝角时,点
A 的纵坐标的取值范围。

22.已知函数)(x f 的定义域为[0,1],且同时满足:对任意;3)1(,2)(]1,0[f x f x
,总有若2)()
()(,10,021212121x f x f x x f x x x x 则有且。

(1)求)0(f 的最大值;
(2)试求)(x f 的最大值;
(3)设数列}{n a 的前n 项和为S n ,且满足21,11
n
S a ,),3(*N n a n 求证:.
321223
)()()(121n n n a f a f a f。

湖南省2012届高三十二校联考_第二次考试(长郡第八次)

湖南省2012届高三十二校联考_第二次考试(长郡第八次)

湖南省2012届高三·十二校联考第二次考试英语试卷由长郡中学; 衡阳八中;永州四中;岳阳县一中;湘潭县一中;湘西州民中石门一中;澧县一中;郴州一中;益阳市一中;桃源县一中;株洲市二中联合命题总分:150分时量:120分钟考试时间2012年4月8日下午3:00~5:00Part 1 Language Knowledge (45marks)Section A (15marks)21. David_______the test for further study in the USA. Let’s have a party to Congratulate him.A. passesB. has passedC. has been passingD. had passed22. When it comes to the Italian league, there’s now an agreement______it has fallen behind its English match.A. thatB. whyC. whichD. how23. Every time someone comes to me______I can point out the positive side of life.A. complainingB. to be complainingC. complainedD. complains24. Throughout his early years, Obama_______at home and at school as“Barry”.A. had been knownB. knewC. was knownD. has known25. Some kids teased her through the years, but she says the challenge only made her __________.A. stronglyB. strongerC. strongD. strongest26. For me, there’s nothing more pleasurable than turning up at a beach only________ it deserted.A. foundB. to findC. findingD. having found27.—What do you think of the movie?—It’s fantastic. The only pity is that I________the beginning of it.A. missedB. had missedC. missD. would miss28. So much of interest_______that most visitors simply ran out of time be foreseeing it all.A. offered Shanghai World ExpoB. Shanghai World Expo offeredC. did Shanghai World Expo offerD. Shanghai World Expo has offered29. Beijing has taken steps to limit the kind of high risk of borrowing money from thebanks that can create the high price of housing,_______happened in the UnitedStates.A. whatB. thatC. howD. as30. What the remote areas need most______education to children and what thechildren need______good text books at the moment.A. was; wereB. are; isC. is; areD. were; was31. Since my grandparents are coming for the weekend, I_____on a sofa.A. sleepB. have been sleepingC. have sleptD. will be sleeping32. What an unforgettable experience! I’ll write it down______it is still fresh in mymemory.A. beforeB. so thatC. whileD. until33. If you dare to break the rules of the game, you______be punished.A. shallB. mightC. canD. would34. My earliest memories of my mother are a capable woman_____to her family.A. devotesB. devotedC. devotingD. to devote35. People who have regular physical exercise seldom catch a disease like flu,_____?A. have theyB. don’t theyC. haven’t theyD. do theySection B (18marks)I was driving home from a meeting this freezing evening at about 5, stuck in traffic on Colorado Blvd, and my car started to choke and then died.I barely managed to walk into a gas station, hoping that I would not be blocking traffic and would have a somewhat 36 spot to wait for the tow truck (拖车). Before I could make the 37 , I saw a woman walking out of the “quickie mart” building, and it looked like she 38 on some ice and fell onto a gas pump! So I got out to see if she was okay. When I got there, It looked more like she had been overcome by sobs than that she had 39 . She was a young woman who looked really worn out with 40 circles under her eyes.I asked her if she was okay and if she needed help, and she just kept saying “I don’t want my kids to see me 41 ”, so we stood on the other side of the pump from her car. She said she was 42 to California and that things were extremely 43 for her right now.So, I asked,“And you were praying?” That made her back away from me a little, but I 44 her I was not a crazy person and said,“He heard you, and he sent me.”I took out my 45 and swiped it through the card reader on the pump so she could 46her car completely. Then I hurried to the next door McDonald’s and bought two big bags of food. She gave the food to the 47 in the car who attacked it like wolves, and we stood by the pump eating fries and talking a little.36. A. warm B. safe C. empty D. large37. A. preparations B. decision C. bills D. call38. A. stepped B. slipped C. waited D. walked39. A. expected B. estimated C. fallen D. imagined40. A. bright B. dark C. colorful D. frozen41. A. talking B. falling C. walking D. crying42. A. flying B. hurrying C. driving D. walking43. A. rough B. typical C. sharp D. tight44. A. astonished B. approved C. showed D. convinced45. A. money B. food C. card D. car46. A. start out B. fill up C. pull up D. get over47. A. kids B. passers-by C. husband D. boysSection C (12marks)Among all the fast growing science and technology, the research of human genes, or biologica lengineering as people call 48.______,is drawing more and more attention now.The greatest thing gene technology can do is 49._____it helps cure serious diseases that doctors at present can almost do nothing 50._____,such as cancer and heart disease. Every year, millions of people around the globe are murdered by the 51._____killers. And up till now, doctors have not found 52._____effective way to cure them. But 53._____the gene technology is applied, not only can these serious diseases be cured completely, bringing happiness and more living days to the patients, 54._____the huge amount of money people spend curing their diseases can be saved. 55._____, it benefits the economy as well. In addition, it helps increase the length of people’s lives.We can expect the list of the benefits of the gene technology is going on and on!Part 3 Reading Comprehension (30marks)ABali is an Indonesian island that is rich in indigenous culture. A lot pf people say that Bali culture is unique and that the people of Bali have always been contented with the "now." If you ask a Balinese person what heaven is like, the probable answer will be "just like Bali". This only goes to show that most Balinese people are happy to be where they are and never worry.One factor that contributes to this laidback lifestyle is the cultureof close family ties in Bali. In the Balinese culture, support is alwaysavailable. Balinese extended families are so tightly knit that allmembers usually reside in the same complex.Hinduism is one of the main religions in Bali. The Bali culture isbased on a form of this religion, which is called "Hindu Darma". This religion reached the island during the eleventh century. Most of the family customs and traditions as well as community lifestyles of the Balinese people are influenced by this. Thereligious influence even expands widely into the arts, which makes Bali distinct from the rest of Indonesia.In spite of the influx of tourists to the island, Balinese people have managed to preserve their culture. Almost every native of Bali is an artist in some form or another. Parents and villagers have passed on their skills to their children, who all seem to have inclinations either to music, dance, painting, and decor.Another remarkable mark of the Bali culture is the series of ceremonies and rituals known as the Manusa Yadnya. This marks the different stages of Balinese life. Cremation is very popular on this island - and unlike in the West, death is a joyous and colorful event for the Balinese.56. What do we know about Balinese according to the first two paragraphs?A. They lead a very relaxing but unwealthy life.B. They live in large families and are close to each other.C. Their family members are distributed in different places.D. Their extended families live too close together to get along well.57. Bali is distinguished from the rest of Indonesia by _____.A. people’s tight family relationshipB. the family customs and traditionsC. people’s great affection for religionD. the influence of Hinduism on their culture58. The under lined word“conserve” in Para.4 can be best replaced by“_____”.A. preserveB. spreadC. formD. expand59. When a person dies in Bali, it is a common practice to _____.A. express deep sorrow at his deathB. celebrate the death like a great eventC. sing and dance joyfully in his honorD. remember what he did in his life time60. What is the text mainly about?A. Balinese religion.B. The lifestyle of Balinese.C. Balinese culture.D. The tourism in Bali.BPoetry Writing Classes OnlineConsider it the caviar (鱼子酱)of literature: tiny eggs with wonderful taste.Poetry has inspired the human soul for thousands of years and there are those who still treasure its magnificence.If you hear mermaids singing or feel the wind or see the sun rising in ribbons then you are one of these happy few.Excellence in poetry is mysterious, but a quest(探索)worth pursuing.In our courses, you will learn to control sound, structure, line, word, theme etc.into well-crafted poems and you will improve your precision by experimenting with varioustime-honored forms.You will also learn how and where to market your work.Level IPoetry Writing 10-Week WorkshopUsing a balance of lecture, exercise, and comment on work from the instructor and classmates, this course gives students a firm grounding in all the basics of poetry writing.·Write two-six poems·Lectures on basics of poetry craft·Writing exercises·Present work for critique (评论)(two times)Poetry l is for beginners or anyone who wants to brush up on the fundamentals. Online ClassesRegistration Fee: $25.Tuition: $395, Returning Students $365.