第二章 大学物理牛顿运动定律

合集下载

大学物理——第2章-质点和质点系动力学

大学物理——第2章-质点和质点系动力学
2 2 2 α + a1 cos2 α
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1

大学物理2牛顿运动定律

大学物理2牛顿运动定律

解:分析受力:mg B R ma
v dv tK d v K ( v v ) T 运动方程变为: 0 d t 0 vT v m dt m
d v mg B Kv 加速度 a dt m mg B 极限速度为:vT K
B R
m
mg
vT v K ln t vT m
x
g sin a2 arc tg g cos
例题2-3 一重物m用绳悬起,绳的另一端系在天花板上,
绳长l=0.5m,重物经推动后,在一水平面内作匀速率圆 周运动,转速n=1r/s。这种装置叫做圆锥摆。求这时绳 和竖直方向所成的角度。
2 2Biblioteka 解: T sin m r m l sin T cos mg 角速度: 2n T 拉力:T m 2l 4 2 n 2 ml
1.电磁力
电磁力:存在于静止电荷之间的电性力以及 存在于运动电荷之间的磁性力,本质上相互联系, 总称为电磁力。 分子或原子都是由电荷系统组成,它们之间 的作用力本质上是电磁力。例如:物体间的弹力、 摩擦力,气体的压力、浮力、粘滞阻力。
2.强力
强力:亚微观领域,存在于核子、介子和超 子之间的、把原子内的一些质子和中子紧紧束缚 在一起的一种力。 15 15
F
N 1
i
i
3、矢量性:具体运算时应写成分量式
dv x Fx ma x m dt 直角坐标系中: F ma m dv y y y dt
dvz Fz maz m dt
dv 自然坐标系中: F m dt
F
n
m
v
2

4、惯性的量度: 质量
三. 牛顿第三定律

大学物理第2章-2.4 牛顿运动定律应用举例

大学物理第2章-2.4 牛顿运动定律应用举例

m1g FT m1a1
a1 ar a
ar
m1 m1
m2 m2
(g
a)
m1 m2
FT
0
a2FT
y
m2 g FT m2a2
a2 ar a
FT
2m1m2 m1 m2
(g
a)
a1
P1 y
P2 0
例 如图长为 l的轻绳,一端系质量为 m
的小球,另一端系于定点 o,t 0 时小球
位于最低位置,并具有水平速度 v0,求小球
在任意位置的速率及绳的张力。
解: FT mg cos man
mg sin mat
FT mg cos mv2 / l mg sin m dv
dt
o
FT
en
v
et
v0 mg
mg sin m dv
dt
dv dv d v dv dt d dt l d
x
vx v0 cosekt/m
vy
(v0
sin
mg k
)ekt/ m
mg k
15
dx vxdt dy vydt
由上式积分代 初始条件得:
y
v0
Fr
A
P
v
o
x
x
m k
(v0
c os )(1
ekt / m
)
y
m k
(v0
sin
mg k
)(1
ekt / m
)
mg k
t
16
y
y (tan mg )x kv0 cos
v
vdv gl sind
v0
0
v v02 2lg(cos 1)

大学物理牛顿运动定律及其应用习题及答案

大学物理牛顿运动定律及其应用习题及答案

第2章 牛顿运动定律及其应用 习题解答1.质量为10kg 的质点在xOy 平面内运动,其运动规律为:543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力.解:此题属于第一类问题54320sin 480cos 4x x x x con t dx v t dtdv a t dt=+==-==- 5sin 4520cos 480sin 4y y y t v t a t=-==-12800cos 4()800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+=2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx 〔k 为比例系数〕,求: 〔1〕此时作用于质点的力;〔2〕质点由1x x =处出发,运动到2x x =处所需要的时间。

解:(1) 2()dv dx F m mk mk x N dt dt=== (2) 22112111ln ln xx x x x dx dx v kx t x dt kx k k x ==⇒===⎰ 3.质量为m 的质点在合力0F F kt(N )=-〔0F ,k 均为常量〕的作用下作直线运动,求: 〔1〕质点的加速度;〔2〕质点的速度和位置〔设质点开始静止于坐标原点处〕.解:由牛顿第二运动定律 200201000232000012111262v t x t F kt dv mF kt a (ms )dt mF t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-⇒=--=⇒=⎰⎰--=⇒=⎰⎰4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)〔k 是常量〕的作用下沿X 轴运动,求质点在x 处的速度。

