高中数学必修三(程序框图)专题
高一数学必修三,算法与程序框图知识点及题型
第二节算法与程序框图一、基础知识1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构(1)顺序结构(2)条件结构(3)循环结构三种基本逻辑结构的适用情境(1)顺序结构:要解决的问题不需要分类讨论.(2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.考点一顺序结构和条件结构[例1] (2019·沈阳质检)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的实数x 的值为( )A .-3B .-3或9C .3或-9D .-3或-9[解析] 当x ≤0时,y =⎝⎛⎭⎫12x -8=0,x =-3;当x >0时,y =2-log 3x =0,x =9.故x =-3或x =9,选B.[答案] B[例2] 某程序框图如图所示,现输入如下四个函数,则可以输出的函数为( )A .f (x )=cos x x ⎝⎛⎭⎫-π2<x <π2,且x ≠0 B .f (x )=2x -12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)[解析] 由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.[答案] B[解题技法] 顺序结构和条件结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断. (3)对于条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.[题组训练]1.半径为r 的圆的面积公式为S =πr 2,当r =5时,计算面积的流程图为( )解析:选D 因为输入和输出框是平行四边形,故计算面积的流程图为D. 2.运行如图所示的程序框图,可输出B =______,C =______.解析:若直线x+By+C=0与直线x+3y-2=0平行,则B=3,且C≠-2,若直线x+3y+C=0与圆x2+y2=1相切,则|C|12+(3)2=1,解得C=±2,又C≠-2,所以C=2.答案:32考点二循环结构考法(一)由程序框图求输出(输入)结果[例1](2018·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N的值为20,则输出T 的值为()A.1B.2C.3 D.4[解析]输入N的值为20,第一次执行条件语句,N=20,i =2,Ni =10是整数,∴T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴T =1+1=2,i =5,此时i ≥5成立,∴输出T =2. [答案] B[例2] (2019·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的 a 的值可以为( )A .4B .5C .6D .7[解析] 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1,Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.[答案] D[解题技法] 循环结构的一般思维分析过程 (1)分析进入或退出循环体的条件,确定循环次数.(2)结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式. (3)辨析循环结构的功能. 考法(二) 完善程序框图[例1] (2018·武昌调研考试)执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框中可以填入( )A .k <n?B .k >n?C .k ≥n?D .k ≤n?[解析] 执行程序框图,输入的a =2,s =0×2+2=2,k =1;输入的a =2,s =2×2+2=6,k =2;输入的a =5,s =2×6+5=17,k =3,此时结束循环,又n =2,所以判断框中可以填“k >n ?”,故选B.[答案] B[例2] (2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 由题意可将S 变形为S =⎝⎛⎭⎫1+13+…+199-⎝⎛⎭⎫12+14+…+1100,则由S =N -T ,得N =1+13+…+199,T =12+14+…+1100.据此,结合N =N +1i ,T =T +1i +1易知在空白框中应填入i =i +2.故选B. [答案] B[解题技法] 程序框图完善问题的求解方法 (1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.[题组训练]1.(2018·凉山质检)执行如图所示的程序框图,设输出的数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y =x a ,x ∈[0,+∞)是增函数的概率为( )A.47B.45C.35D.34解析:选C 执行程序框图,x =-3,y =3;x =-2,y =0;x =-1,y =-1;x =0,y =0;x =1,y =3;x =2,y =8;x =3,y =15;x =4,退出循环.则集合A 中的元素有-1,0,3,8,15,共5个,若函数y =x a ,x ∈[0,+∞)为增函数,则a >0,所以所求的概率为35.2.(2019·珠海三校联考)执行如图所示的程序框图,若输出的n 的值为4,则p 的取值范围是( )A.⎝⎛⎦⎤34,78B.⎝⎛⎭⎫516,+∞C.⎣⎡⎭⎫516,78D.⎝⎛⎦⎤516,78解析:选A S =0,n =1;S =12,n =2;S =12+122=34,n =3;满足条件,所以p >34,继续执行循环体;S =34+123=78,n =4;不满足条件,所以p ≤78.输出的n 的值为4,所以34<p ≤78,故选A. 3.(2019·贵阳适应性考试)某程序框图如图所示,若该程序运行后输出的值是137,则整数a 的值为( )A .6B .7C .8D .9解析:选A 先不管a 的取值,直接运行程序.首先给变量S ,k 赋值,S =1,k =1,执行S =S +1k (k +1),得S =1+11×2,k =2;执行S =1+11×2+12×3,k =3;……继续执行,得S =1+11×2+12×3+…+1k (k +1)=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1k -1k +1=2-1k +1,由2-1k +1=137得k =6,所以整数a =6,故选A.考点三 基本算法语句[典例] 执行如图程序语句,输入a =2cos 2 019π3,b =2tan 2 019π4,则输出y 的值是( )A .3B .4C .6D .-1[解析] 根据条件语句可知程序运行后是计算y =⎩⎪⎨⎪⎧a (a +b ),a <b ,a 2-b ,a ≥b ,且a =2cos 2 019π3=2cos π=-2,b =2tan 2 019π4=2tan 3π4=-2.因为a ≥b ,所以y =a 2-b =(-2)2-(-2)=6, 即输出y 的值是6. [答案] C[变透练清]1. 执行如图所示的程序,输出的结果是________.i =11S =1DOS =S*ii =i -1LOOP UNTIL i<9PRINT S END解析:程序反映出的算法过程为 i =11⇒S =11×1,i =10; i =10⇒S =11×10,i =9; i =9⇒S =11×10×9,i =8;i =8<9退出循环,执行“PRINT S ”. 故S =990. 答案:9902.阅读如图所示的程序.a 的值是________. 解析:由题意可得程序的功能是计算并输出a =⎩⎪⎨⎪⎧2+a ,a >2,a ×a ,a ≤2的值, 当a >2时,由2+a =9得a =7; 当a ≤2时,由a 2=9得a =-3, 综上知,a =7或a =-3. 答案:-3或7[课时跟踪检测]1.(2019·湖北八校联考)对任意非零实数a ,b ,定义a *b 的运算原理如图所示,则(log222)*⎝⎛⎭⎫18-23=( )A .1B .2C .3D .4解析:选A 因为log222=3,⎝⎛⎭⎫18-23=4,3<4,所以输出4-13=1,故选A. 2.