函数与极限习题与答案计算题(供参考)

合集下载

极限练习题及答案

极限练习题及答案

极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。

A.1;B.?;C.ln3;D.2ln3。

.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。

2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。

?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。

??1,x?0.?19无穷小量是。

20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。

函数与极限测试题及答案(二)

函数与极限测试题及答案(二)

函数与极限测试题(二)一. 选择题1.设 F(x) 是连续函数 f (x) 的一个原函数, "M 一 N" 表示“M 的充分必要条件是 N”,则必 有( ).(A) F(x) 是偶函数 一 f (x) )是奇函数. (B) F(x) 是奇函数 一 f (x) 是偶函数. (C) F(x) 是周期函数 一 f (x) 是周期函数 . (D) F(x) 是单调函数 一 f (x) 是单调函数 2.设函数 f (x) = 1x, 则( ) e x 11(A) x = 0, x = 1都是 f (x) 的第一类间断点 .(B) x = 0, x = 1都是 f (x) 的第二类间断点(C) x = 0 是 f (x) 的第一类间断点, x = 1 是 f (x) 的第二类间断点 . (D) x = 0 是 f (x) 的第二类间断点, x = 1是 f (x) 的第一类间断点 . 3.设 f (x ) =x 1x, x 丰 0、1,,则 f [1f(x)] = ( )11A) 1x B) 1 x C) X D) x4.下列各式正确的是 ( )1 x1xx0+x x0+x C) lim (1 1)x= e D) lim (1+ 1) x= exx xx5.已知 lim (x + a )x= 9 ,则 a = ( )。

x x aA.1;B. ;C. ln 3;D. 2 ln 3 。

6.极限: lim (x 1)x= ( )xx +1A.1;B. ;C. e 2;D. e 2 。

7 .极限: lim x 3+ 2 = ( )x x 3A.1;B. ;C.0;D.2.A) lim (1+ ) = 1 B) lim (1+ ) = e8.极限: lim x + 1 - 1 = ( )A.0;B. w ; C 1; D.2.29. 极限:x( x 2 + x - x) = ( )A.0;B. w ;C.2;D. 1 . 210.极限 : limtan x - sin x = ( )A.0;B. w ;C. 1 ;D.16.16二. 填空题 11.极限 x li wm x sin=; 12. x l 0im arctanxx=;13. 若 y = f (x) 在点 x 0 连续,则 lim [f (x) - f (x 0 )]= ;x)x 014. lim = ;x)0x215. lim (1 - )n = ;n)wn16. 若函数 y =,则它的间断点是17. 绝对值函数(x, x > 0;f (x) = x =〈|l0,-x, x x 00;.其定义域是, 值域是。

上海财经大学出版的高数习题集答案 第一章 函数与极限

上海财经大学出版的高数习题集答案 第一章 函数与极限

(3)举例证明不一定存在,
x6 x6 x6 x6 x6 , lim ( ) x 4 3 x 4 2 x 4 1 x x 4 1 x 4 3
lim(
x 0
sin 2 x e 2 ax 1 ) 2 2a a ,即 a 2 。 x x
x 1 x 1
由题知 lim x(
x
ln(1
f ( x) f ( x) ) tan x lim tan x lim f ( x) 2, x 0 x ln 3 x 0 x 2 ln 3 3x 1
x2 1 b x2 1 b a ) 0 ,则 lim ( a )0 x x ( x 1) x( x 1) x x
(4) lim
2 sin x sin 2 x 2 sin x 2 sin x cos x 2 sin x(1 cos x) lim lim x 0 x 0 x 0 xa xa xa 2 x 2x lim a2 lim x a 3 1, 所以 a 3 。 x 0 x 0 x
sin x 2 x2 sin x 2 为 x 0 时的无穷小, lim 0 ,所以 x 0 ln(1 2 x ) x 0 2 x ln(1 2 x)
1 1 (7)A: lim (1 ) x 1 ,因为由第三章第三节介绍的罗比达法则 lim (1 ) x x 0 x 0 x x
f (5) 11 。由 f (0) 1 和 f (1) 1 知 f ( x) 在 (0,1) 内至少有一个实根。
(1) ① lim
x 0
由 f (0) 1 和 f (1) 5 知 f ( x) 在 (1,0) 内至少有一个实根。由 f (0) 1 ,

函数极限与连续习题(含答案)

函数极限与连续习题(含答案)

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经 过有限次四则运算及有限次复合后所构成的函数类。

函数的极限与连续训练题1、 已知四个命题:(1)若 f (x ) 在 x 0 点连续,则 f (x ) 在 x → x 0 点必有极限2)若 f (x )在x → x 0点有极限,则 f (x )在x 0点必连续3)若 f (x )在x → x 0点无极限,则 f (x )在x = x 0点一定不连续(4)若 f (x ) 在 x = x 0 点不连续,则 f (x ) 在 x → x 0 点一定无极限。

其中正确的命题个数是( B ) A 、1 B 、2C 、3D 、42、若 lim f ( x ) = a ,则下列说法正确的是( C )x →x 0 A 、 f (x )在x =x 0处有意义B 、 f (x 0)=aC 、 f (x )在x = x 0处可以无意义D 、x 可以只从一侧无限趋近于x 03、下列命题错误的是( D ) A 、函数在点x 0 处连续的充要条件是在点x 0 左、右连续B 、函数 f (x )在点x 0处连续,则lim f (x )= f (lim x ) 0x →x 0 x → x 0 C 、初等函数在其定义区间上是连续的 D 、对于函数 f (x )有lim f (x ) = f (x 0) x → x 0 0 4、已知f (x )= 1 ,则lim f (x +x )- f (x )的值是( C ) x x →0 x11 A 、B 、 xC 、 -D 、 - x x 2x 2 5、下列式子中,正确的是( B ) x 2 + ax + b 6、lim x +ax +b =5,则a 、b 的值分别为( A ) x →1 1 - xA 、- 7和6B 、7和- 6C 、- 7和- 6D 、7和6 7、已知f (3) = 2, f (3) = -2,则lim 2x - 3 f (x )的值是( C )x →3 x - 38、l x i →m a 3 x x --3a a =( D )A 、lim x = 1B 、lim x -1 = 1C 、lim x -1=1 x →0 x x →1 2(x -1) x →-1 x - 1 lim x x →0 x =0 A 、-4B 、0C 、8D 、不存在D 、10、 lim 16 - x = 12/11 。

函数极限与连续习题(含答案)

函数极限与连续习题(含答案)

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。

函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。

其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在 8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。

