2002年考研数学(三)真题及详细解析

合集下载

考研数学:2002年考研数学三_真题及答案(精校版)

考研数学:2002年考研数学三_真题及答案(精校版)
T

P
1
T T 1 ,则 B P A P PT AP 1 AP B
T
T
T
A PT BPT , A ( PT BPT )
T 两边左乘 P ,得 B ( P ) P
T T
1
1
故知 B ( P AP ) 的对应于特征值 的特征向量为 PT ,即应选(B).
T
1T
( PT ) PT A ( PT ) 成立.故应选(B).
(5)设随机变量 X 和 Y 都服从标准正态分布,则 (A) X Y 服从正态分布 (C) X 和 Y 都服从 分布
2 2
2

2 2

2
(B) X Y 服从 分布 (D) X 2 / Y 2 服从 F 分布
答案应填
二、选择题(本题共 5 小题,每小题 3 分,共 15 分,在每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内.) (1)设函数 f ( x) 在闭区间 [a, b] 上有定义,在开区间 (a, b) 内可导,则 (A)当 f (a) f (b) 0 时,存在 (a, b) ,使 f ( ) 0 . (B)对任何 (a, b) ,有 lim[ f ( x) f ( )] 0 .
x 1
x (1,1] x 1
f ( 1) f ( 1) ,但 1 f ( x) 1 (当 x (1,1) ),不满足罗
尔中值定理,当然也不满足拉格朗日中值定理的结论.

(2)设幂级数
an xn 与 bn x n 的收敛半径分别为
n 1 n 1
a2 n 5 1 与 ,则幂级数 2 n x 的收敛 3 3 i 1 b n

2002-数三真题、标准答案及解析

2002-数三真题、标准答案及解析

X 的简单随机样本,则未知参数 θ 的矩估计量为______
【答】
1 n ∑ X i −1 n i =1
北京市海淀区王庄路 1 号清华同方科技广场 B 座 609 -3电话: 62701055
培训网:
2002 年全国硕士研究生入学统一考试 数学试题解析点评
x y z
Fx' = ( x + 1)e x , Fy' = −( y + 1)e y , Fz' = −( z + 1)e z .

F' F' x + 1 x − z ∂z y + 1 y−z ∂z e , =− y = e , =− x = F 'z z + 1 F 'z z + 1 ∂x ∂y
+∞
水木艾迪考研辅导班命题研究中心
【详解】因为 E ( X ) = 所以,由 E ( X ) = X =

0
xe −( x −θ ) dx = θ + 1,
1 n 1 n , 1 X 即 θ + = ∑ i ∑ Xi, n i =1 n i =1 1 n ∑ X i − 1. n i =1
$= 得参数 θ 的矩估计量为 θ
x →ξ
(C) 对 f (a ) = f (b) 时,存在 ξ ∈ (a, b) ,使 f '(ξ ) = 0 (D) 存在. ξ ∈ (a, b) ,使 【答】 [ B] 【详解】 由题设, f ( x) 在 ξ (ξ ∈ (a, b) 处可导,从而连续, 故有 lim[ f ( x ) − f (ξ )] = 0. 应选(B).
n →∞
1 1 n (1− 2 a ) n − 2na + 1 n 1 1− 2 a = e1− 2 a ] = lim[1 + ] n →∞ n(1 − 2a ) n(1 − 2a) 1 n − 2na + 1 n 1 ] = ln e1− 2 a = n(1 − 2a ) 1 − 2a

2002考研数学一真题及答案解析

2002考研数学一真题及答案解析



f2 (x)dx

2

1,
F1() F2 () 11 2 1.
数学(一)试题 第 7页(共 13 页)
对于选项(B),若
f1 ( x)

1, 2 x 0, 其他,
2002 年全国硕士研究生入学统一考试 数学一试题
一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上.)
(1)
e
dx x ln 2
x
=
.
(2)已知函数 y y(x) 由方程 e y 6xy x 2 1 0 确定,则 y(0) =
.
(3)微分方程 yy

0,
因而所考虑级数是交错级数,但不能保证
1 un
的单调性.
按定义考察部分和
Sn

n (1)k 1( 1
k 1
uk
1) uk 1


n
(1)k 1
k 1
1 uk

n
(1)k 1
k 1
1 uk 1
数学(一)试题 第 6页(共 13 页)
原级数收敛.
n

n1
un
1) un1
(A) 发散. (C) 条件收敛.
(B) 绝对收敛. (D) 收敛性根据所给条件不能判定.
数学(一)试题 第 1页(共 13 页)
(3)设函数 y f (x) 在 (0, ) 内有界且可导,则
(A) 当 lim f (x) 0 时,必有 lim f (x) 0 .
.
(5)设随机变量 X 服从正态分布 N (, 2 )( 0) ,且二次方程 y 2 4 y X 0 无实根的概

考研真题【1987-2002考研数(三)真题及解析】2002考研数三真题及解析

考研真题【1987-2002考研数(三)真题及解析】2002考研数三真题及解析

2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a =.(4)则2X 和2Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( ) (A) 5 (B)(C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解(C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程xyzxe ye ze -=所确定,求du . 五、(本题满分6分)设2(sin ),sin x f x x =求()x dx . 六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵. 十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +. 十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2002年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】112a- 【详解】ln “”里面为1∞“”型,通过凑成重要极限形式来求极限, 1(12)12211limln limln 1(12)(12)nn a an n n na n a n a -⋅-→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--.(2)【答案】2120(,)xxdx f x y dy ⎰⎰【详解】画出与原题中二次积分的限所对应的积分区域1D 与2D ,将它们的并集记为D . 于是111422104(,)(,)yydy f x y dx dy f x y dx +⎰⎰⎰(,)Df x y d σ=⎰⎰.再将后者根据积分定义化为如下形式,即2102x y x x →→从,从,所以2120(,)(,).xxDf x y d dx f x y dy σ=⎰⎰⎰⎰(3)【答案】1- 【详解】122212123,304134a a A a a α-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+ ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由于A α与α线性相关,(两个非零向量线性相关,则对应分量成比例),所以有233411a a a a ++==,得 2334, 1.a a a +=+=- 或,(0)A k k αα=≠(两个非零向量线性相关,则其中一个可以由另一个线性表出)即 231341a a a k a ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,得2334a ka a k a k =⎧⎪+=⎨⎪+=⎩,得 1.(1)a k =-=(4)【答案】0.02-.【详解】2X 、2Y 和2X 2Y 都是01-分布,而01-分布的期望值恰为取1时的概率p .由离散型随机变量X 和Y 的联合概率分布表可得2X 的可能取值为0和1,且2Y 的可能取值也为0和1,且X 和Y 的边缘分布为{}00.070.180.150.4P X ==++=;{}10.080.320.200.6P X ==++=; {}10.070.080.15P Y =-=+=;{}00.180.320.5P Y ==+=; {}10.150.200.35P Y ==+=;故有{}{}220,00,00.18,P X Y P X Y ======X0 10.4 0.6Y 1- 0 10.15 0.5 0.35{}{}{}220,10,10,10.070.150.22,P X Y P X Y P X Y =====-+===+= {}{}221,01,00.32,P X Y P X Y ======{}{}{}221,11,11,10.080.200.28,P X Y P X Y P X Y =====-+===+=而边缘分布律:{}{}2000.4P X P X ====,{}{}2110.6P X P X ====, {}{}2000.5P Y P Y ====,{}{}{}21110.150.350.5P Y P Y P Y ===-+==+=所以,22(,)X Y 的联合分布及其边缘分布为由上表同理可求得22X Y 的分布律为所以由01-分布的期望值恰为取1时的概率p 得到:2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()(5)【答案】1X -.【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望) 期望 ()()()1x E X xf x dx xe dx θθθ+∞+∞---∞===+⎰⎰样本均值 11ni i X X n ==∑用样本均值估计期望有 EX X =,即 111ni i X n θ=+=∑,解得未知参数θ的矩估计量为 11ˆ11n i i X X n θ==-=-∑.二、选择题 (1)【答案】(B)【详解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有lim ()().x f x f ξξ→= 即有lim[()()]0x f x f ξξ→-=.故选(B).方法2:排除法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩,有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C)与(D)的反例,(1,1]()11xx f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '=(当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B).(2)【答案】(D)【详解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因()min((),())r AB r A r B ≤.当m n >时,有()min((),())r AB r A r B n m ≤≤<.(系数矩阵的秩小于未知数的个数)方程组()0AB x =必有非零解,故应选(D).方法2:B 是n m ⨯矩阵, 当m n >时,,则()r B n =,(系数矩阵的秩小于未知数的个数)方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,故选(D).(3)【答案】(B)【详解】方法1:由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故TA A =.设()1TP APB -=,则111()TTT T T T T B P A P P AP P A P ---===上式左乘1T P-,右乘TP ,得111()()()T T T T T T P BP P P A P P ---=,即1T T A P BP -=,所以 1()T T A P BP ααλα-==两边左乘T P ,得 1()()T T T T P P BP P αλα-=得()T TB P P αλα=根据特征值和特征向量的定义,知1()TB P AP -=的对应于特征值λ的特征向量为T P α,即应选(B).方法2:逐个验算(A),(B),(C),(D)中哪个选项满足,由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故T A A =.设()1TP AP -属于特征值λ的特征向量为ξ,即()1TP APξλξ-=,其中()111TTTT T T P AP P A P P AP ---==对(A),即令1P ξα-=,代入111()TT P AP P P αλα---≠对(B),1()TT T P AP P α-1()TT T P A P P α-=1[())]T T TP A P P α-=TP A α=()T P λα=成立.故应选(B).(4)【答案】C【分析】(i)2χ变量的典型模式是:222212n X X X χ=+++,其中i X 要求满足:i X 相互独立,(0,1)iX N .称2χ为参数为n 的2χ变量.(ii) F 变量的典型模式是:12//X n F Y n =,其中,X Y 要求满足:X 与Y 相互独立,2212(),()Xn Yn χχ,称F 为参数为()12,n n 的F 变量.【详解】方法1:根据题设条件,X 和Y 均服从(0,1)N .故2X 和2Y 都服从2(1)χ分布,答案应选(C).方法2:题设条件只有X 和Y 服从(0,1)N ,没有X 与Y 的相互独立条件.因此,2X 与2Y的独立条件不存在,选(B)、(D)项均不正确.题中条件既没有X 与Y 独立,也没有(,)X Y 正态,这样就不能推出X Y +服从正态分布的选项(A).根据排除法,正确选项必为(C).三【详解】22000003arctan(1)arctan(1)limlim 1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等 22arctan(1)lim32x x t dt x →+⎰洛洛20arctan(1)2lim 3x x x x →+⋅2346ππ=⋅=.四【详解】方法1:用一阶微分形式不变性求全微分.123du f dx f dy f dz '''=++(,)z z x y =由x y z xe ye ze -=所确定,两边求全微分,有()()()()()x y z x y z d xe ye d ze d xe d ye d ze -=⇒-= x x y y z z xe dx e dx ye dy e dy ze dz e dz ⇒+--=+,解出 (1)(1),(10).(1)x y z e x dx e y dydz z e z +-+=+≠+设 所以 du =123(1)(1)(1)x y z e x dx e y dyf dx f dy f e z +-+'''++⨯+1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到z x ∂∂,z y∂∂.由x y zxe ye ze -=两边对x 求偏导数,有 (),x x z z z xe e ze e x∂+=+∂ 得x xz zz xe e x ze e∂+=∂+,(10)z +≠设.类似可得,y y z z z ye e y ze e ∂+=-∂+,代入,u u x y ∂∂∂∂表达式 1323(),()x xy yz zz zu xe e u ye e f f f f x ze e y ze e ∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得du 1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦.五【详解】首先要从2(sin )sin xf x x=求出()f x . 命2sin u x =,则有sin x =x =()f u =(通过换元求出函数的表达式)arcsin ()x f x dxx == sin 2sin cos cos ttt tdt t⎰(换元积分法) sin t tdt =2⎰[]2cossin t t t C=-++(分部积分法)2C ⎡=+⎣.六【分析】旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形绕x 轴旋转一周产生旋转体的体积2()baV f x dx π=⎰.【详解】(1) ()2225142(32)5aV xdx a ππ==-⎰22222420202a V a a x dy a a πππ=-=<<⎰.(2) 54124(32)5V V V a a ππ=+=-+ 根据一元函数最值的求法要求驻点,令34(1)0dVa a daπ=-=, 得1a =. 当01a <<时0dV da >,当12a <<时0dVda<,因此1a =是V 的唯一极值点且是极大值点,所以是V 的最大值点,129max 5V π=.七【解】(1) 369331()113(3)!(3)!nnn x x x x x y x n n ∞==+++++=+∑+!6!9!,由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而 ()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为212[cossin ]22xy e C x C x -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[sin ]3x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022211212111[00]331110(20(2022311223e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-+⎨⎪⎪⎪=-++⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为221cos 323x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211cos ().(3)!323xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在1x 2x 使得1[,]()max ()x a b f x M f x ∈==,2[,]()min ()x a b f x m f x ∈==,满足()m f x M ≤≤.又()0g x >,故根据不等式的性质()()()()mg x f x g x Mg x ≤≤根据定积分的不等式性质有()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰所以 ()().()babaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x dx ⎰与()bag x dx ⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内由连续函数的零点定理知要么()f x h -恒为正,从而根据积分的基本性质得(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,同理得(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九【详解】方法1:对系数矩阵记为A 作初等行变换21311000000n a b b b a b b b b a b b b a a b A bb a b b a a b b b ba b a a b -- -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪ ⎪=→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行当(0)a b =≠时,()1,0r A AX ==的同解方程组为120n x x x +++=,基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…,230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.当a b ≠时,000000ab b b b a a bA b a a bb a a b ⎛⎫⎪-- ⎪ ⎪→-- ⎪⎪⎪--⎝⎭23110010101001a b a b n a b a b bb ---⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行/()行/()行/() 12131(1)000110010101001bb n ba n b-⨯-⨯-⨯+-⎛⎫⎪-⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行行行行行行 当a b ≠且(1)a n b ≠--时,(1)0A a n b =+-≠,(),0r A n AX ==仅有零解. 当(1)a n b =--时,()1,0r A n AX =-=的同解方程组是121310,0,0,n x x x x x x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.方法2:方程组的系数行列式a b b bb a b b A b b abb b ba=(1)(1)2...(1)1(1)a n b b bb a n ba b b n a n b b ab a n b b ba+-+-+-+-把第,,列加到第列111[(1)]11b bb a bb an b b ab b ba +-提取第列的公因子 1210003-1[(1)]000-1000bbb a b an ba bna b--+---第行第行第行第行第行第行1[(1)]()n a n b a b -=+--(1)当a b ≠且(1)a n b ≠--时,0A ≠,()r A n =方程组只有零解. (2)当(0)a b =≠时,a a a a a a a a A a a a a a a aa ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦21000031000010000a a aa n ⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦第行第行第行第行第行第行111100001100000000a ⎡⎤⎢⎥⎢⎥⎢⎥⨯⎢⎥⎢⎥⎢⎥⎣⎦第行 方程组的同解方程组为120n x x x +++=基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…, 230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.(1)当(1)(0)a n b b =--≠时,(1)(1)(1)(1)n bb b bbn b b b A b b n bb b b b n b -⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭1,2,...,11111111111111111n bn n nn ⨯-⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行分别111121003100100n n n n nn n n -⎛⎫-⎪-⎪- ⎪- ⎪ ⎪- ⎪-⎝⎭行行行行行行 111111002,...,101011001n n n -⎛⎫⎪- ⎪ ⎪-⨯⎪ ⎪ ⎪-⎝⎭行分别000011002,...,10101001n ⎛⎫ ⎪-⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭把第行都依次加到第1行 ()1r A n =-,其同解方程组是121310,0,0,n x x x x x x -=⎧⎪-=⎪⎨⎪⎪-=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.十【详解】(1) 设λ是A 的任意特征值,α是A 的属于λ的特征向量,根据特征值、特征向量的定义,有 ,0,A αλαα=≠ ①两边左乘A ,得 2A αA λαλλα==2λα= ②②+2*①得 ()()2222A Aαλλα+=+因220A A +=,0α≠,从而上式()()22220A Aαλλα+=+=,所以有220λλ+=,故A 的特征值λ的取值范围为0,2-.因为A 是实对称矩阵,所以必相似于对角阵Λ,且Λ的主对角线上元素由A 的特征值组成,且()()2r A r =Λ=,故A 的特征值中有且只有一个0.(若没有0,则222-⎡⎤⎢⎥Λ=-⎢⎥⎢⎥-⎣⎦,故()()3r A r =Λ=与已知矛盾;若有两个0,则200-⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()1r A r =Λ=与已知矛盾;若三个全为0,则000⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()0r A r =Λ=与已知矛盾). 故220A -⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦即A 有特征值1232,0λλλ==-=.(2)A kE +是实对称矩阵,A 有特征值1232,0λλλ==-=,知A kE +的特征值为2,2,k k k --.因为矩阵正定的充要条件是它的所有的特征值均大于零,故A kE +正定200k k ->⎧⇔⎨>⎩2k k >⎧⇔⎨>⎩2k ⇔> 故2k >时A kE +是正定矩阵.十一【分析】(,)X Y 有四个可能值,可以逐个求出.在计算过程中要注意到取值与U 的值有关.U 的分布为均匀分布,计算概率不用积分都行,可以直接看所占区间的长度比例即可.【详解】(,)X Y 只有四个可能值(1,1),(1,1),(1,1)(1,1)----和.依照题意,有{}{}{}1(2)11,11,11;2(2)4P X Y P U U P U ---=-=-=≤-≤=≤-==--{}{}{}1,11,10;P X Y P U U P =-==≤->=∅= {}{}{}11,11,111;2P X Y P U U P U ==-=>-≤=-<≤={}{}{}11,11,11.4P X Y P U U P U ===>->=>=于是,(,)X Y 分布为(2) 因为22()()[()]D X Y E X Y E X Y +=+-+,所以我们应该知道X Y +和2()X Y +的分布律.对离散型随机变量,X Y +的取值可能有2,0,2;-2()X Y +的取值可能有0和4;{}{}121,1,4P X Y P X Y +=-==-=-={}{}{}1101,11,10,22P X Y P X Y P X Y +====-+=-==+= {}{}121,1,4P X Y P X Y +=====(){}{}2100,2P X Y P X Y +==+==(){}{}{}214222P X Y P X Y P X Y +==+=-++==.X Y +和2()X Y +的分布律分别为和所以由离散型随机变量的数学期望计算公式有:{}1()nk k k E X x P X x ==⋅=∑所以有,2224()0,()2442E X Y E X Y +=-+=+==. 22()()[()]2D X Y E X Y E X Y +=+-+=十二【详解】首先找出随机变量Y 的表达式. Y 由X 和2(小时)来确定,所以min(,2)Y X =.指数分布的X 的分布参数为 11,()5E X λ==其密度函数为:1510()500x X ex f x x -⎧>⎪=⎨⎪≤⎩其中0λ>是参数由分布函数的定义:{}{}()min(,2)F y P Y y P X y =≤=≤(1) 当0y <时,()0Y F y =(因为{}min ,2Y X =,其中X 和2都大于0,那么小于0是不可能事件)(2) 当2y ≥时,()1Y F y =(因为{}min ,2Y X =最大也就取到2,所以小于等于2是一定发生的,是必然事件)(3) 当02y ≤<时, {}{}{}()min(,2)F y P Y y P X y P X y =≤=≤=≤115501()15x y yyX f x dx e dx e ---∞===-⎰⎰所以1500()10212y Y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。