解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒=⎰⎰5.一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒===⎰⎰6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m k e v )(0-;(2) 由0到t 的时间内经过的距离为x =(km v 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0km v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 证明: (1) t 时刻的速度为v =t m k e v )(0- 0000ln v t k t m v dv F kv mdt dv k v k dt t v v e v m v m -=-==-⇒=-⇒=⎰⎰(2) 由0到t 的时间内经过的距离为x =(k m v 0)[1-t m ke )(-] 00000(1)k t m x tk k t t m m dx v v e dt mv dx v edt x e k ---===⇒=-⎰⎰(3)停止运动前经过的距离为)(0km v 在x 的表达式中令t=0得到: 停止运动前经过的距离为)(0k m v (4)当k m t =时速度减至0v 的e1,式中m 为质点的质量. 在v 的表达式中令k m t =得到:01v v e= 7.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.解: 由牛顿第二运动定律 (1) dv dv k m kv dt dt v m=-⇒=- 考虑初始条件,对上式两边积分: 000vt k t m v dv k dt v v e v m -=-⇒=⎰⎰ (2) max00max 00x k t m mv dx v e dt x dt k ∞-=-⇒=⎰⎰ 8.质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?(取29.8/g m s =)解: 由牛顿第二运动定律雨滴下降未到达极限速度前运动方程为2mg kv ma -= 〔1〕雨滴下降到达极限速度后运动方程为20mg kv -= 〔2〕将v = 4.0 m/s 代入〔2〕式得2maxmg k v = 〔3〕 由〔1〕、〔3〕式 22424max 16(1)10(1) 3.6/25v v v a g m s v ===-=⨯-= 9.一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 解: 由牛顿第二运动定律有sin 0cos 0T N mg T N θθμ+-=-=联立以上2式得 ()cos sin mgT μθθμθ=+上式T 取得最小值的条件为tg θμ==由此得到2.92l m =≈。

大学物理第二章牛顿第二定律

大学物理第二章牛顿第二定律

二、牛顿第一定律(惯性定律)
任何物体如果没有力作用在它上面,都将保持静止得或作匀速直线 运动得状态。
牛顿第一定律得意义: 1、定义了惯性参考系
2、定性了物体得惯性与力:保持运动状态与改变运动状态
三、牛顿第二定律
定义质点动量:Pm主F 要 d内dPt容:ddt某有mv时关刻系m质: dd点vt F受v得ddm合dtdPt力为Fddm,t则合0力与动F量得m变a化率
Fr FN (mg F sin ) (2、3-4) 将(2、3-3)式 代入(2、3-4)式,得
F cos (mg F sin ) 0
所以 F
mg
sin cos
(2、3-5)
由(2、3-5)式可知:只有当
f ( ) sin cos
为最大时,拉力才为最小,故对函数 f ( ) 求导数,则有
第三定律就是牛顿在惠更斯、雷恩、沃 利 斯弹等性人物研体究得碰碰撞撞得定时律候,得在基力础学上得建体立系得中。, 就是从牛顿定律中推出得,但从定律发现得过 程瞧,牛顿第二、第三运动定律就是从碰撞定 律、动量守恒定律得研究中逐步行成得。
六、几种常见得力与基本得自然力
❖ (一)、几种常见得力
❖ 1、重力 ——由于地球吸引而使物体受到得力叫做重力。 重力得作用使液体有天然形状--球状。
❖ 2、惯性(参考)系 (1)、惯性系定义—— 在研究物体相对运动时,选取得参考系 就是牛顿运动定律适用得参考系,这样得系统称为惯性(参考) 系; (2)、惯性系属性—— 凡就是相对于某一已知得惯性系,作匀 速直线运动得参考系也都就是惯性参考系。