·You can still enroll in this class!AdvancedPoetry Writing 10-Week WorkshopFocusing on developing projects and receiving comment from the instructor and classmates, this course helps students sharpen their skills and work toward completion of publishable work.Begin or refine two-six poems.·Lectures that expand on basics of poetry craft·Writing exercises·Present work for in-depth critique (two times)Online ClassesRegistration Fee: $ 25.Tuition: $395.Returning Students $365.·You can still enroll in this class!61.You learn the following on Poetry Writing Classes Online EXCEPT _____A.where you can sell your poemsB.why it's worth seeking excellence in poetryC.how to write a well-crafted poemD.how to sharpen your skills in poetry62.If you rejoin the online poetry writing classes, you should pay _____.A.$390 B.$410 C.$395 D.$36563.If you are a beginner, you can start the courses from _____.A.July 14 B.Aug 14 C.July 6 D.Oct 664.In Advanced Poetry Writing Class, you are asked to _____.A.lay steady foundations for the basis of poetry writingB.hand in your poems getting ready for publicationC.make comments on the work of your classmatesD.give some lectures on basics of poetry craft65.The passage is most probably from a _____.A.newspaper advertisement B.book reviewC.scientific magazine D.news reportCIf you exhibit positive characteristics such as honesty and helpfulness, the chances are that you will be thought as a good-looking person, for a new study has found that the perception (认知)of physical attractiveness is influenced by a person's personality.The study, which was led by Gary W.Lewandowski, has found that people who exhibit negative characteristics, such as unfairness and rudeness, appear to be less physically attractive to observers.In the study, the participants viewed photographs of opposite-sex individuals and rated them for attractiveness before and after being provided with information about their personalities.After personality information was received, participants also rated the probability of each individual' s becoming a friend and a dating partner.Information on personality was found to significantly change the probability, showing that cognitive (认知的)processes modify (修改)judgments of attractiveness."Thinking a person as having a desirable personality makes the person more suitable in general as a close relationship partner of any kind," said Lewandowski.The findings show that a positive personality leads to greater expectation of becoming friends, which leads to greater expectation of becoming romantic partners and, finally, to being viewed as more physically attractive.The findings remained consistent regardless of how "attractive" the individual was formerly thought to be or of the participants' current relationship status."This research provides a positive outcome by reminding people that personality goes a long way toward determining your attractiveness; it can even change people's impressions of how good-looking you are," said Lewandowski.66.In the study the participants were required to _____.A.try to make friends with each otherB.try to prove positive characters make people more attractiveC.exhibit negative characters such as unfairness and rudenessD.rate one's attractiveness by photos before and after knowing her or his personality 67.What's the CORRECT order of how cognitive processes modify judgments of attractiveness?a.find a person with a positive personalityb.view the person more physically attractivec.want to make friends with the persond.want to be his/ her romantic partnerA.a→c→d→b B.d→c→b→a C.c→b→a→d D.a→d→c→b 68.Which of the following is WRONG according to the passage?A.The research reminds people to pay more attention to the personality.B.Personality can change people's impressions of one's appearance.C.The judgment of one's attractiveness always stays unchanged.D.Positive personality may lead to more friends.69.The passage is written in a(n)_____ tone.A.subjective B.objective C.sceptical D.negative70.Who are the intended readers of this passage?A.People with positive characteristics.B.Good-looking people.C.People with negative characteristics.D.General people.Part IV Writing(45 marks)Section A(10 marks)Write NO MORE THAN THREE WORDS for each answer.Children are used to the parties that consist of junk food, loud music and the like.However, today's environmental condition is serious, so to save our environment, we need to do our bit by making small changes in our activities like planning our kid's birthday parties in an eco-friendly manner.The first idea for the "green" birthday party is selecting a "green" location.You can put some choices in front of your child like gardens, parks and farms and let him or her select one for the party.The benefit of choosing a natural outdoor location is that it doesn't require much decoration, which will save your money.Also, it'll bring your child close to nature.Secondly, go "green" while you're listing out the required materials for the party.Use reusable and recyclable materials like cloth table covers instead of plastic.For decorations, avoid plastics by using natural things like plants, candles, etc.What's more, you can avoid using paper invitations and invite people by sending e-mail invitations to them.Thirdly, plan the food according to the 'green theme.Serve delicious but healthy food to the guests.Fruits, vegetables and nuts can be the most appropriate parts in party food as they taste great, and are extremely healthy.Home-made cakes will also serve the purpose very well.Lastly, conduct "green" activities.For giving children a learning experience, take them on a trip to the nearest farm and let them see the working system there.After the learning experience, let them play together in a park.Also children can make up stories which you can write down for them.These written pages will be colored by the kids and will be their return gifts.Plan a unique but wonderful birthday party for your kid and enjoy.If we all contribute to this cause, soon we'll see our earth back in her green coat.71._______________for Our KidsI.ReasonToday’s 72._____________makes it necessary to plan our kids’ birthday parties in aneco-friendly way.II .73.______________◎Selecting a“green” locationLetting your child choose a natural outdoor location, which not only saves money but also allows your kid to get 74.__________________◎Using“green” materials·Using natural materials that can be 75.____________·Inviting people to the party by 76.____________instead of using paper invitations◎Planning the food based on 77.______________·Preparing delicious but healthy food like fruits, vegetables and nuts·78._____________at home◎79.______________·Taking children to a farm or park to 80.______________·Taking down stories created by children, which will be their return gifts after being colored III. BenefitsPlanning a unique but wonderful birthday party helps save the earth.Section B(10 marks)Directions: Read the following passage.Answer the questions according to the information given in the passage.Almost everybody in America will spend a part of his or her life behind a shopping cart(购物手推车).They will, in a lifetime, push the shopping carts many miles.But few will know—or even think to ask—who it was that invented them.Sylvan N.Goldman invented the shopping cart in 1937.At that time he was in the supermarket business.Every day he would see shoppers pushing groceries around in baskets they had to carry.One day Goldman suddenly had the idea of putting baskets on wheels.The wheeled baskets would make shopping much easier for his customers, and would help to attract more business.On June 4, 1937, Goldman's first carts were ready for use in his market- He was terribly excited on the morning of that day as customers began arriving.He couldn't wait to see them using his invention.But Goldman was disappointed.Most shoppers gave the carts a long look, but hardly anybody would give them a try.After a while, Goldman decided to ask customers why they weren't using his carts."Don't you think this arm is strong enough to carry a shopping basket?" one shopper replied.But Goldman wasn't beaten yet.He knew his carts would be a great success if only he could persuade people to give them a try.To this end, Goldman hired a group of people to push carts around his market and pretend they were shopping! Seeing this, the real customers gradually began copying the phony (假冒的)customers.As Goldman had hoped, the carts were soon attracting larger and larger numbers of customers to his market.But not only did more people come—those who came bought more.With larger, easier-to-handle baskets, customers unconsciously bought a greater number of items than before.Today's shopping carts are five times larger than Goldman's original model.Perhaps that's one reason why Americans today spend more than five times as much money on food each year as they did before 1937—before the coming of the shopping cart.81.What was the purpose of Goldman's invention? (No more than 10 words)82.Why was Goldman disappointed at first? (No more than 7 words)82.How did Goldman manage to promote his shopping carts? (No more than 14 words)84.Use two adjectives to describe Goldman's qualities that contributed to his success. (No more than 3 words)Section C(25 marks)Directions: Write an English composition according to the instructions given below in Chinese.假定你叫李华,在刚刚过去的寒假期间你和几个同学一起参加了一次为期三天的社区服务活动。

