七年级数学列方程(组)解应用题的方法及步骤

合集下载

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题知识网络重难突破知识点一列二元一次方程组解应用题列二元一次方程组解应用题的一般步骤:1.审:审题,明确各数量之间的关系。

2.设:设未知数3.找:找题中的等量关系4.列:根据等量关系列出两个方程,组成方程组5.解:解方程组,求出未知数的值6.答:检验方程组的解是否符合题意,写出答案。

题型一二元一次方程组的应用- 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。

试问经理,该怎样分发这1400元奖金?变式1-1(2018·大石桥市期末)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.变式1-2(2019·贵港市期末)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.题型二二元一次方程组的应用–行程问题典例2(2018·广州市期末)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少.变式2-1(2020·辉县市期中)一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?变式2-2(2019·许昌市期末)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.题型三二元一次方程组的应用–工程问题典例3(2020·甘南县期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)变式3-1(2020·成都市期末)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?变式3-2(2019·成都市期末)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?题型四二元一次方程组的应用–数字问题典例4(2019·靖远县期末)一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?变式4-1(2020·海淀区期末)小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。

初中数学七年级一元二次方程的四种解法

初中数学七年级一元二次方程的四种解法

二元一次方程组知识点1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

5、代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”.2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

3、解出这个一元一次方程,求出x的值,即“解”。

4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”}6、加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数也不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。

七年级数学二元一次方程组必须掌握的类型题解题思路

七年级数学二元一次方程组必须掌握的类型题解题思路

七年级数学二元一次方程组必须掌握的类型题解题思路单选题1、甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲20岁,乙14岁B.甲22岁,乙16岁C.乙比甲大18岁D.乙比甲大34岁答案:A解析:设甲现在的年龄为x岁,乙现在的年龄为y岁,根据题意列出二元一次方程组即可求解.设甲现在的年龄为x岁,乙现在的年龄为y岁.依题意得{y−(x−y)=8x+(x−y)=26,解{x=20y=14.故选A小提示:此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.2、二元一次方程5a−11b=21(()A.有且只有一解B.有无数解C.无解D.有且只有两解答案:B解析:对于二元一次方程,可以用其中一个未知数表示另一个未知数,给定其中一个未知数的值,即可求得其对应值.解:二元一次方程5a−11b=21,变形为a=21+11b5,给定b一个值,则对应得到a的值,即该方程有无数个解.小提示:本题考查的是二元一次方程的解的意义,解题的关键是当不加限制条件时,一个二元一次方程有无数个解.3、已知{x =1y =1是方程2x +my =3的一个解,那么m 的值是( ) A .1B .3C .﹣1D .﹣3答案:A解析:根据方程的解满足方程,将{x =1y =1代入方程,得到关于m 的一元一次方程,解方程求解即可. 把{x =1y =1代入方程得:2+m =3, 解得:m =1.故选:A .小提示:本题考查了二元一次方程组的解的定义,理解二元一次方程组的解的定义是解题的关键.4、方程{y =1−x 3x +2y =5的公共解是( ) A .{x =3y =2 B .{x =−3y =4 C .{x =3y =−2 D .{x =−3y =−2答案:C解析:此题要求公共解,实质上是解二元一次方程组{y =1−x 3x +2y =5. 把方程y =1﹣x 代入3x +2y =5,得3x +2(1﹣x )=5,把x =3代入方程y =1﹣x ,得y =﹣2.故选C .小提示:这类题目的解题关键是掌握方程组解法,此题运用了代入消元法.5、由x 3−y 2=1可以得到用x 表示y 的式子为( ) A .y =2x−23B .y =2x 3−2 C .y =2x 3−13D .y =2−2x 3答案:B解析:先移项,后系数化为1,即可得.解:x 3−y 2=1移项,得y 2=x 3−1,系数化为1,得y =2x 3−2,故选B .小提示:本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.6、如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .{x =1y =2B .{x =−1y =−2C .{x =2y =−1D .{x =−2y =−1答案:C解析:根据两个非负数互为相反数,判断两个非负数必定都是0,列方程组解答即可.∵|x+y-1|和2(2x+y-3)2互为相反数, ∴|x+y-1|+2(2x+y-3)2=0, ∴|x+y-1|=0,2(2x+y-3)2=0, ∴x+y-1=0,2x+y-3=0∴x=2,y=-1.故选C.小提示:考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,|x+y-1|和2(2x+y-3)2都是非负数,所以这个数都是0.7、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .{x +y =1902×8x =22yB .{x +y =1902×22y =8xC .{2y +x =1908x =22yD .{2y +x =1902×8x =22y答案:A解析:此题中的等量关系有:①共有190张铁皮; ②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案. 解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y .列方程组为{x +y =1902×8x =22y.故选:A.小提示:本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.8、为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A.{x+y=180x12+y8=20B.{x+y=2012x+8y=180C.{x+y=20x12+y8=180D.{x+y=18012x+8y=20答案:A解析:根据河道总长为180米和A、B两个工程小组共用时20天这两个等量关系列出方程,组成方程组即可求解.解:设A工程小组整治河道x米,B工程小组整治河道y米,依题意可得:{x+y=180x12+y8=20,故选:A.小提示:本题考查二元一次方程组,工程问题的应用题,解题的关键是学会利用未知数,构建方程组解决问题.填空题9、用加减法解二元一次方程组{x−2y=13x+4y=9时,你能让两个方程中x的系数相等吗?•你的办法是_________.答案:让①两边同乘以3解析:根据两式中x 的系数关系,易得:让①两边同乘以3.故答案:让①两边同乘以3.10、若方程组{ax +y =b −x +by =a的解是{x =1y =2,则(a +b)(a ﹣b)−a 3+b 3=_____. 答案:34解析:把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可求出值.解:将{x =1y =2代入原方程组得:{a +2=b①−1+2b =a②. 将①代入②得:a =﹣3.将a =﹣3代入①得:b =﹣1.∴原式=(−3−1)(−3+1)−(−3)3+(−1)3=−4×(−2)−(−27)−1=8+27−1=34.所以答案是:34.小提示:此题考查了二元一次方程组的解及求代数式的值,方程组的解即为能使方程组中两方程都相等的未知数的值.11、如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.答案: 4 5解析:解:根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,依两个等量关系列出方程组{2x +3y =233x +2y =22, 解得{x =4y =5. 所以答案是:4和5.小提示:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.12、若单项式﹣5x 4y 2m +n 与2017xm ﹣ny 2是同类项,则m -7n 的算术平方根是_________.答案:4解析:根据同类项定义由单项式﹣5x 4y 2m +n 与2017xm ﹣ny 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m +n =2,解得:m =2,n =﹣2,因此可求得m ﹣7n =16,即m ﹣7n 的算术平方根=√16=4,故答案为 4.13、一元二次方程x ﹣3y =8写成用含y 的代数式表示x 的形式为______.答案:3y +8##8+3y解析:移项,利用等式的性质变形即可.解: x﹣3y=8x=3y+8故答案为:3y+8小提示:本题属于二元一次方程变形的问题,依据等式的性质变形即可.本题比较简单.解答题14、某火车站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?答案:(1)A4200棵,B2400棵;(2)A14人,B12人.解析:试题分析:(1)首先设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26-a)人种植B花木所用时间,根据等量关系列出方程,再解即可.试题解析:(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:4200 60a =240040(26−a),解得:a=14,经检验:a=14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.小提示:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.15、 4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.答案:今年妹妹6岁,哥哥10岁.解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.解:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得:{x+y=163(x+2)+(y+2)=34+2解得:{x=6y=10.答:今年妹妹6岁,哥哥10岁.。