匀速直
线运动
S
S
S系
仅凭观测球得上 抛与下落,不能 觉察车相对地面 得运动。

中国矿业大学(北京)《大学物理》课件-第二章 牛顿运动定律

中国矿业大学(北京)《大学物理》课件-第二章 牛顿运动定律
惯性系只能通过实验来确定。
★实验表明:地球是一个近似程度很高的惯性系。 ★实验还表明:相对地球做匀速直线运动的物体也 是惯性系。
中国矿业大学(北京)
8/52
牛顿第三定律
2、牛顿第三定律
两个物体之间的作用力 F 和反作用力 F 沿
同一直线,大小相等,方向相反,分别作用在两
个物体上。
F F
两点说明:
摩擦系数为 ,拉力F作用于物体上。
求:F与水平面之间的夹角 为多大时,能使物体获
得最大的加速度?
F
解:建立直角坐标系oxy,
N
根据牛顿第二定律列式:
f
F cos f ma
G
N F sin mg 0
y
f N
ox
中国矿业大学(北京)
28/52
例题2-2
可解得: f μ(mg F sin ),
瞬时加速度。两者同时存在,同时消失。
F
m
d
v
dt
中国矿业大学(北京)
11/52
牛顿第二定律
(3)矢量性的理解:
F
ma
m
d
v
dt
直角坐标系中的
自然坐标系中的
分量形式
分量形式
Fx
max
m dvx dt
d2 x m dt2
,
Fy
may
m dvy dt
m
d2 dt
y
2
,
Fz
maz
m dvz dt
最大静摩擦力 fmax 0N 滑动摩擦力 f N
0:静摩擦系数,:滑动摩擦系数。与接触面的 材料和表面粗糙程度有关,还和相对速度有关。
0 1
中国矿业大学(北京)

大学物理第2章 牛顿运动定律

大学物理第2章 牛顿运动定律
1、第一定律(物体在没有外力作用的情况下会保持原有的状态);
推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt

2-1 牛顿定律大学物理

2-1 牛顿定律大学物理

y
Fx F0t max
t=0,x=0,Vx=0 y=0.Vy=V。
dv x ax dt
F0t 2 dx vx 2 m dt
竖直方向有
v0
m
o
F (t )
x
0dx 0
x
t
F0t 2 dt 2m
F0 3 x t 6m
Fy ma y 0
运动轨迹为
F0 3 x y 3 6mv 0
x
l
dx M L dM dx x
质点与质量元间的万有引力大小为
杆与质点间的万有引力大小为
mdM mMdx df G 2 G x Lx 2
f
lL l
df
lL l
mM mM l L dx mM G 2 dx G 2 G l Lx L x l (l L)
F12 F21
牛顿第三定律
方向相反, 分别作用 在两个物体上 .
(物体间相互作用规律)
性 质 相 同
效 果 不 同
T' T m P P'
地球
m
2 – 1
牛顿定律
第二章 牛顿定律
1984年2月27日,我国国务院颁布实行以国际 单位制(SI)为基础的法定单位制 . 力学的 单位名称 基本单位 符号
取适当的单位,使 k =1 ,则有
d( mv ) dm dv Fi dt dt v m dt dv Fi m dt ma
d2 y Fiy m dt 2
当物体的质量不随时间变化时
• 直角坐标系下为
d2 x Fix m dt 2
d2 z Fiz m dt 2

河海大学《大学物理》第二章 牛顿运动定律1

河海大学《大学物理》第二章 牛顿运动定律1
以设计标准速度行驶时,无侧向摩擦力
N0
y
mg
f

N
'
x
mv0 2 x方 向 N 0 sin v0 tg R Rg y方 向 N 0 cos mg 0
以v行驶时,有侧向摩擦力
2 mv x方 向 N ' si n f cos R
2
mg
y方向 N ' cos f sin mg 0
例1. 如图所示,两木块质量分别为mA=1.0kg, mB= 2.0kg。A、B间的摩擦系数1= 0.20。B与 桌面的摩擦系数2= 0.30。若木块滑动后它们 的加速度大小均为0.15 m·s-2。求作用在B物 上的拉力? y
受力分析:
mA g T
A
A B
F
x
mBg
f1 N1
f1
T f2
B
N1
第二章 牛顿运动定律
概述
研究运动与相互作用之间的关系。 以牛顿运动定律为基础
英国伟大的物理学家、 数学家、 天文学家。恩格斯说: “牛 顿由于发现了万有引力定律而创立了天文学,由于进行光的分 解而创立了科学的光学,由于创立了二项式定理和无限理论而 创立了科学的数学,由于认识了力学的本性而创立了科学的力 学。”的确,牛顿在自然科学领域里作了奠基性的贡献,堪称 科学巨匠。 牛顿出生于英国北部林肯郡的一个农民家庭。 1661 年考上 剑桥大学特里尼蒂学校,1665 年毕业,这时正赶上鼠疫,牛顿 回家避疫两年,期间几乎考虑了他一生中所研究的各个方面, 特别是他一生中的几个重要贡献:万有引力定律、经典力学、 微积分和光学。 牛顿发现万有引力定律,建立了经典力学,他用一个公式将宇宙中最大天体的运动和最小粒