执行如图所示的程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,74解析:选C 第一次执行循环体,y =90,s =867+15,不满足退出循环的条件,故x =90;第二次执行循环体,y =86,s =907+433,不满足退出循环的条件,故x =94;第三次执行循环体,y =82,s =947+413,不满足退出循环的条件,故x =98;第四次执行循环体,y =78,s =27,满足退出循环的条件,故x =98,y =78.3.(2018·云南民族大学附属中学二模)执行如图所示的程序框图,若输出的k 的值为6,则判断框内可填入的条件是( )A .s >12?B .s >710?C .s >35?D .s >45?解析:选B s =1,k =9,满足条件;s =910,k =8,满足条件;s =45,k =7,满足条件;s =710,k =6,不满足条件.输出的k =6,所以判断框内可填入的条件是“s >710?”.故选B.4.(2019·合肥质检)执行如图所示的程序框图,如果输出的k 的值为3,则输入的a 的值可以是( )A .20B .21C .22D .23解析:选A 根据程序框图可知,若输出的k =3,则此时程序框图中的循环结构执行了3次,执行第1次时,S =2×0+3=3,执行第2次时,S =2×3+3=9,执行第3次时,S =2×9+3=21,因此符合题意的实数a 的取值范围是9≤a <21,故选A.5.(2019·重庆质检)执行如图所示的程序框图,如果输入的x =0,y =-1,n =1,则输出x ,y 的值满足( )A .y =-2xB .y =-3xC .y =-4xD .y =-8x解析:选C 初始值x =0,y =-1,n =1,x =0,y =-1,x 2+y 2<36,n =2,x =12,y =-2,x 2+y 2<36,n =3,x =32,y =-6,x 2+y 2>36,退出循环,输出x =32,y =-6,此时x ,y 满足y =-4x ,故选C.6.(2018·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A .i ≥10?B .i ≥11?C .i ≤11?D .i ≥12?解析:选B 执行程序框图,i =12,s =1;s =12×1=12,i =11;s =12×11=132,i =10.此时输出的s =132,则判断框中可以填“i ≥11?”.7.(2019·漳州八校联考)执行如图所示的程序,若输出的y 的值为1,则输入的x 的值为( )INPUT xIF x>=1THENy=x2ELSEy=-x2+1END IFPRINT yENDA.0 B.1C.0或1 D.-1,0或1解析:选C当x≥1时,由x2=1得x=1或x=-1(舍去);当x<1时,由-x2+1=1得x=0.∴输入的x的值为0或1.8.执行如图所示的程序框图,若输入的n=4,则输出的s=()A.10 B.16C.20 D.35解析:选C执行程序框图,第一次循环,得s=4,i=2;第二次循环,得s=10,i=3;第三次循环,得s=16,i=4;第四次循环,得s=20,i=5.不满足i≤n,退出循环,输出的s=20.9.(2018·洛阳第一次统考)已知某算法的程序框图如图所示,则该算法的功能是()A.求首项为1,公差为2的等差数列的前2 018项和B.求首项为1,公差为2的等差数列的前2 019项和C.求首项为1,公差为4的等差数列的前1 009项和D.求首项为1,公差为4的等差数列的前1 010项和解析:选D由程序框图得,输出的S=(2×1-1)+(2×3-1)+(2×5-1)+…+(2×2 019-1),可看作数列{2n-1}的前2 019项中所有奇数项的和,即首项为1,公差为4的等差数列的前1 010项和.故选D.10.(2018·郑州第一次质量测试)执行如图所示的程序框图,若输出的结果是7,则判断框内m的取值范围是()A.(30,42] B.(30,42)C.(42,56] D.(42,56)解析:选A k=1,S=2,k=2;S=2+4=6,k=3;S=6+6=12,k=4;S=12+8=20,k=5;S =20+10=30,k=6;S=30+12=42,k=7,此时不满足S=42<m,退出循环,所以30<m≤42,故选A.11.(2019·石家庄调研)20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n,按照以下的规律进行变换,如果n是奇数,则下一步变成3n+1;如果n是偶数,则下一步变成n 2.这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i值为6,则输入的n值为()A .5或16B .16C .5或32D .4或5或32解析:选C 若n =5,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.若n =32,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.当n =4或16时,检验可知不正确,故输入的n =5或32,故选C.12.(2018·贵阳第一学期检测)我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”如图所示的程序框图反映了对此题的一个求解算法,则输出的n 的值为( )A .20B .25C .30D .35解析:选B 法一:执行程序框图,n =20,m =80,S =60+803=8623≠100;n =21,m =79,S =63+793=8913≠100;n =22,m =78,S =66+783=92≠100;n =23,m =77,S =69+773=9423≠100;n =24,m =76,S =72+763=9713≠100;n =25,m =75,S =75+753=100,退出循环.所以输出的n =25.法二:设大和尚有x 个,小和尚有y 个, 则⎩⎪⎨⎪⎧x +y =100,3x +13y =100,解得⎩⎪⎨⎪⎧x =25,y =75, 根据程序框图可知,n 的值即大和尚的人数,所以n =25.13.已知函数y =lg|x -3|,如图所示程序框图表示的是给定x 值,求其相应函数值y 的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由y =lg|x -3|=⎩⎪⎨⎪⎧lg (x -3),x >3,lg (3-x ),x <3及程序框图知,①处应填x <3?,②处应填y =lg(x -3).答案:x <3? y =lg(x -3)14.执行如图所示的程序框图,若输入的N =20,则输出的S =________.解析:依题意,结合题中的程序框图知,当输入的N=20时,输出S的值是数列{2k-1}的前19项和,即19(1+37)2=361.答案:36115.执行如图所示的程序框图,则输出的λ是________.解析:依题意,若λa+b与b垂直,则有(λa+b)·b=4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa+b与b平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图可知,输出的λ是-2.答案:-216.执行如图所示的程序框图,如果输入的x,y∈R,那么输出的S的最大值为________.解析:当条件x ≥0,y ≥0,x +y ≤1不成立时,输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时,⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1输出S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组表示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S最大,其最大值为2×1+0=2,故输出S 的最大值为2.答案:2。
高中数学必修三《程序框图与算法的基本逻辑结构》课件
第四步,输出S.