(完整版)七年级数学下册二元一次方程组应用题

(完整版)七年级数学下册二元一次方程组应用题

二元一次方程组解应用题列方程解应用题的基本关系量:(1)行程问题:速度×时间=路程(2)顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(3)工程问题:工作效率×工作时间=工作量(4)浓度问题:溶液×浓度=溶质(5)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤:1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型:(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100% (10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:抓住人与人的岁数是同时增长的(分配调运问题)1、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

七年级数学一元一次方程应用——比赛计分问题

七年级数学一元一次方程应用——比赛计分问题

比赛计分问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了多少道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

人教版七年级数学下册_8.3实际问题与二元一次方程组

人教版七年级数学下册_8.3实际问题与二元一次方程组

感悟新知
由这个方程组,得 x=5y. 把 x=5y 代入方程①,得 a=4(5y+y)=24y. 所以木筏从甲地漂流到乙地所需时间为 ay=24yy=24(h). 答:木筏从甲地漂流到乙地需 24 h.
知2-练
感悟新知
知2-练
例 9 在当地农业技术部门的指导下,李明家增加种植菠萝 的投资,使今年的菠萝喜获丰收. 如图8.3-1 是李明和 他的爸爸、妈妈的一段对话.
感悟新知
知1-练
解:设甲种货物应装x 吨,乙种货物应装y 吨.
由题意,得
x+y 300, 6x+2 y 1200,
解得
x y
150, 150.
答:甲、乙两种货物应各装150 吨.
感悟新知
知1-练
1-1. 某校决定组织全校600 名师生去郊游,租用10 辆大客 车和8辆小客车,恰好全部坐满. 已知每辆大客车的座 位数比每辆小客车多15 个. 若设每辆大客车有x 个座 位,每辆小客车有y 个座位,则可列方程组为 10x+8y=600, __x_-__y_=__1_5_.______ .
套问题中的“配套”,销售问题中的“售价”“标 价”“折扣”等等.
感悟新知
知2-练
例2 某中学七年级甲、乙两班共有93 人,其中参加数学
课外兴趣小组的共有27
人,已知甲班有
1 4
的学生、
乙班有 1 的学生参加数学课外兴趣小组,求这两个
3
班各有多少人.
解题秘方:紧扣人数之间的数量关系,关键是和、 差、倍、分关系,建立已知量与未知量的等量关系.
感悟新知
解:设轮船在静水中的速度为x km/h, 水流速度为y km/h.
由答题:意这,艘得轮船170在x+x静-y水y中114的400,速. 度解为得17xykm13/7.h, ,

列一元一次方程解应用题题型归纳 詹洪

列一元一次方程解应用题题型归纳 詹洪

一元一次方程解应用题题型归纳共乐初中詹洪列一元一次方程解应用题是初一年级数学教学中的一大重点,又是学生从小学升入初中后第一次接触到用代数的方法处理应用题,所以也是一大难点。

认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题、列不等式(组)解应用题及函数应用题大有帮助。

因此将列一元一次方程解应用题的步骤、几种常见题型及其特点归纳如下:一、列方程解应用题的步骤:(1)读懂题意,正确理解.(2)弄清数量关系:准确把握题目条件中的已知量和未知量,必要时可用图表辅助分析. (3)找出:正确找出等量关系。

(4)列方程:设出未知数,将题设条件中的语句都“翻译”成含有“字母”的代数式,根据等量关系列出方程。

(5)解方程并检验:检验所求的未知数的值是否是所列方程的解,受否符合题意;(6)答:根据题意写出答案.二、常见题型及其特点:A.和差倍分问题和差倍分在列方程时,即可表示运算关系,又可表示相等关系。

在解决这类问题时,要特别注意关键词的含义,如:多、少、快、慢、提前、推迟、提高x%(几倍)、降低x%(几份之几)、提高到x%等。

用和、差、几倍、几分之几……它可以指导我们正确地列代数式或列方程。

例: 有一根铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩2.5m,这根铁丝原来有多长?1、一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?2、某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?3.“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?6. 七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?7 .某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)8. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。

七年级初一数学上册:第3章第3节 解一元一次方程(2)

七年级初一数学上册:第3章第3节 解一元一次方程(2)

2011-2012学年七年级数学(人教版上)同步练习第三章第三节解一元一次方程(二)一. 本周教学内容:一元一次方程(二)列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

列方程解应用题的主要步骤:1. 认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;2. 用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;3. 利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);4. 求出所列方程的解;5. 检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。

【学习提示】一. 数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2N+2或2N—2表示;奇数用2N+1或2N—1表示。

例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为X+7,个位上的数是3X,等量关系为三个数位上的数字和为17。

解:设这个三位数十位上的数为X,则百位上的数为X+7,个位上的数是3XX+X+7+3X=17 解得X=2X+7=9,3X=6 答:这个三位数是926例2.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数解:设十位上的数字X,则个位上的数是2X,10×2X+X=(10X+2X)+36解得X=4,2X=8,答:原来的两位数是48。

二元一次方程组的应用——调配问题(解析版)

二元一次方程组的应用——调配问题(解析版)