高等数学-——函数与极限.pdf

高等数学-——函数与极限.pdf

《高等数学》第一章-——函数与极限练习题(A)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1){}{}{}(,)0U a x x a x a x a x a x a δδδδ=<−<=−<<∪<<+()(2)关系式221x y −=表示y 是x 的函数()(3)关系式{}{}max ,1min ,1y x x =+−表示y 是x 的函数()(4)关系式2arccos ,2y u u x ==+表示y 是x 的函数()(5)若()sgn f x x =,则21,0,()0,0.x f x x ≠⎧=⎨=⎩()(6)若2()ln ,()2ln ,f x x g x x ==则()()f x g x =.()(7)2sin y x =是周期为π的函数.()(8)()00000lim ()()lim ()()0x x f x x f x f x x f x Δ→Δ→+Δ=⇔+Δ−=.()(9)0y =是曲线21y x =的水平渐近线.()(10)()y f x =在0x 连续的充要条件是000()()()f x f x f x −+==.()(11)收敛数列的极限不唯一.()(12)lim ()().f x A f x A α=⇔=+(其中lim 0α=).()(13)212limn nn →+∞++⋅⋅⋅+=()(14)设()f x ,()g x 在(,)−∞+∞内有定义.若()f x 连续且()0f x ≠,()g x 有间断点,则()()g x f x 必有间断点()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.2arctan limn nn →+∞=3.212lim 10n n n →+∞⎛⎞+=⎜⎟⎝⎠4.0lim x x →=5.()()220lim 11sin x x x x x →⎡⎤++−+=⎣⎦6.221lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.2lim 31nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()3sin 2limtan x x x→=9.若lim ,n n x a →∞=则lim n n x →∞=10.若lim ,n n x a →∞=则2lim n n x →∞=11.()22limh x h x h→+−=12.231lim 1x x x →∞−=+13.331lim 1x x x →∞+=−三、选择题(将正确答案的序号填写在括号内)(1)设函数()f x 的定义域为D ,数集X D ⊂,则下列命题错误的是()A :若()f x 在X 上有界,则()f x 在X 上既有上界也有下界B :若()f x 在X 上有界,则()f x 在X 上也有界C :若()f x 在X 上有界,则1()f x 在X 上必无界D :若()f x 在X 上无界,则()f x 在X 上也无界(2)下列结论错误的是()A :sin y x =在定义域上有界B :tan y x =在定义域上有界C :arctan y x =在定义域上有界D :arccos y x =在定义域上有界(3)下列结论正确的是()A :arcsin y x =的定义域是(,)−∞+∞B :arctan y x =的值域是(,)−∞+∞C :cos y x =的定义域是(,)−∞+∞D :cot y arc x =的值域是(,22ππ−(4)若lim n n x a →+∞=,则下列结论错误的是()A :{}n x 必有界B :必有11limn nx a →∞=C :必有221lim lim n n n n x x a−→∞→∞==D :必有1000lim n n x a+→∞=(5)下列结论正确的是()A :若函数()f x 在点0x 处的左右极限存在,则0lim ()x x f x →一定存在B :若函数()f x 在点0x 处无定义,则0lim ()x x f x →一定不存在C :若0lim ()x x f x →不存在,则必有0lim ()x x f x →=∞D :0lim ()x x f x →存在的充要条件是函数()f x 在点0x 处的左右极限存在且相等E :若函数()f x 在点0x 处的左右极限存在但不相等,则01lim()x x f x →一定存在(6)若lim ()0,lim ()x x f x g x →∞→∞==∞,则下列结论错误的是()A :()lim ()()x f x g x →∞±不存在B :()lim ()()x f x g x →∞不一定存在C :lim[2()]x f x →∞一定存在D :()lim()x f x g x →∞不存在(7)下列结论正确的是()A:绝对值很小的数一定是无穷小B:至少有两个常数是无穷小C:常数不可能是无穷小D:在自变量的某一变化过程中,趋向0的函数是无穷小(8)下列结论正确的是()A :有界函数与无穷大的积不一定为无穷大B :无限个无穷小的和仍为无穷小C :两个无穷大的和(积及商)仍为无穷大D :无界函数一定是无穷大(9)下列等式不成立的是()A :1lim2n n n →+∞=B :1limln(1)n n →+∞=+C :lim 2n n →+∞=+∞D:lim1n →+∞−=(10)下列结论错误的是()A :单调有界数列必收敛B :单增有上界的数列必收敛C :单调数列必收敛D :单减有下界的数列必收敛(11)下列结论正确的是()A :当0x →时,1xe −是比2x 高阶的无穷小B :当1x →时,1x −与21x −是同阶的无穷小C :当n →+∞时,21n 是比1n低阶的无穷小D :当0x →时,若sin tan ax x ∼,则2a =(12)下列结论不正确的是()A :0x =是()xf x x=的跳跃间断点B :2x π=是()tan xf x x =的可去间断点C :()cot f x x =只有一个间断点D :0x =是1()sin f x x=的第二类间断点(13)下列结论不正确的是()A :若lim ,n n x a →+∞=则10lim n n x a+→+∞=B :01lim 1tan x x e x →−=C :若10n x n<≤,则lim 0n n x →+∞=D :123lim 121x x x x +→∞+⎛⎞=⎜⎟+⎝⎠(14)下列数列收敛的是()A :11,1,1,,(1),n +−− B :2,4,8,,2,nC :123,,,,,2341n n + D :233333,,,,,2222n⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠(15)下列数列发散的是()A :1sin2n n x n π=B :1(1)nn x n=−C :215n x n=+D :(1)nn x n =−(16)下列变量在给定变化过程中,不是无穷大量的是()A :lg ,(0)x x +→B :lg ,()x x →+∞C :21,(0)x x +→D :1,(0)xe x −−→(17)下列结论错误的是()A :0(,)x ∀∈−∞+∞,00lim sin sin x x x x →=B :2lim ln sin 0x x π→=C :0(1,1)x ∀∈−,0lim arccos arccos x x x x →=D :0lim sgn sgn x x x x →=四、计算题1.)lim arcsinx x →+∞−.2.2121lim()11x x x→−−−.3.3tan sin lim1x x x x e →−−. 4.()22lim 13tan cot xx x →+.5.1lim 1x x →−.五、证明题1.证明函数,()1sin ,x f x x x ⎧⎪=⎨⎪⎩>≤x x 在点0=x 处连续.2.证明2sin ,0(),0xx xf x a x x ⎧>⎪=⎨⎪+≤⎩在定义域内连续的充要条件是1a =.3.设()f x 在[0,1]上连续,且(0)0f =,(1)1f =,证明存在(0,1)ξ∈,使得()1f ξξ=−.4.证明222111lim 012n n n n n →∞⎛⎞++⋅⋅⋅+=⎜⎟+++⎝⎠.5.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=.6.证明方程531x x −=在1与2之间至少存在一个实根.《高等数学》第一章---函数与极限练习题(B)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1)2322(1,0)(3,4)x x x −−<⇔∈−∪()(2)以1为中心,2为半径的去心邻域为{}{}(1,2)1113U x x x x =−<<∪<<()(3)关系式2arcsin(3)y x =+表示y 是x 的函数()(4)关系式{}max ,1min{,5}y x x =+表示y 是x 的函数()(5)若函数()f x 的定义域为[1,4],则函数2()f x 的定义域为[1,2]()(6)若2(1)(1)f x x x −=−,则2()(1)f x x x =−()(7)函数1,0()0,01,0x x f x x x x −<⎧⎪==⎨⎪+>⎩是偶函数()(8)函数()cos 4f x x =的反函数1()arccos 4f x x−=()(9)若()()sgn ,f x g x x ==则()()f x g x =.