S
p
abc 2
p(p a)(p b)(p c)
上述算法的程序框图如何表示?
输出S 结束
教材5页练习
1、任意给定一个正实数,设计一个算法求以这个数为半
径的圆的面积.
开始
第一步: 给定一个正实数r; 第二步: 计算以r为半径的
输入r
圆的面积S=πr2;
S r2
第三步: 得到圆的面积S.
输入x0,y0,A,B,C
d | Ax0 By0 C | A2 B2
输出d
结束
算法的条件结构:
在某些问题的算法中,有些步骤只有在一定条件下才会被执 行,算法的流程因条件是否成立而变化.在算法的程序框图中,由 若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为条 件结构,用程序框图可以表示为下面两种形式:
---用程序框、流程线及文 字说明来表示算法的图形.
在上述程序框图中, 有4种程序框,2种流程 线,它们分别有何特定的名 称和功能?
开始
输入n
i=2
求n除以i的余数r i的值增加1,仍用i表示
i>n-1或r=0?
是
r=0? 是
输出“n 不是质数”
否
否
输出“n 是质数”
结束
图形符号
名称
功能
终端框
表示一个算法的起始和结束
2a 2a 否则,输出“方程没有实数根”,结束算法。
第四步:判断 0是否成立。若是,则输出x1 x2 p; 否则,计算x1 p q, x2 p q,并输出x1, x2
输出p
开始
输入a,b,c
b2 4ac
0?
是 p b
2a
q 2a
人教版高中数学必修3 程序框图与算法的基本逻辑结构 (2)
1.下面的程序框图能判断任意输入的数x 的奇偶性,则判断框内的条件应是( )
A .m =0?
B .m =1?
C .x =0?
D .x =1?
解析:选B.由程序框图所体现的算法是要判断一个数是奇数还是偶数,看这个数除以2的余数是1还是0.由图可知应该填“m =1?”.
2.(2013·厦门质检)如图是判断“美数”的流程图,在[30,40]内的所有整数中,“美数”的个数是________.
解析:依题意可知,题中的“美数”包括12的倍数与能被3整除但不能被6整除的数.由此不难得知,在[30,40]内的“美数”有3×11、12×3、3×13这三个数.
答案:3 3.画出计算1+13+15+17+…+12 013
的值的一个程序框图. 解:相加各数的分子都是1,而分母是有规律递增的,每次增加2,引入变量S 表示和,
计数变量i ,i 的值每次增加2,则每次循环都有S =S +1i
,i =i +2,这样反复进行. 程序框图如图所示:。
高中数学必修三-算法与程序框图
算法与程序框图知识集结知识元算法的概念知识讲解算法的概念算法是做一件事情的方法和步骤.在生活中做一件事情的方法和步骤有多种,我们设计的算法应本着简捷方便的原则.要正确地设计一个算法就需要了解算法的特征:有限性:一个算法当运行完有限个步骤后必须结束,而不能是无限地运行确定性:算法的每一步计算,都必须有确定的结果,不能模棱两可,即算法的每一步只有唯一的执行路径,对于相同的输入只能得到相同的输出结果可行性:算法中的每一步骤必须能用实现算法的工具精确表达,并能在有限步内完成有序性算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能执行后一步普遍性:算法一般要适用于输入值集合中不同形式的输入值,而不是局限于某些特殊的值,即算法具有一般性,一个算法总是针对某类问题设计的,所以对于求解这类问题中的任意一个问题都应该是有效的不唯一性:解决一个或一类问题,可以有不同的方法和步骤,也就是说,解决这个或这类问题的算法不一定是唯一的例题精讲算法的概念与程序语句例1.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100 C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+1例2.下列各式中S的值不可以用算法求解的是()A.S=1+2+3+4B.S=1+2+3+4+…C.S=1+++…+D.S=12+22+32+…+1002例3.程序框图中,表示处理框的是()A.B.C.D.程序框图知识讲解1.程序框图的三种基本逻辑结构的应用【知识点的认识】三种基本逻辑结构:1.顺序结构:往往从上到下的顺序进行,常用于直接应用公式的题型.如图,算法执行完A 后才执行B.2.条件结构:执行具有选择性.如图,当算法执行到条件P时,若P成立,则执行A,否则执行B.无论条件P是否成立,A和B只能选择其一执行,不能同时执行或同时不执行.A和B中可以有一个为空,即不执行任何操作.3.循环结构:有“当型”和“直到型”两种循环结构.①当型:先判断再执行.如图,当算法执行到条件P时,先判断P是否成立,若不成立,执行A,再判断P,若P依然不成立,继续执行A,再判断…,如此循环直到P成立退出循环.②直到型:先执行再判断.如图,算法先执行A,然后判断条件P是否成立,若P不成立,继续执行A,直到P成立推出循环.例题精讲程序框图例1.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6例2.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S表示()A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值C.a0+a1x0+a2x02+a3x03的值D.以上都不对例3.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.当堂练习单选题练习1.算法的三种基本结构是()A.逻辑结构,模块结构,条件分支结构B.