二元一次方程组的应用——调配问题列方程(组)解应用题的一般步骤:①审:审题,分析题中已知是什么,求什么,明确各数量之间关系;②找:找出能够表示应用题全部意义的一个相等关系;③设:设未知数(一般求什么,就设什么为未知数);④列:根据这个相等关系列出需要的代数式,进而列出方程;⑤解:解所列出的方程,求出未知数的值;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位名称).一、选择题1、每个木工一天能装双人课桌(一张课桌配两把椅子)4张或单人椅子10把,现有木工9人,怎样分配工作才能使一天装配的课桌与椅子配套?设安排x个木工装配课桌,y个木工装配椅子,则下列方程组正确的().A.92410x yx y+=⎧⎨⨯=⎩B.9420x yx y+=⎧⎨=⎩C.94x yx y+=⎧⎨=⎩D.9410x yx y+=⎧⎨=⎩2、用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?①设用x张制盒身,可得方程2×25x=40(36-x);②设用x张制盒身,可得方程25x=2×40(36-x);③设用x张制盒身,y张制盒底,可得方程组36 22540x yx y+=⎧⎨⨯=⎩;④设用x张制盒身,y张制盒底,可得方程组3625240x yx y+=⎧⎨=⨯⎩;其中正确的是().A. ①④B. ②③C. ②④D. ①③3、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为().A.7385y xy x=+⎧⎨+=⎩B.7385y xy x=+⎧⎨-=⎩C.7385y xy x=-⎧⎨=+⎩D.7385y xy x=+⎧⎨=+⎩4、根据市场调查,某种消毒液的大瓶装(500 g)和小瓶装(250 g)的销售瓶数的比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种产品多少瓶?设分装大小瓶两种产品分别为x 和y 瓶,则可列方程组为( ).A. 2550025022.5y x x y =⎧⎨+=⎩B. :5:250025022.5x y x y =⎧⎨+=⎩C. 2550025022500000y x x y =⎧⎨+=⎩D. :5:250025022500000x y x y =⎧⎨+=⎩5、有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是( ).A. 2315.55635x y x y +=⎧⎨+=⎩B. 23355615.5x y x y +=⎧⎨+=⎩C. 3215.55635x y x y +=⎧⎨+=⎩D. 2315.56535x y x y +=⎧⎨+=⎩6、某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( ).A. ()453560235x yx y -=⎧⎨-=-⎩B. ()453560235x y x y =-⎧⎨-+=⎩C. ()453560135x yx y+=⎧⎨-+=⎩D. ()453560235x y y x =+⎧⎨--=⎩二、填空题7、一批宿舍,若每间住1人,则10人无法安排;若每间住3人,则有10间无人住,这批宿舍有______间.8、工人甲一分钟可生产螺丝3个或螺丝帽9个,工人乙一分钟可生产螺丝2个或螺丝帽6个.现在两人各花了20分钟,共生产螺丝和螺丝帽134个.生产的螺丝比螺丝帽多______个.9、某服装厂要生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子,现有此种布料600米,请你帮助设计一下,用______米布料做上衣,才能恰好生产出成套的运动服.10、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为________________________.11、有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,若每箱装30千克,则余20只空箱,则共有______千克苹果,______个苹果箱.12、某中学组织七年级学生春游,原计划用45座客车若干辆,但有15人没有座位;若租用同样多60座客车,则多出1辆车,且其余客车恰好坐满,已知45座客车日租金为每辆220元,60座客车日租金为300元,则七年级人数为______,原计划用45座客车______辆.三、解答题13、某车间的工人们要在一天内完成某种零件的生产任务,若每人生产25个零件,还差18个才完成任务;若每个生产27个零件,就可以超额完成12个.问车间有多少名工人?这批任务是多少个零件?14、列方程组解应用题:小明同学所在的学校为加强学生的体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球供需310元,购买5个篮球和2个足球共需500元.求每个篮球和足球各需多少元?15、漕运码头的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到漕运码头租船游览,如果每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.16、用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒.现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?17、为了支援地震灾区,某市要将一批救灾物资运往灾区,运输公司准备使用甲、乙两种货车分三次完成此项任务,如果每辆车运的物资都正好达到保证安全的最大运载量,且前两次运输的情况如下表:(1)甲、乙两种货车的最大运载量分别为多少吨?(2)已知第三次使用了3辆甲种货车和4辆乙种货车刚好运完这批物资,问:第三次的物资共有多少吨?18、“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见下表.爸爸拿出自己的积分卡,对小华说:“这里积有8200分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?19、某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位.若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车.(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算.20、阅读小故事,并运用方程或方程组解答问题:杨损是唐朝的一位尚书,他有较高的文化知识,身居高官但不徇私情,能任人唯贤、量才录用官吏.约公元855年前后,据《唐阙史》记载:青州需要提拔两个小吏中的一个,但他们档案中的评语几乎完全相同,提拔谁呢?官员们便请教其上司杨损,损略加思考后说:“一个小吏的最大优点之一就是能熟练进行计算,我出一道数学题,二人中谁先求得正确答案就提拔谁.”两个小吏到来之后,杨损出了一道题:“有一天,几个盗贼正在商议怎样分配偷来的布匹,贼首说,如果每人分6匹,就会余下5匹,如果每人分7匹,又少8匹,这些话被躲在暗处的衙役听到了,他飞快跑去报告了知府,知府很快便派了与盗贼人数相应的警力去抓捕他们.聪明的你知道有盗贼几人,布几匹吗?”杨损出题后就命令两个小吏在大厅前的石阶上用算筹(古代计算工具)计算.不一会,其中一个小吏首先得出正确答案,被提拔.众官员都心悦诚服,很赞赏这种用人方法.同学们,杨损考小吏的题,请你列方程或方程组来求解.21、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底,可以正好制成一批完整的盒子?22、某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应分配多少人生产螺栓,多少人生产螺母,才能使一个螺栓配2个螺母刚好配套?23、某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?24、某中学2012年通过“废品回收”活动筹集钱款资助山区贫困中、小学生共23名,资助一名中学生的学习费用需a元,一名小学生的学习费用需b元,各年级学生筹款数额及其恰好资助中,小学生人数的部分情如下表:(1)求a,b的值.(2)初三年级学生筹集的款项解决了其余贫困中小学生的学习费用,求出初三年级学生资助的贫困中、小学生人数.25、《孙子算经》是中国古代重要的数学著作,《孙子算经》共有三卷,第三卷里有一题:“今有兽,六首四足;禽,四首二足,上有七十六兽,下有四十六足,问:禽,兽各几何?”译文“现在有一种野兽,长有六头四足;有一种鸟,长有四头两足,把它们放一起,共有76头,46足.问野兽、鸟各有多少只?”26、小芳家准备装修一套新住房,若甲乙两个装修公司合作,需要6周完成,共需要装修费5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需要装修费4.8万元,小芳的父母商量后决定只选一个公司单独完成.(1)如果从节约时间的角度考虑应选那家公司?(2)如果从节约开支的角度考虑呢?请说明理由.27、“阳光”游泳馆为促进全民健身,2016年开始推行会员卡制度,标准如下表:(1)“阳光”游泳馆2016年5月销售A,B会员卡共104张,售卡收入14200元,请问这家游泳馆当月销售A,B会员卡各多少张?(2)小丽准备在“阳光”游泳馆购买会员卡,请你根据小丽游泳的次数,说明选择哪种会员卡最省钱.28、面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘m(0<m<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发8000元的工资,给每名新工人每月发4800元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?参考答案一、选择题 1、答案:A解答:设x 个木工装配课桌,y 个木工装配椅子,由题意得,92410x y x y +=⎧⎨⨯=⎩.2、答案:D解答:设用x 张制盒身,可得方程2×25x =40(36-x );故①正确;②错误; 设用x 张制盒身,y 张制盒底,可得方程组3622540x y x y +=⎧⎨⨯=⎩;故③正确;④错误;选D. 3、答案:C解答:根据组数×每组7人=总人数-3人,得方程7y =x -3;根据组数×每组8人=总人数+5人,得方程8y =x +5. 