湖南省2012届高三第二次十二校联考(理数)

湖南省2012届高三第二次十二校联考(理数)

湖南省2012届高三·十二校联考 第二次考试科目:数学(理科)(试题卷)策划㊁制作:湖南炎德文化实业有限公司注意事项:1.答题前,考生务必将自己的姓名㊁准考证号写在答题卡和本试题卷的封面上,并认真核对答题卡条形码上的姓名㊁准考证号和科目㊂2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上答题无效㊂考生在答题卡上按如下要求答题:(1)选择题部分请按题号用2B铅笔填涂方框,修改时用橡皮擦干净,不留痕迹;(2)非选择题部分请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效;(3)请勿折叠答题卡㊂保持字体工整㊁笔迹清晰㊁卡面清洁㊂3.本试题卷共6页㊂如缺页,考生须及时报告监考老师,否则后果自负㊂4.考试结束后,将本试题卷和答题卡一并交回㊂姓 名准考证号祝你考试顺利!绝密★启封并使用完毕前湖南省2012届高三·十二校联考 第二次考试数 学(理科)由 长郡中学;衡阳八中;永州四中;岳阳县一中;湘潭县一中;湘西州民中石门一中;澧县一中;郴州一中;益阳市一中;桃源县一中;株洲市二中 联合命题总分:150分 时量:120分钟考试时间:2012年4月7日下午3:00~5:00得分: 一㊁选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,则复数1-i1+i等于A.-1B.-iC.1D.i2.下列命题中是假命题∙∙∙的是A.∃x∈R,x3<0B. a>0”是 |a|>0”的充分不必要条件C.∀x∈R,2x>0D. a㊃b>0”是 a,b的夹角为锐角”的充要条件3.当x∈(0,π2)时,函数y=s i n x+3c o s x的值域为A.(1,3)B.(3,2)C.(0,1]D.(1,2]4.下图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:c m),可知这个几何体的表面积是A.18+3c m2B.2132c m2225.由函数f(x)=e x-e的图象,直线x=2及x轴所围成的图象面积等于A.e2-2e-1B.e2-2eC.e2-e2D.e2-2e+16.已知实数x∈[0,10],执行如下图所示的程序框图,则输出的x不小于47的概率为A.3780B.3980C.12D.457.若实数a㊁b㊁c使得函数f(x)=x3+a x2+b x+c的三个零点分别为椭圆㊁双曲线㊁抛物线的离心率e1,e2,e3,则a,b,c的一种可能取值∙∙∙∙依次为A.-2,-1,2B.2,0,-2C.-72,72,-1D.-1,72,-728.记集合T={0,1,2,3,4,5,6,7,8,9},M={a110+a2102+a3103+a4104|a i∈T,i=1,2,3,4},将M中的元素按从大到小排列,则第2012个数是A.710+9102+8103+8104B.510+5102+7103+2104C.510+5102+7103+3104D.710+9102+9103+1104二㊁填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.若实数x,y满足x+y-2≥0x≤4y≤ìîíïïïï5,则s=x-y的最小值为 .10.已知向量a=(4,3),b=(-2,1),如果向量a+λb与b垂直,则|2a-λb|的值为 .11.已知双曲线x24-y2b2=1(b>0)的离心率为2,则它的一焦点到其中一条渐近线的距离为 .12.设{l g a n}成等差数列,公差d=l g3,且{l g a n}的前三项和为6l g3,则{a n}的通项为13.已知(x 2-1x)n的展开式中第二项与第四项的系数相等,则展开式的二项式系数之和为 .14.函数f (x )=x 2+x -a -1(1)若a =0,则方程f (x )=0的解为 .(2)若函数f (x )有两个零点,则a 的取值范围是 .15.已知数列{a n }的各项均为正整数,对于n =1,2,3, ,有a n +1=3a n +5,a n 为奇数,a n2k ,a n 为偶数ìîíïïï.其中k 为使a n +1为奇数的正整数.(1)当a 1=11时,a 2012= ;(2)若存在m ∈N *,当n >m 且a n 为奇数时,a n 恒为常数p ,则p 的值为 .三㊁解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要的推理与演算过程)(1)(几何证明选讲选做题)如图,已知R t △A B C 的两条直角边B C ,A C 的长分别为3c m ,4c m ,以A C 为直径作圆与斜边AB 交于点D ,试求B D 的长.(2)(极坐标与参数方程选做题)已知曲线C 的参数方程为x =1+c o s θy =si n {θ(θ为参数),求曲线C 上的点到直线x -y +1=0的距离的最大值.(3)(不等式选做题)若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y,当且仅当a x =b y 时上式取等号.请利用以上结论,求函数f (x )=2x +91-2x (x ∈(0,12))的最小值.17.(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选二人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.18.(本小题满分12分)如图,正四棱柱A B C D-A1B1C1D1(即底面为正方形的直四棱柱)中,A A1=2A B=4,点E在C C1上且C1E=3E C.(1)证明:A1C⊥平面B E D;(2)求直线A1C与平面A1D E所成角的正弦值.19.(本小题满分13分)某工厂统计资料显示,产品次品率p与日产量n(件)(n∈N*,且1≤n≤98)的关系表如下:n1234 98p299149297148 1又知每生产一件正品盈利a元,每生产一件次品损失a2元(a>0).(1)将该厂日盈利额T(元)表示为日产量n(件)的一种函数关系式;(2)为了获得最大盈利,该厂的日产量应定为多少件?(3≈1.73)20.(本小题满分13分)设函数f(x)=l n x-12a x2-b x.(1)当a+b=1时,试用含a的表达式研究f(x)的单调区间;(2)当a=0,b=-1时,方程2m f(x)=x2有唯一实数解,求正数m的值.21.(本小题满分13分)已知抛物线l:x2=2p y,其中p>0,点M(2,2),若抛物线l上存在不同两点A㊁B满足→AM+→B M=0.(1)求实数p的取值范围;(2)当p=2时,抛物线l上是否存在异于A,B的点C,使得经过A,B,C三点的圆和抛物线l在点C处有相同的切线,若存在,求出点C的坐标;若不存在,请说明理由.。

