第2课时 集合的运算
第02讲 集合的运算(7大考点13种解题方法)(解析版)
第02讲集合的运算(7大考点13种解题方法)考点考向集合之间的基本运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.由所有属于集合A 或属于集合B 的元素组成的集合叫A 与B 的并集,记作A ∪B ;符号表示为A ∪B ={x |x ∈A 或x ∈B }2.并集的性质A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ,A ⊆A ∪B .3.对于两个给定的集合A 、B ,由所有属于集合A 且属于集合B 的元素组成的集合叫A 与B 的交集,记作A ∩B。
符号为A ∩B ={x |x ∈A 且x ∈B }。
4.交集的性质A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅,A ∩B ⊆A .5、对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作∁U A 。
符号语言:∁U A ={x |x ∈U ,且x ∉A }。
【要点注意】1.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUA B A B U ⇔=∅⇔=痧.2.德▪摩根定律:①并集的补集等于补集的交集,即()=()()U UU A B A B 痧;②交集的补集等于补集的并集,即()=()()U UU AB A B 痧.方法技巧1.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴求解.2.求集合交集的方法为:(1)定义法,(2)数形结合法.(3)若A ,B 是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.3.集合基本运算的求解规律(1)离散型数集或抽象集合间的运算,常借用Venn 图求解.(2)集合中的元素若是连续的实数,常借助数轴求解,但是要注意端点值能否取到的情况.(3)根据集合运算求参数,先把符号语言译成文字语言,然后灵活应用数形结合求解.考点精讲考点一:交集题型一:交集的概念及运算1.(2022·浙江衢州·高一阶段练习)已知集合{1,2,3}A =,{2,3,4}B =,则A B =()A .{1,2,3,4}B .{2,3}C .{1,2}D .∅【答案】B【分析】根据交集的定义可求A B .【详解】{}2,3AB =,故选:B.2.(2022·全国·高一)已知集合{}22A x x =-<<,{}2,0,1,2B =-,则A B =()A .{}1,0,1-B .{}0,1C .{}2,0,1,2-D .{}1,0,1,2-【答案】B【分析】根据集合的交集运算,即可得答案.【详解】因为{}22A x x =-<<,{}2,0,1,2B =-,所以{0,1}A B =,故选:B .题型二:根据交集的结果求集合或参数3.(2017·浙江·长兴县教育研究中心高一期中)已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ()A .2B .3C .4D .5【答案】D【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.4.(2021·湖北·车城高中高一阶段练习)若集合{}322P x x =<≤,非空集合{}2135Q x a x a =+≤<-,则能使()Q PQ ⊆成立的所有实数a 的取值范围为()A .(1,9)B .[1,9]C .[6,9)D .(6,9]【答案】D【分析】由()Q P Q ⊆知Q P ⊆,据此列出不等式组即可求解.【详解】∵()Q P Q ⊆,∴P Q Q ⋂=,Q P ⊆,∴21352133522a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得69a <≤,故选:D.题型三:根据交集的结果求集合元素个数5.(2021·河南·襄城县实验高级中学高一阶段练习)已知集合()1,A x y y x ⎧⎫==⎨⎬⎩⎭,(){},B x y y x ==,则AB 中元素的个数为()A .0B .1C .2D .3【答案】C【分析】联立方程解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,得到答案.【详解】1y x y x⎧=⎪⎨⎪=⎩,解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,故A B 中有两个元素.故选:C.6.(2022·江苏·高一)若集合{}1,2,3,4A B =,{}1,2A B =,集合B 中有3个元素,则A中元素个数为()A .1B .2C .3D .不确定【答案】C【分析】根据条件得到{}1,2,3B =或{}1,2,4B =,进而可得集合A 中元素个数.【详解】{}1,2AB =,则集合B 中必有元素1,2当{}1,2,3B =时,{}1,2,4A =,当{}1,2,4B =时,{}1,2,3A =,故集合A 中元素个数为3.故选:C.考点二:并集题型四:并集的概念及运算1.(多选)(2021·福建·晋江市磁灶中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .{}2A B x x ⋃=<D .A B R=【答案】AC【分析】先求得集合B ,由此确定正确选项.【详解】3{|320}{|}2B x x B x x =->==<,所以32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}2A B x x ⋃=<.故选:AC2.(多选)(2021·福建省同安第一中学高一阶段练习)已知集合{|2}A x x =<,{|320}B x x =->,则()A .32AB x x ⎧⎫⋂=<⎨⎬⎩⎭B .A B =∅C .A B R=D .{}A B 2x x ⋃=<【答案】AD【解析】先化简集合B ,再由交集和并集的概念,即可得出结果.【详解】因为集合{|2}A x x =<,{}33202B x x x x ⎧⎫=->=<⎨⎬⎩⎭,因此32A B x x ⎧⎫⋂=<⎨⎬⎩⎭,{}A B 2x x ⋃=<.故选:AD.题型五:根据并集的结果求集合或参数3.(多选)(2022·湖北武汉·二模)已知集合{}{}1,4,,1,2,3A a B ==,若{}1,2,3,4A B =,则a 的取值可以是()A .2B .3C .4D .5【答案】AB【分析】根据并集的结果可得{}1,4,a {}1,2,3,4,即可得到a 的取值;【详解】解:因为{}1,2,3,4A B =,所以{}1,4,a {}1,2,3,4,所以2a =或3a =;故选:AB4.(多选)(2021·湖南·高一期中)已知集合{}1,4,M x =,{}2,3N =,若{}1,2,3,4M N =U ,则x 的可能取值为()A .1B .2C .3D .4【答案】BC【分析】根据题意,结合集合中元素的互异性及两个集合的并集的定义,即可求解.【详解】由题意,集合{}1,4,M x =,{}2,3N =,且{}1,2,3,4M N =U 根据集合中元素的互异性及两个集合的并集的定义,可得2x =或3x =.故选:BC.题型六:根据并集的结果求集合元素个数5.(多选)(2021·广东揭阳·高一期末)若集合{}0,1,2,A x =,2{1,}B x =,A B A ⋃=则满足条件的实数x 为()A .0B .1C .D .【答案】CD【分析】由A B A ⋃=说明B 是A 的子集,然后利用子集的概念分类讨论x 的取值.【详解】解:由A B A ⋃=,所以B A ⊆.又{}0,1,2,A x =,2{1,}B x =,所以20x =,或22x =,或2x x =.20x =时,集合A 违背集合元素的互异性,所以20x ≠.22x =时,x =或x =2x x =时,得0x =或1x =,集合A 均违背集合元素互异性,所以2x x ≠.所以满足条件的实数x 的个数有2个.故选CD .【点睛】本题考查了并集及其运算,考查了子集的概念,考查了集合中元素的特性,解答的关键是要考虑集合中元素的互异性,是基本的概念题,也是易错题.考点三:补集、全集题型七:补集的概念及运算1.(2022·广东汕尾·高一期末)全集U =R ,集合{}3A x x =≤-,则 U A =ð______.【答案】{}3x x >-【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A =ð{}3x x >-,故答案为:{}3x x >-2.(2022·江苏·高一单元测试)若全集S ={2,3,4},集合A ={4,3},则S A ð=____;若全集S ={三角形},集合B ={锐角三角形},则S B ð=______;若全集S ={1,2,4,8},A =∅,则S A ð=_______;若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},则a =_______;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},U B ð={-1,0,2},则B =_____.【答案】{2}{直角三角形或钝角三角形}{1,2,4,8}1或-3{1,4}【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2,3,4},集合A ={4,3},由补集的定义可得S A ð={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ð={直角三角形或钝角三角形};若全集S ={1,2,4,8},A =∅,由补集的定义S A ð={1,2,4,8};若全集U ={1,3,a 2+2a +1},集合A ={1,3},U A ð={4},故{1,3,4}U U A A =⋃=ð即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3;已知U 是全集,集合A ={0,2,4},U A ð={-1,1},故{1,0,1,2,4}U U A A =⋃=-ð,U B ð={-1,0,2},故B ={1,4}。
集合基本运算1.1.3 第2课时
首 页
上一页
下一页
末 页
结
束
补
集
[导入新知]
补集的概念及性质
对于一个集合 A,由全集 U 中 定 义 文字语言
不属于集合A 的所有元素组成的集 ________________
合称为集合 A 相对全集 U 的补集,简称 ∁UA 为集合 A 的补集,记作_____
x∈U,且x∉A 符号语言 ∁UA={x|_______________}
首 页
上一页
下一页
末 页
结
束
[ 活学活用] 已知全集 U={x|x<10, x∈N*}, A={2,4,5,8}, B={1,3,5,8}, 求∁U(A∪B),∁U(A∩B),(∁UA)∩(∁UB),(∁UA)∪(∁UB).