列方程组为7385y x y x =-⎧⎨=+⎩选C. 4、答案:C解答:设应该分装大小瓶两种产品分别为x 和y 瓶,则有::2:550025022500000x y x y =⎧⎨+=⎩①②,由①得:2y =5x . 选C. 5、答案:A解答:根据题意可得A 选项2315.55635x y x y +=⎧⎨+=⎩.符合题意.6、答案:B解答:设计划租用x 辆车,共有y 名学生,由题意得,()453560235x yx y +=⎧⎨-+=⎩.二、填空题 7、答案:20解答:设这批宿舍有x 间,共有y 人.根据题意,得()10310x y x y +=⎧⎨-=⎩, 解,得2030x y =⎧⎨=⎩. 则这批宿舍有20间.故答案为:20.8、答案:32解答:设甲用x 分钟生产螺丝,(20-x )分钟生产螺丝帽,乙用y 分钟生产螺丝,(20-y )分钟生产螺丝帽,由题意得,3x +9(20-x )+2y +6(20-y )=134,整理得:3x +2y =83,则生产的螺丝比螺丝帽多:3x -9(20-x )+2y -6(20-y )=12x +8y -300,∵3x +2y =83,∴12x +8y -300=4×83-300=32(个).故答案为:32.9、答案:360解答:设做上衣用的面料为x 米,做裤子用的面料为y 米, 由题意得:6002333x y x y +=⎧⎪⎨⨯=⨯⎪⎩, 解得:x =360.即用360米布料做上衣,才能恰好生产出成套的运动服.10、答案:5210258x y x y +=⎧⎨+=⎩解答:根据题意得:5210258x y x y +=⎧⎨+=⎩,故答案为:5210258x y x y +=⎧⎨+=⎩.11、答案:3240;128解答:设共有x 千克苹果,y 个苹果箱.根据题意,得()25403020y x y x +=⎧⎨-=⎩, 解得3240128x y =⎧⎨=⎩.则共有3240千克苹果,128个苹果箱.12、答案:240;5解答:设七年级人数为x 人,原计划租车y 辆,则,45156060y x y x +=⎧⎨-=⎩, 解得2405x y =⎧⎨=⎩,故答案为:240;5.三、解答题13、答案:15名工人393个零件.解答:设有x 名工人,有y 个零件,由题意可列方程组为25182712x y x y+=⎧⎨-=⎩,解得15393x y =⎧⎨=⎩, 答:有15名工人,393个零件.14、答案:每个篮球80元,每个足球50元.解答:设每个篮球x 元,每个足球y 元,由题意得,2331052500x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,答:每个篮球80元,每个足球50元.15、答案:租用4座游船5条,租用6座游船3条.解答:设租用4座游船x 条,租用6座游船y 条,根据题意得:463860100600x y x y +=⎧⎨+=⎩, 解得:53x y =⎧⎨=⎩.答:租用4座游船5条,租用6座游船3条.16、答案:用16张制作盒身,20张制作盒底可以使盒身与盒底正好配套.解答:设用x 张制作盒身,y 张制作盒底,根据题意得:①②3622540x y x y +=⎧⎨⨯=⎩①②, 由①得x =36-y ③,③代入②,得50(36-y )=40y ,解得y =20,把y =20代入③,得x =16.∴原方程组的解为1620x y =⎧⎨=⎩. 答:用16张制作盒身,20张制作盒底可以使盒身与盒底正好配套.17、答案:(1)甲、乙两种货车的最大运载量分别为2.5吨和3吨.(2)第三次的物资共有19.5吨.解答:(1)设甲、乙两种货车的最大运载量分别为x 吨,y 吨,由题意得:23146530x y x y +=⎧⎨+=⎩, 解得 2.53x y =⎧⎨=⎩. 答:甲、乙两种货车的最大运载量分别为2.5吨和3吨.(2)第三次的物资共有3x +4y =3×2.5+4×3=19.5(吨),答:第三次的物资共有19.5吨.18、答案:小华兑换了2个保温杯和8支牙膏.解答:因为积分卡中只有8200分,要兑换10件礼品,所以不能选择兑换电茶壶. 设小华兑换了x 个保温杯和y 支牙膏,依题意,得1020005008200200x y x y +=⎧⎨+=-⎩, 解得28x y =⎧⎨=⎩.答:小华兑换了2个保温杯和8支牙膏.19、答案:(1)这批游客的人数240人,原计划租45座客车5辆.(2)租用4辆60座客车更合算.解答:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得()4515601y x y x +=⎧⎨-=⎩, 解这个方程组,得2405x y =⎧⎨=⎩.这批游客的人数240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元), 租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).1200<1320租用4辆60座客车更合算.20、答案:有盗贼13个,布匹83匹.解答:设盗贼x 人,布y 匹,∴6578x y x y+=⎧⎨-=⎩,∴1383x y =⎧⎨=⎩,答:有盗贼13个,布匹83匹.21、答案:用110张铁皮做盒身,80张铁皮做盒底,可以正好制成一批完整的盒子. 解答:设x 张铁皮做盒身,y 张铁皮做盒底,根据等量关系(1),盒身的个数×2=盒底的个数,可得:2×8x =22y ;根据等量关系(2),制作盒身的铁皮张数+制作盒底的铁皮张数=190,可得x +y =190, 故可得方程组1902822x y x y+=⎧⎨⨯=⎩,解得:11080x y =⎧⎨=⎩, 答:用110张铁皮做盒身,80张铁皮做盒底,可以正好制成一批完整的盒子.22、答案:24人生产螺栓,32人生产螺母.解答:设应分配x 人生产螺栓,y 人生产螺母,才能使一个螺栓配2个螺母刚好配套,根据题意得,5636224x y y x+=⎧⎨=⨯⎩, 解得2432x y =⎧⎨=⎩. 答:应分配24人生产螺栓,32人生产螺母.23、答案:安排6人生产A 部件,安排10人生产B 部件.解答:设安排x 人生产A 部件,安排y 人生产B 部件,由题意,得:161000600x y x y +=⎧⎨=⎩, 解得:610x y =⎧⎨=⎩.答:安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B 部件配套.24、答案:(1)800600a b =⎧⎨=⎩.(2)九年级捐助的贫困中学生4人,小学生7人.解答:(1)依题意得244000334200a b a b +=⎧⎨+=⎩, 解得800600a b =⎧⎨=⎩.(2)设九年级捐助的贫困中学生x 人,小学生y 人,根据题意得8006007400232433x y x y +=⎧⎨+=----⎩, 解得47x y =⎧⎨=⎩, 答:九年级捐助的贫困中学生4人,小学生7人.25、答案:兽有8只,鸟有7只.解答:设兽有x 只,鸟有y 只,由题意列方程组为①②64764246x y x y +=⎧⎨+=⎩①②, ①÷2-②得,-x =-8,x =8,将x =8代入②得y =7,∴方程组的解为87x y =⎧⎨=⎩,答:兽有8只,鸟有7只.26、答案:(1)从节约时间角度考虑应选甲公司.(2)从节约开支角度考虑应选乙公司.解答:(1)设甲公司的工作效率为x ,乙公司的工作效率为y .依题意列方程组,得661491x y x y +=⎧⎨+=⎩, 解这个方程组,得110115x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以,甲公司单独做需10周,乙公司单独做需15周.答:从节约时间角度考虑应选甲公司.(2)设甲一周的装修费是m 万元,乙一周的装修费是n 万元.依题意列方程组,得66 5.249 4.8m n m n +=⎧⎨+=⎩,解这个方程组,得35415m n ⎧=⎪⎪⎨⎪=⎪⎩, 甲单独做的装修费:35×10=6(万元), 乙单独做的装修费:415×15=4(万元), 答:从节约开支角度考虑应选乙公司.27、答案:(1)这家游泳馆当月销售A 会员卡44张,B 会员卡60张.(2)当小丽游泳30次时,两会员卡消费相同;当小丽游泳少于30次时,选择A 会员卡省钱;当小丽游泳多于30次时,选择B 会员卡省钱.解答:(1)设这家游泳馆当月销售A 会员卡x 张,B 会员卡y 张.根据题意列方程组,得:1045020014200x y x y +=⎧⎨+=⎩, 解这个方程组,得4460x y =⎧⎨=⎩.答:这家游泳馆当月销售A 会员卡44张,B 会员卡60张.(2)设小丽游泳的次数为a 次,情况1:若两种会员卡消费相同,则50+25a =200+20a ,解得a =30.情况2:若A 会员卡省钱,则50+25a <200+20a ,解得a <30.情况3:若B 会员卡省钱,则50+25a >200+20a ,解得a >30.综上,当小丽游泳30次时,两会员卡消费相同;当小丽游泳少于30次时,选择A 会员卡省钱;当小丽游泳多于30次时,选择B 会员卡省钱.28、答案:(1)每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)工厂有4种新工人的招聘方案.①新工人8人,熟练工1人;②新工人6人,熟练工2人;③新工人4人,熟练工3人;④新工人2人,熟练工4人.(3)工厂应招聘4名新工人.解答:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得:28 2314 x yx y+=⎧⎨+=⎩,解得:42 xy=⎧⎨=⎩.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2m)=240,2a+m=10,∴m=10-2a,又a,m都是正整数,0<m<10,∴m=8,6,4,2.即工厂有4种新工人的招聘方案.①m=8,a=1,即新工人8人,熟练工1人;②m=6,a=2,即新工人6人,熟练工2人;③m=4,a=3,即新工人4人,熟练工3人;④m=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则m=8,a=1;或m=6,a=2;或m=4,a=3.根据题意,得:W=8000a+4800m=8000a+4800(10-2a)=48000-1600a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当m=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.。