湖南省岳阳市2012届高三教学质量检测试题(二)理科数学

湖南省岳阳市2012届高三教学质量检测试题(二)理科数学

1=k 0=S50≤kk S S 2+=1+=k kS岳阳市2012届高三教学质量检测试题(二)数 学(理科)时量120分钟 满分150分。

参考公式:1、锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.2、22⨯列联表随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=)(2k K P ≥与k 对应值表:)(2k K P ≥0.100.05 0。

025 0.010 0.005 0。

001k2.706 3。

841 5。

024 6.635 7。

879 10.828一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1。

已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x,21|,{}2|log (1),1B y y x x ==->,则=⋂B A ( )A 、()1,-+∞B .()+∞,0C .()1,+∞D .()2,+∞ 2.若复数z 满足iz i 6)33(=-(i 是虚数单位),则z=( )A.i 2323+-B.332 C.332 D 。

332- 3.如果执行右边的程序框图,那么输出的S =( )A .2400B .2450C .2500D .25504.实数y x ,满足不等式组⎪⎩⎪⎨⎧≤≥+≥+-305x y x y x ,那么目标函数y x z 42+= 的最小值是 ( ) A .-2 B 。

-4 C 。

—6 D 。

—85.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M 、,O 是坐标原点,则OM ·ON =( ).A- 2.B- 1.C 1.D 26.连续投掷两次骰子得到的点数分别为{}6,5,4,3,2,1,,,∈n m n m ,向量(,)a m n =与向量)0,1(=b的夹角记为α,则α)4,0(π∈的概率为( )A .185B 。

2012年全国高考湖南理科数学试题详细解析

2012年全国高考湖南理科数学试题详细解析

−2

8 2 m +1
,b = 2 − 2
m
8 2 m+1
b , = a
2 −2
m
8 2 m+1
2− m − 2

8 2 m +1
= 2m 2
8 2 m+1
=2
m+
8 2 m +1
.
∵m +
b 8 1 4 1 1 1 = m+ + − ≥ 4 − = 3 ,∴ ( ) min = 8 2 . a 2m + 1 2 m+ 1 2 2 2 2

1 . 4
【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).
11. 如图 2,过点 P 的直线与 O 相交于 A,B 两点.若 PA = 1, AB = 2, PO = 3 ,则 O 的
半径等于 。
【答案】 6 【解析】解法一: 取 AB 的中点 C ,连结 OA, OB, OC ,由勾股定理得 OC = 故
x = t +1 x = a sin θ 9. 在直角坐标系 xOy 中, 已知曲线 C1 : ( t 为参数) 与曲线 C2 : (θ θ y 3cos = y = 1 − 2t
为参数, a > 0 )有一个公共点在 x 轴上,则 a = 。
3 【答案】 2
【解析】曲线 C1 :
2

【答案】 10 【解析】 z = (3 + i ) = 9 + 6i + i = 8 + 6i , z = 8 + 6 = 10 .
2
2
2
2

2012届高三第二次联考试卷理科参考答案201203

2012届高三第二次联考试卷理科参考答案201203

y2012届高三第二次联考试卷(理科)参考答案2012.03.一、填空题(每小题4分,共56分) 1. ),2()0,(∞+-∞ ; 2. 1 ; 3. 53-; 4. 34 ; 5. 42.0 ; 6. 3 ; 7. 2 ;8. 2:1 ;过P 作PM 平行AB 交AC 于M,PN 平行AC 交AB 于N ,则向量AP=AM+AN=2/5*AB+1/5*AC,故AN=1/5*AC,SΔAPB=SΔANB(同底等高);同理:SΔAP C =SΔA MC SΔANB:SΔACB= SΔANB: SΔA MC 由面积公式得。

9.π32; 10.)3,(∞- ; 11. 216; 12.(2)(3) ; 13. 4 ; 14. 200100-π 。

二、选择题(每小题4分,共16分)15. C 16. D 17. B 18. D三、解答题(本大题共5小题,满分78分) 19.(本题满分14分)。

解:因为)cos ,(,)cos ,(A b B a ==且//,所以cos cos a A b B =, …………………(2分) 由正弦定理,得sin cos sin cos A A B B =,即sin 2sin 2A B =…………………(4分)又,m n ≠ 所以22,A B π+=即2π=+B A . …………………(6分)sin sin A B +=sin sin()sin cos )24A A A A A ππ+-=++……(8分)30,,2444A A ππππ<<∴<+<……………………(10分)1)4A π∴+≤……………………(12分) 因此sin sin A B +的取值范围是]2,1( ……………………(14分)20.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分。

解:(1)如图所示建立空间直角坐标系,则)21,21,1(M ,)1,21,21(N ,………(2分))21,0,21(-=,)0,1,0(= ……………(4∵0=⋅, ∴AB MN ⊥。

12年高考真题——理科数学(湖南卷)

12年高考真题——理科数学(湖南卷)

2012年普通高等学校招生全国统一考试(湖南)卷数学(理科)一.选择题(本大题共8小题,每小题5分,共40分。

在每小题给也的四个选项中,只有一项是符合题目要求的)1.设集合{}1,0,1M =-,{}2|N x x x ==,则M N =( )(A ){}0 (B ){}0,1 (C ){}1,1- (D ){}1,0,1-2.命题“若4απ=,则tan 1α=”的逆否命题是( )(A )若4απ≠,则tan 1α≠ (B )若4απ=,则tan 1α≠(C )若tan 1α≠,则4απ≠ (D )若tan 1α≠,则4απ=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据()(),1,2,,i i x y i n =,用最小二乘法建立的回归方程为ˆ0.8585.71yx =-,则下列结论中不正确的是( ) (A )y 与x 具有正的线性相关关系 (B )回归直线过样本点的中心(),x y(C )若该大学某女生身高增加1cm ,则其体重约增加0.85kg(D )若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 5.已知双曲线C :22221x y a b-=的焦距为10,点()2,1P 在C 的渐近线上,则C 的方程为( )(A )221205x y -= (B )221520x y -= (C )2218020x y -= (D )2212080x y -= 6.函数()sin cos 6f x x x π⎛⎫=-+ ⎪⎝⎭的值域为( )(A )[]2,2- (B)⎡⎣ (C )[]1,1- (D)⎡⎤⎣⎦7.在ABC ∆中,2AB =,3AC =,1AB BC ⋅=,则BC =( )(A(B(C) (D8.已知直线1l :y m =和2l :()8021y m m =>+,1l 与函数2|log |y x =的图像从左至右相交于点,A B ,2l 与函数2|log |y x =的图像从左至右相交于,C D 。

2012高考湖南理科数学试题及答案(高清版)