2002年考研数学(三)真题及详细解析

2002年考研数学(三)真题及详细解析

2002 年全国硕士研究生入学统一考试数学三试题及解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) ⑴ 设常数12a ≠,则21lim ln[]________(12)n n n na n a →∞-+=-. 【分析】将所求极限转换为1ln[1](12)lim1n n a n→∞+-,利用等价无穷小代换化简求解,或利用重要极限。

【详解】法一:11ln[1]211(12)(12)lim ln[]limlim 11(12)12nn n n n na n a n a n a an n→∞→∞→∞+-+--===-- 法二:11(12)12122111lim ln[]lim ln[1]lim ln (12)(12)12n a n aa n n n n na e n a n a a-⨯--→∞→∞→∞-+=+==---⑵ 交换积分次序:111422104(,)(,)________yyydy f x y dx dy f x y dx +=⎰⎰⎰⎰.【分析】写出对应的二重积分积分域D 的不等式,画出D 的草图后,便可写出先对y 后对x 的二次积分【详解】对应的积分区域12D D D =+,其中11(,)0,4D x y y y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭2111(,),422D x y y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭画出D 的草图如右图所示,则D 也可表示为 21(,)0,2D x y x x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭故211114222104(,)(,)(,)yxyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰⑶ 设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量(,1,1)Ta α=。

已知A α与α线性相关,则______a =。

【分析】由A α与α线性相关知,存在常数k 使得A k αα=,及对应坐标成比例,由此求出a【详解】由于122212123304134a a A a a α-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦由A α与α线性相关可得:233411a a a a ++==,从而1a =-。

考研数学一真题解析 2002

考研数学一真题解析 2002

2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.【考点分析】:第一类广义积分的计算 【基础回顾】:第一类:无穷区间上的反常积分第二类:无界函数的反常积分【求解过程】:2211ln 1ln ln ln ee edx d x x x x x +∞+∞+∞⎡⎤==-=⎢⎥⎣⎦⎰⎰ 【方法小结】:对广义积分的计算,可引入定积分的所有有效方法,只是注意积分上下限的代入,实质是极限的运算。

(2)已知2e 610y xy x ++-=,则(0)y ''=_____________.【考点分析】:隐函数求导 【基础回顾】:在假定隐函数存在且可导的前提下,我们可以利用复合函数的求导的链式法则求出它的导数。

若方程(,)0F x y =确定了隐函数()y y x =,则将()y y x =代入原方程,方程成为恒等式(,())0F x y x =,在恒等式的两边对X 求导。

注意到左端是以X 为自变量的复合函数,便可以得到我们所要求的导数。

【求解过程】:注意方程中Y 为关于X 的函数,利用链式法则可以得到方程2610ye xy x ++-=两边对x 求导数,有:6620y y e xy y x ''+++=①再对上式两边求导数得:()212620y y y e y e y xy ''''''++++=②将x=0代入方程得y=0,再将x=y=0代入①得0y '=,再代入②得()02y ''=-,故填-2(3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. 【考点分析】:可降阶的二阶微分方程的特解 【基础回顾】:三类可降解的高阶微分方程1.()()n y f x =型,逐层积分2.(,)y f y y '''=型,不含X 自变量,作代换(),dp dp dy dpy p y y pdx dy dx dy '''==== 3.(,)y f x y '''=型,不含Y 因变量,作代换(),dp y p y y dx'''==【求解过程】:⏹ 方法一:该微分方程属于缺x 的类型,令y p '=,dp dp dy dp y p dxdy dxdy''==⋅=原方程20yy y '''+=化为20dp ypp dy +=,得0p =或0dpy p dy+=。

2002年考研数学一真题及答案详解

2002年考研数学一真题及答案详解

(2)【分析】
1 1 0, 不妨认为 n, un 0, 因而所考虑级数是交错级数 ,但不能保证 的单 n u un n
lim
调性. 按定义考察部分和
Sn (1) k 1 (
k 1 n n n 1 1 1 1 ) (1) k 1 (1) k 1 uk uk 1 uk k 1 uk 1 k 1

1 1 1 发散 ( ) 发散.因此选(C). un 1 n 1 un n 1 n

(3)【分析】 理,
证明 (B) 对: 反证法 . 假设 lim f ( x) a 0 ,则由拉格朗日中值定
x
f (2 x) f ( x) f '( ) x ( x )
dP dy 0, P y
积分得
ln P ln y C ', 即 P
C1 ( P 0 对应 C1 0 ); y
1 1 由 x 0 时 y 1, P y ' , 得 C1 . 于是 2 2
y' P 1 , 2 ydy dx, 积分得 y 2 x C2 . 2y
af (h) bf (2h) f (0) o(h) ,试求 a , b 的值.
四、(本题满分 7 分) 已知两曲线 y f ( x) 与 y 求极限 lim nf ( ) .
n

arctan x 0
et dt 在点 (0, 0) 处的切线相同.求此切线的方程,并
2
2 n
五、(本题满分 7 分) 计算二重积分
(5)设随机变量 X ~ N ( , 2 ) ,且二次方程 y 2 4 y X 0 无实根的概率为 0.5,则 =_____________. 二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个 符合题目要求,把所选项前的字母填在题后的括号内) (1)考虑二元函数 f ( x, y ) 的四条性质: ① f ( x, y ) 在点 ( x0 , y0 ) 处连续, ② f ( x, y ) 在点 ( x0 , y0 ) 处的一阶偏导数连续, ③ f ( x, y ) 在点 ( x0 , y0 ) 处可微, ④ f ( x, y ) 在点 ( x0 , y0 ) 处的一阶偏导数存在. 则有: (A)② ③ ① (C)③ ④ ① (B)③ ② ① (D)③ ① ④