顺序结构,条件结构,循环结构C.矩形结构,菱形结构,平行四边形结构D.顺序结构,重复结构,分支结构练习2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是()A.-4 B.-1 C.5 D.6练习3.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一、”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3练习4.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6填空题练习1.将“杨辉三角”中的数从左到右、从上到下排成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,如图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S的值是____。
高中数学人教A版必修3课件1.1.2程序框图
例3 设计一算法,求和:1+2+3+…+100
开始
算法1:
第一步:确定首数a,尾 数b,项数n;
第二步:利用公式“总 和=(首数+尾数)×项数 /2”求和;
第三步:输出求和结果。
输入a,b,n a=1 b=100 n=100
Sum=(a+b)*n/2
输出Sum
结束
例3 设计一算法,求和:1+2+3+…第+一10步0 :S=0+1=1
i=1,S=0
否 i<=100? 是 S=S + i
i=i+1
输出S 结束
开始 i=1,S=0
S=S + i i=i+1
否 i>=100? 是 输出S 结束
开始 i=1,S=0
否 i<=100? 是 S=S + i
i=i+1
输出S 结束
思考:将步骤A和步骤B交换位 置,结果会怎样?能达到预期结果 吗?为什么?要达到预期结果,还 需要做怎样的修改?
开始
输入a、b、c
a+b>c,a+c>b, b+c>a是否同时成立
是
存在这样的三角形
否
不存在这样的三角形
结束
开始
输入a,b,c
a+b>c N
Y a+c>b N
Y
b+c>a N Y
存在这样的三角形
结束
不存在这样的三角形
例3. 设计一个求解一元二次方程ax2+bx+c=0的算 法,并画出程序框图表示。
人教版高中数学必修三 1.1.2程序框图(结)
人教版必修三1.1.2程序框图[例1]利用梯形的面积公式计算上底为2,下底为4,高为5的梯形面积,设计出该问题的算法及程序框图.[自主解答]算法如下:第一步,a=2,b=4,h=5.其次步,S=12(a+b)h.第三步,输出S.该算法的程序框图如图所示:——————————————————(1)挨次结构的适用范围:数学中很多问题都可以按挨次结构设计算法,如运用公式进行计算、几何中的作图步骤等.(2)应用挨次结构表示算法的步骤:①认真审题,理清题意,找到解决问题的方法;②梳理解题步骤;③用数学语言描述算法,明确输入量、计算过程、输出量;④用程序框图表示算法过程.——————————————————————————————————————1.已知圆的半径,设计一个算法求圆的周长和面积的近似值,并用程序框图表示.解:算法步骤如下:第一步,输入圆的半径R. 其次步,计算L=2πR. 第三步,计算S=πR2.第四步,输出L和S.程序框图:条件结构[例2]设计一个算法推断由键盘输入的一个整数是不是偶数,并画出程序框图.(提示:看被2除的余数是否为零)[自主解答]算法分析:第一步,输入整数x.其次步,令y是x除以2所得的余数.第三步,推断y是否为零,若y是零,输出“是偶数”,结束算法;若y不是零,输出“不是偶数”,结束算法.程序框图:——————————————————1.凡是依据条件作出推断,再打算进行哪一个步骤的问题,在使用程序框图时,必需引入推断框,应用条挨次结构件结构,如分段函数求值,数据的大小比较及含“若……,则……”字样的问题等2.解题时应留意:经常先推断条件,再打算程序流向推断框有两个出口,但在最终执行程序时,选择的路线只有一条.——————————————————————————————————————2.儿童乘坐火车时,若身高不超过1.2 m ,则无需购票;若身超群过1.2 m ,但不超过1.5 m ,可买半票;若超过1.5 m ,应买全票,请设计一个算法,并画出程序框图.解:依据题意,该题的算法中应用条件结构,首先以身高为标准,分成买票和免费,在买票中再分出半票和全票.买票的算法步骤如下:第一步:测量儿童身高h .其次步:假如h ≤1.2 m ,那么免费乘车,否则若h ≤1.5 m ,则买半票,否则买全票. 程序框图如图所示:如图所示,是求函数y =|x -3|的函数值的程序框图,则①处应填________,②处应填________.[巧思] 借助学习过函数y =|x -3|=⎩⎪⎨⎪⎧x -3, x ≥3,3-x , x <3.故而①处应推断x <3?,若条件为否也就是x ≥3,则执行y =x -3.[妙解] ∵y =|x -3|=⎩⎪⎨⎪⎧x -3, x ≥3,3-x , x <3.∴①中应填x <3? 又∵若x ≥3,则y =x -3. ∴②中应填y =x -3. [答案] x <3? y =x -3[例1] 设计求12+22+32+…+n 2的一个算法,并画出相应的程序框图. [自主解答] 第一步,令i =1,S =0. 其次步,S =S +i 2. 第三步,i =i +1.第四步,若i 不大于n ,则转到其次步,否则输出S . 程序框图:——————————————————1.用循环结构描述算法,需确定三件事 (1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的循环条件.2.留意事项(1)不要漏掉流程线的箭头.(2)与推断框相连的流程线上要标注“是”或“否”.(3)循环结构要在某个条件下终止循环,这就需要用条件结构来推断,因此循环结构中肯定包含条件结构,但不允许是死循环.3.一个循环结构可以使用当型,也可以使用直到型,但依据条件限制的不同,有时用当型比用直到型要好,关键是看题目中给定的条件,有时用两种循环都可以.当型循环结构是指当条件满足时执行循环体,直到。