大学物理牛顿运动定律

大学物理牛顿运动定律

大学物理牛顿运动定律一、牛顿第一定律1、内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态。

2、说明:(1)牛顿第一定律是牛顿在前人实验的基础上,根据逻辑推理得出的,是以实验为基础,但又不是完全通过实验得出。

(2)牛顿第一定律说明了两点:①力不是维持物体运动的原因(否定了亚里士多德“力是维持物体运动的原因”的观点);②提出了力是改变物体运动状态的原因。

3、惯性:(1)惯性是物体保持匀速直线运动状态或静止状态的性质。

(2)惯性的大小只与质量有关。

二、牛顿第二定律1、内容:物体的加速度与所受合外力成正比,与物体的质量成反比。

2、说明:(1)公式中的F指物体所受的合外力。

当物体只受一个力时,F就等于该力。

(2)加速度的方向与合力的方向相同。

(3)合力可以改变物体的运动状态,也可以不改变物体的运动状态。

(4)公式适用于任何质点,也适用于物体的一部分(只要这种“部分”可当作质点)。

3、牛顿第二定律的适用范围:低速运动的物体。

由于一般物体的运动速度相对很慢,所以,经典力学适用于低速运动的物体。

目前,牛顿第二定律已广泛用于工程技术中。

特别是汽车、飞机、火箭等现代交通工具的速度非常大,如果我们把这种高速运动的物体当作质点,根据牛顿第一定律,我们可以得出很大的错误结论。

所以,对于高速运动的物体,我们不能把它当作质点来处理。

三、牛顿第三定律31、内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

311、说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。

物体之间的相互作用是通过力体现的。

并且指出力的作用是相互的,有作用力必有反作用力。

它们是作用在同一直线上的,大小相等,方向相反。

同时产生、同时消失、同时变化、互为施力物体和受力物体等四条结论。

大学物理牛顿力学一、牛顿力学的基本概念牛顿力学是物理学的一个重要分支,它主要研究物体运动的基本规律。

在牛顿力学中,物体被视为质点,不受力的情况称为静止,受恒定合力的情况称为匀加速运动,而受变力的情况称为变加速运动。

大学物理牛顿运动定律

大学物理牛顿运动定律

大学物理牛顿运动定律质点动力学动力学是在运动学的基础上,进一步研究物体的运动和产生这种运动的原因。

第二章牛顿运动定律是质点动力学的基本定律。

2-1牛顿运动定律一、牛顿运动定律的基本内容1、运动三定律:第一定律:任何物体都保持静止或匀速直线运动状态,直到其它物体作用在它上面的力迫使它改变这种状态为止。

力是改变物体运动状态的原因。

第二定律:物体受到外力作用时,其加速度大小与合外力成正比,与质量成反比;方向与合外力同向。

第三定律:FFimai如果物体A以力F作用于物体B,则物体B也必定同时以一力F’作用于物体A。

两个物体间的作用力和反作用力,大小相等、方向相反、在同一直线上。

FF'2、基本概念(1)惯性;物体不受力时保持静止或匀速直线运动状态的特性,是物体的基本属性。

(2)质量:描述物体惯性的物理量,是物体惯性大小的量度。

(3)力:描述物体间相互作用的物理量。

力的效果是使物体产生加速度或发生形变。

力有施、受者,要判清施力者和受力者。

力是矢量,它有大小、方向、作用点三要素。

二、应用牛顿运动定律应注意的问题。

1、正确地受力分析:FFimai力为合外力注意用“隔离体”方法进行受力分析。

力学中三种常见力:(1)万有引力重力PGm1m2FG2rM地mR2mgGM地g2R(2)弹力F某0FF(某)k某(3)摩擦力两个物体相互接触,并有相对运动或相对运动趋势时,接触面上产生阻碍相对运动的力。

静摩擦力N0ffma某Ff滑动摩擦力fma某NfkkN打击力:FF(t)阻尼力:FF(v)kv方程不是简单的代数式,描述的是F 和之间的瞬时关系。

方程是关于2、注意方程Fma的瞬时性一般情况下F是变力弹力:FF(某)k某ar(t)的二阶微分方程。

2drdvdpFm2mdtdtdt3、牛顿第二定律的微分形式drdvdpFm2mdtdtdt2dpFdt4、注意方程Fma的矢量性在应用时应根据实际情况,选择适当的正交坐标系,将矢量方程沿各坐标轴分解成标量(分量)方程。