2002考研数学一真题及答案解析

2002考研数学一真题及答案解析

2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)⎰∞+exx dx2ln =.(2)已知函数()y y x =由方程0162=-++x xy e y 确定,则(0)y ''=. (3)微分方程02='+''y y y 满足初始条件0011,'2x x yy ====的特解是.(4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换x Py =可化成标准型216y f =,则a =.(5)设随机变量X 服从正态分布2(,)(0)N μσσ>,且二次方程042=++X y y 无实根的概率为12,则μ= .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)考虑二元函数),(y x f 的下面4条性质: ①),(y x f 在点),(00y x 处连续; ②),(y x f 在点),(00y x 处的两个偏导数连续; ③),(y x f 在点),(00y x 处可微;④),(y x f 在点),(00y x 处的两个偏导数存在.若用“P Q ⇒”表示可由性质P 推出性质Q ,则有(A ) ②⇒③⇒①. (B ) ③⇒②⇒①. (C ) ③⇒④⇒①.(D ) ③⇒①⇒④.(2)设0(1,2,3,)n u n ≠=L ,且lim1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑ (A ) 发散. (B ) 绝对收敛.(C ) 条件收敛.(D ) 收敛性根据所给条件不能判定.(3)设函数()y f x =在(0,)+∞内有界且可导,则 (A ) 当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x .(B ) 当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x .(C ) 当0lim ()0x f x +→=时,必有0lim ()0x f x +→'=. (D ) 当0lim ()x f x +→'存在时,必有0lim ()0x f x +→'=.(4)设有三张不同平面的方程123i i i i a x a y a z b ++=,3,2,1=i ,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则(A ) 1()f x +2()f x 必为某一随机变量的概率密度. (B ) 1()f x 2()f x 必为某一随机变量的概率密度. (C ) 1()F x +2()F x 必为某一随机变量的分布函数. (D ) 1()F x 2()F x 必为某一随机变量的分布函数.三、(本题满分6分) 设函数)(x f 在0x =的某邻域内具有一阶连续导数,且(0)0,(0)0f f '≠≠,若()(2)(0)af h bf h f +-在0→h 时是比h 高阶的无穷小,试确定b a ,的值.四、(本题满分7分) 已知两曲线)(x f y =与⎰-=x t dt e yarctan 02在点(0,0)处的切线相同,写出此切线方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分dxdy e Dy x⎰⎰},max{22,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,其起点为(b a ,),终点为(d c ,).记2221[1()][()1],L xI y f xy dx y f xy dy y y=++-⎰(1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数333369()1()3!6!9!(3)!nx x y x x n =++++++-∞<<+∞L L 满足微分方程x e y y y =+'+'';(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为2{(,)|D x y x =275}y xy +-≤,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(00y x g ,试写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一上山坡最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵),,,(4321αααα=A ,4321,,,αααα均为4维列向量,其中432,,ααα线性无关,3212ααα-=,如果4321ααααβ+++=,求线性方程组β=Ax 的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分) 设维随机变量X 的概率密度为10,cos ,()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他.对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分)其中1(0)2θθ<<是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值.2002年考研数学一试题答案与解析一、填空题 (1)【分析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得20dP yPP dy +=,即0dP y P dy+=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得0,dP dy P y+= 积分得ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',2y P y ===得11.2C =于是又由01x y==得21,C =所求特解为y =(4)【分析】 因为二次型Tx Ax 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因iiia λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=>4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】 由1lim 101n n un n →+∞=>⇒充分大时即,N n N ∃>时10n u >,且1lim 0,n nu →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1nu 的单调性. 按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n nn u u ∞=++∑.注意111112,11n n n n u u n n n u u n n++++=+⋅→+ 11n n ∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C ).(3)【分析】 证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M -≤+≤矛盾(()).f x M ≤(4)【分析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞ 12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ).进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-=(2)'(0)0,a b f =+=及(0)0f '≠,则有20a b +=. 综上,得2, 1.a b ==-四、【解】 由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得五、【分析与求解】 D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥U I I⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)221102 1.x xxe dx e e ===-⎰六、【分析与求解】(1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y =+⎰. ⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==-七、【证明】 与书上解答略有不同,参见数三2002第七题(1)因为幂级数3693()13!6!9!(3)!nx x x x y x n =++++++L L的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-L L ,4732''()4!7!(32)!n x x x y x x n -=+++++-L L ,所以2'''12!!nx x x y y y x e n ++=+++++=L L ()x -∞<+∞.(2)与'''xy y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,2122λ=-±.因此齐次微分方程的通解为212(cossin )22x Y eC x C x -=+. 设非齐次微分方程的特解为xy Ae *=,将y *代入方程'''xy y y e ++=可得13A =,即有13x y e *=.于是,方程通解为2121(cossin )223xx y Y y eC x C x e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.223y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-++⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()33x x y x e x e -=+()x -∞<+∞八、【分析与求解】(1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h h h x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750x y xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点. 这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有22108(2)0,108(2)0,750.Lx y x y x Ly x y x y L x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩ 解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=m 若2,λ=-由①或②均得y x =,代入③式得275x =即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ----现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ====因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T-再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】 (1)若,A B 相似,那么存在可逆矩阵P ,使1,P AP B -=故111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλL 则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O B也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O 即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦O 于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二、【解】 22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=- θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得θ=1,2θ=>不合题意). 于是θ的最大似然估计值为ˆθ=。

2002考研数学三真题及超详细答案解析

2002考研数学三真题及超详细答案解析

2002年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】112a- 【详解】ln “”里面为1∞“”型,通过凑成重要极限形式来求极限, 1(12)12211limln limln 1(12)(12)nn a an n n na n a n a -⋅-→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--.(2)【答案】2120(,)xxdx f x y dy ⎰⎰【详解】画出与原题中二次积分的限所对应的积分区域1D 与2D ,将它们的并集记为D . 于是111422104(,)(,)yydy f x y dx dy f x y dx +⎰⎰⎰(,)Df x y d σ=⎰⎰.再将后者根据积分定义化为如下形式,即2102x y x x →→从,从,所以2120(,)(,).xxDf x y d dx f x y dy σ=⎰⎰⎰⎰(3)【答案】1- 【详解】122212123,304134a a A a a α-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+ ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由于A α与α线性相关,(两个非零向量线性相关,则对应分量成比例),所以有233411a a aa++==,得2334, 1.a a a+=+=-或,(0)A k kαα=≠(两个非零向量线性相关,则其中一个可以由另一个线性表出)即231341a aa ka⎛⎫⎛⎫⎪ ⎪+=⎪ ⎪⎪ ⎪+⎝⎭⎝⎭,得2334a kaa ka k=⎧⎪+=⎨⎪+=⎩,得 1.(1)a k=-=(4)【答案】0.02-.【详解】2X、2Y和2X2Y都是01-分布,而01-分布的期望值恰为取1时的概率p.由离散型随机变量X和Y的联合概率分布表可得2X的可能取值为0和1,且2Y的可能取值也为0和1,且X和Y的边缘分布为{}00.070.180.150.4P X==++=;{}10.080.320.200.6P X==++=;{}10.070.080.15P Y=-=+=;{}00.180.320.5P Y==+=;{}10.150.200.35P Y==+=;故有{}{}220,00,00.18,P X Y P X Y======{}{}{}220,10,10,10.070.150.22, P X Y P X Y P X Y=====-+===+= {}{}221,01,00.32,P X Y P X Y======{}{}{}221,11,11,10.080.200.28, P X Y P X Y P X Y=====-+===+=而边缘分布律:{}{}2000.4P X P X====,{}{}2110.6P X P X====,{}{}2000.5P Y P Y====,{}{}{}21110.150.350.5P Y P Y P Y===-+==+=所以,22(,)X Y的联合分布及其边缘分布为由上表同理可求得22X Y 的分布律为所以由01-分布的期望值恰为取1时的概率p 得到:2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()(5)【答案】1X -.【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望) 期望 ()()()1x E X xf x dx xe dx θθθ+∞+∞---∞===+⎰⎰样本均值 11ni i X X n ==∑用样本均值估计期望有 EX X =,即 111ni i X n θ=+=∑,解得未知参数θ的矩估计量为 11ˆ11n i i X X n θ==-=-∑.二、选择题 (1)【答案】(B)【详解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有lim ()().x f x f ξξ→= 即有lim[()()]0x f x f ξξ→-=.故选(B).方法2:排除法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩,有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C)与(D)的反例,(1,1]()11x x f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '= (当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B).(2)【答案】(D)【详解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因()min((),())r AB r A r B ≤.当m n >时,有()min((),())r AB r A r B n m ≤≤<.(系数矩阵的秩小于未知数的个数)方程组()0AB x =必有非零解,故应选(D).方法2:B 是n m ⨯矩阵, 当m n >时,,则()r B n =,(系数矩阵的秩小于未知数的个数)方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,故选(D).(3)【答案】(B) 【详解】方法1:由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故TA A =.设()1TP APB -=,则111()TTT T T T T B P A P P AP P A P ---===上式左乘1T P-,右乘TP ,得111()()()T T T T T T P BP P P A P P ---=,即1T T A P BP -=,所以 1()T T A P BP ααλα-==两边左乘TP ,得 1()()T T T T P P BP P αλα-=得()T TB P P αλα=根据特征值和特征向量的定义,知1()TB P AP -=的对应于特征值λ的特征向量为T P α,即应选(B).方法2:逐个验算(A),(B),(C),(D)中哪个选项满足,由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故TA A =.设()1TP AP-属于特征值λ的特征向量为ξ,即()1TP APξλξ-=,其中()111TTTT T T P AP P A P P AP ---==对(A),即令1P ξα-=,代入111()TT P AP P P αλα---≠对(B),1()TT T P AP P α-1()TT T P A P P α-=1[())]T T TP A P P α-=TP A α=()T P λα=成立.故应选(B).(4)【答案】C【分析】(i)2χ变量的典型模式是:222212n X X X χ=+++,其中i X 要求满足:i X 相互独立,(0,1)iX N .称2χ为参数为n 的2χ变量.(ii) F 变量的典型模式是:12//X n F Y n =,其中,X Y 要求满足:X 与Y 相互独立,2212(),()Xn Yn χχ,称F 为参数为()12,n n 的F 变量.【详解】方法1:根据题设条件,X 和Y 均服从(0,1)N .故2X 和2Y 都服从2(1)χ分布,答案应选(C).方法2:题设条件只有X 和Y 服从(0,1)N ,没有X 与Y 的相互独立条件.因此,2X 与2Y的独立条件不存在,选(B)、(D)项均不正确.题中条件既没有X 与Y 独立,也没有(,)X Y 正态,这样就不能推出X Y +服从正态分布的选项(A).根据排除法,正确选项必为(C).三【详解】22000003arctan(1)arctan(1)limlim 1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等 22arctan(1)lim32x x t dt x →+⎰洛洛20arctan(1)2lim 3x x x x →+⋅2346ππ=⋅=.四【详解】方法1:用一阶微分形式不变性求全微分.123du f dx f dy f dz '''=++(,)z z x y =由x y z xe ye ze -=所确定,两边求全微分,有()()()()()x y z x y z d xe ye d ze d xe d ye d ze -=⇒-=x x y y z z xe dx e dx ye dy e dy ze dz e dz ⇒+--=+,解出 (1)(1),(10).(1)x y ze x dx e y dydz z e z +-+=+≠+设 所以 du =123(1)(1)(1)x y z e x dx e y dyf dx f dy f e z +-+'''++⨯+1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到z x ∂∂,z y∂∂.由x y zxe ye ze -=两边对x 求偏导数,有 (),x x z z z xe e ze e x∂+=+∂ 得x xz zz xe e x ze e ∂+=∂+,(10)z +≠设.类似可得,y y z z z ye e y ze e ∂+=-∂+,代入,u u x y ∂∂∂∂表达式 1323(),()x xy yz z z z u xe e u ye e f f f f x ze ey ze e∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得 du 1323(1)(1)(1)(1)x y z ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦.五【详解】首先要从2(sin )sin xf x x=求出()f x .命2sin u x =,则有sin x =x =()f u=(通过换元求出函数的表达式)arcsin ()x f x dx x ==sin 2sin cos cos ttt tdt t⎰(换元积分法)sin t tdt =2⎰[]2cos sin t t t C =-++(分部积分法)2C ⎡=+⎣.六【分析】旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形绕x 轴旋转一周产生旋转体的体积2()baV f x dx π=⎰.【详解】(1) ()2225142(32)5aV xdx a ππ==-⎰22222420202a V a a x dy a a πππ=-=<<⎰.(2) 54124(32)5V V V a a ππ=+=-+ 根据一元函数最值的求法要求驻点,令34(1)0dVa a daπ=-=, 得1a = . 当01a <<时0dV da >,当12a <<时0dVda<,因此1a =是V 的唯一极值点且是极大值点,所以是V 的最大值点,129max 5V π=.七【解】(1) 369331()113(3)!(3)!nnn x x x x x y x n n ∞==+++++=+∑+!6!9!,由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而 ()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为122-±,所以其通解为212[cossin ]22xy e C x C x -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[cossin ]223x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022*********[cos 0sin 0]22331110(20(2022222231123e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-⨯+⎨⎪⎪⎪=-+⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为221cos 323x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211cos ().(3)!323xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在1x 2x 使得1[,]()max ()x a b f x M f x ∈==,2[,]()min ()x a b f x m f x ∈==,满足()m f x M ≤≤.又()0g x >,故根据不等式的性质()()()()mg x f x g x Mg x ≤≤根据定积分的不等式性质有()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰所以 ()().()babaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x dx ⎰与()bag x dx ⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内由连续函数的零点定理知要么()f x h -恒为正,从而根据积分的基本性质得(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,同理得(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九【详解】方法1:对系数矩阵记为A 作初等行变换21311000000n a b b b a b b b b a b b b a a b A bb a b b a a b b b ba b a a b -- -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪ ⎪=→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行当(0)a b =≠时,()1,0r A AX ==的同解方程组为120n x x x +++=,基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…,230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.当a b ≠时,000000ab b b b a a bA b a a bb a a b ⎛⎫⎪-- ⎪ ⎪→-- ⎪⎪⎪--⎝⎭23110010101001a b a b n a b a b bb ---⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行/()行/()行/() 12131(1)000110010101001bb n ba n b-⨯-⨯-⨯+-⎛⎫⎪-⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行行行行行行 当a b ≠且(1)a n b ≠--时,(1)0A a n b =+-≠,(),0r A n AX ==仅有零解.当(1)a n b =--时,()1,0r A n AX =-=的同解方程组是121310,0,0,n x x x x x x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.方法2:方程组的系数行列式a b b bb a b b A b b abb b ba=(1)(1)2...(1)1(1)a n b b bb a n b ab b n a n b b ab a n b b b a+-+-+-+-把第,,列加到第列111[(1)]11b bb a bba nb b ab b ba +-提取第列的公因子 1210003-1[(1)]000-1000bbb a b a n b a bn a b--+---第行第行第行第行第行第行1[(1)]()n a n b a b -=+--(1)当a b ≠且(1)a n b ≠--时,0A ≠,()r A n =方程组只有零解. (2)当(0)a b =≠时,a a a a a a aa A a a a a aa aa ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦21000031000010000a a aa n ⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦第行第行第行第行第行第行111100001100000000a ⎡⎤⎢⎥⎢⎥⎢⎥⨯⎢⎥⎢⎥⎢⎥⎣⎦第行方程组的同解方程组为120n x x x +++=基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…, 230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.(1)当(1)(0)a n b b =--≠时,(1)(1)(1)(1)n bb b bbn b b b A b b n bb b b b n b -⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭1,2,...,11111111111111111n b n n nn ⨯-⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行分别111121003100100n n n n nn n n -⎛⎫-⎪- ⎪- ⎪- ⎪ ⎪- ⎪-⎝⎭行行行行行行 111111002,...,101011001n n n -⎛⎫⎪- ⎪ ⎪-⨯⎪ ⎪ ⎪-⎝⎭行分别000011002,...,10101001n ⎛⎫ ⎪- ⎪ ⎪- ⎪⎪ ⎪-⎝⎭把第行都依次加到第1行 ()1r A n =-,其同解方程组是121310,0,0,n x x x x x x -=⎧⎪-=⎪⎨⎪⎪-=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.十【详解】(1) 设λ是A 的任意特征值,α是A 的属于λ的特征向量,根据特征值、特征向量的定义,有 ,0,A αλαα=≠ ①两边左乘A ,得 2A αA λαλλα==2λα= ②②+2*①得 ()()2222A Aαλλα+=+因220A A +=,0α≠,从而上式()()22220A Aαλλα+=+=,所以有220λλ+=,故A 的特征值λ的取值范围为0,2-.因为A 是实对称矩阵,所以必相似于对角阵Λ,且Λ的主对角线上元素由A 的特征值组成,且()()2r A r =Λ=,故A 的特征值中有且只有一个0.(若没有0,则222-⎡⎤⎢⎥Λ=-⎢⎥⎢⎥-⎣⎦,故()()3r A r =Λ=与已知矛盾;若有两个0,则200-⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()1r A r =Λ=与已知矛盾;若三个全为0,则000⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()0r A r =Λ=与已知矛盾). 故220A -⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦即A 有特征值1232,0λλλ==-=.(2)A kE +是实对称矩阵,A 有特征值1232,0λλλ==-=,知A kE +的特征值为2,2,k k k --.因为矩阵正定的充要条件是它的所有的特征值均大于零,故A kE +正定200k k ->⎧⇔⎨>⎩2k k >⎧⇔⎨>⎩2k ⇔> 故2k >时A kE +是正定矩阵.十一【分析】(,)X Y 有四个可能值,可以逐个求出.在计算过程中要注意到取值与U 的值有关.U 的分布为均匀分布,计算概率不用积分都行,可以直接看所占区间的长度比例即可.【详解】(,)X Y 只有四个可能值(1,1),(1,1),(1,1)(1,1)----和.依照题意,有{}{}{}1(2)11,11,11;2(2)4P X Y P U U P U ---=-=-=≤-≤=≤-==--{}{}{}1,11,10;P X Y P U U P =-==≤->=∅= {}{}{}11,11,111;2P X Y P U U P U ==-=>-≤=-<≤={}{}{}11,11,11.4P X Y P U U P U ===>->=>=于是,(,)X Y 分布为(2) 因为22()()[()]D X Y E X Y E X Y +=+-+,所以我们应该知道X Y +和2()X Y +的分布律.对离散型随机变量,X Y +的取值可能有2,0,2;-2()X Y +的取值可能有0和4;{}{}121,1,4P X Y P X Y +=-==-=-={}{}{}1101,11,10,22P X Y P X Y P X Y +====-+=-==+= {}{}121,1,4P X Y P X Y +=====(){}{}2100,2P X Y P X Y +==+==(){}{}{}214222P X Y P X Y P X Y +==+=-++==.X Y +和2()X Y +的分布律分别为和所以由离散型随机变量的数学期望计算公式有:{}1()nk k k E X x P X x ==⋅=∑所以有,2224()0,()2442E X Y E X Y +=-+=+==. 22()()[()]2D X Y E X Y E X Y +=+-+=十二【详解】首先找出随机变量Y 的表达式. Y 由X 和2(小时)来确定,所以min(,2)Y X =.指数分布的X 的分布参数为 11,()5E X λ==其密度函数为: 1510()500x X ex f x x -⎧>⎪=⎨⎪≤⎩其中0λ>是参数由分布函数的定义:{}{}()min(,2)F y P Y y P X y =≤=≤(1) 当0y <时,()0Y F y =(因为{}min ,2Y X =,其中X 和2都大于0,那么小于0是不可能事件)(2) 当2y ≥时,()1Y F y =(因为{}min ,2Y X =最大也就取到2,所以小于等于2是一定发生的,是必然事件)(3) 当02y ≤<时, {}{}{}()min(,2)F y P Y y P X y P X y =≤=≤=≤115501()15x y yyX f x dx e dx e ---∞===-⎰⎰所以1500()10212y Y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。