方程应用题的几种类型

方程应用题的几种类型

4.列方程解应用题(1)意义:方程是刻画现实世界的有效数学模型,通过设未知数,找出实际问题中的数和未知数,分析它们之间的数量关系,列出方程并求解,从而解决实际问题.(2)方法步骤:①设:根据题意设出适合的未知数,一般是问什么设什么(直接设法),有时采用间接设法.②列:找出实际问题中的数和未知数,分析它们之间的数量关系,用式子表示,列出方程.③解:解出方程,并检验解是否符合实际.④答:答复说明实际问题的答案.解技巧列方程解应用题运用方程解决实际问题最大的特点是设出未知数后,可以用含未知数的代数式表示所需要的量,符合人们顺向思维的观点.【例4】*乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1 200元.这个乡去年农民人均收入是多少元?分析:列方程就是用两种不同的方法表示同一个量,设这个乡去年农民人均收入是*元,则今年的人均收入是(1+20%)*元,又今年人均收入比去年的1.5倍少1 200元,所以今年的人均收入又可以表示为(1.5*-1 200)元.解:设这个乡去年农民人均收入是*元,根据题意,得(1+20%)*=1.5*-1 200,解方程,得*=4 000.答:这个乡去年农民人均收入是4 000元.5.局部与全量关系型应用题"总量=各局部量的和〞是列方程解应用题中常用的等量关系,它包含在各类题目中,是最根底、最常用的一种等量关系之一,题目一般总量,再通过不同的方式表述各分量所占比例,或各分量之间的倍数关系,求*一个量,如:一批文稿,假设由甲抄30小时抄完,乙抄20小时抄完,现由甲抄3小时后改由乙抄余下局部,则乙尚需几小时抄完?其中包含的数量关系就是,甲抄写的量+乙抄写的量=总量.局部与总量的关系一般设其中的一局部为*,根据各局部之间的关系,用含*的式子表示其他分量,最后相加等于总量.【例5-1】用大小两台拖拉机耕地,每小时共耕地30亩.大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?分析:大拖拉机1小时的耕地亩数+小拖拉机1小时的耕地亩数=1小时的耕地总亩数.解:设小拖拉机每小时耕地*亩,则大拖拉机每小时耕地1.5*亩,根据题意,得*+1.5*=30,解方程,得*=12.答:小拖拉机每小时耕地12亩.【例5-2】甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲的速度是乙的速度的1.2倍,求甲、乙两车的速度.分析:甲的路程+乙的路程=总路程.解:设乙的速度为y千米/时,则甲的速度为1.2y千米/时,根据题意,得2×1.2y+2y=660,解方程,得y=150.150×1.2=180(千米/时).答:甲、乙两车的速度分别是180千米/时,150千米/时.6.盈缺乏问题解法"盈缺乏〞问题是日常生活中平分钱物经常出现的问题,是方程解决实际问题的典例,顾名思义,它一般是按一个数目分配不够(少),按另一个数目分配结余(多),不管怎么分配,被分配的物品的总量不变,人数不变,只是分配方式的变化,所以"表示同一个量的两个不同的式子相等〞是一个根本的相等关系.【例6】七年级(1)班组织全班学生去郊游,但需要一定的费用,如果每个学生付5元,则还差15.6元;如果每个学生付5.5元,则就多出10.4元,则这个班有多少名学生?共需费用多少元?分析:不管每人5元不够,还是每人5.5元结余,总费用不变.解:设这个班有*名学生,根据题意,得5*+15.6=5.5*-10.4.解方程,得*=52.总费用:5×52+15.6=275.6(元).答:这个班有52名学生,共需费用275.6元.7.数字问题数字问题是数学中出现较多的问题,它分类多,主要有以下两类:(1)顺序数字问题:按一定规律排列的一系列数字,其中几个数的和,求每个数是多少,如课本例2:一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中*三个相邻数的和是-1 701,这三个数各是多少,或连续三个奇数的和是51,求这三个数,或给出一个日历表等,框出一些数,它们的和,求各数等.解法:这类题目一般是设其中一个数为*,根据排列规律用含*的式子表示出其他各数,把它们相加列出方程求解,再分别求出各数.(2)求两位数、三位数问题:一个两位数或三位数中各个数位上的数字间的关系,求这个数.解法:这类问题不能直接设这个数,应该设其中一数位上的数字是*,根据其他数位上的数字与这个数字之间的关系,用含*的式子表示出其他数字,根据"个位数字是*,十位数字是y,百位数字是z,则这个三位数就是100z+10y+*〞的道理,写出这个数,列出方程,求出各个数位上的数字,进而求出这个数.【例7-1】一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,则这个两位数是多少?分析:求两位数或三位数的问题,不能直接设,而应该间接设十位上的数字是*,则个位数字就是3*.解:设十位上的数字是*,则个位上数字就是3*,根据题意,得*+3*=12.解方程,得*=3.个位上的数字是3*=3×3=9.答:这个两位数是39.【例7-2】三个连续偶数的和是30,求这三个偶数.分析:遇到三个偶数或三个奇数问题,常设中间的一个数为*,则前面的数为*-2,后面的数为*+2.也可设最前面的一个数为*,则后面的两个数分别是(*+2),(*+4).解:设中间的一个数为*,则前面的数为*-2,后面的数为*+2,根据题意,得*-2+*+*+2=30.解方程,得*=10.答:这三个连续偶数为8,10,12.【例7-3】下面给出的是2013年7月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是().A.69B.54C.27D.40解析:设中间的数为*,则三个数分别为*-7,*,*+7,合并化简得这三个数的和为3*,所以三个数的和一定能被3整除.只有D不能被3整除,应选D.答案:D8.方案设计题应用方案设计题是近几年中考的热点,也是现实生活中经常遇到的问题,它是我们生活中决策、选择的数学依据.在目前这类问题一般比拟简单,给出两种方案,让我们选择在不同情况下,选择哪种方案合算或更好.破疑点方案问题的解题方法一般设两种方案花费一样多时的情况,列出方程,求出临界点时的情况,再根据变化通过讨论,选择最优方案.【例8】*影碟出租店采用两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费12元,租碟费每张0.4元,小华经常来该店租碟,请你帮小华设计一下怎样租碟合算?分析:哪种方式租碟更合算取决于小华租碟的数量,因此先求出费用一样时的情况,可设每月租碟*张时费用一样,根据两种收费方式相等,列出方程再分类讨论.解:设小华每月租碟*张时收费一样多,根据题意,得*=0.4*+12,解方程,得*=20.所以当每月租碟20张时两种方式收费一样多;当每月租碟大于20张时,办会员卡合算;当每月租碟少于20张时,零星租碟合算.9.绝对值方程的解法(1)绝对值方程:像|*|=5,|*-3|=2这样的方程,我们叫做绝对值方程,即绝对值中含有未知数的方程.(2)解法:这类方程的解法关键就是去掉绝对值号,把方程转化为一元一次方程,再解一元一次方程求解.如:|*-3|=2,由绝对值意义可知,+2和-2的绝对值都等于2,所以转化为两个一元一次方程:*-3=2和*-3=-2,解方程,得*=5或*=1,将它们分别代入原方程检验,*=5,*=1都能使方程左右两边相等,所以是绝对值方程的解.破疑点绝对值方程的解法 ①对于绝对值方程,大多方程有两个解,有些方程无解,有的只有一个解,应注意.②对于较复杂的绝对值方程如:|3*-2|=|*+1|,解法也是根据绝对值的性质,化为一元一次方程解决,可化为3*-2=*+1和3*-2=-(*+1)来解决.【例9】解以下方程:(1)|-74*|-1=0;(2)|2*-3|=-7; (3)|-6+5*|=|-3|;(4)|-52*+2|=0. 分析:(1)移项,方程可化为|-74*|=1,所以-74*=1或-74*=-1,解此方程就能求出原绝对值方程的解.(2)没有哪个数的绝对值是负数,所以此方程无解.(3)|-3|=3,所以原方程就是|-6+5*|=3.(4)0的绝对值等于0,所以-52*+2=0. 解:(1)移项,得|-74*|=1,方程可化为-74*=1和-74*=-1,解方程,得*=-47和*=47. (2)原方程无解.(3)原方程化为:-6+5*=3和-6+5*=-3,解方程,得*=95,*=35. (4)原方程可化为-52*+2=0,解方程,得*=45. 10.比例型问题的巧设与妙解运用一元一次方程解决比例分配问题时,设是关键,一般是设每一份为*,再根据每一份所占的比例,用含未知数的式子表示每一份,从而列出方程,解决问题.如:*种中药含有甲、乙、丙、丁四种草药成分,这四种成分的质量比是0.7∶1∶2∶4.7.现在要配制这种中药2 100克,四种草药分别需要多少克?此题所求的量有四个,假设设其中一个(第二个量除外)为未知数,虽也能列方程求解,但会出现较复杂的关系转换,带来计算上的烦琐,故不可取.此题既给出了四个量的比例关系,我们不妨间接设未知数:设比例中的"每一份〞为*克,则甲、乙、丙、丁四种草药分别为0.7*克,*克,2*克,4.7*克,根据题意,得0.7*+*+2*+4.7*=2 100.解此方程即可求出*,再根据所占比例,分别求出四种药材的用量.解技巧解比例型应用题的方法假设题目中有比例为1的情况时,可设比例为1的为*,假设比值中没有所占比例为1的,则设"每一份〞为未知数更具有优越性.【例10-1】*会议厅主席台上方有一个长12.8 m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如以下图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?分析:可设每一份为* cm,根据图示得到所有的边距、字宽、字距之和等于1 280 cm,列出方程.解:设边空、字宽、字距分别为9* cm,6* cm,2* cm,则9*×2+6*×18+2*(18-1)=1 280.解方程,得*=8.所以9*=72,6*=48,2*=16.答:边空为72 cm,字宽为48 cm,字距为16 cm.【例10-2】一个黑白足球的外表一共有32块皮块,其中有假设干块黑色五边形和白色六边形皮块组成,其中黑、白皮块的数目之比为3∶5,问黑色、白色皮块各有多少块?解:设黑、白皮块分别有3*,5*块,根据题意,得3*+5*=32.解方程,得*=4,所以3*=12,5*=20.答:黑皮块有12块、白皮块有20块.。