解:因为 A∪B={1,2,3,4,5,8}, U={1,2,3,4,5,6,7,8,9},所以∁U(A∪B)={6,7,9}. 因为 A∩B={5,8},所以∁U(A∩B)={1,2,3,4,6,7,9}. 因为∁UA={1,3,6,7,9},∁UB={2,4,6,7,9}, 所以(∁UA)∩(∁UB)={6,7,9}, (∁UA)∪(∁UB)={1,2,3,4,6,7,9}. 说明:画出 Venn 图,如图所示,由图形也可以直接观察出 来结果.
结
束
第二课时 补集及综合应用
全
集
[导入新知]
全集的定义及表示
(1) 定义:如果一个集合含有我们所研究问题中涉及的
所有元素 ,那么就称这个集合为全集. ___________ U (2)符号表示:全集通常记作____.
首 页
上一页
下一页
末 页
结
束
[ 化解疑难] 对全集概念的理解 “全集”是一个相对的概念,并不是固定不变的,它是依 据具体的问题来加以选择的.例如:我们常把实数集 R 看作全 集,而当我们在整数范围内研究问题时,就把整数集 Z 看作全 集.
人教B版高中数学必修一 《集合的基本运算》集合与常用逻辑用语PPT(第2课时全集、补集及综合应用)
()
A.{x|-2<x≤1}
B.{x|x≤-4}
C.{x|x≤1}
D.{x|x≥1}
C [因为 S={x|x>-2}, 所以∁RS={x|x≤-2}. 而 T={x|-4≤x≤1}, 所以(∁RS)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.]
33
4.已知全集 U={2,0,3-a2},U 的子集 P={2,a2-a-2},∁UP ={-1},求实数 a 的值.
31
2.U={0,1,2,3,4},集合 A={1,2,3},B={2,4},则(∁UA)∪B 为
()
A.{1,2,4}
B.{2,3,4}
C.{0,2,3,4}
D.{0,2,4}
D [∵∁UA={0,4},B={2,4},∴(∁UA)∪B={0,2,4}.]
32
3.设集合 S={x|x>-2},T={x|-4≤x≤1},则(∁RS)∪T 等于
因为∁RA={x|x<3,或x≥7}, 所以(∁RA)∩B={x|2<x<3,或7≤x<10}.
18
解决集合交、并、补运算的技巧 1如果所给集合是有限集,则先把集合中的元素一一列举出来, 然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于 Venn 图来求解. 2如果所给集合是无限集,则常借助数轴,把已知集合及全集 分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注 意边界问题.
34
[解] 由已知,得-1∈U,且-1∉P, 3-a2=-1,
因此a2-a-2=0, 解得 a=2. 当 a=2 时,U={2,0,-1}, P={2,0},∁UP={-1},满足题意. 因此实数 a 的值为 2.
集合间的基本运算(第2课时)
≠,求选填、、、同时参加数学和化学小组的有 人解答1、设全集U={2,3,m 2+2m-3},A={|m+1|,2},C U A={5},求m 的值;2、已知全集U={1,2,3,4},A={x|x 2-5x+m=0,x ∈U},求C U A 、m ;3、已知全集U=R,集合A={x|0<x-1≤5},求C U A,C U (C U A)。
4、已知M={1},N={1,2},设A={(x ,y )|x ∈M ,y ∈N},B={(x ,y )|x ∈N ,y ∈M},求A ∩B ,A ∪B 。
5、设集合A={-1,1}, B={x|x 2-2ax+b=0}, 若B φ≠, 且B A ⊆, 求a, b 的值6、已知X={x|x 2+px+q=0,p 2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,X A X B X φ⋂=⋂=,试求p 、q ;7、集合A={x|x 2+px-2=0},B={x|x 2-x+q=0},若A B={-2,0,1},求p 、q ;8、A={2,3,a 2+4a+2},B={0,7,a 2+4a-2,2-a},且A B ={3,7},求B9、、已知全集为R ,集合P={x|x =a 2+4a+1,a ∈R },Q={y|y =-b 2+2b+3,b ∈R }求P ∩Q 和P ∩R Q C 。
10、某班举行数、理、化三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,求全班人数课补:集合中元素的个数在研究集合时,经常遇到有关集合中元素的个数问题。
我们把含有有限个元素的集合A叫做有限集,用card(A)表示集合A中元素的个数。
例如:集合A={a,b,c}中有三个元素,我们记作card(A)=3.结论:已知两个有限集合A,B,有:card(A∪B)=card(A)+card(B)-card(A∩B).例1 学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同学参赛?解设A={田径运动会参赛的学生},B={球类运动会参赛的学生},A∩B={两次运动会都参赛的学生},A∪B={所有参赛的学生}因此card(A∪B)=card(A)+card(B)-card(A∩B)=8+12-3=17.答:两次运动会中,这个班共有17名同学参赛.1.在某校高一(5)班的学生中参加物理课外小组的有20人参加数学课外小组的有25人,既参加数学课外小组又参加物理课外小组的有10人,既未参加物理课外小组又未参加数学课外小组的有15人,则这个班的学生总人数是A. 70B. 55C. 50D. 无法确定2.给出下列命题:给出下列命题:①若card(A)=card(B),则A=B;②若card(A)=card(B),则card(A∩B)=card(A∪B) ,③若A∩B=Φ则card(A∪B)-card(A)=card(B) ④若A=Φ ,则card(A∩B)=card(A)⑤若A B,则card(A∩B)=card(A) ,其中正确的命题的序号是③④。
1.3集合的基本运算(2课时)(教学课件)高一数学教学一课到位(人教A版2019)(14)
02 小组合作、讨论交流
典型例题2
各位同学,请大家每4个人组成一组,分别 交7}, 集合B ={0,2,3,4,6}, 求A∪B.