考研数学免费资料大全

考研数学免费资料大全

考研数学高等数学复习资料汇总[考研数学][高等数学]2007年新东方考研数学基础班-高等数学-汪诚义[考研数学][高等数学]2007年新东方考研数学强化班-高等数学-汪诚义[考研数学][高等数学]陈文灯高数习题答案(新)[考研数学][高等数学]2008年考研-高数春季班讲义第一讲[考研数学][高等数学]2008年考研-高数春季班讲义第二讲[考研数学][高等数学]2008年考研-高数春季班讲义第三讲[考研数学][高等数学]考研高数数学公式_新排版[考研数学][高等数学]08考研数学全程规划(音频)-高数和微积分[考研数学][高等数学]同濟五版高数课本与答案[考研数学][高等数学]高数公式概率公式数学重点、难点归纳辅导[考研数学][高等数学]高数、线性、概率课后答案完整版[考研数学][高等数学]考研数学真题近十年考题路线分析(高数部分)[考研数学][高等数学]考研数学]2008高等数学复习--函数专题[考研数学][高等数学]清华基础班讲义(全)-高等数学部分[考研数学][高等数学]2007版--高等数学(强化)课程电子版教材1-2[考研数学][高等数学]高等数学简明公式[考研数学][高等数学]高等数学各部分常见的题型[考研数学][高等数学]高等数学知识点[考研数学][高等数学]考研数学高等数学部分公式手册[考研数学][高等数学]考研高等数学重点复习与典型题型[考研数学][高等数学]新东方在线考研数学基础班--高等数学讲义[考研数学][高等数学]2008陈文灯考研数学复习指南习题详解(理工)--高等数学[考研数学][高等数学]高等数学公式手册[考研数学][高等数学]《高等数学总复习图册》正文[考研数学][高等数学]龚冬保:高等数学典型题解法•技巧•注释(第2版)[考研数学][高等数学]高等数学试题精选与解答(蔡高厅)[考研数学][高等数学]高等数学基础知识网络图章[考研数学][高等数学]高等数学典型题解法•技巧•注释(龚冬保)[考研数学][高等数学]考研讲义-高等数学[考研数学][高等数学]李大华:高等数学、线性代数1200题[考研数学][高等数学]考研数学高等数学部分复习注意事项[考研数学][高等数学]高等数学二重积分专题[考研数学][高等数学]中值定理总结[考研数学][高等数学]实用三角函数公式总表[考研数学][高等数学]2007考研数学真题评析(水木版)-数一至数四全[考研数学][高等数学]高等数学易错、易忘、易漏问题备忘录[考研数学][高等数学]泰勒公式的应用[考研数学][高等数学]2008高等数学复习--函数专题[考研数学][高等数学]循环递推法积分计算[考研数学][高等数学]洛必达法则失效的种种情况及处理方法[考研数学][高等数学]求极限的方法和技巧[考研数学][高等数学]三角公式大全[考研数学][高等数学]三次函数图象性质的研究和应用[考研数学]考研数学线性代数复习资料汇总[考研数学][线性代数]2007年新东方考研数学强化班-线性代数-尤承业[考研数学][线性代数]2007年新东方考研数学基础班-线性代数-尤承业[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]08考研数学全程规划(音频)-线代[考研数学][线性代数]经济类数学——线代各章节复习题目及解答WORD[考研数学][线性代数]2008陈文灯考研数学复习指南习题详解(理工)--线代[考研数学][线性代数]李永乐线代辅导班冲刺笔记[考研数学][线性代数]考研数学真题近十年考题路线图(线代部分)[考研数学][线性代数]线性代数强化阶段的的复习方法[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]2008考研数学-线性代数全攻略-张跃辉[考研数学][线性代数]线性代数复习指导[考研数学][线性代数]考研数学2008版--线性代数(2008强化) 课程电子版教材[考研数学][线性代数]2008考研数学线性代数辅导讲义(李永乐)[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学][线性代数]线性代数知识网络图[考研数学][线性代数]2008年线性代数必考的知识点[考研数学][线性代数]2007版--线性代数(07强化)课程[考研数学][线性代数]2008考研数学基础班线性代数-曾祥金[考研数学][线性代数]线性代数超强总结[考研数学][线性代数]线性代数知识点[考研数学][线性代数]2008年考研-线性代数春季班讲义[考研数学][线性代数]李大华:高等数学、线性代数1200题[考研数学][线性代数]备考MBA联考线性代数冲关60题[考研数学]考研数学概率统计复习资料汇总[考研数学][概率统计]概率统计课本[浙三版][考研数学][概率统计]概率统计习题答案[浙三版][考研数学][概率统计]考研数学2008版--概率论与数理统计(2008强化)课程电子版教材[考研数学][概率统计]视频点睛习题详细解答(概率)[考研数学][概率统计]2008陈文灯考研数学复习指南习题详解(理工)--概率WORD [考研数学][概率统计]经济类数学——概率各章节复习题目及解答WORD[考研数学][概率统计]浙大概率习题全解[考研数学][概率统计]高数,线性,概率课后答案完整版[考研数学][概率统计]概率论与数理统计辅导讲义(主编:龚兆仁)[考研数学][概率统计]高数公式概率公式数学重点、难点归纳辅导[考研数学][概率统计]2007年新东方考研数学基础班-概率统计-费允杰[考研数学][概率统计]2007年新东方考研数学强化班-概率统计-费允杰[考研数学][概率统计]概率公式整理[考研数学][概率统计]概率统计知识点[考研数学][概率统计]2006年考研数学概率论基础笔记大全[考研数学][概率统计]概率与数理统计问题集[考研数学][概率统计]概率论与数理统计解题的九种思维定势[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵pdf[考研数学][概率统计]文都教育-2008考研数学强化班概率讲义-曹显兵word[考研数学]考研数学历年真题复习资料汇总[考研数学][历年真题]2007考研数学真题评析(水木版)-数一至数四全[考研数学][历年真题]2006年硕士研究生入学统一考试数学一试题及答案[考研数学][历年真题]数一2005年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2004年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2003年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2002年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2001年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一2000年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1999年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1998年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1997年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1996年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数一1995年全国硕士研究生入学统一考试数学一试题详解及评析[考研数学][历年真题]数二2006年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2005年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2004年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2003年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2002年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2001年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二2000年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1999全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1998年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1997年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1996年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数二1995年全国硕士研究生入学统一考试数学二试题详解及评析[考研数学][历年真题]数三2006年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2005年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2004年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2003年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2002年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2001年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三2000年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1999年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1998年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1997年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1996年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数三1995年全国硕士研究生入学统一考试数学三试题详解及评析[考研数学][历年真题]数四2007年全国硕士研究生入学考试数学四参考答案[考研数学][历年真题]数四2006年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2005年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2004年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2003年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2002年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2001年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四2000年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1999年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1998年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1997年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1996年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学][历年真题]数四1995年全国硕士研究生入学统一考试数学四试题详解及评析[考研数学]考研数学综合复习复习资料汇总[考研数学][综合复习]2008年考研大纲、大纲解析、考试分析电子书下载全集[英语、政治、数学][考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试分析[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数一和数二)[考研数学][综合复习]2008年全国硕士研究生入学统一考试-数学考试大纲解析(数三和数四)[考研数学][综合复习]2008年李永乐、李正元考研数学全真模拟经典400题(理工类数学一)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(理工类数学二)[考研数学][综合复习]2008李永乐、李正元考研数学全真模拟经典400题(经济类数学三)[考研数学][综合复习]2008年陈文件灯、黄先开、曹显兵考研数学复习指南(经济类)[考研数学][综合复习]08年考研数学考试大纲变化解析与复习建议[考研数学][综合复习]2007年数学考试大纲(一、二、三、四)[考研数学][综合复习]陈文登考研数学辅导书(附详细答案)[考研数学][综合复习]经济数学四轮学习方略[考研数学][综合复习]文都考研数学公式手册[考研数学][综合复习]备考辅导:2008年考研数学三大纲变化对比分析[考研数学][综合复习]考研数学重点及难点归纳辅导笔记[考研数学][综合复习]2008考研数学复习指南100问专题串讲经济类.pdf[考研数学][综合复习]考研数学公式(整理版)[考研数学][综合复习]考研数学高等数学部分公式手册[考研数学][综合复习]李永乐冲刺笔记(网友整理版)[考研数学][综合复习]2007年考研数学轻巧手册(经济类)_陈文灯等[考研数学][综合复习]水木艾迪考研数学三十六计[考研数学][综合复习]陈文灯解读数学大纲:新增泰勒公式考点[考研数学][综合复习]考研数学复习过程中六大禁忌列举[考研数学][综合复习]数学复习多思考的复习事半功倍[考研数学][综合复习]陈文灯:数学复习应注意若干要点[考研数学][综合复习]数学考研讲义(完全版)[考研数学][综合复习]考研数学36技150杀伤力(考研凯旋营提供)[考研数学][综合复习]考研宝典——试题精粹之数学[考研数学][综合复习]高等数学试题精选与解答(蔡高厅)[考研数学][综合复习]数学符号和公式的英语读法[考研数学][综合复习]考研数学函数图像大全(1)[考研数学][综合复习]考研数学函数图像大全(2)[考研数学][综合复习]2008年考研公共课备考:数学首轮复习注意事项[考研数学][综合复习]2007考研数学考前必做三套题(附详细解答)[考研数学][综合复习]陈文登考研数学轻巧手册2008经济类(全)[考研数学][综合复习]陈文灯李永乐两位数学权威对08年数学大纲的分析[考研数学][综合复习]陈文灯数学提高班例题[考研数学][综合复习]清华大学谈08考研—考研数学要走对路找对点[考研数学][综合复习]08数学必过-考研数学重点及难点归纳辅导笔记下载[考研数学][综合复习]海天名师郝海龙权威解析2008年考研数学大纲[考研数学][综合复习]陈文灯考研数学笔记[考研数学][综合复习]2007年考研数学考试大纲下载[考研数学][综合复习]龚冬保教授解读近几年数学考研真题[考研数学][综合复习]理工类数学各部分复习-WORD[考研数学][综合复习]高联08 年考研基础班讲义详解[考研数学][综合复习]2007年考研数学必做客观题1500题精析[考研数学][综合复习]数学满分秘籍[考研数学][综合复习]2007年考研数学轻巧手册(经济类)[考研数学][综合复习]2008年考研数学必备知识点(最新更新)WORD打印版[考研数学][综合复习]数学近10年考题路线图[考研数学][综合复习]六个短语把握牢考研数学复习效率高。