高中数学必修3程序框图知识点高中数学必修三知识点
高中数学必修3程序框图知识点高中数学必修三知识点程序框图的概念:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形;程序框图的构成:一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字。
设计程序框图的步骤:第一步,用自然语言表述算法步骤;第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程序框图;第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图。
画程序框图的规则:(1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数程序框图中的程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)在图形符号内描述的语言要非常简练清楚。
几种重要的结构:顺序结构、条件结构、循环结构。
输入语句:在该程序中的第1行中的INPUT语句就是输入语句。
这个语句的一般格式是:其中,“提示内容”一般是提示用户输入什么样的信息。
如每次运行上述程序时,依次输入-5,-4,-3,-2,-1,0,1,2,3,4,5,计算机每次都把新输入的值赋给变量“某”,并按“某”新获得的值执行下面的语句。
输出语句:在该程序中,第3行和第4行中的PRINT语句是输出语句。
它的一般格式是:同输入语句一样,表达式前也可以有“提示内容”。
赋值语句:用来表明赋给某一个变量一个具体的确定值的语句。
除了输入语句,在该程序中第2行的赋值语句也可以给变量提供初值。
它的一般格式是:赋值语句中的“=”叫做赋值号。
算法语句的作用:输入语句的作用:输入信息。
输出语句的作用:输出信息。
赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值。
条件语句:算法中的条件结构由条件语句来表达。
循环语句:在一些算法中,从否处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构。
高中数学必修三1.1.2程序框图(第2课时)
3.画程序框图 对 画程序框图,对 画程序框图 于输入的x值 输 于输入的 值,输 出相应的y值 出相应的 值.
开始
程序框图
输入x 输入
x<0? 否 0≤x<1? 否 是 是
0( x < 0) y = 1(0 ≤ x < 1) x( x ≥ 1)
y=x
y=1
y=0
输出y 输出
结束
(3)循环结构 需要重复执行同一操作的结构称为循环结 循环结构: 即从某处开始按照一定的条件反复执行某些步骤. 构.即从某处开始按照一定的条件反复执行某些步骤 即从某处开始按照一定的条件反复执行某些步骤 反复执行的步骤称为循环体 循环体. 反复执行的步骤称为循环体 Until(直到型)循环 ( ) While(当型)循环 ( )
设计一个计算1+2+3+……+100的值的算 例5:设计一个计算 设计一个计算 的值的算 并画出程序框图. 法,并画出程序框图 并画出程序框图 算法分析: 算法分析 各步骤有共同的结构: 各步骤有共同的结构 第1步:0+1=1; 步 步的结果+i=第 步的结果 第(i-1)步的结果 第i步的结果 步的结果 第2步:1+2=3; 步 第3步:3+3=6; 步 第4步:6+4=10 步 ………… 为了方便有效地表示上述过程,我 为了方便有效地表示上述过程 我 们引进一个累加变量 累加变量S来表示每 们引进一个累加变量 来表示每 一步的计算结果,从而把第 从而把第i步表 一步的计算结果 从而把第 步表 S=S+i 示为
判断框
流程线
连接点
算法中从上一步骤指向 下一步骤(连接程序框) 下一步骤(连接程序框)
高中数学第一章算法初步-程序框图课件人教版必修三
s p(p - a)(p - b)(p - c)
第四步,输出s
输出s 结束
练习1:任意给定一种正实数,设计一种算法求以 这个数为半径旳圆旳面积,并画出程序框图表达.
解:算法环节为:
程序框图:
开始
第一步,输入圆旳半径 r .
第二步,计算s r2
输入r
第三步,输出s.
计算 s r 2
输出s
结束
例2、写出下列程序框图旳运营成果:
开始 输入a,b
a=2 b=4
S=a/b+b/a
输出S
(1)图中输出S= ;
结束
5/2
练习2:写出下列算法旳功能。
开始
输入a,b
d=a2+b2
c= d
输出c 结束
左图算法旳功能
求两数平方和
是 旳 算术平方根 ;
三、课时小结:
1、掌握程序框旳画法和功能。
2、了解什么是程序框图,懂得学习 程序框图旳意义。
(B)2. 下图形符号表达输入输出框旳是(B )
(C)矩形框
(B) 平行四边形框
(D)(C) 圆角矩形框 (D) 菱形框
(E)3.下图形符号表达处理数据或计算框旳是 A ()
(F)矩形框
(B) 平行四边形框
(G)(C) 圆角矩形框 (D) 菱形框
顺序构 造
开始 输入n
i=2
求n除以i旳余数
循环构造
输入n i=2
求n除以i旳余数
第三步,用i除n,得到余数r.