()(10)sin 2tan 2xy x =+是周期为π的函数.()(11)函数lg y u x ==能构成复合函数y =的充分必要条件是[1,10]x ∈()(12)曲线211x y e−−=的水平渐近线是1y =()(13)若0lim ()x x f x →不存在,则必有00()()f x f x −+≠()(14)),0()0,0,0x a x f x x x a x +>⎧⎪==⎨⎪−<⎩在0x =连续的充要条件是0a =()(15)设()f x ,()g x 在(,)−∞+∞内有定义,()f x 为连续,且()0f x ≠,若()g x 有间断点,则222()()g x f x 必有间断点()(16)1x =是函数()2sgn(1)1y x =−+的可去间断点()(17)4x π=是2tan 21y x =−的无穷间断点()(18)lim ()1()1.f x f x α=⇔=+(其中lim 0α=)()(19)2080100(1)(100)lim 1(1)n n n n →∞−+=+()(20)222212lim 0n n n →+∞++⋅⋅⋅+=()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.24arctan(1)(sin 1)lim100n n n n →+∞−+=−3.417lim 100n n n →+∞⎛⎞+=⎜⎟⎝⎠4.()1lim 1sgn(1)x x x →−−=5.22301lim (3cos )2x x x x →⎡⎤++=⎢⎥+⎣⎦6.242lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.24lim 101nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()10050sin 4lim(tan 2)x x x →=9.若lim ,n n x a →+∞=则221lim n n n x x −→+∞⎡+⎤=⎣⎦10.225lim 2x x x →−=−11.()33limh x h x h→+−=12.20010001lim1x x x →∞−=+13.2lim ln sin x x π→=14.0x →=三、选择题(将正确答案的序号填写在括号内)(1)下列结论错误的是()A :由于函数()sin f x x =在[,]22ππ−上单调递增,因此()f x 的反函数1()f x −必存在且1()fx −的定义域为[1,1]−,值域为[,]22ππ−B :在同一平面坐标系中,函数()y f x =与其反函数1()y f x −=的图形关于直线y x =对称C :由于函数()tan f x x =在,22ππ⎛⎞−⎜⎟⎝⎠上单调递增且连续,因此()f x 的反函数1()f x −在(),−∞+∞上也是单调递增且连续.D :函数()cot f x arc x =的定义域为(,)−∞+∞,值域为,22ππ⎛⎞−⎜⎟⎝⎠(2)下列数列收敛的是()A ::1,1,1,1,1,1,n x −−−B ::0,1,2,3,4,5,n xC ::0,ln 2,ln 3,ln 4,ln 5,n xD :111:0,,0,,0,,248n x(3)下列数列发散的是()A :(1)1n n ⎧⎫−+⎨⎬⎩⎭B :3110n⎧⎫+⎨⎬⎩⎭C :{}(2)n−D :1ln(1)n n ⎧⎫⎨⎬+⎩⎭(4)下列结论错误的是()A :单调有界数列必收敛B :发散的数列必无界C :数列收敛的充要条件是任意子列都收敛于同一个数D :收敛的数列必有界(5)若lim ()f x 与lim ()g x 都不存在,则()A :[]lim ()()f x g x +与[]lim ()()f x g x 都不存在B :[]lim ()()f x g x +与[]lim ()()f x g x 一定都存在C :[]lim ()()f x g x −与()lim ()f x g x ⎡⎤⎢⎥⎣⎦都不存在.D :[]lim ()()f x g x ±、[]lim ()()f x g x 与()lim ()f x g x ⎡⎤⎢⎥⎣⎦可能存在,也可能不存在(6)下列结论正确的是()A :若0lim ()lim ()x x x x f x g x →→>,则必有()()f x g x >B :若()()f x g x >,则必有0lim ()lim ()x x x x f x g x →→>C :若0lim (),x x f x A →=则()f x 必有界D :0lim ()x x f x A →=的充要条件是对任意数列00,,n n x x y x →→有lim ()lim ()n n n n x x y x f x f y A→→==(7)下列结论正确的是()A :若数列n x 无界,则数列n x 一定发散B :若lim 0,lim 1,n n n n a b →∞→∞==则lim n n nba →∞一定存在C :若lim n n x a →+∞=,则必有lim n n x a→+∞=D :若221lim lim n n n n x x a −→+∞→+∞==,则lim n n x →+∞一定不存在(8)当x →∞时,下列变量中不是无穷小量的是()A :3211x x x −++BC :221(1)sin1x x x−−D :2211sin1xx x −−(9)下列变量在给定的变化过程中为无穷大量的是()A :41sin(0)x x x→B :21sin (0)x x x →C :cos ()x x x →∞D :1cos (0)x x x→(10)当0x →时,下列变量中与2tan x 为等价无穷小量的是()AB :xC :2xD :3x(11)设当x →0时,tan sin x x −是比sin narc x 高阶的无穷小,则正整数n 等于()A :1或2B :4C :5D :3.(12)设()1,()ln(1),,mx n x ex x m n N αβ+=−=+∈,则当x →0时,下列结论正确的是()A :当m n >时,()x α必是()x β等价的无穷小B :当m n =时,()x α必是()x β高阶的无穷小C :当m n <时,()x α是()x β的低阶无穷小D :当m n <时,()x α是()x β的同阶无穷小(13)设若,,ααββ′′∼∼则下列结论可能不正确的是()A :αβαβ′′∼B :αβαβ′′±±∼C :αβαβ′′∼D :(0)C C C αα′≠∼(14)()xf x x=在0x =有()A :跳跃间断点B :可去间断点C :震荡间断点.D :无穷间断点(15)函数1(3)ln y x x=−的间断点有()A :1个;B :2个C :3个D :4个(16)当x →∞时,若2111ax bx c x ∼++−,则,,a b c 的值一定为()A :0,1,1a b c ===−B :0,1,a b c ==为任意常数C :0,,a b c =为任意常数D :,,a b c 为任意常数(17)下列极限中结果等于e 的是()A :sin 0sin 2lim 1xxx x x →⎛⎞+⎜⎟⎝⎠B :sin sin lim 1xxx x x →∞⎛⎞−⎜⎟⎝⎠C :sin sin lim 1x xx x x −→∞⎛⎞−⎜⎟⎝⎠D :()2cot 0lim 1tan xx x →+(18)函数111()01x e x f x x −−⎧⎪≠=⎨⎪=⎩在点1x =处()A :连续B :不连续,但右连续或有右极限C :不连续,但左连续或有左极限D :左、右都不连续(19)下列结论正确的是()A :若函数()f x 在(,)a b 内连续,则()f x 在(,)a b 内一定有界B :若函数()f x 在[,]a b 内有间断点,则()f x 在[,]a b 上一定没有最值C :若函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,而函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处也是连续的D :一切初等函数在其定义域内都是连续的四、计算题1.设()0.10x e x f x x ⎧≤=⎨>⎩求)(x f 在0x =的极限2.求lim x →+∞3.求3211lim()11x x x x →−−−4.求)21sin limtan x arc xx →− 5.求lim ln(1)ln(1)n n nn n →∞⎛⎞−⎜⎟−+⎝⎠五、讨论题1.讨论2sin ,0;()1,0.xx x f x x x ⎧≠⎪=⎨⎪+=⎩在定义域内的连续性2.讨论a 取何值可使1sin arccos ,0;()0,0;ln(1),0.x x x f x x x a x ⎧>⎪⎪==⎨⎪−+<⎪⎩在定义域内连续.六、证明题1.设()f x 在[0,1]上连续,且(1)0f >,证明存在(0,1)ξ∈,使()1f ξξξ=−2.证明lim 1n →∞⎛⎞+⋅⋅⋅+=3.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=4.证明曲线423710y x x x =−+−在1x =与2x =之间至少存在与x 轴有一个交点5.证明0p >时,函数1sin ,0()0,px x f x xx ⎧≠⎪=⎨⎪=⎩0>≤x x 在点0=x 处连续.6.证明:0lim ()()x x f x A f x A α→=⇔=+,其中0lim 0x x α→=.《高等数学》第一章-——函数与极限自测题(A)题号一二三四五六总分得分一.判断题(判断下列各题是否正确,正确的划√,错误的划×。