2002年考研数学一真题及答案详解

2002年考研数学一真题及答案详解

),
第 5 页 共 13 页
(1)【分析】
这是讨论函数 f ( x, y) 的连续性 , 可偏导性, 可微性及偏导数
的连续性之间的关系 .我们知道, f ( x, y) 的两个偏导数连续是可微的充分条件 , 若 f ( x, y) 可微则必连续,故选(A).
1 1 u 由 lim n 1 0 n 充 分 大 时 即 N , n N 时 0 , 且 n 1 un n
1 的特解是_____________. 2
2 2 2 (4)已知实二次型 f ( x1 , x 2 , x3 ) a( x1 x2 x3 ) 4 x1 x2 4 x1 x3 4 x2 x3 经正交变换
2 可化为标准型 f 6 y1 ,则 a =_____________.
公共交点且不唯一,因此应选(B). (A)表示方程组有唯一解,其充要条件是 r ( A) r ( A) 3. (C)中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行, 故 r ( A) 2 和
f X ( x ) f Y ( y ) 必为密度函数
(C) F X ( x ) + FY ( y ) 必为某一随机变量的分布函数 (D) F X ( x ) FY ( y ) 必为某一随机 变量的分布函数. 三、(本题满分 6 分) 设函数 f ( x) 在 x 0 的某邻域具有一阶连续导数 , 且 f (0) f (0) 0 , 当 h 0 时 , 若
dP dy 0, P y
积分得
ln P ln y C ', 即 P
C1 ( P 0 对应 C1 0 ); y
1 1 由 x 0 时 y 1, P y ' , 得 C1 . 于是 2 2

2002年考研数学二试题及答案

2002年考研数学二试题及答案

超级狩猎者2002年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共 5 小题,每小题 3 分,满分15 分.把答案填在题中横线上.)tan xe1,x0,xarcsin22xae ,(1)设函数f (x)在x0处连续,则a ______.x【答案】 2【考点】函数的左极限和右极限、函数连续的概念【难易度】★★【详解】本题涉及到的主要知识点:若函数 f (x) 在x x 处连续,则有; lim f (x) lim f (x) f (x0)x x x x0 0解析:tan x1 e tan xlim f ( x) lim = lim = 2x xx 0 x 0 x 0arcsin2 22xlim f (x) lim ae a, f (0) a,x 0 x 0f (x)在x 0处连续 f (0 ) f (0 ) f (0), 即a 2.(2)位于曲线xy xe , 0 x 下方,x 轴上方的无界图形的面积是______.【答案】 1【考点】定积分的几何应用—平面图形的面积【难易度】★★x dx xd e x xe x e x dx e x 【详解】解析:所求面积为S xe ( ) 1.0 0 00 0x 1 x其中,0lim xe lim 洛必达lim .x xx e ex x(3)微分方程yy y 2 0 满足初始条件 1y ,x 01y |x 0 的特解是______.2【答案】y x 1【考点】可降阶的高阶微分方程超级狩猎者【难易度】★★★【详解】本题涉及到的主要知识点:可降阶的高阶微分方程,若缺x,则令dp y p, y p .dy解析:方法1:将 2 0yy y 改写为( yy ) 0 ,从而得yy C1 .以初始条件1 y(0) 1,y (0) 代2入,有1 12C ,所以得11yy .即2yy 1,改写为22( y ) 1.解得y x C2 , y x C2 .再以初值代入,1 C 所以应取" "且C2 1.于是特解y x 1 .2dp dp dy dp 方法2:这是属于缺x 的类型y f (y, y ).命,y p y pdx dy dx dy.原方程 2 0yy y 化为dp2 0yp pdydp,得p 0或y pdydyp 0即0,不满足初始条件dx y'x10 2,弃之,dp由0 y pdy 按分离变量法解之,得C1 .由初始条件y1y 1,y'x 0 x 0 2可将C1 先定出来:1 C 11,C.于是得12 1 2 dy 1dx 2y,解之,得 2y x C2 ,y x C2 .以y 代入,得0 1x1 C ,所以应取“+”号且C2 1.于是特解是y x 1 .2(4)1 2 nπππlim [ 1 cos 1 cos 1 cos ]nn n n n______.2 2【答案】【考点】定积分的概念【难易度】★★★【详解】解析:记unn1 2 n 1 i1 cos 1 cos ... 1 cos 1 c o s, n n n n n 1 ni所以n1 i1lim u lim 1 cos 1 cos xdx nn nn n 0i 1超级狩猎者x x x 11 122cos dx 2 cos dx 2 cos dx0 0 02 2 212 x 2 22 sin2 0.0 2 22 2 2(5)矩阵的非零特征值是______.2 2 2【答案】 4【考点】矩阵的特征值的计算【难易度】★★2 2 2 2 0 0【详解】解析: E A 2 2 2 0 20 1 1 ( 4)2 2 2 2 2 2 2 2 2故4是矩阵的非零特征值.(另一个特征值是0(二重))二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)2(1)设函数 f (u) 可导,y ( ) 当自变量x在x 1处取得增量x 0.1时,相应的函数增f x量y 的线性主部为0.1,则f (1) =()(A )-1.(B)0.1.(C)1.(D)0.5.【答案】 D【考点】导数的概念、复合函数的求导法则【难易度】★★★【详解】本题涉及到的主要知识点:①dy 为y 的线性主部;②( f [g(x)]) f [ g (x)] g (x) ;解析:在可导条件下,dyy x o x0 ( )x xdx.当d ydx 0 0x x 时d ydx x x 0x称为y 的线性主部,现在d ydx2x f (x )2x x ,以x 1, x 0.1超级狩猎者dy代入得x f (1) 0.2,由题设它等于0.1,于是 f (1) 0.5 ,应选(D).dx(2)设函数 f (x) 连续,则下列函数中必为偶函数的是()x2(A ) f (t )dt .x2 (B) f (t)dt .x(C)t[ f (t) f ( t )]dt.x(D)t[ f (t) f ( t )]dt.【答案】 D【考点】函数的奇偶性、积分上限的函数及其导数【难易度】★★【详解】解析:t[ f (t) f ( t)] 为t 的奇函数,xt f t f t dt 为x 的偶函数,(D)正确,(A)、[ ( ) ( )](C)是x 的奇函数,(B)可能非奇非偶.例如 f (t) 1 t ,均不选.(3)设y y( x)是二阶常系数微分方程y py qy 3xe 满足初始条件y(0)y (0) 0的特解,则当x 0 时,函数2ln(1xy( x))的极限()(A )不存在.(B)等于1.(C)等于2.(D)等于3.【答案】 C【考点】洛必达法则、佩亚诺型余项泰勒公式【难易度】★★【详解】解析:方法1:2 2ln(1 x ) x 2x 2 2lim lim 洛lim 洛lim 2 x 0 ( ) x 0 ( ) x 0 ( ) x 0 ( ) 1 y x y x y x y x方法2:由y (0) y (0) 0, y (0) 1.由佩亚诺余项泰勒公式展开,有2x2y( x) 0 0 o( x ) ,代入,有22 2ln(1 x ) x 1= . lim lim lim 221 1 ( )x x x o x0 y( x) 0 x2 o( x2) 022 2x(4)设函数y f (x) 在(0, ) 内有界且可导,则()(A )当lim f ( x) 0x 时,必有lim f (x) 0.x(B)当lim f ( x)x 存在时,必有lim f (x) 0.x(C)当lim f (x) 0x 0 时,必有lim f (x) 0.x 0(D)当lim f (x)x 0 存在时,必有lim f (x) 0.x 0【答案】 B【考点】导数的概念【难易度】★★★★【详解】解析:方法1:排斥法(A)的反例12f (x) sin x ,x它有界,12 2f (x) sin x 2cos x , lim f (x) 0xx,但i m l(f)xx不存在.(C)与(D)的反例同( A )的反例. lim f (x) 0,但x 0 lim f (x) 1 0,(C)不成立;x 0lim f (x) 1 0 ,(D)也不成立.(A)、(C)、(D)都不对,故选(B).x 0方法2:证明(B)正确.设lim f (x)存在,记为A,求证A 0 .用反证法,设A0.若A0 ,xA则由保号性知,存在x0 0 ,当x x0 时f (x) ,在区间[ x0 ,x] 上对 f (x) 用拉格朗日中值定理2知,有Af ( x) f (x ) f ( )(x x ) f ( x ) (x x ), x x.0 0 0 0 02x ,,从而有 f (x) ,与 f (x) 有界矛盾.类似可证若 A 0亦矛盾.(5)设向量组1, , 线性无关,向量 1 可由1, 2, 3 线性表示,而向量 2 不能由1, 2 , 3 线2 3性表示,则对于任意常数k ,必有()(A )1, 2 , 3 ,k 1 2 线性无关.(B)1, 2 , 3 ,k 1 2 线性相关.(C)1, , , 1 k 2 线性无关.(D)1, 2 , 3 , 1 k 2 线性相关.2 3【答案】 A【考点】向量的线性表示【难易度】★★★【详解】解析:方法1:对任意常数k ,向量组1, 2, 3 ,k 1 2 线性无关.用反证法,若1, 2, 3,k 1 2 线性相关,因已知1, 2, 3 线性无关,故k 可由1, 2 , 3 线性表出.1 2设k 1 2 1 1 2 2 3 3 , 因已知1可由1, 2, 3 线性表出,设为1 l1 1 l2 2 l3 3 代入上式,得 2 ( 1 l1) 1 ( 2 l2) 2 ( 3 l3 ) 3这和 2 不能由1, 2 , 3 线性表出矛盾. 故向量组1, 2, 3,k 1 2 线性无关,应选(A).方法2:用排除法取k0,向量组1, 2, 3 ,k 1 2 即1, 2, 3 , 2 线性相关不成立,排除(B).取k 0,向量组1, 2 , 3 , 1 k 2 ,即1, 2, 3 , 1 线性无关不成立,排除(C).k 0时,1, 2, 3 , 1 k 2 线性相关不成立(证法与方法 1 类似,当k 1时,选项(A)、(D)向量组是一样的,但结论不同,其中( A )成立,显然(D)不成立.)排除(D).三、(本题满分6分)已知曲线的极坐标方程是r 1 cos ,求该曲线上对应于π处的切线与法线的直角坐标方程.6【考点】平面曲线的切线、平面曲线的法线【难易度】★★★【详解】本题涉及到的主要知识点:①切线方程:( )y y0 y x x0 01②法线方程:( )y y0 x xy解析:极坐标曲线r 1 cos 化成直角坐标的参数方程为x y (1 cos )cos(1 cos )sin即xy2cos cossin cos sin曲线上6 的点对应的直角坐标为3 3 1 3( , , , )2 4 2 4dydy ddxdx6d 62 2cos sin cossin 2cos sin61.于是得切线的直角坐标方程为1 3 3 3y ( ) x ( ) ,即2 4 2 4x y3 53 04 4超级狩猎者法线方程为1 3 1 3 3y ( ) (x( )), 即2 4 1 2 43 1x y 0 .4 4四、(本题满分7分)设f (x)322x x , 1 x 0,2 xx 求函数 F (x) f (t )dtxe1, 0 x 1,x 2(e 1)的表达式.【考点】定积分的分部积分法、积分上限的函数及其导数【难易度】★★★【详解】解析:当 1 x 0时x x3 1 1 12 23 3 2F (x) (2t t )dt (t t ) x x .1 2 2 2 21当0x 1时,x 0 xF (x) f (t )dt f (t )dt f (t)dt1 1 0t 02 31 x 1 x 1te(t t ) dt tdt 2 t2 1 0 ( 1) 2 0 ( 1)e et x1 1t x dt x x e dtt t x t2 1 0 1 2 1 1e 0 e e 0 ex1 x 1 xt xln(1 e ) ln(1 e ) ln 2x x2 e 1 0 2 e 1所以F (x) 1 13 2x x 当x, 1 0 2 2xe x 1ln ln 2 , 当0 x1x xe 1 e 1 2五、(本题满分7分)已知函数 f (x) 在(0, ) 内可导,f (x) 0, lim f (x) 1,且满足xf ( x hx) lim (h 0 f x)( )1h1e ,x求 f (x) .【考点】导数的概念、一阶线性微分方程【难易度】★★★【详解】本题涉及到的主要知识点:超级狩猎者1lim(1)e;f(x)f(x)f(x)lim,其中可以代表任何形式;解析:f(x hx)f(x)1h1f(x hx)lnh f(x)e,1f(x hx)1f(x hx)f(x)lim ln lim ln(1)h0h0h f(x)h f(x)1f(x hx)f(x)x f(x hx)f(x)lim ln()lim()h h0h f(x)0f(x)f(x)xf(x)f(x),x0.从而得到limh0f(x hx)f(x)1hxf(x)1f(x)xe由题设e于是推得x f(x)1f(x)xf(x)1,即2f(x)x解此微分方程,得1ln f(x)C1x1改写成f x Ce()x1再由条件lim f(x)1,推得C1,于是得xx f(x)e.六、(本题满分7分)求微分方程xdy(x2y)dx0的一个解y y(x),使得由曲线y y(x)与直线x1,x2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.【考点】旋转体的体积、一阶线性微分方程、函数的最大值与最小值【难易度】★★★b2【详解】本题涉及到的主要知识点:V f x dxx()a解析:一阶线性微分方程2y yx1,由通解公式有22dx dxx xy e[e dx C]12x[dx C]2x212x(C)x Cx,1x2x由曲线2y x Cx与x1,x2及x轴围成的图形绕x轴旋转一周所成的旋转体的体积为超级狩猎者31 15 7 2 2 22V (x Cx ) dx ( C C ) ,15 2 3dV 62 15 75令( C ) 0 C .,得dC 5 2 124又V (C) 0 ,故75C 为V 的惟一极小值点,也是最小值点,124于是所求曲线为752 y x x124.七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB 所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h 应为多少m (米)?【考点】定积分的物理应用—压力【难易度】★★★★【详解】解析:建立坐标系,细横条为面积微元,面积微元dA 2 x dy ,因此压力微元dp 2 gx(1 h y)dy平板ABCD 上所受的总压力为1 hP gx h y dy 1 0 2 (1 )其中以x 1代入,计算得2 P gh . 1抛物板AOB上所受的总压力为1P 2 gx(1 h y) d y, 2其中由抛物线方程知x y ,代入,计算得1 2P 4 g( h ) ,23 15由题意P1 : P2 5 : 4,即,2 5h1 2 4 4( h )3 15解之得h 2(米)(1h 舍去),即闸门矩形部分的高应为2m .3八、(本题满分8分)超级狩猎者设03, (3 )( 1, 2, )x1 x n x x n ,证明数列{ x n} 的极限存在,并求此极限.1 n n【考点】数列的极限【难易度】★★★【详解】解析:方法1:考虑(1)9x ( 3 x )3 (3 ) 3 4n nx x xn 1 n n322 2 (3 )x xn n2 9 23 2x 3x (x )n n n4 2 03 3x (3 x ) x (3 x )n n n n2 2所以3x (当n 1,2, ),即n 123x (当n 2,3, ),数列x n n 2,3, 有上界n232.再考虑(2)x x x (3 x ) x n 1 n n n n2 x (3 x ) x n n n x (3 x ) xn n nx (3 2x )n nx (3 x ) xn n n2. n 2 , 3 , .所以x单调增加.单调增加数列n x 有上界,所以limnnx 存在,记为a.n(3)由x n 1 x n (3 x n ) 两边取极限,于是得 a a(3 a), 22a 3a 0,得3a 或a 0,但因x n 0且单调增,故 a 0,所以2limn3x .n2方法2:由0 x1 3 知x1 及(3 x1)均为正数,故1 3( )0 x = x (3 x ) (x 3 x ) .2 1 1 1 12 23 1 3设0 x ,则x 1= x (3 x ) (x 3 x ) .k k k k k k2 2 23由数学归纳法知,对任意正整数n 2有0 x .n22x (3 x ) x x (3 2x )n n n n nx - x = x (3 x ) x 0. n 1 n n n nx (3 x ) x x (3 x ) xn n n n n n所以x单调增,单调增加数列n x 有上界,所以limnnx 存在,记为a .n再由x 1 x (3 x ) 两边命n 取极限,得 a a(3 a) , n n n3a 或a 0,2但因 x0 且单调增加,故 a 0,所以 n3a .2九、(本题满分 8 分)设0 a b ,证明不等式2a 2a lnb ln a 12bb aa b 【考点】函数单调性的判别 【难易度】★★★【详解】解析:左、右两个不等式分别考虑 先证左边不等式,方法 1: 由所证的形式想到试用拉格朗日中值定理 .ln b ln a1(ln x),0ab.xb a而1 1 2a 22bab.其中第二个不等式来自不等式222a bab (当 0 a b时),这样就证明了要证明的左边.方法 2: 用单调性证,将 b 改写为 x 并移项,命(x) ln x ln a 2a( x a) 2 2a x,有 (a) 0 .(x)1 2a4ax (x a)2222 2x ax(a x )2 ( x a)4ax( x a) 2222 2x(a x ) (a x )0 (当 0 a x ),而推知当 x a 0时( x) 0,以 x b代入即得证明 .再证右边不等式,用单调性证,将b 改写为 x 并移项,命1(x) ln x ln a(x a),ax有 (a) 0 ,及21 11 a ( x a)(x)( ) 0,xa x x x x ax2 22所以当 x a 0时,(x) 0 ,再以 x b代入,便得1 ln b ln a(b a), ab即 l n b ln a 1 b a ab. 右边证毕 .十、(本题满分 8 分) 设函数 f (x) 在 x0的某邻域内具有二阶连续导数,且f (0) 0, f (0) 0, f (0) 0 .证明: 存在惟一的一组实数1,, ,使得当 h0 时, 1 f (h) 2f (2h)3f ( 3h) f (0) 是比232h 高阶的无穷小.【考点】无穷小的比较,洛必达法则【难易度】★★★【详解】解析:方法1:由题目,去证存在唯一的一组1, 2 , 3 ,Lf (h) f (2 h) f (3h ) f (0)1 2 3lim 02h 0h由此知,分子极限应为0,由 f (x) 在x0连续,于是推知,应有1 2 3 1. (1)由洛必达法则,L limh 0f (h) f (2h) f (3h) f (0)1 2 32hlim h 0f (h) 2 f (2 h) 3 f (3h)1 2 32h(2)分子的极限为l im( f (h) 2 f (2 h) 3 f (3h)) ( 2 3 ) f (0) ,1 2 3 1 2 3h 0若不为0 ,则式(1)应为,与原设为0 矛盾,故分子的极限应是0 ,即1 2 2 3 3 0 (3)对(2)再用洛必达法则,f (h) 4 f (2h) 9 f (3 h) 1 12 3L lim ( 4 9 ) f (0)1 2 3h 02 2由f (0) 0 ,故应有 1 4 2 9 3 0 (4)1 1 1将(1)、(3)、(4)联立解之,由于系数行列式 1 2 3 2 0,1 4 9由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.方法2:由佩亚诺余项泰勒公式12 2f (h) f (0) f (0) h f (0) h o (h ),122 2f (2 h) f (0) 2 f (0) h 2 f (0) h o (h ),292 2f (3h) f (0) 3f (0)h f (0) h o (h ),32 代入0 limh 0f (h) f (2h) f (3 h) f (0)1 2 32hlim h 012 ( 1)f (0) ( 23 ) f (0)h (4 9 ) f (0) h1 2 3 1 2 3 1 2 322h2 2 2o (h ) o (h ) o (h )1 12 23 32h,上面中第二项极限为0,所以第一项中应有1 1 1 1 12 32 3 01 2 3由于系数行列式1 2 3 2 0,4 9 01 2 31 4 9由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.十一、(本题满分6分)1已知A, B 为3阶矩阵,且满足2A B B4E,其中E是3 阶单位矩阵.(1)证明:矩阵 A 2E 可逆;1 2 0(2)若B 1 2 0 ,求矩阵A.0 0 2【考点】逆矩阵的概念、矩阵的计算【难易度】★★★【详解】本题涉及到的主要知识点:若有AB E 则称A, B 互逆.解析:(1)由题设条件 12A B B 4E两边左乘A ,得2B AB 4A即AB 2B 4A(A2E)B 4A 8E 8E 4( A 2E) 8E(A2E)( B 4E) 8E1(A 2E) (B 4E) E8得证A 2E 可逆(且1 1(A 2E) (B 4E) ).8(2) 方法1:由(1)结果知11(A 2E) (B 4E) 8(B 4E)811A 8 (B4E ) 2E1 2 0 4 0 0 3 2 0B 4E 1 2 0 0 4 0 1 2 00 0 2 0 0 4 0 0 23 2 0 1 0 0 1 2 0 0 1 0B 4E E 1 2 0 0 1 0 3 2 0 1 0 00 0 2 0 0 1 0 0 2 0 0 10 1 01 2 0 0 1 0 1 2 01 30 8 0 1 3 0 0 1 0 08 80 0 1 0 0 1 0 0 1 10 0221 14 41 0 01 30 1 0 08 80 0 1 10 021 14 4故1 31(B 4E) 08 80 0120 2 01A 8(B 4E) 2E 1 1 0 .0 0 2方法2:由题设条件 12A B B 4E等式两边左乘A,得2B A(B 4E)则1A 2B(B 4E) (求1(B 4E) 过程见方法 1)超级狩猎者1 14 41 2 0 1 2 0 2 2 01 3 12 1 2 0 0 1 2 0 13 08 8 40 0 2 0 0 2 0 0 410 021 4 0 8 0 02 04 4 0 1 1 00 0 8 0 0 2.十二、(本题满分6分)已知4阶方阵A ( 1, 2, 3, 4 ), 1 , 2 , 3, 4 均为4维列向量,其中2, 3, 4 线性无关,1 2 2 3, 如果 1 2 3 4 ,求线性方程组Ax 的通解.【考点】线性方程组解的性质和解的结构、非齐次线性方程组的基础解系和通解【难易度】★★★★【详解】解析:方法1:由2, 3 , 4 线性无关,及 1 2 2 3 0 4 , 即1, 2 , 3 , 4 线性相关,及1 2 3 4 知r 1, 2, 3 , 4 r ( A) 3 r A r 1, 2, 3, 4 ,故Ax 有解,且其通解为k ,其中k 是对应齐次方程Ax 0的通解,是Ax 的一个特解,因1 2 2 3 0 4 ,1故22 0 , , , 01 2 3 4 1 2 3 41T故1, 2,1,0 是A x 0的基础解系.1又, , ,1 2 3 4 1 2 3 4 1 1 1T 故1,1,1,1T T是Ax 的一个特解,故方程组的通解为k 1, 2,1,0 1,1,1,1 .(其中k方法2:令Tx x x x x则线性非齐次方程为1,2,3,41x12x23x34x41,2,3,4x已知1234,故1x12x23x34x41234将1223代入上式,得(2x x3)(x x)(x1)012213344由已知2,3,4线性无关,上式成立当且仅当2x x312x x1310x4取自由未知量x k,则方程组有解3x41,x3k,x1x3k,x22k3即方程组Ax有通解x k101x2k323.(其中k是任意常数)2kx k103x1014。