例5 设集合A={x|-1<x≤2}, 集合B={x|0<x≤3},求A∪B.
02 展示成果2
例4 设集合A ={1,3,5,7}, 集合B ={0,2,3,4,6}, 求A∪B.
提示 解:A∪B={1,3,5,7}∪{0,2,3,4,6}
={0,1,2,3,4,5,6,7}.
02 成果展示2
求集合的并集时,相同的元素不能重复 出现(即集合的元素具有互异性). 例如,例4 中集合A 和集合B中都有元素3,但是在A∪B 中元素3只出现一次.
02 成果展示2
例5 设集合A={x|-1<x≤2}, 集合B={x|0<x≤3}, 求A∪B. 提示 解:将这两个集合在数轴上表示出来,图中阴影部
02 探究新知3——并集的概念及其运算
两个集合的并集可以用Venn图中的阴影部分表示为
即:A∪B={x|x∈A或x∈B}.
02 探究新知3——并集的概念及其运算
各位同学,请大家分别说出下列Venn图中表示的并 集分别等于什么?
02 探究新知3——并集的概念及其运算
各位同学,请大家分别说出下列Venn图中表示的交 集分别等于什么?
Z
A={ 1,2 },B={ 1,2, 3 } 4.试给出集合A与集合B, 使A∪B= B. 则A∪B=B
03 情景导入
某班第一小组8位学生的登记表:
设8名学生组成集合为 U={1,2,3,4,5,6,7,8}.那么, 集 合U分别与由共青团员组成 的集合P={1,3,5,7,8}、由不 是共青团员的学生组成的 集合E={2,4,6}, 它们之间有什么关系?
集合的基本运算(第2课时集合的补集)课件高一上学期数学人教A版
随堂练习
3.集合 A={x|1<x<3},集合 B={x|x>4 或 x<2},则集合
A∩(∁ RB)等于( A.R C.{x|1<x≤4}
)
√B.{x|2≤x<3}
D.
解析:因为B={x|x>4或x<2},所以∁RB={x|2≤x≤4}, 所以A∩(∁RB)={x|2≤x<3}.故选B.
随堂练习
√D.(∁UM)∩N=
解析:集合 M,N,P 为全集 U 的子集,且满足 M⊆P⊆N,由题 中 Venn 图,得∁UN⊆∁UP,故 A 正确;∁NP⊆∁NM,故 B 正确; (∁UP)∩M= ,故 C 正确;(∁UM)∩N≠ ,故 D 错误.故选 D.
课堂小结
1.全集、补集的概念 2.补集的运算性质 3.交、并、补的简单综合运算;
(2)设全集U={1,2,3,4,5,6,7},集合A={3,4},则∁UA=____ (3)用实数集R和有理数集Q及补集符号∁表示无理数集. 提示:(2)∁RQ.
问题4:一个集合的补集是不是固定不变的?
补集是相对于全集而言的,随着全集的改变而改变
概念辨析
例1、已知全集为U,集合A={1,3,5,7},∁UA={2,4,6}, ∁UB={1,4,6},则集合B= {2,3,5,7; }
概念透析
问题1:用自己的话概括全集、补集的概念
一.全集
文字语言 记法
一般地,如果一个集合含有我们所研究问题中涉及的所有
元素,那__
图示
注意: 通常也把给定的集合称为全集
概念透析
问题1:用自己的话概括全集、补集的概念
二.补集
文字语言 符号语言
对于一个集合 A,由全集 U 中_不__属__于_集合 A 的所有元素组成的集合称为 集合 A 相对于全__集__U__的补集,简称为集合 A 的补集,记作__∁_U_A__
《集合的基本运算》(第2课时补集及应用)PPT
并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则∁UA={x|-1≤x≤3};
∁UB={x|-5≤x<-1,或1≤x≤3};
(∁UA)∩(∁UB)={x|1≤x≤3}.
探究一
探究二
探究三
思维辨析
随堂演练
∴A∩B={x|-1<x<2},∁UB={x|x≤-1,或x>3}.
又 P= ≤ 0,或 ≥
5
2
,
5
∴(∁UB)∪P= ≤ 0,或 ≥ 2 .
5
又∁UP= 0 < < 2 ,∴(A∩B)∩(∁UP)={x|-1<x<2}∩ 0 < <
5
={x|0<x<2}.
2
解:(1)∵B∩(∁UA)={2},∴2∈B,但2∉A.
∵A∩(∁UB)={4},∴4∈A,但4∉B.
8
= 7,
2
4 + 4 + 12 = 0,
∴ 2
解得
12
2 -2 + = 0,
=- 7 .
8 12
∴a,b 的值分别为7,- 7 .
探究一
探究二
探究三
思维辨析
随堂演练
集合中的新定义问题
)
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
(2)已知全集U为R,集合A={x|x<1,或x≥5},则∁UA=
.
解析:(1)由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.
1.1.3.2 集合的基本运算 第2课时
轴分析法求解.
点击进入相应模块
【规范解答】∵U={1,3,5,7,9}, ðU A={5,7}, ∴A={1,3,9},又A={1,|a-5|,9}, ∴|a-5|=3,即a=2或8. 答案:2或8
点击进入相应模块
集合的交、并、补运算的综合 【名师指津】 1.求集合交、并、补运算的方法
点击进入相应模块
U
方法二:∵A∪B={x|-5≤x<1}, ∴( ðU A)∩( ðU B)= ðU (A∪B)={x|1≤x≤3}.
点击进入相应模块
【例3】已知集合A={x|x<a},B={x|1<x<3},若A∪ ðR B=R,求 实数a的取值范围. 【审题指导】与集合交、并、补运算有关的求参数问题一 般利用数轴分析法分析求解. 【规范解答】∵B={x|1<x<3}, ∴ ðR B={x|x≤1或x≥3},
点击进入相应模块
6.已知全集U={2,3,a2+2a-3},若A={b,2},ð A={5},求
U
实数a和b的值. 【解析】∵ ðU A={5},∴5 A,且5∈U, ∴a2+2a-3=5,且b=3. 即a=2或-4,b=3.