函数与极限测试题及答案(二)

函数与极限测试题及答案(二)

函数与极限测试题及答案(二)1.选择题1.设F(x)是连续函数f(x)的一个原函数,"M N"表示“M的充分必要条件是N”,则必有(。

)。

A)F(x)是偶函数f(x)是奇函数。

(B)F(x)是奇函数f(x)是偶函数。

(C)F(x)是周期函数f(x)是周期函数。

(D)F(x)是单调函数f(x)是单调函数。

答案:D2.设函数f(x) = 1/(ex(x-1)),则(。

)。

A)x = -1,x = 1都是f(x)的第一类间断点。

(B)x = -1,x = 1都是f(x)的第二类间断点。

(C)x = 1是f(x)的第一类间断点,x = 1是f(x)的第二类间断点。

(D)x = 1是f(x)的第二类间断点,x = 1是f(x)的第一类间断点。

答案:C3.设f(x) = [1/(x-1)]。

x ≠ 1,则f[1.x] = (。

),x ≠ 1,则f[1.x] = (。

)。

A)1-x;(B)1-x2;(C)1-x;(D)1-x2.答案:A4.下列各式正确的是(。

)。

A)limx→+∞x/(x+1) = 1;(B)limx→0xsin(1/x) = 0;(C)limx→1(x-1)/(x2-1) = 1/2;(D)limx→∞(1-1/x)e-x = 0.答案:A5.已知limx→∞[(x3+2)/(x3+1)] = a,则a = (。

)。

A)1;(B)∞;(C)e;(D)2ln3.答案:C6.极限:lim(x→+∞)[(x+1)/(x2+2)] = ()。

A)1;(B)∞;(C)e;(D)2.答案:A7.极限:lim(x→0)(x+1-1)/x2 = ()。

A)0;(B)∞;(C)1;(D)2.答案:C8.极限:lim(x→∞)(x+1-1)/x2 = ()。

A)0;(B)∞;(C)1;(D)2.答案:A9.极限:lim(x→+∞)(x2+x-x)/x = ()。

A)0;(B)∞;(C)2;(D)1.答案:C10.极限:lim(x→π/4)(tanx-sinx)/(sin3x/2) = ()。

厦门理工学院高数练习题答案第一章 函数与极限

厦门理工学院高数练习题答案第一章 函数与极限

高等数学练习题 第一章 函数与极限________系_______专业 班级 姓名______ ____学号_______第一节 映射与极限一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ] (A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y = 二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 2 2. 已知,1)1(2++=+x x x f 则)(x f 12+-x x3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f x -114. 求函数)2lg(1-+=x y 的反函数 1102-+=x y5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=: x s s v v u u y ====,ln ,tan ,2(2) 32arcsin lg x y =:__ 32x t t s s v v u u y =====,arcsin ,lg ,, _三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域解:)(2x f 的定义域为[11,-] )(s i n xf 的定义域为)()(,[Z k k k ∈+ππ1222.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.解:01=)(ϕ 2321=-)(ϕ 2123=)(ϕ ( 图略 )4.已知水渠的横断面为等腰梯形,斜角 40=ϕ(图1-22)。

高等数学函数的极限与连续习题及答案

高等数学函数的极限与连续习题及答案
欲使上式成立,令
上式化简为
1a2
0,∴a1,
2
1b
12ab12abx1b212ablimlimlim
xxx1a∴1
a1,12ab0,b2
10、函数fx
的间断点是(x0,x1).
11
xx2x2
11、fx2的连续区间是(,1,1,3,3,).
x4x3ax2sinx
2,则a(2)12、若lim.
xx∴aax2sinxsinxlimlima2a0a02limxxxxx
a
xx21
logaxx21fx
3、当x0时,ex1是x的(c)
a.高阶无穷小b.低阶无穷小c.等价无穷小
4、如果函数fx在x0点的某个邻域b.连续c.有界
5、函数fx1
1x在(c)条件下趋于.
a.x1 b.x10 c.x10
6、设函数fxsinx
x,则limx0fx(c)
a.1b.-1c.不存在∵sinx
6、如果~,则o.
1,是
∴limlim10,即是的同阶无穷小.
2xx2sin2sin1cosx11limlim2正确∵limx0x0x04x2x2x2
2正确∵lim
11limxlimsin0.x0xx0x0x
1错误∵limsin不存在,∴不可利用两个函数乘积求极限的法则计算。x0x8、limxsin
高等数学函数的极限与连续习题精选及答案
第一章函数与极限复习题
1、函数fxx2x31x1与函数gxx1相同.
错误∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴fxx2x31x1与gx函数关系相同,但定义域不同,所以fx与gxx1
是不同的函数。
2、如果fxM(M为一个常数),则fx为无穷大.