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)七年级上册应用题专题讲解列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套??”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率??”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x元,则2x+1000=250002x=24000x=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x公斤,则x-[25%x+40%×(1-25%)x]+1=25%x+40%×(1-25%)x10%x=1 x=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

列方程(组)解应用题的方法及步骤

列方程(组)解应用题的方法及步骤

列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。

(2)根据题意找出能够表示应用题全部含义的一个相等关系。

(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。

(4)解方程:求出未知数的值。

(5)检验后明确地、完整地写出答案。

检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。

2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。

(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。

(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。

(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。

(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。

(6)行程类应用题基本关系:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。

环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。

(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。

1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?答:从乙处调3人到甲处.2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?得x =17.∴20-x =3.答:应调往甲处17人,乙处3人.3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?解:设在这5立方米木料中,用x 立方米木料做桌面,用y 立方米木料做桌子腿,由题意可得:x y x y +=⨯=⎧⎨⎩514503002()() 解之可得:x y ==⎧⎨⎩32 即用3立方米木料做桌面,2立方米木料做桌腿。

七年级数学下册二元一次方程组应用题

七年级数学下册二元一次方程组应用题

二元一次方程组解应用题列方程解应用题的根本关系量:(1)行程问题:速度×时间=路程(2)顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(3)工程问题:工作效率×工作时间=工作量(4)浓度问题:溶液×浓度=溶质(5)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的根本步骤:1、审题,搞清量和待求量,分析数量关系. 〔审题,寻找等量关系〕2、考虑如何根据等量关系设元,列出方程组.〔设未知数,列方程组〕3、列出方程组并求解,得到答案.〔解方程组〕4、检查和反思解题过程,检验答案的正确性以及是否符合题意.〔检验,答〕列方程组解应用题的常见题型:(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流〔风〕:航速=静水〔无风〕中的速度+水〔风〕速2.逆流〔风〕:航速=静水〔无风〕中的速度--水〔风〕速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×〔1+增长率〕=增长后的量,原量×〔1+减少率〕=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=〔售价—进价〕÷进价×100% (10)盈亏问题:关键从盈〔过剩〕、亏〔缺乏〕两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:抓住人与人的岁数是同时增长的〔分配调运问题〕1、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,那么两厂的人数一样;如果从乙厂抽5人到甲厂,那么甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?〔金融分配问题〕小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?〔做工分配问题〕小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?〔行程问题〕甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

七年级下册数学二元一次方程组应用难题汇总

七年级下册数学二元一次方程组应用难题汇总

七年级下册数学二元一次方程组应用难题汇总二元一次方程组的8个类型专治各种不会做的应用题二元一次方程大战应用题一实际问题与二元一次方程组的思路 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

二八大典型例题详解01和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系求这两个数各是多少。

典型例题思路点拨由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展思路点拨由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

02产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。

典型例题思路点拨本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展思路点拨根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

七年级奥数:一次方程组的应用

七年级奥数:一次方程组的应用

七年级奥数:一次方程组的应用阅读与思考一次方程组是解数学题的重要工具之一,其应用主要体现在以下两个方面: 1.求代数式的值一些表面与方程组无关的问题,借助相关概念、性质、对题意的理解等将问题转化为解方程组而获解.2.列方程组解应用题不同的应用问题应采用不同的解决手段或方法,对于含有多个未知量的问题,利用方程组求解常常比单设一个未知数建立一元方程容易,列方程组解应用题的步骤与列一元方程解应用题的步骤类似,它们的不同之处在于:首先,列方程组所解决的应用题中含有多个未知量,须设多个未知数,而列方程只能设一个未知数,其他未知量只能用这一个未知数的代数式表示;其次,列方程组解应用题应列出彼此独立的方程来组成方程组,而列方程解应用题只需列出一个方程.例题与求解例1 设x 、y 满足x +3y +=192x+y=6,则x=_______,Y =_______. (第十届“希望杯”邀请赛试题)解题思路 两等式联立可得关于x ,y的方程组,解题的关键是如何脱去绝对值符号.例2 4x -3y —6z=0,x+2y -7x=0,等于( ). (A )-(B )- (C )—15 (D )—13 (1997年重庆市竞赛题) 解题思路 x、y、z的值不惟一确定,不妨视2为常数,解关于x ,y的方程组.例3 某班进行个人投篮比赛,下表记录了在规定时间内投进几个球的人数分布情况。