大学物理(马文蔚)第2章

大学物理(马文蔚)第2章
重力重力弹力弹力摩擦力摩擦力流体阻力流体阻力弹簧的弹力拉力压力绳的张力轻绳张力均匀静摩擦力动摩擦力相对速度不太大也不太小平流情况下湍流情况下引力电磁力强力弱力引力电磁力强力弱力引力gravitation任何物体都存在引力引力作用也称万有引力其大小为其中g为引力常数引力常数1067为引力质量引力质量实验证实
GM mg 2 RE
电磁力
q1q 2 电荷之间存在电力(Coulomb力) f 4 0 r 2 运动电荷还存在磁力(Lorentz力) f qv B 1
电力和磁力统称为电磁力(electromagnetic force) 特点: 强度仅次于强力; 力程无限远; 由光子场传递。 弹力、摩擦力、流体阻力等宏观力都是电磁力的 宏观表现。——分子、原子之间的电磁作用力
强力
强力(strong force)是存在于质子、中子和介子等 强子中的一种作用最强的力。 特点: 强度最大; 力程比引力和电磁力小; 对称性最强; 短距离处随距离减小而减弱。
弱力 弱力(weak force)是粒子之间存在的另一种强度较 弱的力。
特点:
强度仅比引力大; 力程最小; 对称性低。
p mv
dp d 宏观低速运动中 m视为常量 F= (mv ) ma dt dt
相对论力学指出当物体的运动速度 v 接近真空中光 速 c 时,质量随运动是变化的。 因此,这种定律形式更为普遍。

牛顿第三定律(作用和反作用定律)
对于每一个作用,总存在一个大小相等方向相反的反 作用。
单位制——基本单位和由它们导出的导出单位所构成
的单位体系。 基本量和基本单位的选择不是唯一的,但个数是确定的。
力学中 3个: MKS制:长度—m, 时间—s,质量—kg 英制:力 — lb, 时间—s,质量—slug

大学物理第二章 力 动量 能量

大学物理第二章 力 动量 能量

一、功
1. 恒力的功 等于恒力在位移上的投影与位移的乘积 .
W Fs cos W F r
r s

F

F
2. 变力功的计 r 算 (1) 无限分割轨道;取位移 dr, dr ds ;
(2) 位移元上的力F 在ds上可视为恒力; r b O (3) 利用恒力功计算式计算 F r F 在 dr 上的功(元功); r a dW F dr F cosds
t
F1
F21 F12
m1
F2
m2


t
t0
( F1 F2 )dt (m1v1 m2 v2 ) (m1v01 m2 v02 )
推广到由多个质点组成的系统

t
t0
n n Fdt pi p0i n i 1 i 1 i 1
<Ek0, W <0 , 外力对物体作负功,或物体克服阻力作功.
四、质点组的动能定理
受外力 ,内力 、 ,初 F1 F、 F12 F21 2
两个质点质量为 m1、m2 ,
质点系
v10 v 速度为 、 , 末速度v1 v 2 20 为 、 位移为 、 . r2 r1,
冲量是矢量,其方向为合外力的方向.
冲量的单位: N· s,(牛顿 · 秒).
明确几点: 1. 动量是状态量;冲量是过程量. 2. 动量方向为物体运动速度方向;冲量方向为合外力
方向,即加速度方向或速度变化方向.
3. 平均冲力 由于力是随时间变化的,当变化较快时,力的瞬 时值很难确定,用一平均的力 F 代替该过程中的变力.

大学物理 第二章牛顿运动定律

大学物理 第二章牛顿运动定律
gravitational force
赵 承 均
万有引力定律 任意两质点相互吸引,引力的大小与两者质量乘积成正比, 任意两质点相互吸引,引力的大小与两者质量乘积成正比,与其距离的 平方成反比,力的方向沿着两质点连线的方向。 平方成反比,力的方向沿着两质点连线的方向。
r m1m2 r F = −G 3 r r
赵 承 均
&& mx = p sin ωt
o
v Fx
x
x
即:
m
dv = p sin ωt dt
重 大 数 理 学 院
r r F ( t ) = ma ( t ) r & = mv ( t ) r && ( t ) = mr
此微分形式表明:力与加速度成一一对应关系。 此微分形式表明:力与加速度成一一对应关系。
赵 承 均
牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于宏观低速情况, 牛顿第二定律适用于宏观低速情况,而在微观 ( l ≤ 1 0 − 1 0 m 情况与实验有很大偏差。 高速 ( v ≥ 1 0 − 2 c ) 情况与实验有很大偏差。 牛顿第二定律适用于惯性系,而对非惯性系不成立。 牛顿第二定律适用于惯性系,而对非惯性系不成立。
赵 承 均
牛顿第二定律 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 与物体的质量成反比,方向与力的方向相同。 与物体的质量成反比,方向与力的方向相同。
r r F = ma
在国际单位中,质量的单位为kg(千克),长度的单位为m 在国际单位中,质量的单位为kg(千克),长度的单位为m(米), kg ),长度的单位为 时间的单位为s ),这些是基本单位。力的单位为N 牛顿), 这些是基本单位 ),是 时间的单位为s(秒),这些是基本单位。力的单位为N(牛顿),是导 出单位: 出单位: =1kg× 1N =1kg×1m/s2