函数与极限练习题

函数与极限练习题

函数与极限练习题第一章函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。

[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ]3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。

[ ]4、定义在(∞+∞-,)上的常函数是周期函数。

[ ]5、任一周期函数必有最小正周期。

[ ]6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。

[ ]7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。

[ ] 8、f(x)=1+x+2x 是初等函数。

[ ]二.单项选择题1、下面四个函数中,与y=|x|不同的是(A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中既是奇函数,又是单调增加的。

(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x 4、若)(x f 为奇函数,则也为奇函数。

(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D))].([x f f -三.下列函数是由那些简单初等函数复合而成。

1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。

(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设??=,,2)(x x x f 00≥<="">-=,3,5)(x x x g 00≥<="" 及)]([x="" ,求)]([x="">六.利用x x f sin )(=的图形作出下列函数的图形:1.|)(|x f y = 2。

高等数学习题[附答案解析与解析]

高等数学习题[附答案解析与解析]

第一章 函数与极限§1 函数必作习题P16-18 4 (5) (6) (8),6,8,9,11,16,17必交习题一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从出站经过T 时间后,又以等减速度a 2进站,直至停止。

(1) 写出火车速度v 与时间t 的函数关系式;(2) 作出函数)(t v v =的图形。

二、 证明函数12+=x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin)(2= ;(2)1212)(+-=x x x f ;(3))1ln()(2++=x x x f 。

四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数必作习题P31-33 1,8,9,10,16,17必交习题一、 设)(x f 的定义域是]1,0[,求下列函数的定义域:(1))(x e f ;(2))(ln x f ;(3))(arcsin x f ;(4))(cos x f 。

二、(1)设)1ln()(2x x x f +=,求)(x e f -;(2)设23)1(2+-=+x x x f ,求)(x f ;(3)设xx f -=11)(,求)]([x f f ,})(1{x f f 。

)1,0(≠≠x x三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。

四、设⎩⎨⎧>+≤-=0,20,2)(x x x x x f ,⎩⎨⎧>-≤=0,0,)(2x x x x x g ,求)]([x g f 。

§3 数列的极限必作习题P42 3 (3) (4),4,5,6必交习题一、 写出下列数列的前五项 (1)3sin 31n n x n =;(2)n n n n x n ++++++=22212111 ;(3)nx n x n n n)1(1211122-=+++=-, 。

高数第一章 函数与极限答案(2013)

高数第一章 函数与极限答案(2013)

第一章 函数与极限答案第一节 映射与函数1.填空题: (1)2,1-≥±≠x x ; (2)⎪⎩⎪⎨⎧≤<≤≤--+=10011x x x xy ; (3){0}; (4)a ;(5)x x 1-, x ;(6)⎩⎨⎧≤<≤-=32231-x ()1-(2x x xx f )2. 选择题:(1)C ; (2)A ; (3) B ; (4)B ; (5) B ; (6)C ; (7)C ; 3. 352)1(0,1,22++=+===x x x g c b a ;;4. )1(22x -;5. 22()0()()()0x x f x x x x ⎧--≤-=⎨-+-->⎩,即:220()0x x f x x x x ⎧≥=⎨-<⎩ 6. 解:22()(1)f x f x x +-= (1)令1x t =- 得22(1)()(1)f t f t t -+=-22(1)()(1)f x f x x -+=- (2)由(1)和(2)得;221()3x x f x +-=7. (1)|sin |y x =; (2)sin ||y x =; (3)2sin 2x y =.8.设[()]f g x 由(),()y f u u g x ==复合而成的,证明:(1) 若()g x 是偶函数,则[()]f g x 是偶函数。

(2) 若()f x 单调增加,()g x 单调减少,则[()]f g x 单调减少。

(略)第二节 数列的极限1.填空题:(1)0; (2)0; (3)6,0==b a ;(4)数列{}n x 有界是数列{}n x 收敛的必要条件. 数列{}n x 收敛是数列{}n x 有界的充分条件. 2.选择题:(1)B ; (2) D ; (3) D ; 3. 根据数列极限的定义证明: (略)4. 若a u n n =∞→lim ,证明a u n n =∞→lim .并举例说明反之不成立.提示:利用不等式:a u a u a u n n n -≤-≤-5. 设数列{}n x 有界,又0lim =∞→n n y ,证明:0lim =∞→n n n y x . (略)第三节 函数的极限1.填空题:(1)=+)0(f b ,=-)0(f 1 . 当=b 1 时,1)(lim 0=→x f x .(2) 充分必要(3) 必要;充分;必要;充分;充分必要. 2.选择题:(1) A ; (2) C ; (3) D ; (4) C 3. 根据函数极限的定义证明: 8)13(lim 3=-→x x ; (略)4.证明xx 1sinlim 0→不存在. 提示:取2个子序列趋于0,但极限不等。