2012高考湖南理科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学理工农医类(湖南卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N 等于( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan α=1”的逆否命题是( ) A .若π4α≠,则tan α≠1 B .若π4α=,则tan α≠1C .若tan α≠1,则π4α≠D .若tan α≠1,则π4α=3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )4.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线C :22221x y a b-=的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A .221205x y -= B .221520x y -= C .2218020x y -= D .2212080x y -= 6.函数f (x )=sin x -cos(x +π)的值域为( )A .[-2,2]B .[C .[-1,1]D .[ 7.在△ABC 中,AB =2,AC =3,1AB BC ⋅=,则BC 等于( )ABC. D8.已知两条直线l 1:y =m 和l 2:821y m =+(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,b的最小值为( ) A .B .C .D .二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线C 1:112x t y t =+⎧⎨=-⎩,(t 为参数)与曲线C 2:sin 3cos x a y θθ=⎧⎨=⎩,(θ为参数,a >0)有一个公共点在x 轴上,则a =________.10.不等式|2x+1|-2|x -1|>0的解集为__________________.11.如图,过点P 的直线与O 相交于A ,B 两点,若P A =1,AB =2,PO =3,则O的半径等于________.(二)必做题(12~16题)12.已知复数z =(3+i)2(i 为虚数单位),则|z |=________. 13. 6的二项展开式中的常数项为________.(用数字作答) 14.如果执行如图所示的程序框图,输入x =-1,n =3,则输出的数S =________.理图 文图15.函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若π6ϕ=,点P 的坐标为(0,2),则ω=________;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.16.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段2N个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i 段,每段2i N个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置;(2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.18.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.19.已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.20.某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.22.已知函数f (x )=e ax -x ,其中a ≠0.(1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合;(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2))(x 1<x 2),记直线AB 的斜率为k .问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.1. B 由N ={x |x 2≤x },得x 2-x ≤0⇒x (x -1)≤0, 解得0≤x ≤1.又∵M ={-1,0,1}, ∴M ∩N ={0,1}.2. C 命题“若π4α=,则tan α=1”的逆否命题是“若tan α≠1,则π4α≠”. 3. D 若为D 项,则主视图如图所示,故不可能是D 项.4. D D 项中,若该大学某女生身高为170 cm ,则其体重约为:0.85×170-85.71= 58.79(kg).故D 项不正确. 5. A 由2c =10,得c =5, ∵点P (2,1)在直线by x a=上, ∴21ba=.又∵a 2+b 2=25,∴a 2=20,b 2=5. 故C 的方程为221205x y -=. 6. B f (x )=sin x -cos(x +π6)=1sin sin )2x x x --=3sin cos 22x x -1sin cos )22x x -π)[6x -∈.故选B 项.7. A ∵||||cos(π)2||(cos )1AB BC AB BC B BC B ⋅=⋅-=⋅-=,∴1cos 2||B BC =-.又∵222||||||cos 2||||AB BC AC B AB BC +-=⋅=24||9122||2||BC BC BC +-=-⨯⨯, ∴2||=3BC .∴||=3BC BC =.8. B 由题意作出如下的示意图.由图知a =|x A -x C |,b =|x D -x B |, 又∵x A ·x B =1,x C ·x D =1,∴11||1||||C A A C A C x x b a x x x x -==-. y A +y C =-log 2x A -log 2x C=-log 2x A x C =8218172122122m m m m ++=+-≥++,当且仅当218221m m +=+,即32m =时取等号. 由-log 2x A x C ≥72,得log 2x A x C ≤72-,即0<x A x C ≤722-从而7212||A C b a xx =≥=当32m =时,ba 取得最小值B 项.9.答案:32解析:∵C 1:1,12,x t y t =+⎧⎨=-⎩∴C 1的方程为2x +y -3=0.∵C 2:sin ,3cos ,x a y θθ=⎧⎨=⎩∴C 2的方程为22219x y a +=. ∵C 1与C 2有一个公共点在x 轴上,且a >0, ∴C 1与x 轴的交点(32,0)在C 2上, 代入解得32a =. 10.答案:{x |x >14} 解析:对于不等式|2x +1|-2|x -1|>0,分三种情况讨论: 1°,当12x <-时,-2x -1-2(-x +1)>0, 即-3>0,故x 不存在; 2°,当112x -≤≤时,2x +1-2(-x +1)>0, 即114x <≤; 3°,当x >1时,2x +1-2(x -1)>0,3>0, 故x >1. 综上可知,14x >,不等式的解集是14x x ⎧⎫>⎨⎬⎩⎭.11.解析:过P 作圆的切线PC 切圆于C 点,连结OC .∵PC 2=P A ·PB =1×3=3,∴PC =在Rt △POC 中,OC =. 12.答案:10解析:∵z =(3+i)2,∴|z |=32+12=10. 13.答案:-160解析:6的通项为616C (rr r r T -+=- =(-1)r 6C r26-r x 3-r .当3-r =0时,r =3. 故(-1)336C 26-3=-36C 23=-160.14.答案:-4解析:输入x =-1,n =3.i =3-1=2,S =6×(-1)+2+1=-3; i =2-1=1,S =(-3)×(-1)+1+1=5; i =1-1=0,S =5×(-1)+0+1=-4; i =0-1=-1,-1<0,输出S =-4.15.答案:(1)3 (2)π4 f (x )=sin(ωx +φ),f ′(x )=ωcos(ωx +φ). 解析:(1)π6ϕ=时,f ′(x )=ωcos(ωx +π6).∵'(0)2f =,即πcos 62ω=,∴ω=3.(2)当ωx +φ=π2时,π2x ϕω-=;当ωx +φ=3π2时,3π2x ϕω-=.由几何概型可知,该点在△ABC 内的概率为3π2π212π11||||||||2223π2[0cos()]sin()π2AC P x x ϕωϕωωωωϕωωϕωωϕϕω--⨯⨯⋅⋅==--+-+-⎰=π23ππ22sin()sin()ϕϕωϕωϕωω---⋅++⋅+=π23ππsin()sin()22-+=ππ2114=+. 16.答案:(1)6 (2)3×2n -4+11解析:(1)由题意知,当N =16时,P 0=x 1x 2x 3x 4x 5…x 16,P 1=x 1x 3x 5…x 15x 2x 4…x 16,则 P 2=x 1x 5x 9x 13x 3x 7x 11x 15x 2x 6x 10x 14x 4x 8x 12x 16, 此时x 7位于P 2中的第6个位置.(2)方法同(1),归纳推理知x 173位于P 4中的第3×2n -4+11个位置.17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20, 该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本.将频率视为概率得153(1)10020P X ===,303( 1.5)30010P X ===,251(2)1004P X ===,201( 2.5)1005P X ===,101(3)10010P X ===.X 的分布列为X 的数学期望为()3311111.52 2.531.920104510E X ⨯⨯⨯⨯⨯=++++=. (2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=333333920202010102080⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 18.