考研数学三真题(2000-2017)(直接打印版)

考研数学三真题(2000-2017)(直接打印版)

x z
0
sin t du dt , 求 t dx
四 、(本题满分6 分)
已知f (x)在(−∞,+∞)内可导,且 lim f '( x) e, lim(
x
x
xc x ) lim[ f ( x) f ( x 1)], 求c x xc
的值. 五 、(本题满分6 分) 求二重积分 平面区域 六、(本题满分7 分) 已知抛物线 y px 2 qx (其中p<0,q>0)在第一象限与直线x+y=5相切,且此抛 物线与x轴所围成的平面图形的面积为S. (1) 问p和q为何值时,S达到最大? (2)求出此最大值.
(4) 设 A 是 n 阶实对称矩阵, P 是 n 阶可逆矩阵,已知 n 维列向量 是 A 的属于特征值

特征向量,则矩阵 P 1 AP (A) P 1 (B) PT


T
属于特征值 的特征向量是 ( (D) P 1
)
(C) P

)
T

(5) 设随机变量 X 和 Y 都服从标准正态分布,则 ( (A) X Y 服从正态分布 (C) X 2 和 Y 2 都服从 2 分布 三、(本题满分 5 分)
(B)对任何 ( a, b) ,有 lim[ f ( x) f ( )] 0 .
x
(C)当 f (a ) f (b) 时,存在 ( a, b) ,使 f ( ) 0 . (D)存在 ( a, b) ,使 f (b) f (a) f ( )(b a) . (2) 设幂级数
十一、(本题满分8 分) 生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50 千克,标准差 为5千克.若用最大载重量为5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以 装多少箱,才能保障不超载的概率大于0.977. (Φ(2)=0.977,其中Φ(x) 是标准正态分布 函数).