第四步,判断“r=0”是否成 立.若是,则n不是质数,结束算 法;不然将i旳值增长1,仍用i 表达.
第五步,判断“i>(n-1)”是否 成立.若是,则n是质数,结束算 法;不然返回第三步.
高中数学必修3程序框图与顺序结构
左图算法的功能
求两数平方和
是 的 算术平方根 ;
(2)条件结构
在一个算法中,经常会遇到一些条件的判断,算法的 流程根据条件是否成立有不同的流向.条件结构就是处理 这种过程的结构.
分类是算法中经常发生的事情,条件结构的主要作 用就是表示分类.
条件结构可用程序框图表示为下面两种形式.
满足条件?
是
步骤A
存在这样 的三角形
否 否 否
不存在这样 的三角形
结束
例5.设计一个求解一元二次方程 a x 2 b x c 0的算法,
并画出程序框图表示.
0有两个不相等的实数根 0有两个相等的实数根 0没有实数根
x b
b2 4ac
b
2a
2a 2a
算法
第一步:输入三个系数 a , b , c
第二步:计算 b24 a c
辨析练习
1. 下列图形符号表示输入输出框的是(B )
1. 矩形框
(B) 平行四边形框
(C) 圆角矩形框 (D) 菱形框
2.下列图形符号表示处理数据或计算框的( A)
1. 矩形框
(B) 平行四边形框
(C) 圆角矩形框 (D) 菱形框
2:写出下列算法的功能。
开始
输入a,b
d=a2+b2
c= d
输出c 结束
第五步,判断“i>(n-1)”是否 成立,若是,则n是质数,结束算
法;思否则考,2返:我回第们三将步上述算法 用右边的图形表示:
i的值增加1, 仍用i表示
否
i>n-1或r=0? 是
r=0?
是
否
输出“n不 输出“n 是质数” 是质数”
结束
开始
苏教版高中数学必修31.2流程图程序框图的画法课件
例8:
Y
开始
n=1
输入r
R>=6.8? Y
n=n+1
N 输出r
n<=9? N
例9设计一个用有理指数幂逼近无理指数幂5
2
的算法,并估计5 2 的近似值,画出算法的程序框图。
解:算法步骤如下:
第一步:给定精确度d,令i=1;
第二步:取出 2 的到小数点后第i位的不足近 似值,记为a; 取出 2 的到小数点后第i位的过 剩近似值,记为b;
理费.
开始
程序框图如下:
输入x
x≤7
y y=1.2x
N y=1.9x-4.9
输出y 结束
例5设计一个算法求12+22+32+...+992+1002的
值,并画出程序框图。
程序框图如下:
开始
S=0
I=1
N I≤100
Y S=S+I*I
I=I+1
输出S
结束
例6:
Hale Waihona Puke 开始输入人数xx>3? Y
m=5+1.2(x-3)
是 x1=m
否 |x1-x2|<0.005? 是
m=(x1+x2)/2
输出所求的近似根m
结束
x1=m x2=m
x2=m
例4.下面是关于城市居民生活用水收费的问
题
为了加强居民的节水意识,某市制定了以下生活用水收费标准:每户
每月用水未超过7m3时,每立方米收费 1.0 元,并加收元的城市污
水处理费,超过7m3的部分,每立方米收费元,并加收元的城市污水处
第三步 若f(x1)·f(m) >0则 令x1=m,否则x2=m。
高中数学必修三同步练习题库:算法与程序框图(填空题:一般)
算法与程序框图(填空题:一般)1、执行如图所示的程序框图,若输入的,值分别为0和9,则输出的值为__________.2、已知流程图如图,则输出的i=________.3、(2014年苏州B6)若某程序框图如图所示,则该程序运行后输出的值是______.4、如图是一个算法流程图,则输出的的值是__________.5、下图是一个算法流程图,则输出的的值是______.6、已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89,B=96,C=99;第二步:;第三步:;第四步:输出计算的结果.7、写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=直接计算.第一步;第二步;第三步输出计算的结果.8、执行如图所示的程序框图,若输出,则输入的值为 .9、在如图的程序框图中,输出的值为,则, .10、根据如图所示的算法流程图,可知输出的结果S为______.11、执行如图所示的流程图,则输出的值为______.12、如图程序框图的输出结果是_________.13、如果执行下面的程序框图,那么输出的s=______________.14、执行如图所示的程序框图,则输出的值为_______________.15、执行如图所示的程序框图,输出的________.16、运行如图所示的程序框图,输出的__________.17、我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”以下程序框图反映了对此题的一个求解算法,则输出的的值为________.18、如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a= __________19、如图所示的程序框图(未完成),设当箭头指向①时,输出的结果,当箭头指向②时,输出的结果,则_____.20、执行如图所示的程序框图.若输出,则框图中①处可以填入条件为___________21、执行如图所示的程序框图,若输入的值为3,则输出的的值为_______________.22、如图所示的算法流程图,若输出y的值为,则输入的值为__________.23、如图所示的算法流程图,若输出y的值为,则输入x的值为__________.24、某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示,下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的________.25、用秦九韶算法求多项式当时的值为____________.26、阅读如图的程序框图,运行相应的程序,输出的结果为__________.27、按右面的程序框图运行后,输出的应为_______.28、执行如图所示的程序框图后,输出的结果是__________.