解:解法一:(1)如图所示,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为P A ⊥平面ABCD ,CD 平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,所以四边形BCDG 是平行四边形. 故GD =BC =3,于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG ==2AB BF BG ===于是P A =BF =5.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为111633V S PA =⨯⨯=⨯=.解法二:如图所示,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD =(-4,2,0),AE =(2,4,0),AP =(0,0,h ).因为CD AE ⋅=-8+8+0=0,CD AP ⋅=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD ,PA 分别是平面P AE ,平面ABCD 的法向量. 而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos ,||cos ,|CD PB PA PB =,即CD PB PA PB CD PBPA PB⋅⋅=⋅⋅.由(1)知,CD =(-4,2,0),PA =(0,0,-h ). 又PB =(4,0,-h ),故2=.解得5h =.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为111633V S PA =⨯⨯=⨯=.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以 B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4. 故数列{a n } 是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n>0知,A (n ),B (n ),C (n )均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==.所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即 a n +2-qa n +1=a 2-qa 1.由n =1有B (1)=qA (1),即a 2=qa 1,从而a n +2-qa n +1=0. 因为a n >0,所以2211n n a a q a a ++==. 故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.20.解:(1)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为T 1(x ),T 2(x ),T 3(x ),由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+, 其中x ,kx,200-(1+k )x 均为1到200之间的正整数.(2)完成订单任务的时间为f (x )=max{T 1(x ),T 2(x ),T 3(x )},其定义域为{x |0<x <2001k+,x ∈N *}.易知,T 1(x ),T 2(x )为减函数,T 3(x )为增函数.注意到T 2(x )=2kT 1(x ),于是 ①当k =2时,T 1(x )=T 2(x ),此时 f (x )=max{T 1(x ),T 3(x )} =max{10001500,2003x x-}. 由函数T 1(x ),T 3(x )的单调性知,当100015002003x x=-时f (x )取得最小值,解得4009x =. 由于40044459<<,而f (44)=T 1(44)=25011,f (45)=T 3(45)=30013,f (44)<f (45). 故当x =44时完成订单任务的时间最短,且最短时间为f (44)=25011.②当k >2时,T 1(x )>T 2(x ),由于k 为正整数,故k ≥3,此时150********200(1)200(13)50k x x x≥=-+-+-.记375()50T x x=-,φ(x )=max{T 1(x ),T (x )},易知T (x )是增函数,则f (x )=max{T 1(x ),T 3(x )}≥max{T 1(x ),T (x )} =φ(x )=max{1000375,50x x-}.由函数T 1(x ),T (x )的单调性知,当100037550x x=-时φ(x )取最小值,解得40011x =. 由于400363711<<,而φ(36)=T 1(36)=250250911>,φ(37)=T (37)=3752501311>. 此时完成订单任务的最短时间大于25011. ③当k <2时,T 1(x )<T 2(x ),由于k 为正整数,故k =1,此时f (x )=max{T 2(x ),T 3(x )}=max{2000750,100x x-}. 由函数T 2(x ),T 3(x )的单调性知,当2000750100x x=-时f (x )取最小值,解得80011x =,类似①的讨论,此时完成订单任务的最短时间为2509,大于25011. 综上所述,当k =2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68.21.解:(1)方法一:设M 的坐标为(x ,y ),由已知得|2|3x +=.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以5x =+.化简得曲线C 1的方程为y 2=20x .方法二:由题设知,曲线C 1上任意一点M 到圆C 2圆心(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0).又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.3=. 整理得72k 2+18y 0k +y 02-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根.故001218724y y k k +=-=-.② 由101240,20k x y y k y x -++=⎧⎨=⎩得 k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以0112120(4)y k y y k +=.④ 同理可得0234220(4)y k y y k +=.⑤ 于是由②④⑤三式得010*******400(4)(4)y k y k y y y y k k ++= =201201212400[4()16]y k k y k k k k +++=22001212400(16) 6 400y y k k k k -+=. 所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.22.解:(1)若a <0,则对一切x >0,f (x )=e ax -x <1,这与题设矛盾.又a ≠0,故a >0.而f ′(x )=a e ax -1,令f ′(x )=0得11ln x a a =. 当11ln x a a <时,f ′(x )<0,f (x )单调递减;当11ln x a a>时,f ′(x )>0,f (x )单调递增.故当11ln x a a =时,f (x )取最小值11111(ln )ln f a a a a a=-. 于是对一切x ∈R ,f (x )≥1恒成立.当且仅当111ln 1a a a-≥.① 令g (t )=t -t ln t ,则g ′(t )=-ln t .当0<t <1时,g ′(t )>0,g (t )单调递增;当t >1时,g ′(t )<0,g (t )单调递减.故当t =1时,g (t )取最大值g (1)=1.因此,当且仅当11a=,即a =1时,①式成立. 综上所述,a 的取值集合为{1}. (2)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---. 令φ(x )=f ′(x )-k =a e ax -2121e e ax ax x x --.则 φ(x 1)=121e ax x x --[e a (x 2-x 1)-a (x 2-x 1)-1], φ(x 2)=221e ax x x -[e a (x 1-x 2)-a (x 1-x 2)-1]. 令F (t )=e t -t -1,则F ′(t )=e t -1.当t <0时,F ′(t )<0,F (t )单调递减;当t >0时,F ′(t )>0,F (t )单调递增.故当t ≠0时,F (t )>F (0)=0,即e t -t -1>0.从而e a (x 2-x 1)-a (x 2-x 1)-1>0,e a (x 1-x 2)-a (x 1-x 2)-1>0.又121e 0ax x x >-,221e 0ax x x >-,所以φ(x 1)<0,φ(x 2)>0. 因为函数y =φ(x )在区间[x 1,x 2]上的图象是连续不断的一条曲线,所以存在c ∈(x 1,x 2),使得φ(c )=0.又φ′(x )=a 2e ax>0,φ(x )单调递增,故这样的c 是唯一的,且()21211e e ln ax ax c a a x x -=-.故当且仅当()212211e e ln ,ax ax x x a a x x ⎛⎫-∈ ⎪ ⎪-⎝⎭时,f ′(x )>k .综上所述,存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立,且x 0的取值范围为()212211e e ln ,ax ax x a a x x ⎛⎫- ⎪ ⎪-⎝⎭.。