2002年考研数学一真题及答案

2002年考研数学一真题及答案

2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)⎰∞+exx dx2ln =.(2)已知函数()y y x =由方程0162=-++x xy e y确定,则(0)y ''= . (3)微分方程02='+''y y y 满足初始条件011,'2x x yy ====的特解是.(4)已知实二次323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换x Py =可化成标准型216y f =,则a =.(5)设随机变量X 服从正态分布2(,)(0)N μσσ>,且二次方程042=++X y y 无实根的概率为12,则μ= .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)考虑二元函数),(y x f 的下面4条性质:①),(y x f 在点),(00y x 处连续; ②),(y x f 在点),(00y x 处的两个偏导数连续; ③),(y x f 在点),(00y x 处可微;④),(y x f 在点),(00y x 处的两个偏导数存在.若用“P Q ⇒”表示可由性质P 推出性质Q ,则有( )(A) ②⇒③⇒①. (B) ③⇒②⇒①. (C) ③⇒④⇒①.(D) ③⇒①⇒④.(2)设0(1,2,3,)n u n ≠=,且lim1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑( ) (A) 发散.(B) 绝对收敛.(C) 条件收敛. (D) 收敛性根据所给条件不能判定.(3)设函数()y f x =在(0,)+∞内有界且可导,则( )(A) 当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x .(B) 当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x .(C) 当0lim ()0x f x +→=时,必有0lim ()0x f x +→'=. (D) 当0lim ()x f x +→'存在时,必有0lim ()0x f x +→'=.(4)设有三张不同平面的方程123i i i i a x a y a z b ++=,3,2,1=i ,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为( )(5)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则( )(A) 1()f x +2()f x 必为某一随机变量的概率密度. (B) 1()f x 2()f x 必为某一随机变量的概率密度. (C) 1()F x +2()F x 必为某一随机变量的分布函数. (D) 1()F x 2()F x 必为某一随机变量的分布函数.三、(本题满分6分)设函数)(x f 在0x =的某邻域内具有一阶连续导数,且(0)0,(0)0f f '≠≠,若()(2)(0)af h bf h f +-在0→h 时是比h 高阶的无穷小,试确定b a ,的值.已知两曲线)(x f y =与⎰-=x t dt e y arctan 02在点(0,0)处的切线相同,写出此切线方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分)计算二重积分dxdy e Dy x ⎰⎰},max{22,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,其起点为(b a ,),终点为(d c ,).记2221[1()][()1],L xI y f xy dx y f xy dy y y=++-⎰(1)证明曲线积分I 与路径L 无关;(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数333369()1()3!6!9!(3)!n x x y x x n =++++++-∞<<+∞满足微分方程x e y y y =+'+'';(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为2{(,)|D x y x =275}y xy +-≤,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大? 若记此方向导数的最大值为),(00y x g ,试写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一上山坡最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵),,,(4321αααα=A ,4321,,,αααα均为4维列向量,其中432,,ααα线性无关,3212ααα-=,如果4321ααααβ+++=,求线性方程组β=Ax 的通解.十、(本题满分8分)设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,证明(1)的逆命题成立.设维随机变量X 的概率密度为10,cos ,()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他.对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分)其中1(0)2θθ<<是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值.参考答案一、填空题 (1)【答案】1 【解析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【答案】-2【解析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【答案】y =【解析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得20dP yPP dy +=,即0dPy P dy +=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得0,dP dy P y+= 积分得ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',2y P y ===得11.2C =于是又由01x y==得21,C =所求特解为y =(4)【答案】2【解析】 因为二次型Tx Ax 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因iiia λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【答案】4【解析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=>4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题 (1)【答案】(A)【解析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A).(2)【答案】(C)【解析】 由1lim 101n n un n→+∞=>⇒充分大时即,N n N ∃>时10n u >,且1lim 0,n nu →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1nu 的单调性. 按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑ 1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n n n u u ∞=++∑.注意111112,11n n n n u u n n n u u n n++++=+⋅→+11n n ∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C).(3)【答案】(B)【解析】 证明(B)对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M -≤+≤矛盾(()).f x M ≤(4)【答案】(B)【解析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B).(A)表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C)中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D)中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【答案】(D)【解析】 首先可以否定选项(A)与(C),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C),综上分析,用排除法应选(D).进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解析】用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-=又由洛必达法则 00()(2)(0)'()2'(2)limlim1h h af h bf h f af h bf h h →→+-+= (2)'(0)0,a b f =+=及(0)0f '≠,则有20a b +=.综上,得2, 1.a b ==-四、【解析】由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x ef e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得02()(0)2()(0)lim ()2lim 2lim 2'(0) 2.2n n x f f f x f n nf f n xn→∞→∞→--==== 五、【解析】D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥⇒I 222212max{,}max{,}x y x y D D edxdy edxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)22112 1.x x xe dx ee ===-⎰六、【解析】(1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y=+⎰.⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==- 七、【证明】(1)因为幂级数3693()13!6!9!(3)!n x x x x y x n =++++++的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-,4732''()4!7!(32)!n x x x y x x n -=+++++-,所以2'''12!!n x x x y y y x e n ++=+++++=()x -∞<+∞.(2)与'''xy y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,2122λ=-±.因此齐次微分方程的通解为212(sin )x Y e C x C x -=+. 设非齐次微分方程的特解为x y Ae *=,将y *代入方程'''xy y y e ++=可得13A =,即有13x y e *=.于是,方程通解为2121()3xx y Y y e C x C x e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.23y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-++⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()cos323x x y x e x e -=+()x -∞<+∞八、【解析】(1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h hh x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750x y xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点. 这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有22108(2)0,108(2)0,750.Lx y x y x Ly x y x y L x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩ 解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=若2,λ=-由①或②均得y x =,代入③式得275x =即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ----现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ====因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点. 九、【解析】由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T-再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解析】(1)若,A B 相似,那么存在可逆矩阵P ,使1,P AP B -=故111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P-==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλ则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B 也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解析】由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二、【解析】22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=-θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计1(31303123)8x =+++++++2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得θ=(1,2θ=>不合题意).于是θ的最大似然估计值为7ˆ12θ=。

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设A是m×n矩阵,B是n×m的矩阵,则线性方程组(AB)X=0( ).A.当n>m时,仅有零解B.当n>m时,必有非零解C.当m>n时,仅有零解D.当m>n时,必有非零解正确答案:D解析:解一显然AB为m阶矩阵,因而(AB)X=0是含m个未知数的齐次方程组,而当m>n时,有秩(AB)≤秩(A)≤n<m.因而(AB)X=0有非零解.仅(D)入选.解二因秩(A)≤min(m,n),秩(B)≤min(m,n),而秩(AB)≤min(秩(A),秩(B)),于是当n>m时,有秩(A)≤m,秩(B)≤m,秩(AB)≤m,而AB为m阶矩阵.由于秩(AB)可能小于等于m,只能说当n>m时,如果秩(AB)=m,则(AB)X=0只有零解,如果秩(AB)<m,(AB)X=0必有非零解,因而(A)、(B)都不对.又当n<m时,秩(AB)≤n<m,而AB为m阶矩阵,因而矩阵AB 的秩小于未知数的个数,齐次方程(AB)X=0必有非零解,于是(C)也不对.仅(D)入选.知识模块:线性方程组2.[2004年] 设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).A.不存在B.仅含一个非零解向量C.含有两个线性无关的解向量D.含有三个线性无关的解向量正确答案:B解析:解一当A*≠O时,秩(A*)≠0.因而秩(A*)=n或秩(A*)=1.于是秩(A)=n或秩(A)=n-1.由题设知AX=b有四个互不相等的解,因而解不唯一,于是秩(A)=n-1.因而其基础解系仅含一个解向量.仅(B)入选.解二因A*≠O,故秩(A*)≥1,则秩(A)≥n-1.又因AX=0有解且不唯一,故秩(A)≤n-1.因而秩(A)=n-1.其基础解系仅含一个解向量.仅(B)入选.解三因A*≠o,故A*中至少有一个元素Aij=(-1)i+jMij≠0,即A的元素aij的余子式Mij≠0,而Mij为A的n一1阶子行列式,故秩(A)≥n一1.又由AX=b有解且不唯一,有秩(A)≤n-1<n,故秩(A)=n-1,于是AX=0的一个基础解系所含解向量的个数为n-秩(A)=n-(n-1)=1.仅(B)入选.知识模块:线性方程组3.[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).A.[1,2,3,4]T+c[1,1,1,1]TB.[1,2,3,4]T+c[0,1,2,3]TC.[1,2,3,4]T+c[2,3,4,5]TD.[1,2,3,4]T+c[3,4,5,6]T正确答案:C解析:解一仅(C)入选.AX=b为四元非齐次方程组,秩(A)=3,AX=0的一个基础解系只含n-秩(A)=4-3=1个解向量.将特解的线性组合2α1,α2+α3写成特解之差的线性组合,即2α1-(α2+α3)=(α1-α2)+(α1-α3).因2一(1+1)=0,由命题2.4.4.1知,2α1-(α2+α3)=[2,3,4,5]T≠0仍为AX=0的一个解向量,且为其一个基础解系,故AX=b的通解为X=α1+k[2α1-(α2+α3)]=[1,2,3,4]T+k[2,3,4,5]T.解二仅(C)入选.因秩(A)=3,故四元齐次方程组AX=0的基础解系所含向量的个数为4一秩(A)=1,所以AX=0的任一个非零解都是它的基础解系.由于α1及(α2+α3)/2都是AX=b的解(因1/2+1/2=1),故α1-(α2+α3)=[2α1-(α2+α3)]=[2,3,4,5]T是AX=0的一个解,从而2×[2,3,4,5]T=[2,3,4,5]T=η也是AX=0的一个解,且因η≠0,故η为Ax=0的一个基础解系,所以AX=b的通解为X=α1+cη=[1,2,3,4]T+c[2,3,4,5]T,c为任意常数.知识模块:线性方程组4.[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).A.(η2+η3)/2+k1(η2-η1)B.(η2-η3)/2+k1(η2-η1)C.(η2+η3)/2+k1(η2-η1)+k2(η3-η1)D.(η2-η3)/2+k1(η2-η1)+k2(η3-η1)正确答案:C解析:解一仅(C)入选.因n元非齐次线性方程组AX=b的线性无关的解向量最多的个数为n-秩(A)+1,故3-秩(A)+1≥3,即秩(A)≤1.又秩(A)≥1(如秩(A)=0,则A=0与AX=β≠0矛盾),故秩(A)=1,所以AX=0的一个基础解系含n-秩(A)=3=1-2个解向量,而η3-η1,η2-η1均为AX=0的非零解,因而它们为AX=0的基础解系.又(η2+η3)/2中的系数1/2+1/2=1.由命题2.4.4.1知,(η2+η3)/1为AX=β的一特解.于是AX=β的通解为(η2+η3)/2+k1(η2-η1)+k2(η3-η1).解二由非齐次线性方程组AX=B 通解的结构(该方程组的一特解加上对应齐次线性方程组AX=0的基础解系)可分别排除选项(A)、(B)、(D).事实上,(B)、(D)中的为AX=0的解,不是AX=B的特解,可排除(B)、(D).又因AX=0的解η2-η1,η3-η1线性无关,故AX=0的基础解系至少包含2个解向量,从而排除(A).仅(C)入选.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。

2004年考研数学三真题及全面解析

2004年考研数学三真题及全面解析

2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若5)(cos sin lim 0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x xxb x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2. (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P e1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ 故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==. 【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j=--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点. (C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元x u 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f x f x g u x x ∞→→→=== a (令x u 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ]【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim 1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度.(12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||.(C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→ =346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d . )23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分)设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤bab adx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=x a dt t F x G )()(,将积分不等式转化为函数不等式即可.【详解】令F (x ) = f (x ) - g (x ),⎰=xadt t F x G )()(, 由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而 ⎰⎰⎰⎰-=-==bababa babadx x G dx x G x xG x xdG dx x xF )()()()()(, 由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰ba dx x G ,即 0)(≤⎰b adx x xF .因此 ⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dP dQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10. 当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dp dR d )1(-=,p E dQ dR d)11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S ,易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x ey xdx xdx+⎰⎰=⎰-22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, T β)3,3,1(-=, 试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a . (Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解: ak 111-=, a k 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为211)11(αaαa β+-=.(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为 321)1()11(αc αc aαa β+++-=.【评注】本题属于常规题型, 曾考过两次(1991, 2000). (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b bb b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λb b bλb b b λA E λ =1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 T k ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(100010001||-=---=- ,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:YX0 1 0 132 12161 121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:Z0 1 2P3241 121 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X Xβ,所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln ,令 0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m i n {ˆ21n x x x α =, 于是α的最大似然估计量为},,,min{ˆ21n X X X α=.。