同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?(上海市中考题)解题思路 已知两种情况的每人投进球的平均数,利用平均每人投进的球数=列出方程组.例4 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队8700元;乙、丙两队合做10y x -3222222103225zy x z y x ---+21219总人数投进总球数天完成,厂家需支付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由.(天津市中考题) 解题思路求出每队工作效率及每天需支付每队的费用,通过计算比较,进行正确的经济决策.例5 有甲、乙、丙三种规格的钢条,已知甲种2根,乙种1根,丙种3根共长23米;甲种1根,乙种4根,丙种5根共长36米.问甲种1根、乙种2根、丙种3根共长多少米?(天津市竞赛题) 解题思路三个未知量却只有两个等量关系,需运用相关的解方程组的技巧,如视某个变量为常量、整体思想等.能力训练A级1.若a—b=2,a-c=,则(b—c)—3(b—c)+=_______.2.全国足球甲A联赛前12轮(场)的比赛后,前三名比赛成绩如下表,则每队胜一场、平一场、负一场分别各得——分.(南京市中考题)3.若x+2y+3x=10,4x+3y+2z=15,则x+y+z=_______.4.如图,在长方形ABCD中,放人六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积为_______.5.已知—4xy与xy是同类项,则m、n的值分别为( ).3221349nm+nm+32m-7n+1(A)m=1,n=7 (B)m=3,n=1(C)m=,n= (D)m= n=-26.把x =1和x =—1分别代入代数式x+bx+c,它的值分别是2和8,则b、c的值是( ).(A )b=3,c =4 (B )b=3,c =—4 (C )6=—3,c =—4 (D )b=—3,c=47.方程+=1的整数解的个数是( ).(A )1个 (B )2个 (C )3个 (D )4个8.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁.那么( ). (A )甲比乙大5岁 (B )甲比乙大10岁 (C )乙比甲大10岁 (D )乙比甲大5岁(2000年全国初中数学联赛题)9.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒(如图1),利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形边长相等(如图2),现将150张正方形硬纸片和300张长方形硬纸片全部用于制作这种小盒,求可做成甲、乙两种小盒各多少个?(上海市中考题)10.某车间每天能生产甲种零件120个,或者乙种零件100个,或丙种零件200个,甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产几天?(福建省中考题)某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游项王故里,如果两班都以班为单位分别购票,则共付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元? (2)两班各有多少名学生?(江苏省宿迁市中考题)12.甲、乙、丙三人各有糖若干块,要求互相赠送,先由甲给乙、丙,所给的糖的块数等于乙、丙原来各自的糖块数;依同样的方法再由乙给甲、丙现有的糖块数;后由丙给甲、乙现有的糖块数,互相赠送后,每人恰好各有糖64块,问三人原来各有糖多少块?(天津市竞赛题)10296545232--y x 1++y xB 级1.定义新运算“▽”如下:x▽y=ax+by+c(a,b ,C 为常数),其中∣▽∣=2,2▽2=1,则2003▽2003的值为_______.(河南省竞赛题)2.《数理天地》(初中版)月刊,全年12期,每期定价2.5元,某中学初一年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元,若订全年的改订半年,订半年的改订全年时,则共需订费1245元,则该中学初一年级订阅《数理天地》的学生共有_______人.(“希望杯”邀请赛试题)3.江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟抽完水,那么至少需要抽水机_______台.(全国初中数学联赛试题) 4.购买五种数学用品A 、A 、A 、A 、A 的件数和用钱总数列成下表则五种数学用品各买一件共需______元.5.买20枝铅笔、3块橡皮、2本日记本需32元;买39枝铅笔、5块橡皮、3本日记本需58元,则买5枝铅笔、5块橡皮、5本日记本需( ).(第十五届江苏省竞赛题)(A )20元 (B )25元 (C )30元 (D )35元6.在一家三口人中,每两人的平均年龄加上余下一人的年龄分别得到47,61,60,那么这三个人中最大年龄与最小年龄的差是( ). (A )28 (B )27 (C )26 (D )25(“希望杯”邀请赛试题)7.已知4x —3y —6z =0,x +2y -7x =0,(xyx ≠0),则的值为( ). (安徽省竞赛题)(A )(B )- (C )1 (D )—1 8.某赛季足球比赛的计分规则是胜一场得3分;平一场得1分;负一场得0分,一足球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况有( ). (A )3种 (B )4种 (C )5种 (D )6种(全国高考题)9.在车站开始检票时,有a (a >0)名旅客在候车室排队等候检票进站.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?1234522222275632z y x z y x ++++2121(广州市中考题)10.某一次考试共需做20个小题,做对一个小题得8分,做错一个扣5分,不做的得0分,某学生共得13分,问这个学生没做的题有多少个?(湖北省荆州市竞赛题)11.编号为1到25的25个弹珠被分放在两个篮子A 和B 中,15号弹珠在篮子A 中,把这个弹珠从篮子A 移至篮子B 中,这时篮子A 中的弹珠号码数的平均数等于原平均数加,B 中弹珠号码数的平均数也等于原平均数加.问原来在篮子A 中有多少个弹球? (第十六届江苏省竞赛题)4141。

初一年级数学应用题解题技巧

初一年级数学应用题解题技巧

初一年级数学应用题解题技巧很多同学对数学都不敏感,数学成绩老是提不上去,以下是初一年级数学应用题解题技巧,欢迎大家学习! 初一年级数学应用题解题技巧【1】 1.图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。

如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。

(例略) 2.亲身体验法如讲逆水行船与顺水行船问题。

有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。

为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。

并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。

这样讲,学生就好理解。

同时讲清:顺水行船的速度,等于船在静水中的速度加上水流的速度;逆水行船的速度,等于船在静水中的速度减去水流的速度。

3.直观分析法如浓度问题,首先要讲清百分浓度的含义,同时讲清百分浓度的计算方法。

其次重要的是上课前要准备几个杯子,称好一定重量的水,和好几小包盐进教室,以便讲例题用。

如:一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐多少呢? 分析这个例题时,教师先当着学生的面配制15%的盐水200克(学生知道其中有盐30克),现要将15%的盐水200克配制成20%的盐水,老师要加入盐,但不知加入多少重量的盐,只知道盐的重量发生了变化。

这样,就可以根据盐的重量变化列方程。

含盐20%的盐水中,含盐的总重量减去原200克含盐15%的总重量,就等于后加的盐重量。

即设应加盐为x克,则(200+x)×20%-200×15%=x 解此方程,便得后加盐的重量。

相关例题: 1.某中学七年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生没车坐;如果每辆车坐60人,那么可以空出一辆车。

人教版七年级数学下册 二元一次方程组解应用题分类练习

人教版七年级数学下册 二元一次方程组解应用题分类练习

人教版七年级数学下册二元一次方程组解应用题分类练习二元一次方程解应用题分类练一、知识点:1.列方程组解应用题的一般步骤:审题、设未知元、列解方程组、检验、作结论等。

2.列方程组解应用题要领:1)将生活语言代数化;2)掌握一定的设元技巧(直接设元,间接设元,辅助设元);3)寻找数量间的等量关系。

二、举例:二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数。

二、利润问题例2:一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?三、配套问题例3:某厂共有120名生产工人,每个工人每天可生产螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?四、行程问题例4:在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米。

两个加油站实施抢劫的两个犯罪团伙作案后同时分别在A、C 两个加油站以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上。

问巡逻车和犯罪团伙的车的速度各是多少?五、货运问题例5:某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?六、工程问题例6:某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套。

列方程式解应用题时如何寻找等量关系

列方程式解应用题时如何寻找等量关系

列方程解应用题时如何寻找等量关系列方程解应用题是初中数学教学中的重点和难点,而列方程解应用题的关键是寻找等量关系。

如何寻找等量关系,下面列举几种方法:一.利用常见的基本数量关系式确定等量关系一些应用题,本身有很好的相等关系,如:行程问题:路程=速度×时间工程问题:工作量=工作效率×工作时间浓度配比问题:溶质重量=溶液重量×百分比浓度利息问题:利息=本金×利率销售问题:商品利润=商品售价-商品进价商品利润率=×100% 等。

例1:(七年级教材上册84页第八题)一辆汽车已行驶了12000 千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?分析:利用:路程=速度×时间,设X月后这辆汽车将行驶20800千米,则:12000+800X=20800评析:本题是行程问题,要求掌握基本关系式。

二.利用“三分法” 确定等量关系“三分法” 通常是指题目中有三个量,已知其中一个量,设定一个未知量(通常为题中所求未知数),然后用第三个量来寻找等量关系:例2:(七年级教材上册106页第四题)某中学学生自己动手整修操场,如果让七年级学生单独工作,需要7.5小时完成;如果让八年级学生单独工作,需要5小时完成。