高中数学函数与极限练习题及答案

高中数学函数与极限练习题及答案

高中数学函数与极限练习题及答案1. 求以下函数的极限:a) 若 f(x) = 3x + 2,当 x 趋近于 1 时。

b) 若 g(x) = x^2 + 4x - 5,当 x 趋近于 -2 时。

c) 若 h(x) = (2x^2 - 5x + 3) / (x - 1),当 x 趋近于 1 时。

解答:a) 当 x 趋近于 1 时,f(x) = 3(1) + 2 = 5。

因此,函数 f(x) 在 x =1 时的极限为 5。

b) 当 x 趋近于 -2 时,g(x) = (-2)^2 + 4(-2) -5 = 4 - 8 - 5 = -9。

因此,函数 g(x) 在 x = -2 时的极限为 -9。

c) 当 x 趋近于 1 时,h(x) = (2(1)^2 - 5(1) + 3) / (1 - 1) = 0 / 0。

由于分母为 0,所以此时极限不存在。

2. 求以下函数的极限:a) 若 f(x) = sin(x),当 x 趋近于 0 时。

b) 若 g(x) = cos(x),当 x 趋近于π/2 时。

c) 若 h(x) = e^x,当 x 趋近于 -∞ 时。

解答:a) 当 x 趋近于 0 时,f(x) = sin(0) = 0。

因此,函数 f(x) 在 x = 0 时的极限为 0。

b) 当 x 趋近于π/2 时,g(x) = cos(π/2) = 0。

因此,函数 g(x) 在 x = π/2 时的极限为 0。

c) 当 x 趋近于 -∞ 时,h(x) = e^(-∞) = 0。

因此,函数 h(x) 在 x 趋近于 -∞ 时的极限为 0。

3. 求以下函数的极限:a) 若f(x) = √(9x^2 + 4) - 3x,当 x 趋近于 0 时。

b) 若g(x) = x^2 / (√(x^2 + 1) - 1),当 x 趋近于 0 时。

c) 若 h(x) = (tan(x))^2 / x^2,当 x 趋近于 0 时。

解答:a) 当 x 趋近于 0 时,f(x) = √(9(0)^2 + 4) - 3(0) = √4 = 2。

高数函数的极限连续习题精选及答案

高数函数的极限连续习题精选及答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a nn =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫ ⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2022020=⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅==-→→→x x x x x x x x x8、 01sin lim lim 1sinlim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00l i m 1l i m00-=--→x x x ,=+→xx x 00lim 1lim 00=+→x xx ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是(,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭ ); (3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n n x n n x n x n n n n =⋅==∞→∞→∞→sinlim sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x xx ,则=a ( 1 ),=b ( 21-). ∵()b ax x x x --+-+∞→1lim2()()()bax x x b ax x x b ax x x x +++-+++---+-=+∞→111lim222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()2211212112lim lim lim 1x x x b ab ab x b ab a →+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ).11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ).()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→xxx sin lim( 0 ),=∞→xx x 1s i nlim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim =⋅=∞→∞→x x x x x x 111sin lim1sin lim ==∞→∞→xx x x x x ()[]1)1(11)(1lim 1lim --⋅-→→=-+=-e x x xx x x kkx x kx x e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、lim sin(arctan )x x →∞=( 不存在 ),l i ms i n (a r c c o t )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa ()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界 5、函数()x f x-=11在( c )条件下趋于∞+.a .1→xb .01+→xc .01-→x 6、设函数()x f xx sin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xxx x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。

函数与极限习题与答案计算题(供参考)

函数与极限习题与答案计算题(供参考)

高等数学二、计算题(共 200 小题,)1、设xxx f +=12)(,求)(x f 的定义域及值域。

2、设x xx f -+=11)(,确定)(x f 的定义域及值域。

3、设)ln(2)(22x x xx x f -+-=,求)(x f 的定义域。

4、的定义域,求设)(sin 512arcsin )(x f x x x f π+-=。

5、的定义域,求设⎪⎭⎫⎝⎛++-=x f x f x x x f 1)(22ln )(。

6、的定义域求函数22112arccos)(x x xxx f --++=。

7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(<m ,求)(x F 的定义域。

8、的定义域,求设 )(16sin )(2x f x x x f -+=。

9、的定义域,求设)(12)(2x f xx x f --=。

10、设,求的定义域f x x xf x ()lg ()=+256。

11、设,求的定义域f x x xf x ()arctan ()=-+2512。

12、13、,55lg )(-+=x x x f 设的定义域;确定)()1(x f []的值,求若)2(lg )()2(g x x g f =。

14、),00()(≠≠++=abc x c bx xa x f , 设成立,对一切,使求数0)()(≠=x x f x m f m 。

15、1)()1(3)2(3)3()(2+-+++-+++=x f x f x f x f c bx ax x f ,计算设的值,其中c b a ,,是给定的常数。

16、)1()11(1)(2-≠+-+=x x xf xx x f ,求设。

17、)()0(13)1(243x f x x x x x x x f ,求 设≠+++=+。

18、)()0( )11()1(2x f x x x xf ,求 设>++=。

极限练习题及答案

极限练习题及答案

极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。

A.1;B.?;C.ln3;D.2ln3。

.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。

2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。

?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。

??1,x?0.?19无穷小量是。

20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。

(完整版)函数极限习题与解析

(完整版)函数极限习题与解析

函数与极限习题与解析(同济大学第六版高等数学)一、填空题1、设x x x f lg lg 2)(+-= ,其定义域为 。

2、设)1ln()(+=x x f ,其定义域为 。

3、设)3arcsin()(-=x x f ,其定义域为 。

4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。

5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。

6、432lim 23=-+-→x k x x x ,则k= 。

7、函数xx y sin =有间断点 ,其中 为其可去间断点。

8、若当0≠x 时 ,x x x f 2sin )(=,且0)(=x x f 在处连续 ,则=)0(f 。

9、=++++++∞→)21(lim 222nn n n n n n n 。

10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。

11、=++++∞→352352)23)(1(lim x x x x x x 。

12、3)21(lim -∞→=+e n kn n ,则k= 。

13、函数23122+--=x x x y 的间断点是 。

14、当+∞→x 时,x1是比3-+x15、当0→x 时,无穷小x --11与x 相比较是 无穷小。

16、函数x e y 1=在x=0处是第 类间断点。

17、设113--=x x y ,则x=1为y 的 间断点。

18、已知33=⎪⎭⎫ ⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x x xx f x 若)(lim 0x f x →存在 ,则a=。

20、曲线2sin 2-+=x xx y 水平渐近线方程是 。

21、114)(22-+-=x x x f 的连续区间为 。

22、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学二、计算题(共 200 小题,)1、设xxx f +=12)(,求)(x f 的定义域及值域。

2、设x xx f -+=11)(,确定)(x f 的定义域及值域。

3、设)ln(2)(22x x xx x f -+-=,求)(x f 的定义域。

4、的定义域,求设)(sin 512arcsin )(x f x x x f π+-=。

5、的定义域,求设⎪⎭⎫⎝⎛++-=x f x f x x x f 1)(22ln )(。

6、的定义域求函数22112arccos)(x x xxx f --++=。

7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(<m ,求)(x F 的定义域。

8、的定义域,求设 )(16sin )(2x f x x x f -+=。

9、的定义域,求设)(12)(2x f xx x f --=。

10、设,求的定义域f x x xf x ()lg ()=+256。

11、设,求的定义域f x x xf x ()arctan ()=-+2512。

12、13、,55lg )(-+=x x x f 设的定义域;确定)()1(x f []的值,求若)2(lg )()2(g x x g f =。

14、),00()(≠≠++=abc x c bx xa x f , 设成立,对一切,使求数0)()(≠=x x f x m f m 。

15、1)()1(3)2(3)3()(2+-+++-+++=x f x f x f x f c bx ax x f ,计算设的值,其中c b a ,,是给定的常数。