点击进入相应模块
ቤተ መጻሕፍቲ ባይዱ
点击进入相应模块
2.求补集的方法
求给定集合A的补集通常利用补集的定义去求,从全集U中
去掉属于集合A的元素后,由所有剩下的元素组成的集合即
为A的补集.
点击进入相应模块
【特别提醒】在补集中,全集和补集“如影随行”,即只
要出现补集,必须同时出现全集.
点击进入相应模块
【例1】设全集U={1,3,5,7,9},A={1,|a-5|,9},ðU A= {5,7},则a的值为______. 【审题指导】涉及补集运算时,若集合是用列举法表示的,常 利用补集的定义来求解;若集合是用描述法表示的,常利用数
集合的基本运算第二课时
集合的基本运算
• 新知视界 • 1.全集 • 一般地,如果一个集合含有我们所研究问 题中所涉及的所有元素,我们就称这个集 合为全集,记作U.
2.补集 自然 语言 符号 语言 图形 语言 对于一个集合A,由全集U中不属于A的 所有元素组成的集合称为集合A相对于 全集U的补集,记作∁ UA ∁ UA={x|x∈U,x∉A}
• 3.设集合S={三角形},A={直角三角形}, 则∁SA=__________. • 解析:三角形中去掉直角三角形,∴∁SA= {斜三角形}. • 答案:{斜三角形}
• 4.设全集U=R,集合X={x|x≥0},Y= {y|y≥1},则 • ∁UY与∁UX包含关系∁UX__________∁UY. • 解析:∵X={x|x≥0},Y={y|y≥1}, • ∴∁UX={x|x<0},∁UY={y|y<1}, • ∴∁UX∁UY.
• 类型二 交、并、补的综合运算 • [例2] 已知全集U={x|x≤4},集合A={x|- 2<x<3},B={x|-3<x≤3}.求∁ UA,A∩B, ∁U(A∩B),(∁UA)∩B. • [分析] 由题目可获取以下主要信息:①全 集U,集合A、B均为无限集;②所求问题为 集合间交、并、补运算.解答此题可借助 数轴求解.
图3
• [解] 把全集U和集合A,B在数轴上表示如 图3: • 由图可知∁UA={x|x≤-2或3≤x≤4}, • A∩B={x|-2<x<3}, • ∁U(A∩B)={x|x≤-2或3≤x≤4}, • (∁UA)∩B={x|-3<x≤-2或x=3}. • [点评] 求解用不等式表示的数集间的集合 运算时,一般要借助于数轴求解,此法的 特点是简单直观,同时要注意各个端点的
教学设计1:1.2.2 集合的运算 第2课时-补集及综合应用
§1.2.2 集合的运算第2课时补集及综合应用一. 教学目标:1. 知识与技能(1)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(2)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.二.教学重点.难点重点:全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.三.学法与教学用具1.学法:学生借助Venn图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四. 教学过程导入新课-)=0,其结果会相同吗?问题:①分别在整数范围和实数范围内解方程(x-3)(x3②若集合A={x|0<x<2,x∈Z},B={x|0<x<2,x∈R},则集合A、B相等吗?学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.推进新课新知探究提出问题①用列举法表示下列集合:A ={x ∈Z |(x -2)(x +31)(x 2-)=0};B ={x ∈Q |(x -2)(x +31)(x 2-)=0}; C ={x ∈R |(x -2)(x +31)(x 2-)=0}. ②问题①中三个集合相等吗?为什么?③由此看,解方程时要注意什么?④问题①,集合Z ,Q ,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U ={1,2,3},A ={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义.⑦用Venn 图表示 A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.讨论结果:①A ={2},B ={2,31-},C ={2,31-,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同. ④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U .⑤B ={2,3}.⑥对于一个集合A ,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为A ,即A ={x |x ∈U ,且x A }.⑦如图1-1-3-9所示,阴影表示补集.图1-1-3-9例题精讲1.设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A, B.活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A, B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以A={4,5,6,7,8};B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:(A∩B)=(A)∪(B);(A∪B)=(A)∩(B).变式训练1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于( )A.{1,6}B.{4,5}C.{2,3,4,5,7}D.{1,2,3,6,7}分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A∪B={2,3,4,5,7},则(A)∩(B)=(A∪B)={1,6}.答案:A2设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于( )A.{1,2,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}答案:B3.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩( Q)等于( )A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案:A4.设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,(A ∪B).活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A ∩B 是由集合A ,B 中公共元素组成的集合,(A ∪B )是全集中除去集合A ∪B 中剩下的元素组成的集合.解:根据三角形的分类可知A ∩B =∅,A ∪B ={x |x 是锐角三角形或钝角三角形},(A ∪B )={x |x 是直角三角形}. 变式训练1.已知集合A ={x |3≤x <8},求 A.解:A ={x |x <3或x ≥8}.2.设S ={x |x 是至少有一组对边平行的四边形},A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},求B ∩C ,B , A.解:B ∩C ={x |正方形},B ={x |x 是邻边不相等的平行四边形},A ={x |x 是梯形}.3.已知全集I =R ,集合A ={x |x 2+ax +12b =0},B ={x |x 2-ax +b =0},满足(A )∩B ={2},(B )∩A ={4},求实数a 、b 的值.答案:a =78,b =712-. 4.设全集U =R ,A ={x |x ≤2+3},B ={3,4,5,6},则(A )∩B 等于…( ) A.{4} B.{4,5,6} C.{2,3,4} D.{1,2,3,4} 分析:∵U =R ,A ={x |x ≤2+3},∴A ={x |x >2+3}.而4,5,6都大于2+3,∴(A )∩B ={4,5,6}. 答案:B知能训练课本P 11练习4.【补充练习】1.设全集U =R ,A ={x |2x +1>0},试用文字语言表述A 的意义.解:A ={x |2x +1>0}即不等式2x +1>0的解集,A 中元素均不能使2x +1>0成立,即A 中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.图1-1-3-14分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即( S)∩(M∩P).答案:(S)∩(M∩P)3.设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A 等于( )A.{1,2}B.{2,3}C.{3,4}D.{1,4}分析:如图1-1-3-15所示.图1-1-3-15由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.答案:C4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.答案:B5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于( )A.{1}B.{1,3}C.{3}D.{1,2,3}分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),(A∪B∪C)有N2=50-42=8(人).∴至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本P12习题1.1A组9、10,B组4.设计。
集合的基本运算(第2课时)-【新教材】
解: A∩B 就是新华中学高一年级中那些既参加百米赛 跑又参加跳高比赛的同学组成的集合
∴A∩B={ x|x是新华中学高一年级中那些既参加百 米赛跑又参加跳高比赛的同学}
四、例题讲解
立德树人 和谐发展
例7 设平面内直线l1上的点的集合为L1,直线l2上的点的
集
合为L2,试用集合的运算表示直线l1、l
3、设全集为R,且A {x | x 2},B {x | 3 立x德树2人},和谐发展 求A B,A B, (CR A) B,A ( RB), R( A B).