如果让七、八年级学生一起工作一小时,再由八年级学生单独完成剩余部分,共需多少时间完成?分析:此题是工程问题。

题中共有三个量:工作时间、工作效率、工作总量。

若设共需要X小时完成(也可设八年级学生单独完成剩余部分需X小时),七年级、八年级学生的工作效率是已知的,则应以工作总量为等量关系,那么,列出的方程为:评析:此题解题方法适用于题中有三个量的问题:行程问题、工程问题、浓度配比问题、销售问题等。

对于不同问题中的三个量,一定要弄清已知量、未知量,然后根据题中数量关系列出方程。

三.利用题中的关键性语句确定等量关系有些问题,根据题中的关键性语句反应的数量关系就可以找出等量关系。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
甲处乙处
原有人数27 18
现有人数27+ 18-
相等关系
解设应调往甲处人,根据题意,得27+ =2(18- ).解这个方程,得=3.
答:从乙处调3人到甲处.
2变题学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?
分析设应调往甲处人,题目中涉及的有关数量及其关系可以用下表表示:
甲处乙处
原有人数27 18
增加人数
20-
现有人数27+
18+20-
等量关系 +2
解设应调往甲处人,根据题意,得27+ =2(18+20- )+2.解这个方程,得=17.∴20- =3.答:应调往甲处17人,乙处3人.
5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?
解:设在这5立方米木料中,用x立方米木料做桌面,用y立方米木料做桌子腿,由题意可得:即用3立方米木料做桌面,2立方米木料做桌腿。

答:能做成桌子150张。

11:(准备小勇6年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式。

(1)直接存一个6年期,年利率是2.88%;(2)先存一个3年期的,3年后将本利和自动转存一个3年期。

3年期的年利率是2.7%。

你认为哪种储蓄方式开始存人的本金比较少? 分析:要解决“哪种储蓄方式开始存入的本金较少”,只要分别求出这两种储蓄方式开始存人多少元,然后再比较。

设开始存入x元。

.如果按照第一种储蓄方式,那么列方程:
x×(1十2.88%×6)=5000 解得x≈4263(元) 如果按照第二种蓄储方式,可鼓励学生自己填上表,适当时对学生加以引导,对有困难的学生复习:本利和=本金十利息利息:本金X利率X期数等量关系是:第二个3午后本利和=5000
所以列方程 1.081x•(1十2.7%×3)=5000 解得x≈4279这就是说,大约4280元,3年期满后将本利和再存一个3年期,6年后本利和达到5000元。

因此第一种储蓄方式<即直接存一个6年期)开始存人的本金少。

25、乙两相距6千米,两人同时出发,同向而行,甲3小时可追上乙;相向而行,1小时相遇,两人的平均速度各是多少?
解:设甲的平均速度是每小时行x千米,乙的平均速度是每小时行y,根据题意,得: 3x=3y+6
x+y=6 解这个方程组,得:x= 4
y=2
答:平均每小时甲行4千米,乙行2千米。

26乙两人从相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,求甲、乙二人各自的速度。

1. 解:设甲的速度为x公里/小时,乙的速度为y公里/小时,则根据题意:
27从甲地到乙地,先下山后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米速度通过平路,到乙地55分钟。

他回来时以每小时8千米的速度通过平路,而以每小时4千米速度上山,回到甲地用小时,求甲、乙两地的距离。

分析:根据“去时所走平路长=回时所走平路长”列方程求解。

解:设山路长为x千米,依题意列方程为:
解这个方程,得。

代入方程左边,算得平路长为:
答:甲乙两地距离为9千米。

28甲、乙两人在周长是400米的环形跑道上散步.若两人从同地同时背道而行,则经过2分钟就相遇.若两人从同地同时同向而行,则经过20分钟后两人相遇.已知甲的速度较快,求二人散步时的速度.(只列方程,不求出)
分析:这个问题是环形线上的相遇、追及问题.其中有两个未知数:甲、乙二人各自的速度.有两个相等关系,即
(1)背向而行:两次相遇间甲、乙的行程之和=400米;
(2)同向而行:两次相遇间甲、乙的行程之差=400米.
(让学生自己设未知数,列方程组,教师请一名学生将自己所列的方程组写在黑板上.)
解:设甲人速度为每分钟x米,乙人速度为每分钟行走y米.依题意,得
29人骑自行车绕800米长的环形跑道行驶,他们从同一地点出发,如果方向相反,每1分20秒相遇一次.如果方向相同,每13分20秒相遇一次.求各人的速度.
30某一铁路桥长1000米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间为40秒钟.求火车速度.
31地相距280千米,一艘轮船在其间航行.顺流用了14小时,逆流用了20小时.求这艘轮船在静水中的速度和水流速度
甲、乙两相距36千米两地相向而行,如果甲比乙先走2时,那么他们在乙出发2.5时后相遇;如果乙比甲先走2时,那么他们在甲出发3时后相遇,甲、乙两人每时各走多少千米?
解:设甲、乙两人每小时分别行走x千米、y千米。

根据题意可得:
4.5x+2.5y=36 x= 6
3x+5ky=36 解此方程可得: y=4
所以甲每小时走6千米,乙每小时走4千米。

32乙两码头相距60千米,某船往返两地,顺流时用3小时,逆流时用4小时,求船在静水中的航速及水流速度。


分析:复习船在顺流航行及逆流航行中的速度与船在静水中的速度、水流速度的关系。

顺流航行的船速=在静水中的船速度+水流速度
逆流航行的速度=在静水中的船速度-水流速度
师生共同分析两个相等关系
⑴顺流航行的速度×3=60千米
⑵逆流航行的速度×4=60千米
解:设船在静水中的速度为x千米/时,水流速度为y千米/时。

由题意得 3(x+y)=60 ①
4(x-y)=60 ②
解这个方程组;得x=17.5 y=2.5
33.两地之间的路程为20千米,甲从A地,乙从B地同时出发,相向而行,2小时侯在C点相遇,相遇后甲原速反回A地,乙仍向A地前进。

甲回到A地时,乙离A地还有2千米,求甲乙两地的时速。

学生活动:独立分析、思考、找相等关系,一个学生板演。

解:设甲速为每小时x千米,乙速为每小时y千米,根据题意,
2(x+y)=20 ①
2x-2y=2 ②
解得x=5.5y=4.5
答:甲速为每小时5.5千米,乙速为每小时4.5千米。

甲、乙二人从C点同向而行,甲回到A地的时间是2小时,在相同的时间内,乙到达D点,距A地还有2千米,从而可得相等关系:
甲行程-以行程=2千米
34乙两人由上午8时自A、B两地同时相向而行,上午10时相距36公里,两人继续前进,到12时又相距36公里,已知甲每小时比乙多走2公里,求A、B两地距离。

(108公里)
35、B两地相距5公里,一辆汽车与一辆自行车同时从A地出发,驶向B地,当汽车到达B地时,自行车才走完全程的。

汽车在B停留半小时后,以原速度返回A地,经过24分钟与自行车相遇。

求汽车、自行车的速度。

分析:根据在汽车到达B地时自行车才走完全程的,得到汽车的速度是自行车的速度的4倍。

剩下的路程,等于自行车行驶半小时加24分钟所走过的距离加上汽车行驶24分钟走过的距离。

A、B之间的路程全长是已知的,只需设自行车和汽车的速度分别为x公里/小时,y公里/小时,就可列出方程。

解:设自行车的速度为x公里/小时。

汽车的速度为y公里/小时。

依题意列方程组:
解此方程组得:
答:自行车速度为15公里/小时,汽车速度为60里/小时。

相关文档
最新文档