16、)1()11(1)(2-≠+-+=x x xf xx x f ,求设。

17、)()0(13)1(243x f x x x x x x x f ,求 设≠+++=+。

18、)()0( )11()1(2x f x x x xf ,求 设>++=。

19、及其定义域,求,设)(02)(ln 2x f x x x x f +∞<<+-=。

20、时,且当设 2)(1=-=x x t f x y ,)(5222x f t t y ,求+-=。

21、)12(, )1(2+=-x f x x f 求 设。

22、)(,)1()1(2x f x x x x f 求设+=。

23、)25(),2(),2(,2)(2f f f x f x -=-求设。

24、z x f x z y y x f y x z 及求时且当设 )( , , 0 , )(2==-++=。

25、)( , )0( 1)1(42x f x x x x x f 求 设 ≠+=-。

26、12)1()(222++=+x xx x f x x f 设 ,)(x f 求。

27、 28、 29、30、⎥⎦⎤⎢⎣⎡-=)(1)1(),()2(,1)(x f f a f a f f x x x f , ,求设 。

31、 32、33、的定义域,求设 )(412sin src )2ln(9)(2x f x x x x f -++-=。

34、35、设的定义域。

,求)()cos 21lg()(x f x x f -= 36、37、设 ,求的定义域f x x x x x f x ()lg()()=+-+-+655622。

38、39、40、建一蓄水池,池长50 m ,断面尺寸如图所示,为了随时能知道池中水的吨数(1立方米水为1吨),可在水池的端壁上标出尺寸,观察水的高度x ,就可以换算出储水的吨数T ,试列出T 与x 的函数关系式。

41、等腰梯形ABCD (如图),其两底分别为AD = a 和BC = b ,(a > b ),高为h 。

作直线MN // BH ,MN 与顶点A 的距离AM = x )22(ba xb a +≤<-,将梯形内位于直线MN 左边的面积S 表示为x 的函数。

42、设M 为密度不均匀的细杆OB 上的一点,若OM 的质量与OM 的长度的平方成正比,又已知OM = 4单位时,其质量为8单位,试求OM 的质量与长度间的关系。

43、在底AC = b ,高BD = h 的三角形ABC 中,内接矩形KLMN (如图),其高为x ,试将矩形的周长P 和面积S 表示为x 的函数。

44、等腰直角三角形的腰长为l (如图),试将其内接矩形的面积表示成矩形的底边长x 的函数。

45、设有一块边长为a 的正方形铁皮,现将它的四角剪去边长相等的小正方形后,制作一个无盖盒子,试将盒子的体积表示成小正方形边长的函数。

46、旅客乘火车可免费携带不超过20千克的物品,超过20千克,而不超过50千克的部分,每千克交费0.20元,超过50千克部分每千克交费0.30元,求运费与携带物品重量的函数关系。

47、由直线x y =,x y -=2及x 轴所围成的等腰三角形OAB 。

在底边上任取一点]2 , 0[∈x ,过x 作垂直x 轴的直线,试将图上阴影部分的面积表示成x 的函数。

48、有一条由西向东的河流,经相距150千米的A 、B 两城,从A 城运货到B 城正北20千米的C 城,先走水道,运到M 处后,再走陆道,已知水运运费是每吨每千米3元,陆运运费是每吨每千米5元,求沿路线AMC 从A 城运货到C 城每吨所需运费与MB 之间的距离的函数关系。

49、生产队要用篱笆围成一个形状是直角梯形的苗圃(如图),它的相邻两面借用夹角为 ︒135的两面墙(图中AD 和DC ),另外两面用篱笆围住,篱笆的总长是30米,将苗圃的面积表示成AB 的边长x 的函数。

50、在半径为20厘米的圆内作一个内接矩形,试将矩形的面积表示成一边长的函数。

51、在半径为R 的球内嵌入一内接圆柱,试将圆柱的体积表示为其高的函数,并指出函数的定义域。

52、设一球的半径为r ,作外切于球的圆锥,试将圆锥体积V 表示为高h 的函数,并指出其定义域。

53、图中圆锥体高OH = h ,底面半径HA = R ,在OH 上任取一点P (OP = x ),过P 作平面α垂直于OH ,试把以平面α为底面的圆锥体的体积V 表示为x 的函数。

54、已知)(x f 是二次多项式,且38)()1(+=-+x x f x f ,0)0(=f ,求)(x f 。

55、求函数的定义域及值域y x x =+-22。

56、求函数的定义域及值域y x =-lg(cos )12。

57、确定函数的定义域及值域y xx =+arccos 212。

58、求函数的定义域及值域y x=arcsin(lg )10。

59、60、的最小正周期求x x x f cos 3sin )(⋅=。

61、 62、 63、65、 66、 67、68、求函数的反函数y x x x =+4。

69、 70、 71、72、的反函数求函数xxy +-=11arctg 。

73、 74、 75、 76、 77、 78、79、()[]{}设,,求及f x xx x x f f x f f f x ()()()=-≠≠⎡⎣⎢⎤⎦⎥1011。

80、 81、82、[]设,,求f x x xx x f x ()()()=+=112ϕϕ。

83、[]设,,求f x x x x f x ()ln ()()=+=+11ϕϕ。

84、85、 86、 87、 88、 89、 90、 91、 92、 93、 94、 95、 96、 97、 98、 99、 100、102、 103、 104、 105、 106、107、在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。

若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。

108、定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。

109、定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。

110、 111、 112、 113、 114、 115、 116、 117、 118、 119、 120、 121、 122、 123、 124、 125、 126、 127、 128、 129、 130、 131、 132、 133、 134、 135、 136、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、182、 183、 184、 185、 186、 187、 188、 189、 190、 191、 192、 193、 194、 195、 196、 197、 198、 199、 200、二、计算题(共 200 小题,)1、定义域)1()1(∞+---∞,, 5分由解得:xxy +=12 故知:值域为2≠y ,即) 2()2 (∞+-∞,, 10分2、当时1≠x ,函数有定义。