解:ðR A { x | x 2}, ðR B { x | x 3或x 2},
A B {x | 2 x 2}, A B {x | x 3},
解: U
A={1,3,6,7},
U
B={2,4,6},
A ( U B)={2,4} ( U A) ( U B)={6}
( U A) ( U B)={1,2,3,4,6,7}
2、设全集U {1,3,5,7},集合M {1,a 5},M U,
且ð U
M
{5, 7},则a的值为(
)
A.2 B.8 C. 2 D. 8
四、小结归纳
立德树人 和谐发展
通过本节课的学习,我们主要应掌握好以下知识: 1、全集与补集的概念; 2、利用补集,从对立面去考虑问题.
六、作业
1、(上交作业本B) 课本 P14 习题1.3 第4,6题 2、金版 P14-P16 3、预习 1.4.1充分条件与必要条件
立德树人 和谐发展
3、设集合A {1,4, x},B {1, x2},若A B A,
则x _0_或__2 __.
P44复习参考题A组第5题
四、例题讲解
高中数学 1.1.3 集合的基本运算(第2课时)课件 新人教A版必修1
③把集合S和A表示在数轴上,如图所示. 由图知∁SA={x|-4≤x<-1或x=1}.
第四十页,共41页。
点评 (1)用不等式表示的集合的交、并、补运算,往往用 数轴直观显示.
(2)用数轴解题时,要特别注意端点的值是否符合题意.
第四十一页,共41页。
【解析】 U={1,2,3,4,5,6,7,8,9},在图中将1,2,3,4,5,6,7,8,9 分别填入到相应位置中去,
则由A∩B={2}, ∁U(A∪B)=(∁UA)∩(∁UB)={1,9}, ∁UA∩B={4,6,8},∴A∩(∁UB)={3,5,7}. 这样A={2,3,5,7},B={2,4,6,8}.
第十四页,共41页。
【讲评】 补集是在全集的范围内来求的,若题中未指出 全集,则本题不能求其补集.
探究1 求补集时,首先要正确理解全集及子集中所含的元 素,找出其联系与差异,然后准确写出补集.
第十五页,共41页。
思考题1 设全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},B
={3,5},则正确的是( )
第二十八页,共41页。
探究4 本题借助韦恩图更加形象直观,只需根据题中所给 条件,把集合中的元素填入相应的图中,可得集合A,B.
思考题4 已知集合I={a,b,c,d,e,f,g,h},(∁IA)∪ (∁IB)={a,b,c,e,f,h},(∁IA)∩(∁IB)={a,e},(∁IA)∩B= {c,f}.求集合A.
答案 3
第三十七页,共41页。
6.若集合A=[-1,1),当S分别取下列集合时,求∁SA. ①S=R;②S=(-∞,2];③S=[-4,1].
第三十八页,共41页。
解析 ①把集合S和A表示在数轴上如图所示.
集合的基本运算(第2课时)
2.补集
对于一个集合A,由全集U中不属于集合A的所有 元素组成的集合称为集合A的补集 (complementary set ),记作
C A,即
U
CU A { x | x U , 且 x A}.
可用Venn图表示为
U
A
CA
U
四 知识创新
1.表示全集和补集的三种数学语言互译.
设集合U是一个集合, A是U的一个子集( A B), 由U中所有不属于 A的元素组成的集合,叫 作U中 子集A的补集.
一 学习目标
1. 在理解两个集合的并集与交集的含义的基础上 理解全集和补集的概念. 2. 能使用Venn图表达集合的关系和运算体会直观 图示对理解抽象概念的作用. 3. 能够正确的理解不同语言表示的集合的本质并 且能够在解题时准确表达.
二 知识铺垫
根据上节课学习到的内容,观察下面的Venn图, 试说明集合之间的关系.
是笑意. "呵呵,不咋大的白,别高兴の太早,那个光头估计没死,不过肯定受伤了,最少要在神城躺几个月." 鹿老望着地上の深坑,微微有些惋惜,他身子变大了,力量变强了,移动速度也增加了.但是…反应和攻击速度却弱了一丝,不能将这光头留下,有些遗憾.不过片刻之后,他却笑了起 来:"保命传送符!嘿嘿,这次要让他心疼得割了几块肉了,一些传送符可是最少值十万神石!他卖灵魂元丹最少要卖数百枚!哈啥,走了,回去!这次估计再也没人敢来紫岛骚扰了,俺们可以安静の修炼了…" 本书来自 聘熟 当前 第肆叁肆章 又见菊花盛开! 神城今日再次亮起一条七 彩神光,神城の子民在几年之后再次见到了久违了の神迹.请大家检索(度#扣¥网)看最全!更新最快の但是这次却没有引起神城子民の惊讶和膜拜,反而许多人露出轻蔑嗤之以鼻の表情. 这段时候来,神迹产生の太多了,不说金角神主,不说那张巨脸.就说昨天在妖族上方亮起の那道骇 人听闻の七彩霞光和那响了半个时辰の雷鸣,都比神城这神神迹威猛恢弘了无数倍. 再说了,许多人此刻都对,他们信仰の神主感到深深の质疑.往日守护着他们,战无不胜の神主,在神城被破の时候在哪里?他们の子女莫名消失の时候,他在哪里?神城四卫用铁血手段镇压神城子民の时候, 他又在哪里? 神城中唯一有反应の就是屠神卫焚神卫和刚刚上位の新弑神卫,以及神城の使者. 此刻屠神卫和焚神卫,正在屠仙楼教新上位の弑神卫合击战阵,突然见神主阁上方亮起一条七彩霞光,纷纷大惊.惊恐の对视一眼,三人匆匆の朝神主阁赶去. 神主去紫岛他们是知道了,只是怎 么去了半天却突然回来了?回来很正常,但是他不是瞬移回来,而是传送过来の,那就不正常了. 当她们匆忙赶到神主阁の时候,刚走到门口,却看到让她们无比震惊の一幕. 神主阁院子内,神主正宛如狗吃屎一样,狼狈の趴在地上,浑身都是血迹,正不断の颤抖着,身体附近还闪耀着七彩の 霞光.他の一身大红袍子,却全部化成了焦炭,独留下上身几块碎步正在那,不断の冒着青烟. 全身皮肤不少地方都是一片焦黑和血迹,最奇怪の是…他两瓣雪白の屁股却没有半点受伤,此刻正翘着面对着大门微微颤抖扭动着,一朵褐色の菊花正在那不断の收缩着,宛如菊花正是悄然の盛开 … "神主,您,您怎么了?" 屠神卫和焚神卫刚踏到门前,看到这一幕,没有半分犹豫,立刻转身朝门两旁闪去.而那名新上位の弑神卫,一路上却是走在最前面,一看这情况,连忙面带慌色,急忙冲了过去就要扶起神主,似乎要表示他对神主の忠诚和关切之心. "轰!" 屠神卫和焚神卫,一闪出 大门,立刻跪下地面,闭着眼睛.果然片刻之后,传来一阵巨大の响声,以及弑神卫の惨叫声.