2012年高考理科数学湖南卷及答案

2012年高考理科数学湖南卷及答案

绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合21,0,1,{}{|}M N x x x =-=≤,则M N =( ) A .{0} B .{0,1} C .{-1,1}D .{-1,0,1}2.命题“若π4α=,则tan 1α=”的逆否命题是( )A .若π4α≠,则tan 1α≠B .若π4α=,则tan 1α≠C .若tan 1α≠,则π4α≠D .若tan 1α≠,则π4α=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是 ( )A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一 组样本数据(,)i i x y (1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -= D .2212080x y -= 6.函数π()sin cos()6f x x x =-+的值域为( )A .[]2,2-B.[C .[]1,1-D.[ 7.在ABC △中,2,3AB AC ==,AB BC =1,则BC =( )ABC.D8.已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2|log |y x =的图象从左至右相交于点A B ,,2l 与函数2|log |y x =的图象从左至右相交于点C D ,.记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba 的最小值为( )A.B.C.D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线11,:12,x t C y t =+⎧⎨=-⎩(t 为参数)与曲线2sin :3cos x a C y θ,θ,=⎧⎨=⎩(θ为参数,0a >)有一个公共点在x 轴上,则a = .10.不等式|21|2|1|0x x +-->的解集为 . 11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若1,2,PA AB ==3PO =,则圆O 的半径等于 .12.已知复数2i)(3z =+(i 为虚数单位),则|z |= .13.6的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入1,3x n =-=,则输出的数S = . 15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,,A C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若π6ϕ=,点P的坐标为,则ω= ;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC △内的概率 为 .16.设2(,2)n N n n =∈*≥N ,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n -≤≤时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置; (2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购 物的100位顾客的相关数据,如下表所示.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4,3,5,AB BC AD ===90,DAB ABC E ∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记()A n =12n a a a +++,()B n =231n a a a ++++,()C n =342n a a a ++++,=1,2,n .(Ⅰ)若121,5a a ==,且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式;(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个 数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件 的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6 件,或B 部件3 件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最 短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交 于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为 定值.22.(本小题满分13分)已知函数()e axf x x =-,其中0a ≠.(Ⅰ)若对一切x ∈R ,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.CBDPE图5A2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)【解析】{0,1}N ={0,1}M N =【提示】先求出N =,再利用交集定义得出M N .【考点】集合的基本运算(交集)p 又C 的渐近线为12ba=⨯,即πsin 6x ⎛- ⎝()f x ∴值域为【解析】由图知,||||cos(π)2||(cos AB BC AB BC B BC =-=⨯⨯-,又由余弦定理知cos 2B AB BC=,3BC =82m m ++minb a ⎛⎫∴= ⎪⎝⎭b。

湖南省岳阳市2012届高三数学教学质量检测试题(二) 理 湘教版.doc

湖南省岳阳市2012届高三数学教学质量检测试题(二) 理 湘教版.doc

1=k 0=S 50≤kk S S 2+=1+=k kS岳阳市2012届高三教学质量检测试题(二)数 学(理科)时量120分钟 满分150分。

参考公式:1、锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高。

2、22⨯列联表随机变量))()()(()(22d b c a d c b a bc ad n K ++++-=)(2k K P ≥与k 对应值表: )(2k K P ≥0.10 0.05 0.025 0.010 0.005 0.001 k2.7063.8415.0246.6357.87910.828一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}2|log (1),1B y y x x ==->,则=⋂B A( )A 、()1,-+∞B .()+∞,0C .()1,+∞D .()2,+∞2.若复数z 满足i z i 6)33(=-(i 是虚数单位),则z= ( )A. i 2323+-B. 3322-C. 3322+D. 3322-- 3.如果执行右边的程序框图,那么输出的S = ( )A .2400B .2450C .2500D .25504. 实数y x ,满足不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,那么目标函数y x z 42+=的最小值是 ( ) A .-2 B.-4 C.-6 D.-85.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M 、,O 是坐标原点,则OM ·ON = ( ).A - 2 .B - 1 .C 1 .D 26.连续投掷两次骰子得到的点数分别为{}6,5,4,3,2,1,,,∈n m n m ,向量(,)a m n =与向量)0,1(=b的夹角记为α,则α)4,0(π∈的概率为( ) A .185B.127C.125 D.21 7.已知函数2()1,()43,xf x eg x x x =-=-+-若有()(),f a g b =则b 的取值范围为 ( )A.[22 B.(22 C .[1,3] D .(1,3) 8.已知命题“012,2<++∈∃ax x x R ”是真命题,则实数a 的取值范围是 ( )A .)1,(--∞B .),1(+∞C .)1,(--∞U ),1(+∞D .(-1,1)二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应的题号后的横线上。

2012年湖南高考理科数学试卷及详细答案(精美word版)

2012年湖南高考理科数学试卷及详细答案(精美word版)