考研数学三(矩阵的特征值和特征向量)历年真题试卷汇编1(题后含

考研数学三(矩阵的特征值和特征向量)历年真题试卷汇编1(题后含

考研数学三(矩阵的特征值和特征向量)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( ).A.P-1αB.PTαC.PαD.(P-1)Tα正确答案:B解析:解一由题设有Aα=λα,且AT=A,令B=(P-1AP)T,则B=(P-1AP)T=PTAT(P-1)T=PTA(PT)-1,A=(PT)-1BPT,故Aα=(PT)-1BPTα,即(PT)-1B(PTα)=λα.两边左乘PT,得到B(PTα)=λPTα.又PTα≠0.事实上,如PTα=0,则由P为可逆矩阵知,PT也为可逆矩阵,于是有(PT)-1PTα=(PT)-10=0,即α=0.这与α≠0矛盾,故PTα为矩阵B=(P-1AP)T的属于特征值λ的特征向量.仅(B)入选.解二用定义(P-1AP)TX=λX判别.当X=PT α时,计算(P-1AP)T(PTα)时看其是否为P-1Tα的λ倍.事实上,有(P-1AP)T(PTα)=PTA T(P-1)T(PTα)=PTA(PT)-1PTα=PT(Aα)=λPTα.又PTT ≠0.因而PTT是(PTAP)-1的属于特征值λ的特征向量.解三为检验选项中4个向量哪个是特征向量,只需检验哪个向量是齐次方程组[(P-1AP)T-λE]X=0的非零解向量.事实上,令X=PTT,有[(P-1AP)T-λE](PT α)=[PTA(PT)-1PTα-λPTα]=PTAα-λPTα=λPTα-λPTα=0.易验证(A)、(C)、(D)中向量均不满足上述方程.又PTα≠0.仅(B)入选.知识模块:矩阵的特征值和特征向量2.[2016年] 设A,B是可逆矩阵,且A与B相似,则下列结论错误的是( ).A.AT与BT相似B.A-1与B-1相似C.A+AT与B+BT相似D.A+A-1与B+B-1相似正确答案:C解析:因A~B,故存在可逆矩阵P使得B=P-1AP.①在式①两边取转置,得到BT=(P-1AP)T=PTAT(P-1)T=[(PT)-1]-1AT[(PT)-1]故AT与BT相似.选项(A)正确.在式①两边求逆运算得到B-1=(P-1AP)-1=P-1A-1(P-1)-1=P-1A-1P.②故A与A-1相似.选项(B)正确.由式①+式②得到B+B-1=P-1AP+P-1A-1P=P-1(A+A-1)P,故A+A-1~B+B-1.选项(D)正确.仅(C)入选.知识模块:矩阵的特征值和特征向量3.[2018年] 下列矩阵中,与矩阵相似的是( ).A.B.C.D.正确答案:A解析:记矩阵[*]则[*] 所以矩阵M的特征值为λ1=λ2=λ3=1,且秩(λE-M)=秩(E-M)=2.设选项(A)、(B)、(C)、(D)的矩阵分别记为A、B、C、D,容易计算出其特征值均为1,且秩(AE-A)=秩(E-A)=2,秩(E-B)=秩(E-C)=秩(E-D)=1,若两矩阵相似,其对应的特征值矩阵也相似,故秩相等.所以可以判断选项(A)正确.知识模块:矩阵的特征值和特征向量4.[2017年] 已知矩阵则( ).A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:显然A,B,C的特征值都为λ1=λ2=2,λ3=1.由得秩(2E-A)=1,则A可以相似对角化,故A与C相似.由得秩(2E-B)=2,则B不可相似对角化,故B与C不相似.综上,仅(B)入选.知识模块:矩阵的特征值和特征向量5.[2013年] 矩阵相似的充分必要条件为( ).A.a=0,b=2B.a=0,b为任意常数C.a=2,b=0D.a=2,b为任意常数正确答案:B解析:令则因λ=2为B的特征值,故λ=2也必为A的特征值,则|2E—A|=2[22-(b+2).2+2b一2a2]=2(-2a2)=0,故a=0.由λ=b为B的特征值知,λ=b也必为A的特征值,则|bE-A|=b[b2-(b+2)·b+2b]=b·0=0,即易可为任意常数.仅(B)入选.知识模块:矩阵的特征值和特征向量6.[2010年] 设A为四阶实对称矩阵,且A2+A=O,若A的秩为3,则A 相似于( ).正确答案:D解析:设λ为A的特征值,则由A2+A=O得到λ2+λ=(λ+1)λ=0.于是A 的特征值为-1或0.又因A为实对称矩阵,故A必与对角矩阵A相似.因A 的秩为3,由命题2.5.4.1(2)知,A的非零特征值个数为3,故对角矩阵A 的秩也为3,于是A=diag(-1,-1,-1,0).仅(D)入选.知识模块:矩阵的特征值和特征向量填空题7.[2018年] 设A为三阶矩阵,α1,α2,α3是线性无关的向量组,若Aα1=α1+α2+α3,Aα2=α2+2α3,Aα3=一α2+α3,则A的实特征值为__________.正确答案:2解析:由题设得因为[α1,α2,α,3]可逆,所以矩阵A与矩阵相似,故特征值相同,而所以A的实特征值为2.知识模块:矩阵的特征值和特征向量8.[2015年] 设三阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E 为三阶单位矩阵,则行列式|B|=__________.正确答案:21解析:因A的特征值为2,-2,1,而B=f(A)=AT-A+E,故B的特征值分别为f(2)=2T-2+1=3,f(-2)=(-2)T-(-2)+1=7,f(1)=1T-1+1=1,故|B|=f(2)·f(1)·f(-2)=3×1×7=21.知识模块:矩阵的特征值和特征向量9.[2009年] 设α=[1,1,1]T,β=[1,0,k]T,若矩阵αβT相似于则k=_________.正确答案:2解析:解一因αβT相似于而利用相似矩阵的性质即命题2.5.3.3(4)得到tr(αβT)=1+0+k=3+0+0,即k=2.解二设A=αβT,λ为A的特征值,而故A2=A·A=αβT·αβT=α(βTα)βT=(βTα)αβT=(1+k)A,所以λ2=(1+k)λ,即λ[λ-(1+k)]=0,从而λ=0或λ=1+k.又A相似于对角矩阵由命题2.5.3.3(3)知,相似矩阵有相同的特征值,故A的特征值0,0,3,于是应有1+k=3,即k=2.注:命题2.5.3.3 设矩阵A=[aij]n×n与B=[bij]n×n相似,则(3)|λE-A|=|λE—B|,从而A与B有相同的特征值;(4)a11+a22+…+ann=b11+b22+…+bnn,即tr(A)=tr(B).知识模块:矩阵的特征值和特征向量解答题解答应写出文字说明、证明过程或演算步骤。

【免积分】考研数三完整版(历年真题+答案详解)(2003-2010)真题之2004

【免积分】考研数三完整版(历年真题+答案详解)(2003-2010)真题之2004

2004年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v ∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D22122=所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以 0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x xb x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ 故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→ =346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x x x x x x x x x x x x x . 【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图). 【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xax a dt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba b a dt t g dt t f )()(.证明:⎰⎰≤b abadx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有 0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:a k 111-=, ak 12=, 03=k . 此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ) 1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P , 32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z【评注问题,属于综合性题型 (23) (本题满分13分) 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X α=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002 年全国硕士研究生入学统一考试数学三试题及解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) ⑴ 设常数12a ≠,则21lim ln[]________(12)n n n na n a →∞-+=-. 【分析】将所求极限转换为1ln[1](12)lim1n n a n→∞+-,利用等价无穷小代换化简求解,或利用重要极限。

【详解】法一:11ln[1]211(12)(12)lim ln[]limlim 11(12)12nn n n n na n a n a n a an n→∞→∞→∞+-+--===-- 法二:11(12)12122111lim ln[]lim ln[1]lim ln (12)(12)12n a n aa n n n n na e n a n a a-⨯--→∞→∞→∞-+=+==---⑵ 交换积分次序:111422104(,)(,)________yyydy f x y dx dy f x y dx +=⎰⎰⎰⎰.【分析】写出对应的二重积分积分域D 的不等式,画出D 的草图后,便可写出先对y 后对x 的二次积分【详解】对应的积分区域12D D D =+,其中11(,)0,4D x y y y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭2111(,),422D x y y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭画出D 的草图如右图所示,则D 也可表示为 21(,)0,2D x y x x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭故211114222104(,)(,)(,)yxyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰⑶ 设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量(,1,1)Ta α=。

已知A α与α线性相关,则______a =。

【分析】由A α与α线性相关知,存在常数k 使得A k αα=,及对应坐标成比例,由此求出a【详解】由于122212123304134a a A a a α-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦由A α与α线性相关可得:233411a a a a ++==,从而1a =-。

则2X 和2Y 的协方差22(,)_______Cov X Y =。

【分析】本题主要考查利用随机变量X 和Y 的联合概率分布求简单函数的概率分布、利用数学期望的定义求随机变量的数学期望、协方差的计算等。

【详解】法一:由题设可得10.40.6X⎛⎫ ⎪⎝⎭, 1010.150.50.35Y -⎛⎫ ⎪⎝⎭, 2010.40.6X ⎛⎫ ⎪⎝⎭, 2010.50.5Y ⎛⎫ ⎪⎝⎭, 2210.720.28X Y ⎛⎫ ⎪⎝⎭从而 2()0.6E X =, 2()0.5E Y =,22()0.28E X Y =故 222222(,)()()()0.280.30.02COV X Y E X Y E X E Y =-=-=- 法二:由题设可得10.40.6X⎛⎫ ⎪⎝⎭, 1010.150.50.35Y -⎛⎫ ⎪⎝⎭, 从而222()00.410.60.6E X =⨯+⨯=,2222()(1)0.1500.510.350.5E Y =-⨯+⨯+⨯=2222222222()(1)00.07(1)10.08000.18010.32E X Y =-⨯⨯+-⨯⨯+⨯⨯+⨯⨯2222100.15110.200.28+⨯⨯+⨯⨯= 故 222222(,)()()()0.280.30.02COV X Y E X Y E X E Y =-=-=-⑸ 设总体的概率密度为(),(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为_______【分析】根据矩估计的定义计算即可. 【详解】由于()()()(;)lim tx x t E X xf x dx xed xde θθθθθθ+∞+∞-----∞→+∞===-⎰⎰⎰()lim 1tx t edx θθθθ--→+∞=+=+⎰ 根据矩估计量的定义,满足()E X X =的ˆθ即为θ的矩估计量,因此11ˆ11ni i X X n θ==-=-∑ 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)⑴ 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 (A )当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ= (B )对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=(C)当()()f a f b =时,(,)a b ξ∈,使()0f ξ'= (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-【分析】本题主要考查零点定理、微分中值定理的理解及函数连续的概念。

【详解】由于函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,只能说明()f x 在开区间(,)a b 内连续且可导,不能保证函数()f x 在闭区间[,]a b 上连续,从而零点定理、罗尔定理、拉格朗日中值定理的条件不满足,从而不一定必有相应结论,所以(A )、(C )、(D )三选项都错; 由于可导必定连续,从而()f x 在开区间(,)a b 内连续,所以对任何(,)a b ξ∈,有lim ()()x f x f ξξ→=,从而应选(B)⑵ 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221n nn na xb ∞=∑的收敛半径为(A)5(C)13 (D)15【分析】本题借用加强法来完成,即假设1limn n n a a +→∞与1lim n n nbb +→∞都存在。

【详解】假定所给幂级数的收敛半径可以按公式计算,则由题设知:111lim n n n n n a x x a x +-+→∞=, 1111lim ()3n n n n n b x x b x +-+→∞=从而2112222222111122222112lim lim lim lim ((3)53n n n n n n n n n n n n n n n n n na xb a b a b x x x x a a b a b x b ++---+++→∞→∞→∞→∞++==== 所以应选(A )。

⑶ 设是矩阵,是矩阵,则线性方程组(A)当n m >时仅有零解(B) 当n m >时必有非零解 (C)当m n >时仅有零解 (D )当m n >时必有非零解【分析】根据齐次线性方程组有非零解的充要条件判定。

【详解】齐次线性方程组0ABx =有非零解的充要条件是()r AB m <。

而当m n >时 ()()r AB r A n m ≤≤<所以当m n >时线性方程组0ABx =必有非零解。

故应选(D)。

⑷ 设是阶实对称矩阵,是阶可逆矩阵。

已知维列向量是的属于特征值的特征向量,则矩阵1()TP AP -属于特征值λ的特征向量是(A ) 1P α- (B )TP α (C ) P α (D )1()TP α-【分析】本题主要考查特征值与特征向量的关系以及矩阵的基本性质。

利用特征值的定义检验。

【详解】由已知A αλα=,于是T T P A P αλα=, 1()T T T T P A P P P αλα-=又由T A A =,可得1()TTTP AP P P αλα-=,可见矩阵1()TP AP -属于特征值λ的特征向量是TP α。

故应选(B)⑸ 设随机变量X 和Y 都服从标准正态分布,则(A )X Y +服从正态分布 (B )22X Y +服从2χ分布(C )2X 和2Y 都服从2χ分布 (D )22X Y服从F 分布【分析】主要考查正态分布的性质及2χ分布、F 分布的定义。

利用服从标准正态分布的随机变量的性质及服从2χ分布、F 分布的随机变量的表达式对选项逐一检验,直到得到正确的选项。

【详解】由于X 和Y 不一定相互独立,故(A )、(B )、(D )不一定成立。

由于随机变量X 和Y 都服从标准正态分布,所以2X 和2Y 都服从2χ分布。

故应选(C )。

三、(本题满分5分)求极限2[arctan(1)]lim(1cos )xu x t dt du x x →+-⎰⎰【分析】考查未定式极限及变上限函数求导数。

对分母使用等价无穷小代换,然后利用洛必达法则。

【详解】法一:222[arctan(1)][arctan(1)]limlim1(1cos )2xu xu x x t dt du t dt du x x x x →→++=-⋅⎰⎰⎰⎰22002arctan(1)2arctan(1)limlim 3362x x x t dt x x x x π→→++===⎰ 法二:22[arctan(1)]arctan(1)limlim(1cos )1cos sin xu x x x t dt du t dtx x x x x→→++=--+⎰⎰⎰22002arctan(1)2arctan(1)limlim sin 2sin cos 62cos x x x x x xx x x x xπ→→++===++ 四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程xyzxe ye ze -=所确定,求du【分析】本题综合考查了多元函数微分法与隐函数微分法。

【详解】将已知条件给出的所有关系式求微分得(1)(1)(1)x y z x y zdu f dx f dy f dzx e dx y e dy z e dz '''=++⎧⎪⎨+-+=+⎪⎩从而 (1)(1)(1)x y x y z z x e dx y e dydu f dx f dy f z e +-+'''=⋅+⋅+⋅+(1)(1)()()(1)(1)x yx z y z z zx e y e f f dx f f dy z e z e++''''=+⋅+-⋅++五、(本题满分6分)设2(sin )sin x f xx =,求()x dx 【分析】先求出()f x 的表达式,再计算不等积分。

【详解】法一:令2sin u x =,则sin x =x=,从而()f u=于是()2x dx ==-⎰dx=-C =-法二;令2sin xt =,则22sin ()(sin )2sin cos 2sin cos sin t t x dx f t t tdt t dt t t =⋅⋅=⋅⎰⎰2sin 2cos 2cos 2sin t tdt td t t t t C ==-=-++⎰⎰、C =-六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0,y x a ==所围成的平面区域,其中02a <<(Ⅰ)试求1D 绕x 轴旋转而成旋转体的体积1V ;2D 绕y 轴旋转而成旋转体的体积2V ;(Ⅱ)当a 为何值时,12V V +取得最大值?试求此最大值。

相关文档
最新文档