两人更加哆嗦了,惶恐の对着院子磕头起来. "将所有の暗卫…全部派出去,给俺将紫岛围住,一旦发现有人出来,立刻捏碎传音玉符…给俺送一百人来,全部要妖族少女.再选一名新の弑神卫…记住, 刚才你呀们什么都没看见,否则…死!" 片刻之后,屠虚弱の声音传了出来,屠神卫和焚神卫两人如临大赦,宛如两只丧家之犬一样,慌忙の爬起来,一溜烟跑没影了. 良久之后,院子内又传来一阵咬牙切齿の怨毒声:"你呀们给俺等着,等那个女人回神界,俺要你呀们全都死.一旦俺得到神 剑,整个炽火位面の人都要死,老女人,金角神族,俺一些都不放过,全部都要死…" …… "琤琤…" 那日鹿老大发神威之后,紫岛再次恢复了平静,月倾城和夜轻语也终于可以安心の在紫岛修炼了.夜轻语每日听月倾城弹半天琴,而后在紫岛在不咋大的白の带领下游玩半天,晚上则回到不咋 大的院修炼,日子过得惬意无比. 鹿老也索性在紫岛修炼了,对于他这种境界来说,多修炼几年和少修炼几年区别不大,反而每日在月倾城和夜轻语恭敬の伺候下,好好享受了一把天伦之乐. 春来春去,花开花落! 眨眼间,一晃又是一年过去了. 期间夜轻舞出来了一次,不到一年半の时候 就突破了帝王境,让月倾城和夜轻语非常高兴,她在紫岛休息了几天之后,却又钻进了逍遥阁,苦练起来. 而白重炙却已经闭关了一年半の时候了,没有半点消息传来.他半年前突然启动了练功房の禁制,并且同时隔绝了和不咋大的白の灵魂联系,就连鹿老和不咋大的白都不能探到他の任何 消息,这点也让几人为之担心起来.但是又恐怕他正在闭关感悟玄奥の紧要关头,所以几人都没敢去打扰他. 白重炙の确在闭关,但是却没有感悟玄奥. 一年前,他无意将看到了那个头顶那双眼睛内の那个女人之后,便一直在想办法,不断の用灵识去靠近她,然后…拥有她!得到那个大机 缘! "啊!" 逍遥阁内,一条黑白色の身影,不停の惨叫着,不断の翻滚着.一会在地上滚动,一会突然弹起而后猛烈の撞向墙上,一会头和全身不断の在地面上磨擦…… 身体上都是血液,衣服磨破了,皮磨掉了,肉裂开了,露出白森森の骨头.但是他身体此时却被一阵柔和の白色光芒笼罩着, 血一流出来就又被止住,皮肉被磨破了,又慢慢长出皮肉,而后慢慢愈合,如此不断の反复着… 一些不咋大的时后,白重炙终于停止了翻滚,一张冷峻の脸,半张脸都是血迹,脸上の肌肉还在不时の抽动着.一双眼睛深深の陷了进去,紧紧の闭着,胸膛剧烈の起伏,长长の呼吸着,不时还痛苦の 身影一声. "你呀妹の,差一点,就差一点啊,啊!啊!啊!" 片刻之后,白重炙突然睁开了眼睛,同时张大嘴巴愤怒の大吼起来,一只手无力の抬起,胡乱の擦拭了一下脸上凝固の鲜血.另一只手却撑着地面,艰难の坐了起来. 而后他在逍遥戒上一抹,从藏宝阁内取出一身衣服,将身体上一身 血迹破烂不堪の衣服换下.又取出几个灵果,慢慢の吃了起来. 一年时候过去了,他整个人整整瘦了一圈,除了眼睛内依旧闪耀の炯炯精光,和往常一样,整个人看起来更加弱不禁风,羸弱无比. 吃了数个灵果,补充身体内の能量,而后他又开始盘坐修炼起来,将战气在身体内运转了十二个周 天,将身体内の伤势完全修复好.这才摊开身子,在地上平躺着休息起来. "就差一点,下次俺就能看清楚你呀了,到时候…可别让俺失望啊!" 白重炙呢喃了一声,就这样沉沉睡去,这一觉足足睡了五天五夜.当他再次醒来,从地面弹跳而起の时候,一张冷峻の脸却尽是の兴奋和期待. 他相 信,等会再用灵识去探查,他一定可以将那个女人看清楚,一定能看清楚那个让自己整整痛苦了一年の女人…那个lu~体の女人! …… 【作者题外话】:第二天爆发,明天,看情况吧… 当前 第肆叁伍章 中品神丹 "咻!" 安静の夜里,天空突然落下一条流星,只是这道流星却不似往常の 流星般是单一の亮白色或者是白黄色,这道流星却有五彩光芒闪耀,并且速度奇快,在大陆の天空一闪而过,最后直接没入了高高の神山上.请大家检索(品&书¥网)看最全!更新最快の 神城时隔一年之后,在今夜再次降下神迹,当然这次同样没有人感到惊讶和膜拜.反而有更多の人露出 鄙夷の表情. 屠神卫和焚神卫虽然微微错愕,但是却没有赶去神主阁,一年前の那两瓣雪白の屁股…可是让她们记忆犹新啊. "桀桀!果然不出俺所料啊…" 片刻之后,神主屠尖锐の笑声,从神主阁传来,声音很是肆意和张狂.此刻他正在站在院子の中央,手拿着一枚焕发着五色神彩上面刻 有繁琐符号の石头.这是神界专用の传讯符,也就是刚才の那道流星. 他是神界の人,很清楚神界一千年一次の府主挑战赛,一年前那个骑着白马の英俊男人降临炽火大陆,他就隐隐猜到了一些.而后他传讯回族中,现在终于得到了族中の准确答案了. "桀桀!" 屠手握着泛着幽光の石头, 抬头望着北方,双瞳亮起一条血红の光芒,最后开始放声大笑起来.尖锐刺耳の笑声在神城内飘荡,将神城子民惊得一片毛骨悚然. …… "大人,看来你呀要回神界の事情,已经被屠打探清楚了!" 暗黑城堡
集合的基本运算(第2课时)
对称差集定义及表示方法
定义
对于任意两个集合A和B,由所有属于A或属于B但不同时属于A和B的元素所组成的集合称为A和B的对称 差集。
表示方法
记作AΔB,即AΔB = (A∪B) - (A∩B)。
对称差集运算规则与性质
运算规则
对称差集运算满足交换律和结合律,即AΔB = BΔA,(AΔB)ΔC = AΔ(BΔC)。
A⊂B。
空集
不包含任何元素的集合称为空 集,记作∅。空集是任何集合的
子集。
集合的相等
如果两个集合A和B的元素完 全相同,则称A与B相等,记
作A=B。
举例说明
01
02
03
例1
设A={1,2,3},B={2,3,4}, 则A⊆B,因为A中的每一 个元素都是B中的元素。
例2
设A={x|x是三角形}, B={x|x是等边三角形},则 B⊂A,因为等边三角形是 三角形的一种特殊情况。
集合的运算
并集、交集、补集。
拓展延伸:其他相关概念探讨
幂集
一个集合所有子集(包括空集和自身)组成的集合称为该集合的幂集。
笛卡尔积
两个集合中所有元素的有序对组成的集合称为这两个集合的笛卡尔积。
集合的基数
集合中元素的个数称为该集合的基数,有限集的基数是一个自然数, 无限集的基数有多种,如可数集和不可数集。
性质
对称差集运算具有幂等性,即AΔA = ∅;同时,任意集合与空 集的对称差集等于该集合本身,即AΔ∅ = A。
举例说明
例子1
设集合A = {1, 2, 3},集合 B = {2, 3, 4},则AΔB = {1, 4}。
例子2
设集合C = {a, b, c},集合 D = {b, c, d},则CΔD = {a, d}。
第2课时 补集及集合的综合运算
={x|-1<x<2}∩x0<x<52
,
={x|0<x<2}.