大学物理第二章

大学物理第二章
T l m
Dt ≈ 0,
a物= 0
上面的线的Dl = 0, DT = 0, 两根线都不断 [D]
mg
[例14] 作业、p-21 力学单元2 例-2-5 如图已知:小车:M,物体mA,mB,m=0, 求物体A与小车无滑动时的F。 解:此时各物体的 a 相同, 列方程: F= (M +mA+mB)a T= mAa Tcosq = mBa Tsinq = mBg
质量为20 g的子弹,以400 m/s的速率 射入一静止的质量为980 g的摆球中,求:子弹射 入摆球后与摆球一起开始运动的速率。
解:子弹射入木球过程 ∵ F ≠ 0 , ∴ Dp≠0 ∵M0=0,∴DL0=0
o
30
v2
mvlsina=(m+M)Vl
mvsina V= = 4 m/s m+M
作业、p-366 附录 E一-2 如图已知:体重、身高相同的甲乙两人,他 们从同一高度由初速为零向上爬,经过一定 时间,甲相对绳子的速率是乙相对绳子速率 的两倍,则到达顶点的情况? 解: 甲乙两人受力相同, a、v、时时刻刻相同,
y0
y0 /2
v0
v0/2
Ix = mvx - mvx0 = -mv0 /2 Iy = mvy - mvy0
= ( 1+ 2 ) m gy0
x
如图 ,质量为m的小球,自距斜面高h 处自由下落到倾角为的光滑固定斜面上。设碰撞 是完全弹性的,则小球对斜面的冲量 I 解:完全弹性碰撞: DEk = 0
[例9]
[例11]
已知: M、m,线断开后,猴高度不 变。求:棒的加速度。
解:∵猴高度不变
∴ F猴= 0
N = mg N + Mg = Ma 解得:a =( m+M)g/M

大学物理第二章牛顿定律

大学物理第二章牛顿定律

2-2
几种常见的力
m1 r m2
一, 万有引力
mm2 F =G 12 r
引力常数 重力 地表附近
−11
G = 6.67×10 N⋅ m ⋅ kg
2
−2
P= mg,
Gm g ≈ 2E ≈ 9.80m⋅s-2 R
Gm g = 2E r
二. 弹性力 由物体形变而产生的. 由物体形变而产生的. 常见弹性力有:正压力、张力、弹簧弹性力等. 常见弹性力有:正压力、张力、弹簧弹性力等. 弹簧弹性力
3 dimG = L M−1T−2
o
dv t ↑ v↑ ↓, dt mg − F = =恒 量 kA
讨论潜艇运 动情况: 动情况:
t = 0 v = 0, t →∞ v = vmax
极限速率(收尾速率) 极限速率(收尾速率)
例3:一小钢球,从静止开始自光滑圆柱形轨道的顶 :一小钢球, 点下滑。 小球脱轨时的角度θ 点下滑。求:小球脱轨时的角度
三. 力学相对性原理 (1)在有些参照系中牛顿定律成立,这些系 在有些参照系中牛顿定律成立, 在有些参照系中牛顿定律成立 称为惯性系。 (2) 凡相对于惯性系作匀速直线运动的一切 ) 参考系都是惯性系.作加速直线运动为非惯性系 速直线运动为非惯性系. 参考系都是惯性系.作加速直线运动为非惯性系 (3) 对于不同惯性系,牛顿力学的规律都具有 ) 对于不同惯性系, 相同的形式, 相同的形式,与惯性系的运动无关 伽利略相对性原理. 伽利略相对性原理.
F f c mg
o
dv mg − F −kAv = m dt v t mv d ∫ mg −F −kAv = ∫dt 0 0
+
m m -F g -kA v − =t l n kA m −F g m − F −kA g v =e m −F g