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合}1,0,1{-=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{-D .}1,0,1{- 2.命题“若4πα=,则1tan =α”的逆否命题是A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠D .若1tan ≠α,则4πα=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是 A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则下列结论中不正确...的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg5.已知双曲线1:2222=-by a x C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为A .152022=-y x B .120522=-y x C .1208022=-y x D .1802022=-y x 6.函数)6cos(sin )(π+-=x x x f 的值域为A .]2,2[-B .]3,3[-C .]1,1[-D .]23,23[-7.在ABC ∆中,2=AB ,3=AC ,1=⋅BC AB ,则=BCA .3B .7C .22D .23 8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log =的图像从左至右相交于点B A ,,2l与函数x y 2log =的图像从左至右相交于点D C ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,ba的最小值为 A .162 B .82 C .348 D .344二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9. 在直角坐标系xOy 中,已知曲线⎩⎨⎧-=+=t y t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a . 10.不等式01212>--+x x 的解集为 .11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z . 13.6)12(xx -的二项展开式中的常数项为 .(用数字作答)14.如果执行如图3所示的程序框图,输入3,1=-=n x ,则输出的数=S .15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,CA ,为图象与x 轴的两个交点,B 为图象的最低点. (1)若6πϕ=,点P 的坐标为)233,0(,则=ω ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为 . 16.设*2(,)nN n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n ≤≤-时,将i P 分成2i段,每段2iN个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 个位置; (2)当2()nN n =≥8时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上顾客数(人)302510结算时间(分钟/人)1 1.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4AB =,3BC =,5AD =,90DAB ABC ∠=∠=︒,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积. 19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++,231()n B n a a a +=+++,342()n C n a a a +=+++,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A nB nC n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,A B ,,C D 的纵坐标之积为定值.22.(本小题满分13分)已知函数()axf x e x =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N. 2.【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力. 3.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 4.【答案】D【解析】【解析】由回归方程为y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错.5.【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴=,即2a b =. 又222c a b =+,25,5a b ∴==,∴C 的方程为220x -25y =1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型. 6.【答案】B【解析】f (x )=sinx-cos(x+6π)31sin cos sin 3sin()226x x x x π=-+=-,[]sin()1,16x π-∈-,()f x ∴值域为[-3,3].【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域. 7.【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC∴=-.又由余弦定理知222cos 2AB BC AC B AB BC +-=⋅,解得3BC =. 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC 的夹角为B ∠的外角. 8.【答案】B【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图,由2log x = m ,得122,2m mx x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m m mmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()82b a ∴=.【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可解得.二 、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10、 11三题中任选两题作答,如果全做,则按前两题记分 ) 9. 【答案】32【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x y a +=,其与x 轴交点为(,0),(,0)a a -, 由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =. 【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得.10.【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组). 11.【答案】6【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为R ,由割线定理知【点评】本题考查切割线定理,考查数形结合思想,由切割线定理知PA PB PC PD ⋅=⋅,从而求得圆的半径. (二)必做题(12~16题) 12【答案】10【解析】2(3)z i =+=29686i i i ++=+,228610z =+=.【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用22z a b =+求得.13.【答案】-160 【解析】( 2x -1x )6的展开式项公式是6631661C (2)()C 2(1)r r r r rr r r T x x x---+=-=-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错. 15.【答案】(1)3;(2)4π 【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,332)时33cos,362πωω=∴=; (2)由图知222T AC ππωω===,122ABCS AC πω=⋅=,设,A B 的横坐标分别为,a b . 设曲线段ABC 与x 轴所围成的区域的面积为S 则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABCSP Sππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得. 16.【答案】(1)6;(2)43211n -⨯+【解析】(1)当N=16时,012345616P x x x x x x x =,可设为(1,2,3,4,5,6,,16), 113571524616P x x x x x x x x x =,即为(1,3,5,7,9,2,4,6,8,,16),2159133711152616P x x x x x x x x x x x =,即(1,5,9,13,3,7,11,15,2,6,,16), x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 X 的分布为X 11.52 2.53PX 的数学期望为33111()11.522.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知251010055%,35,y x y ++=⨯+=从而解得,x y ,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得 该顾客结算前的等候时间不超过...2.5分钟的概率. 18.(本小题满分12分) 【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,3BC =,90 5.ABC AC ∠==,得5,AD =又E是CD的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作,,,,.BG CD AE AD F G PF //分别与相交于连接由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是BPF ∠为直线PB与平面PAE 所成的角,且BG AE ⊥.由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角.4,2,,AB AG BG AF ==⊥由题意,知,PBA BPF ∠=∠因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠=知,又所以四边形BCDG 是平行四边形,故 3.GD BC ==于是2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以于是85.5PA BF ==又梯形ABCD 的面积为1(53)416,2S =⨯+⨯=所以四棱锥P ABCD -的体积为 解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:(Ⅰ)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-==因为8800,0,CD AE CD AP ⋅=-++=⋅=所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面(Ⅱ)由题设和(Ⅰ)知,,CD AP 分别是PAE 平面,ABCD 平面的法向量,而PB 与PAE 平面所成的角和PB 与ABCD 平面所成的角相等,所以由(Ⅰ)知,(4,2,0),(0,0,),CD AP h =-=-由(4,0,),PB h =-故解得855h =. 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为 118512851633515V S PA =⨯⨯=⨯⨯=. 【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明PA CD ⊥即可,第二问算出梯形的面积和棱锥的高,由13V S PA =⨯⨯算得体积,或者建立空间直角坐标系,求得高几体积.19.(本小题满分12分) 【解析】解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以 即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=- (Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. (2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列, 则()(),()B n q A n C n q B n==, 于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即 由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=.因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列, 综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证. 20.(本小题满分13分) 【解析】解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到212()(),T x T x k=于是(1)当2k =时,12()(),T x T x = 此时 {}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数13(),()T x T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得 4009x =.由于 134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()max (),()50T x x T x T x x ϕ==-易知()T x 为增函数,则1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭.由函数1(),()T x T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而此时完成订单任务的最短时间大于25011. (3)当2k <时,12()(),T x T x <由于k为正整数,故1k =,此时{}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知,当2000750100x x =-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时 完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想. 21.(本小题满分13分)【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得222(5)3x x y +=-+-,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以22(5)5x y x -+=+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想. 22.(本小题满分13分)【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠, 故0a >.而()1,axf x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a=时,()f x 取最小值11111(ln )ln .f a a a a a=-于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==---令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则令()1t F t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t =,()(0)0,F t F >=即10.te t --> 从而21()21()10a x x ea x x ---->,12()12()10,a x x ea x x ---->又1210,ax e x x >-2210,ax e x x >-所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在),(21x x c ∈,使0)(=c ϕ,2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ≥,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2012届高三•十二校联考第二次考试
数学(理科)
总分:150分时量:120分钟
考试时间:2012年4月7曰下午3:00〜5:00
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.i是虚数单位,则复数等于
A. — 1
B. –i
C. 1
D. i
2下列命题中是假命题的是
A.
B. "a>0"是“ | a |〉0”的充分不必要条件
C.
D. “a .b>0"是“a,b的夹角为锐角”的充要条件
3. 当时,函数的值域为
A. B. C. D.
4. 下图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm),可知这个几何体的表面积是
A. B.
C. D.
5. 由函数的图象,直线x= 2及x轴所围成的图象面积等于
A. B.
C. D.
6. 已知实数,,执行如下图所示的程序框图,则输出的x不小于47的概率为
A. B. C. D.
7. 若实数a、b、c使得函数的三个零点分别为椭圆、双曲线、抛物线的离心率e1,e2,e3 ,则a,b,c的一种可苹平值依次为
A. -2,-1,2
B. 2,0,-2
C. D.
8. 记集合T= {0,1,2,3,4,5,6,7,8,9} ,M=,将M中的元素按从大到小排列,则第2012个数是
A. B.
C. D.
二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.
9. 若实数x,y满足,则s = x- y的最小值为________.
10. 已知向量a=(4,3),b=(—2,1),如果向量与b垂直,则的值为_______
11. 已知双曲线的离心率为2,则它的一焦点到其中一条渐近线的距离为_______
12. 设成等差数列,公差,且的前三项和为,则的通项为_______
13. 已知的展开式中第二项与第四项的系数相等,则展开式的二项式系数之和为 ____.
14. 函数
(1) 若a=0,则方程f(x)=0的解为_______.
(2) 若函数f(x)有两个零点,则a的取值范围是_______.
15. 已知数列{a n}的各项均为正整数,对于n=1,2,3,…,有其
中k为使a n+1为奇数的正整数.
(1) 当a1 =11 时,a2012 =________
(2) 若存在,当n>m且a n为奇数时,a n恒为常数p,则p的值为_______.
三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16. (本小题满分12分)
选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要
的推理与演算过程)
(1) (几何证明选讲选做题:)如图,已知RtΔABC的两条直角边BC,AC
的长分别为3 cm,4 cm,以AC为直径作圆与斜边AB交于点D,试求BD
的长.
(2) (极坐标与参数方程选做题)已知曲线C的参数方程为为参数),求曲线C上的点到直线x—y+1=0的距离的最大值.
(3)(不等式选做题)若a,b是正常数,,则,当且
仅当时上式取等号.请利用以上结论,求函数,的最小值.
17. (本小题满分12分)
为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1) 求该校报考飞行员的总人数;
(2) 以这所学校的样本数据来估计全省的总体数据,若从全省
报考飞行员的同学中(人数很多)任选二人,设X表示体重超
过60公斤的学生人数,求X的分布列和数学期望.
18. (本小题满分12分)
如图,正四棱柱A B C D—A1B1C1D1(即底面为正方形的直四棱柱)中,A A1=2A B =4,点E 在C C1上且C1E=3E C.
(1) 证明:A1C丄平面BED;
(2)求直线A1C与平面A1D E所成角的正弦值.
19 (本小题满分13分)
某工厂统计资料显示,产品次品率p与日产量n (件)(,且)的关系表如下:
又知每生产一件正品盈利a元,每生产一件次品损失元(a〉0).
(1) 将该厂日盈利额T(元)表示为日产量n(件)的一种函数关系式;
(2) 为了获得最大盈利,该厂的日产量应定为多少件?
20 (本小题满分13分)
设函数.
(1) 当a+b= 1时,试用含A的表达式研究f(x)的单调区间;
(2) 当a= 0,b=- 1时,方程有唯一实数解,求正数M的值.
21.(本小题满分13分)
已知抛物线,其中p>0,点M(2,2),若抛物线l上存在不同两点A、B满足
(1) 求实数P的取值范围;
(2) 当p= 2时,抛物线l上是否存在异于A,B的点C,使得经过A,B,C三点的圆和抛物线L在点C处有相同的切线,若存在,求出点C的坐标;若不存在,请说明理由.。

相关文档
最新文档