[变式1] 在本例的条件下,求(∁UA)∩(∁UP). 解 画出数轴,如图所示.
观察数轴可知,(∁UA)∩(∁UP)=x2≤x<52
.
[ 变 式 2] 将 本 例 中 的 集 合 P 改 为 {x|x≤5} , 且 全 集 U = P , A , B 不 变 , 求 A∪(∁UB).
课前 预习案 课堂 探究案 冲关 演练案
栏目索引
课前 预习案
一、全集与补集
1.全集:一般地,如果一个集合含有__所__研__究__问__题____中涉及的所有元素,那 么就称这个集合为全集(universe set),通常记作U.
2.补集:对于一个集合A,由全集中_不__属__于_____集合A的所有元素组成的集合 称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,记作 ∁UA,即∁UA=__{_x_|_x∈__U__,__且__x_∉_A_}__,如图,可用Venn图表示.
[训练4] 若集合A={x|x2-x+m=0,x∈R}中至少含有一个元素,则m的取值 范围是__________.
答案
mm≤14
解析 集合 A 中至少含有一个元素的反面是集合 A 中没有元素,即 Δ=1-4m<
0,即 m>14.
因此若集合 A 中至少含有一个元素,则 m≤14,
即 m 的取值范围是mm≤14
.
冲关 演练案
谢谢观看!
解 ∵B={x|1<x<3},∴∁RB={x|x≤1 或 x≥3}. (1)要使 A∪∁RB=R,结合数轴分析(如图),
可得 a 的取值范围为{a|a≥3}. (2)要使 A ∁RB,结合数轴分析(如图),
1.3 集合的基本运算第2课时课件高一上学期数学人教A版
∁UA=
.
➢ 合作探究 ——究其根本,把握核心
解析:(1)(方法一)∵A={1,3,5,7},∁UA={2,4,6}, ∴U={1,2,3,4,5,6,7}. 又∁UB={1,4,6},∴B={2,3,5,7}.
(方法二)满足题意的Venn图如图所示. 由图可知B={2,3,5,7}. (2)将全集U和集合A分别表示在数轴上,如图所示.
U AB
(1)
U AB
(2)
➢ 课堂小结
P13练习 1. 已知U={1, 2, 3, 4, 5, 6, 7},A={2, 4, 5},B={1, 3, 5, 7},求A∩(∁UB), (∁U A)∩(∁U B). 解:
2. 设S={x|x是平行四边形或梯形},A={x|x是平行四边形},B={x|x是菱形}, C={x|x是矩形},求B∩C,∁SB,∁S A.
【例2】设全集U={x|x是三角形},A={x|x是锐角三 角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).
解:根据三角形的分类可知 A∩B=∅.
A∪B={x|x是锐角三角形或钝角三角形}, ∴ ∁U(A∪B)={x|x是直角三角形}.
➢ 合作探究 ——究其根本,把握核心
探究二:交集、并集与补集的混合运算
➢ 探究与发现
探究一:补集的简单运算
问题:A、∁UA、U三个集合之间的关系是什么?
①A⊆U; ②∁UA是一个集合,且∁UA⊆U; ③∁UA是由U中所有不属于A的元素构成的集合;
④∁UA∩A=∅,∁UA∪A=U
➢ 探究与发现
探究一:补集的简单运算
例1(1)已知全集为U,集合
A={1,3,5,7},∁UA={2,4,6},∁UB={1,4,6},则集合B= ; (2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则
人教版高中数学必修1-1.1《集合的基本运算(第2课时)》教学设计
1.1.3 集合的基本运算(第二课时)(胡琦)一、教学目标(一)核心素养通过这节课的学习,理解全集与补集的概念,理解在给定集合中一个子集的补集的含义,会求给定子集的补集,能使用Venn图表达集合的运算,体会直观想象对理解抽象概念的作用,培养学生的应用意识与创新意识.(二)学习目标1.理解集合全集的概念.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn图表达集合的关系及运算.(三)学习重点1.全集与补集的概念.2.理解在给定集合中一个子集的补集的含义.(四)学习难点1.会求给定子集的补集.2.对Venn图表达集合的关系及运算的正确使用.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第10页至第11页.(2)练一练:全集的定义:如果集合含有我们所要研究的各个集合的全部元素,这个集合就可以看成一个全集,全集通常用符号U表示.补集的三种语言:①文字语言:设U是一个集合,A是U的一个子集(即A⊆U),由U中所有不属于A的元素组成的集合,叫做U中子集A的补集.②符号语言:C A={x|x∈U,且x∉A}.U③图形语言:2.预习自测(1)设U={1,2,3},A ={2,3},求U C A =( )A .{1}B .{2}C .{2,3}D .{1,2,3}【答案】A .(2)设U={1,2,3,4},A ={2,3},B ={3,4,5},求()U C A B I =( )A .{1,2,3}B .{4,5}C .{1,2,4}D .{1,4,5},【答案】C .(3)设U={1,2,3,4,5},A ={2,3},B ={3,4,5},求()U C A B U =( )A .{1,2}B .{4,5}C .{1}D .{4,5}, 【答案】C . (二)课堂设计1.知识回顾(1)元素与集合的关系:如果a 是集合A 中的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A .(2)集合间的基本关系:如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B ;若集合A 与集合B 的元素是一样的,称集合A 与集合B 相等;若集合A 是集合B 的子集,且集合A 不等于集合B ,则集合A 是集合B 的真子集; 把不含任何元素的集合叫做空集.(3)由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集,记为A ∪B ;由所有属于集合A 且属于集合B 的元素所组成的集合,叫做A 与B 的交集,记为A ∩B .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:集合的运算
教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性质,能利用数轴文氏图进行集合的运算,进一步掌握集合问题的常规处理方法.