大学物理02牛顿运动定律

大学物理02牛顿运动定律

说明: 说明: (1)牛顿第二定律只适用于质点或可看着质点 (1)牛顿第二定律只适用于质点或 牛顿第二定律只适用于质点 的物体 (2)力满足叠加原理
v v v v v F = ∑F = F + F +L+ F i 1 2 n
v ---- a 是各外力分别作用 分别作用时所产生的加速度 是各外力分别作用时所产生的加速度
v v dp d(mv) v 第二定律: 第二定律: F = = dt v dt v v dv m为常量时 F = m = m a dt 内涵 (1)运动状态变化与力的瞬时关系 (1)运动状态变化与力的瞬时关系 ----惯性质量 (2)m:物体惯性的量度 ----惯性质量 (2)m v v 第三定律: ab 第三定律: F = −F ba 力的作用是相互的(同时存在, 内涵 力的作用是相互的(同时存在,同 时消失) 时消失)
讨论: 讨论: 终极速度: 终极速度: t →∞
k − t m
g −kv m k ln =− t g m
v f
v y mg
mg v= k
[ 例 4] 如图 , 一单位长度质量 如图, 的匀质绳子, 为 λ 的匀质绳子,盘绕在一张 光滑的水平桌面上。 光滑的水平桌面上。今以一恒 定加速度a 竖直向上提绳, 定加速度 a 竖直向上提绳 , 当 提起高度为y 提起高度为 y 时 , 作用在绳端 的力F 为多少? 的力 F 为多少 ? 若以一恒定速 竖直向上提绳, 度 v 竖直向上提绳 , 情况又如 y=0 何? (设t =0时,y=0,v=0)
结果相同
[例7]用惯性力的方法解[例5] 7]用惯性力的方法解 用惯性力的方法解[ m 解: 以劈为参考系 M 劈和木块的惯性力如图 θ v v v N v v N aM Fm惯 F惯 M M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
解: 分析力 水平方向:迎面空气阻力、摩擦力
竖直方向:升力、重力、地面支持力
取坐标 水平前进方向: x 方向
竖直向上: y 方向
12
列方程
x方向
N

Cxv2

max
m
dv x dt
y方向 N C yv2 mg may 0
★ 注意:上两式中的 v 90km / h 、 它是飞机
av人对地

av
人对绳

av 绳对地
a人对地

a0

g
a0 3

g 2a0 3
方向:向上
26
例4. 一光滑的劈,质量为 M ,斜面倾角为 ,并位于 光滑的水平面上,另一质量为m 的小块物体,沿劈的斜面 无摩擦地滑下, 求劈对地的加速度。
m

M
y
N1
f1*
x
av2
mg
解:研究对象:m 、M

M 2L
2 (L2
r2)
17
① §惯性2.系6 惯加性速系度和av相非对 惯 0性系
牛顿运动定律适用的参照系;牛顿第一 定律定义的参照系。
太阳参照系 地心参照系 地面参照系
性质:所有相对于惯性系做匀速运动的参照系 也一定都是惯性系;相对于惯性系做变 速运动的参照系一定不是惯性系。
18
伽利略相对性原理(力学相对性原理): 在相互作匀速直线运动的一切惯性系 中,一切力学现象是等同的;或力学 定律在所在惯性系中都是相同的。
N
' 1
sin


f
* 2
0
((33))
N2

N
' 1
cos


Mg

0
(4)

N
' 1

N1,
f1*

ma1 ,
f
* 2

Ma1 代入(2)(3)
N1 mg cos ma1 sin m对M:
N1 sin Ma1
a2

(M m)sin M m sin2

g
a1
解:在距转轴为r处取质量元dm
T(r ) T(rdr ) dm
v2 r
0 dT L M 2rdr
T( r )
rL
T (T dT ) M dr 2r
L
dm
r
dT M dr 2r
L
r L时,无约束(自由端)
T(L) 0
16
结果:
T( r )
滑行过程中任意时刻 x 方向的速度,
是vx
N

mg

C
y
v
2 x
N

C
x
v
2 x

m
dv x dt
(mg

C
yv
2 x
)

C
xv
2 x

m
dv x dx
dx dt
13


(mg

C
y
v
2 x
)

C
x
v
2 x

m
dv x dx
dx dt
条件: vx v0 90km / h 时,
vx
N
mg
0

C yv02

Cy
(90
1000 )2 3600
结果: 滑行距离 S 221(m)
14
例2 (0036)一条质量分布均匀的绳子,质 量为M、长度为L,一端拴在转轴上, 并以恒定角速度在水平面上旋转。设 转动过程中绳子始终伸直不打弯,且 忽略重力,求距转轴为r处的张力T(r)