(结果用分数表示)29、如下图是一个算法的伪代码,其输出的结果为__________.30、图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为,则输出的________.31、执行如图所示的程序框图,输出的值是__________.32、已知函数,右图表示的是给定的值,求其对应的函数值的程序框图,则①处应填写________;②处应填写________.33、执行如图所示的算法框图,若输入的的值为2,则输出的的值为__________.34、下图是一个算法流程图,若输入x的值为,则输出的y的值是_____________35、如图所示,输出的的值为__________.36、如果执行下面的程序框图,那么输出的______.37、下左图是计算某年级500名学生期末考试(满分为100分)及格率的程序框图,则图中空白框内应填入___________38、执行如下图所示的程序框图,若输入的值为6,则输出的值为__________.39、(苏州2010年B8)下面是一个算法的流程图,则输出的结果是____________.40、(2011年苏州B6)如图,程序执行后输出的结果为___________.41、(2012年苏州B8)如图,程序执行后输出的结果为_________.42、(2013年苏州B6)执行下面的流程图,输出的S=43、(2015年苏州B5)如图所示,此程序框图运行后输出的值是________.44、阅读如图所示的程序框图,运行相应的程序,输出的S值为________.45、阅读如图所示的流程图,运行相应的程序,则输出n的值为______.46、执行如图所示的程序框图,当输出的值是4时,输入的整数的最大值是__________.47、图中所示的是一个算法的流程图,其表达式为__________.48、下图是一个算法流程图,则输出的的值是 .49、如图所示的流程图中,输出的为______________50、现有若干(大于20)件某种自然生长的中药材,从中随机抽取20件,其重量都精确到克,规定每件中药材重量不小于15克为优质品,如图所示的程序框图表示统计20个样本中的优质品数,其中表示每件药材的重量,则图中①,②两处依次应该填写的整数分别是________________.51、下边程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“”表示除以的余数),若输入的分别为495,135,则输出的__________.52、如图是某算法的程序框图,则程序运行后输出的结果是__________.53、执行如图所示的程序框图,则输出的结果是__________.54、执行如图所示的程序框图,若输入的,值分别为0和9,则输出的值为__________.55、《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷.卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数是8的整数倍时,均可采用此方法求解.如图,是解决这类问题的程序框图,若输入,则输出的结果为__________.56、程序框图如图所示,若输入,,,则输出的为__________.57、某程序框图如图所示,若运行程序后输出为__________.58、阅读下列算法:第一步,输入x的值;第二步,若x≥0,则y=x;第三步,否则,;第四步,输出y的值.若输入的,则输出的的取值范围是________.59、下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的分别为14,20,则输出的 .60、某程序的伪代码如下图所示,则程序运行后的输出结果为.61、如图,若时,则输出的结果为 .62、当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是__________.63、给出一个如图所示的程序框图,若要使输入的值与输出的值相等,则这样的值得个数是个.64、给出一个如图所示的程序框图,若要使输入的值与输出的值相等,则这样的值的个数是__________个.65、二进制数转换成十进制数是.66、执行如图所示的程序框图,若输入的值为,则输出的值是.67、执行如图所示的程序框图,若输入的值为2,则输出的值为.68、已知程序框图如图所示,其功能是求一个数列的前项和,则数列的一个通项公式,数列的前项和为 .69、执行如图所示的程序框图,若输入 , 则输出.70、下图是某算法的程序框图,则程序运行后输出的结果是.参考答案1、32、93、34、5、6、S=A+B+C;.7、取n=100;计算.8、.9、10、11、412、13、4614、-1015、716、72017、2518、219、2020、21、22、-23、-24、25、26、27、28、29、30、431、32、33、234、35、36、2037、38、1539、3540、6441、42、21043、44、1545、446、2347、48、49、50、14,1951、4552、53、854、355、12156、102457、58、59、260、61、62、63、64、65、66、67、68、,69、270、【解析】1、因为输入的的值分别为和 .第一次执行循环体后:,不满足条件,故;第二次执行循环体后:,不满足条件,故;第三次执行循环体后:,满足条件,故输出的值为,故答案为.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.2、根据流程图可得:,否,,;否,;否,;否,;是输出,故答案为9.3、第一次执行完循环体后,,,不满足退出循环的条件;再次执行完循环体后,,,,不满足退出循环的条件;第三次执行完循环体后,满足退出循环的条件;故输出的值为3,故答案为3.4、由题设中提供的算法流程图中的算法程序可知当时,;当时,;当时,,此时运算程序结束,输出,应填答案。
必修3数学程序、框图、统计、概率知识汇编及训练题(千阳中学wu)
必修3知识汇编 1. 统计:1.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,以每人被抽到的机会为0.2,向该中学抽取容量为n 的样本,则n=2.某社区700户家庭,其中高收入家庭225户,中等收入家庭400户,低收入家庭75户,为了调查社会购买的某项指标,要从中抽取一个容量为100户的样本,记作①; 某中学高二年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②;某礼堂有32排座位,每排有40个座位(座位号为1-40),一次报告会坐满了观众,会后为听取意见留下了座位号为16的所有的32名观众进行座谈,记作③.则完成上述3项应采用的抽样方法是( )A.①用简单随机抽样法,②用系统抽样法,③用分层抽样法;B.①用分层抽样法,②用简单随机抽样法,③用系统抽样法;C.①用简单随机抽样法,②用分层抽样法,③用系统抽样法;D.①用分层抽样法, ②用系统抽样法, ③用简单随机抽样法;3.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从该图中得到( ) A.条形统计图 B.茎叶图 C.扇形统计图 D.