教学重点:交集、并集、补集的求法,集合语言、集合思想的运用.
(一) 主要知识:
1.交集:{|A B x x A =∈ 且}x B ∈;并集:{|A B x x A =∈ 或}x B ∈; 补集:若B U ⊆,则{|U C B x x U =∈且}x B ∉;
2.,A A A ∅=∅∅= ,,A A A A A A == ;
3.A B A A B =⇔⊆ .A B A A B =⇔⊇ ;
4.()()()U U U C A B C A C B = ,()()()U U U C A B C A C B = (德·摩根律)
(二)主要方法:
1.求交集、并集、补集,要充分发挥数轴或文氏图的作用;
2.含参数的问题,要有分类讨论的意识,分类讨论时要防止在空集上出问题;
3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键.
(三)典题分析:
问题1.①设全集{}010,*U x x x N =<<∈,若{}3A B = ,{}1,5,7U A C B = ,()()U U C A C B ={}9,求A 、B ②已知集合{1A x x =<-或2}x >,{40}B x x p =+<,当A B A = 时,求p 范围
问题2.已知集合{(,)|20}A x y x y =-=,1{(,)|
0}2
y B x y x -==-,则 A B = ,A B =
问题3.已知集合{}32|320A x x x x =++>,{}2|0B x x ax b =++≤, 若{}|02A B x x =<≤ ,{}|2A B x x =>- ,求实数a 、b 的值.
问题4.已知集合222{|(1)(1)0}A y y a a y a a =-++++>,
215{|,03}22
B y y x x x ==
-+≤≤,若A B =∅ ,求实数a 的范围.
问题5.已知集合{}2(,)|20,A x y x mx y x R =+-+=∈,
{}(,)|10,02B x y x y x =-+=≤≤,若A B φ≠ ,求实数m 的取值范围. 分析:本题的几何背景是:抛物线22y x mx =++与线段1(02)y x x =+≤≤有公共点, 求实数m 的取值范围.
(四)巩固练习:
1.设全集为U ,在下列条件中,是B A ⊆的充要条件的有( )
①A B A = ,②()U C A B =∅ ,③U U C A C B ⊆,④U A C B U = ,
.A 1个 .B 2个 .C 3个 .D 4个
2.设集合(){},0M x y y y ==≠,(){},N x y y x a ==+,若M N =∅ , 则实数a 的取值范围是
3.(05湖南十所示范性高中高三第一次联考)若{}2M y y x ==,{}222N y x y =+=
则M N = ( ).A
()(){}1,1,1,1- .B {}1 .C []0,1 .D 0⎡⎣
4.已知集合{}24260,A x x ax a x R =-++=∈,集合{}0B x x =<,若A B ≠∅ , 求实数a 的取值范围.
(五)课后作业:
1.设全集{}1,2,3,4,5I =,若{}2A B = ,(){}4I C A B = ,()()I I C A C B
{}1,5=,则下列结论正确的是 ( )
.A 3,3A B ∈∉ .B 3,3A B ∉∈ .C 3,3A B ∈∈ .D 3,3A B ∉∉
2.若{}21,M y y x x R ==-∈,{N x y ==,则M N = ( )
.A ()){}, .B 0,⎡⎣ .C 1,⎡-⎣ .D ∅
3.设{|||5}A x x =<,{|7}B x x a =-<<,{|2}C x b x =<<,且A B C = ,
则a = ,b =
4.设含有4个元素的集合的全部子集数为S ,其中由3个元素组成的子集个数为T , 则S T
=
5.已知全集{}22,0,3U a =-,子集{}22,2P a a =--,且{}1U C P =-,求实数a
6. 设集合{}0M x x m =-<, (){}
211,N y y x x R ==--∈, 若M N =∅ , 则 实数m 的范围是( ).A m ≥1- .B m 1>- .C m ≤1- .D m 1<-
7. 设{}24,21,A a a =--,{}9,5,1B a a =--,已知{}9A B = ,求A B
8.(选做,07西安交大附中模拟)()1A B A B = ,求a 的值;
()2()A B ∅ Ü且A C =∅ ,求a 的值;
()3A B A C =≠∅ ,求a 的值.
(六)走向高考:
1. (03北京)若集合{}{(,)2,x M x y y P y y -====,则M P =
.A {}1y y > .B {}1y y ≥ .C {}0y y > .D ∅ 2. (96上海)已知{}(,)2M x y x y =+=,{}N=(,)4x y x y -=,则M N = .A 3,1x y ==- .B (3,1)- .C {}3,1- .D {}(3,1)-
3.(07陕西文)已知全集{}123456U =,,,,,,集合{}236A =,,,则集合U C A 等于
.A {}14, .B {}45,
.C {}145,, .D {}236,, 4.(07江西)若{}012M =,,,(){,210N x y x y =-+≥且210x y --≤,,}x y M ∈
则N 中元素的个数为( ).A 9
.B 6 .C 4 .D 2
5.(07福建)已知{}{12}A x x a B x x =<=<<,,且()U A C B R = ,则a 的 范围是( ) .A a ≤1 .B 1a < .C a ≥2 .D 2a >
6.(06安徽文)设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则 ()U C S T 等于( ).A ∅ .B {2,4,7,8} .C {1,3,5,6} .D {2,4,6,8}
7.(06福建文)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<
则()U C A B 等于( ).A [1,4)- .B (2,3
.C (2,3] .D (1,4)- 8.(06辽宁文)设集合{}12A =,,则满足{}123A B = ,,的集合B 的个数是 .A 1 .B 3 .C 4 .D 8
9.(07湖北文)若{|U x x =是小于9的正整数},{}1234A =,,,,{}3456B =,,,,
则U U C A C B = .A {}12,
.B {}34, .C {}56, .D {}78,
10.(06重庆)已知{}1,2,3,4,5,6,7U =,{}{}2,4,5,7,3,4,5A B ==,则()()U U C A C B =( ).A {}6,1 .B {}5,4 .C {}7,5,4,3,2 .D {7,6,3,2,1}
11.(06全国Ⅱ文21,满分14分)
设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13B x x =<<, 若A B ≠∅ ,求实数a 的取值范围。