定义域为) 1()1 (∞+-∞,,5分又由11211--=-+=xx x y 即2)1)(1(=-+x y 值域)1()1(∞+---∞,, 10分3、02≠≤x x 且4分 100)ln(22><>--x x x x x x 或 得 有由 8分 故函数的定义域为[)(]2 10 2,,- 10分4、321512512arcsin≤≤-≤--x x x 解得 有由 4分)2 1 0(1220sin sin ,,, 得 有由±±=+≤≤≥k k x k x x ππ8分[][][]3 21 01 2 ,,,故函数的定义域为 --10分5、; 解得,有由2202222ln<<->+-+-x xxx x 4分 212110-<>⎪⎭⎫⎝⎛≠x x x f x 或有时,对当 8分 的定义域为故函数⎪⎭⎫⎝⎛+xf x f 1)()2 21()21 2(,, -- 10分6、;,解得,有由13111212arccos ≤≤-≤++x x x xx4分 ;,解得,有由2110212122≤≤-≥----x x x x x 8分 ⎥⎦⎤⎢⎣⎡-2131 ,故函数的定义域为 10分7、⎩⎨⎧>-<≤-+<≤+)0(m m b x m a m b x m a 得4分;的定义域为时,当φ )(2x F ab m -≥6分 []m b m a x F ab m -+-<<,的定义域为时,当 )(20 10分8、0160sin 2≥-≥x x 且由4分4) 2 1 0( )12(2 ≤±±=+≤≤x k k x k 且,,, 解得 ππ7分[][]ππ,,得定义域为 0 4 --10分9、⎪⎩⎪⎨⎧≠≤⎪⎩⎪⎨⎧≠-≥-1201022x x x x 得由 6分[)()(]故的定义域为,,,f x ()---21111210分10、由 得lg x x x x 22560561+≥+≥4分解得:或x x ≤-≥618分(][)故的定义域是,,f x ()-∞-+∞61U10分11、由 得2500502-≥≠⎧⎨⎩≤≠⎧⎨⎩x x x x 6分[)(]故的定义域为,,f x ()-500510分12、故f x x x ()=+225分 这时y a x a x =++-=+11 7分 故y x =+110分13、)5()5(∞+-∞,,-得定义域为4分x x g x g =-+5)(5)(7分1)1(5)(-+=x x x g 解得:(*) 15)2(=g 故 10分14、 c x bm m ax x m f ++=)( 3分 c bx xa c x bm m ax ++=++由5分 0)()(2=-+-m a bm x mb a 得8分 bam =解得 10分15、c x b x a x f ++++=+)1()1()1(25分 11)()1(3)2(3)3(=+-+++-+x f x f x f x f 故 10分 2)2()()(ah h b at t f h t f ++=-+则4分 3==h x t ,取6分[])1()2(3+-+=x f x f8分11)()1(3)2(3)3(=+-+++-+x f x f x f x f 故 10分16、21111111⎪⎭⎫⎝⎛+-++-=⎪⎭⎫ ⎝⎛+-x x x xx x f 5分)1(2122x x +-= 10分17、31122+++=xx x x 4分1)1(12+++=xx xx 8分1)(2+=∴x xx f 10分18、 011>==t tx t x ,,令3分221t t t ++=8分221)(x x x x f ++=10分19、2)(ln ln ln 2+-=x x e e x f 5分 2)(2+-=∴x x e e x f8分 ), 定义域(∞+∞- 10分 t e x t x ==,则令ln2分 22)(22+-=+-=t t e e x x t f 6分 2)(2+-=x x e e x f8分 ),定义域(∞+∞- 10分20、104)2(2+-=-∴t t t f5分 22+==-u t u t ,则令 7分 62+=u 9分 6)(2+=∴x x f10分21、2)1()(+=∴t x f5分 2)1(4+=x10分22、 tx t x 1,1==令4分22)1(11111)(+=⎪⎪⎪⎪⎭⎫⎝⎛+=t t t t t t f 8分)1,0()1(1)(2-≠≠+=x x x x x f 故10分23、 ;12)2(0==f3分1612)2(4==--f 6分 22)25(225==-f10分24、2)(x x f x =+∴ 2分 故有 x x x f -=2)(5分 )()()(2y x y x y x f ---=- 7分 2)(2y x y -+= 10分25、2242111)1(xx x x x x f +=+=-因 3分2)1(12+-=xx7分21)(2+=x x f 故 10分26、)2(12)1(2)(22 ++=+x x x x f x x f 5分 131242)(322+=+--+=x xx x x x x x f 8分 1)(+=x x x f 故 10分27、 2sin 22cos 1)2(sin2x x x f -=+=因 5分 x cos 1-=10分28、2)1(,1-==+t x t x 则令 4分 1)1(2)1()(22-=-+-=t t t t f 8分 1)(2-=∴x x f 10分29、);10(111111)1(-≠≠+-=+-=x x x x xx x f , 5分[]).1(111111)(1)(1)(-≠=+-++--=+-=x x xxx xx f x f x f f 10分30、 ;2212)2(-=-=f 2分 ; )1(1)(≠-=a aaa f 4分;, )10(11111)1(≠≠-=-=a a a aa af 7分)10(121111)(11)(1)(1≠≠--=---=-=⎥⎦⎤⎢⎣⎡x x x x xx x x x f x f x f f , 10分31、32)(2++=x x x f 故 6分32)1(222+++++=h h x h x 10分32、11)()(6322+=+=t t t ϕ3分 []12)1()(36232++=+=t t t t ϕ6分 233369+++=t t t 10分33、33092≤≤-≥-x x 得由 2分 121202-≠->≠+>+x x x x 且 得且由 5分 25231412≤≤-≤-x x 得由8分⎥⎦⎤ ⎝⎛-⎪⎭⎫⎢⎣⎡--251123,,10分34、35、 21cos <x 5分)210(35232 ,,, 函数的定义域为±±=+<<+k k k k x k ππππ 10分36、 202-≥≥+x x 得由 3分.011101≠<≠->-x x x x 且 得且由 8分 [)).10(02,,故得函数的定义域是 -10分37、由 解得 ,650162+-≥-≤≤x x x 5分 由 解得 或x x x x 256023-+><>7分 [)(]故函数的定义域是 ,,-1236 .10分38、由  解得 x x -≤≤≤32115, 5分又 404->∴<x x7分 [)函数的定义域为:,1410分39、得 02≤≤lg x5分[] 定义域是 ,110010分40、S x x =+()20334 分故 吨T x x =+502033()() 8分 ()010≤≤x 10分41、∆ABH S ha b 的面积14=-() 4分 矩形的面积BHNM S h x a b22=--() 8分 =--h x a b()410分42、则 m kx k =>20()5分当 时,,得x m k ===48128分 故 m x =122 10分43、LM bhh x =-() 4分 ∴=+-=+-周长;P x b h h x b bhx 22221()()7分 面积S bhx h x =-()10分44、∴=-y l x 122() 6分 故矩形的面积为S x l x =-122() 10分45、V 盒子的体积为 4分 2)2(x a x V -=则 10分46、;时,当)20(2.0 5020-=≤<x y x 4分)50(3.0)2050(2.0 50-+-=>x y x 时,当 8分⎪⎩⎪⎨⎧>-+-≤<-≤≤=50),50( 3.0)2050(2.05020)20(2.02000x x x x x y ;, ;, 故得10分47、当时,01122≤<=x S x ; 4分 =--21212x x8分故,,S x x x x x =≤<--≤≤⎧⎨⎪⎪⎩⎪⎪12012121122210分48、所需运费为元,则 千米y AM x =-()()1505分 故 元y x x =-++315054002()()10分49、设的长为,苗圃面积为则AB x S BC x=-30 3分 =-230x 6分 =-+-32604502x x 平方米() 10分50、 (厘米)-则另一边长为2240x 5分 (平方厘米) 矩形的面积2240x x S -=10分51、设圆柱的高为h ,底面积半径为r 。

相关文档
最新文档