15
a
是质点对非惯性系的加速度
v uv
F ma
22
非惯性系的牛顿第二定律:

v F

mav
vv F f*
= mav
真实
惯性力
23
例3 (0655)一根细绳跨过一光滑的定滑轮,
一端挂一质量为M的物体,另一端被人
用双手拉着,人的质量m M / 2 。若人相
对于绳以加速度 a0 向上爬,则人相对于 地面的加速度是多少?(以竖直向上为
f1*
ma2
sin 0
(1)
(2)
M对M
对M:x
:
N
' 1
sin


f
* 2

Ma1

0
(3)
y : N2

N
' 1
cos


Mg

0
(248 )
mg sin f1* cos ma2 (1)
mg cos N1 f1* sin 0 ((2)2)
惯性系:牛顿第一定律成立的参考系。
力:改变物体运动状态的原因(并非维持
物体运动状态的原因)。
5
▲ 第二定律(Second law)
F
d
(mv)
dt
F
:物体所受的合外力。
m :质量(mass), 它是物体惯性大小的量
度,也称惯性质量(inertial mass)。
若m = const. , 则有:
质点运动学

质点动力学
刚体力学

狭义相对论
1
三个定律
牛顿第一定律 牛顿第二定律 牛顿第三定律
三个定理
动量定理 角动量定理 动能定理
三个守恒定律
动量守恒定律 角动量守恒定律 机械能守恒定律
2
牛顿运动定律
(Newtons Laws of Motion)
3
本章目录
Δ§2.1 牛顿运动定律 Δ§2.2 SI单位和量纲(书§2.2 ) Δ§2.3 常见的几种力(书§2.3 ) Δ§2.4 基本的自然力(书§2.4 )
② 非惯性系 av相对 0
牛顿运动定律不适用的参照系。
19
*若在加速平动参照系:
动画
uv a
m
av
奇怪?
v N
uv a

av

v F

0
mgv
? av球对车 0
问题出在:在非惯性系中用了牛顿第二定律!
20
没问题!
动画
a

v F

0
av球对地 0
21
v
哦!
f* N
f *惯性力
Fiz F合外z maz
dv Fit F合外t mat m dt
v2
Fin F合外n man m
9
4. 解决问题的步骤
隔离体、分析力、取坐标、分解力、
列方程、 求解未知力或
ax ay az
微分方程积分
xyz
5. 力学中常见的几种力 ① 重力 P mg ②万有引力
F Gm1m2 r2
vx vy vz
③弹性力 F kx ④摩擦力 f N ⑤流体阻力 f kv
10
§2.5 牛顿定律应用举例
例1 (0534)飞机降落时的着地速度大小 v = 90km/h,方向与地面平行,飞机
与地面间的磨擦系数 = 0.10 ,迎面
空气阻力为Cxv2,升力为Cyv2 (v是 飞机在跑道上的滑行速度, Cx和Cy均 为常数)。已知飞机的升阻比 k = Cy/Cx =5,求飞机从着地到停止这 段时间所滑行的距离。(设飞机刚着 地时对地面无压力)
F

ma
a :物体的加速度。
6
▲ 第三定律(Third Law)
· m1 F12
·m2
F21

F12 F21
对牛顿定律的说明:
1.牛顿定律只适用于惯性系;
2.牛顿定律是对质点而言的,而一般物体可认
为是质点的集合,故牛顿定律具有普遍意义。
7
详细讨论牛顿第二定律
1. 数学表达式:
v F

mav
牛顿第二定律只适用于质点及惯性系。
质aFvv量:::相合描对外述于力物惯体性惯参性照的系物;理量;
2. 瞬时性:质点所受力与加速度同时出现,同时消失
3. 矢量性
矢量方程分解成标量方程求解
8
★ 矢量方程
分解力
标量方程
v F

mav
Fix F合外x max
Fiy F合外y may

mg M
sin cos m sin2
M对地
附:将上式代入(1)得
m对地:
av

av1

av2
L 29
作业:2.2 2.6 2.7 2.11 2.23
第二章结束
30

mav
f*
mgv
小球车受厢三中个的力观的察作者用以:车m厢gv,为参Nv,照f系惯* (性力 非惯性系)他认为,
合外力:
v F

mgv
v N

v f*
惯性力
ma
v
真实力
虚拟力
F : 质点在非惯性系受到的合力
f惯* 性力
uv ma :
mav
uvav 为非惯性系对惯性系的加速度
以劈为参照系,建立坐标如图
受力分析:如图
设M对地的加速度为 m 对M的加速度为
y
ava2v1
ቤተ መጻሕፍቲ ባይዱ
N2
相关文档
最新文档