折线统计图4.若M 个数的平均数为X,N 个数的平均为Y ,则这M+N 个数的平均数为( ) A.2X Y + B. X Y M N++ C. M X N Y M N++ D. M X N Y X Y++5.一组数据12,n x x x ⋅⋅⋅的方差为9,则数据123,33n x x x ⋅⋅⋅的方差是 ,标准差是 .(81,9)6.从甲、乙两名学生中选拔一人参加射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下: 甲:9,8,6,9,6,5,9,9,7,4. 乙:9,5,7,8,7,6,8,67,7.1) 分别计算甲、乙两人射击命中环数的极差、众数和中位数; 2)分别计算甲、乙两人射击命中环数平均数、方差、标准差;3)比较两人的成绩,然后决定选择哪一个人参赛.123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >> D.231s s s >>8.下列说法:①一组数据不可能有两个众数;②一组数据的方差必须是正数;③将一组数据中的每个数据都加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的个数是( C )A.0 B.1 C .2 D.39.一组数据都在100附近摆动,将这组数据中的每一个数都减去100后,若求得的新的数据的平均数是1.2,方差是5.8,则将原始数据组中的每一个数都扩大为原来的2倍后,重新得到一组数据,则该新数据的平均数和方差是 .(202.4,23.2)10.某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s ,后来发现记录有误,甲得70分却误记为40分,乙得50分误记为80分,更正后重新计算得标准差为s 1,则s 与s 1之间的大小关系是 ;(s >s 1)11. B )A .B .5C .3D .512.线性回归方程y=-5+2x ,则( D )A..5是回归系数aB.2是回归系数aC. -5是回归系数b D. 25y x =- 13.由一组样本数据1122(,),(,),(,)n n x y x y x y ⋅⋅⋅得到的回归直线方程y=bx+a ,那么下面说法不正确的是( B ) A .直线y=bx+a 必经过点(,)x y B. 直线y=bx+a 至少经过点1122(,),(,),(,)n n x y x y x y ⋅⋅⋅中的一个点 C. 直线y=bx+a 的斜率为1122222212n n nx y x y x y n x yx x x n x++⋅⋅⋅+-++⋅⋅⋅+- D.直线y=bx+a 和各点1122(,),(,),(,)n n x y x y x y ⋅⋅⋅的偏差21[()]nii i ybx a =-+∑,是该坐标平面上所有直线与这些点的偏差中最小的直线14. 某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是AA. ^10200y x =-+ B. ^10200y x =+ C. ^10200y x =-- D. ^10200y x =- 2.算法初步: 典例训练:1.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A )A. c > x B. x > c C. c > b D. b > c2.某程序框图如图所示,若输出的S=57,则判断框内位 A ) k >4? B )k >5? C ) k >6? D )k >7?3. 某程序框图如图所示,该程序运行后输出的k 的值是 ( A ) A .4 B .5 C .6 D .74.如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于B A )720 B ) 360 C ) 240 D ) 1203.概率:1. 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A .13B .12C .23D .342.从1-9这九个数字中任意取两个数字,分别有下列事件:1)恰有一个是奇数和恰有一个是偶数;2)至少有一个是奇数和两个数都是奇数;3)至少有一个是奇数和两个数都是偶数;4)至少有一个是奇数和至少有一个是偶数;以上事件中是互斥事件的是 ,是对立事件的是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修三专题
专题一:根据程序框图写出运算结果
解题步骤:
(1)弄清楚初值和循环结构开始前各变量值。
(2)跟着流程线箭头所指方向一步一步往下走,遇到判断框,先判断满足哪一个条件,若是满足判断框中条件,走“是”这一支,否则走“否”这一支,并继续顺着箭头方向走。
(3)若是循环结构,每循环一次为一组,写出各组中变量的值,直到循环结束。
(4)得出结果。
典型例题
1、(2009浙江卷文)某程序框图如上(1)图所示,该程序运行后输出的的值是( ) A . B . C . D .
2、(2013北京理科)执行如图(2)所示的程序框图,输出的S 值为
A .1
B .23
C .1321
D .610987 3、(2013安徽理科) 如图所示(3),程序框图(算法流程图)的输出结果是
(A )
16 (B )2524 (C )34 (D )1112
4、(2013北京理科)执行如图所示的程序框图,输出的S 值为( )
(A ) 1 (B )23 (C )1321
(D )610987 5、(2014安徽理科)如图所示(5),程序框图(算法流程图)的输出结果是( )
A. 34
B. 55
C. 78
D. 89
6、(2014福建理科).阅读右图所示的程序框图(6),运行相应的程序,输出的S 得值等于( )
.18A .20B .21C .40D
7、(2014北京理科)当7,3m n ==时,执行如图(7)所示的程序框图,输出的S 值为( )
.7A .42B .210C .840D
8、(2014四川理科)执行如图的程序框图(8),如果输入的,x y R ∈,那么输出的S 的最大值为( )
A 、0
B 、1
C 、2
D 、3
9、(全国二理科).执行下图程序框图(9),如果输入的x,t 均为2,则输出的S= ( )
A. 4
B. 5
C. 6
D. 7
10、(2014天津理科)阅读下边的框图(10),运行相应的程序,输出S 的值为________.
11、(全国一理科)执行下图的程序框图(11),若输入的,,a b k 分别为1,2,3,则输出的M = A .
203 B .165 C .72 D .158
(1)(2)(3)(4)
(5)(6)
(7)(8)(9)(10)。