概率论与数理统计答案_浙江大学_张帼奋_主编(1)

合集下载

概率论与数理统计第四版- 课后习题答案

概率论与数理统计第四版- 课后习题答案

完全版概率论与数理统计习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为:A或A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。

表示为:AB或AB-ABC或AB-C(3)A,B,C中至少有一个发生(4)A,B,C都发生,表示为:A+B+C 表示为:ABC表示为:或S-(A+B+C)或(5)A,B,C都不发生,(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于,,中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:,,中至少有一个发生。

故表示为:(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P (A) = 0.6,P (B) = 0.7即知AB≠φ,(否则AB = φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B) (*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P(AB)=P(A)=0.6,(2)从(*)式知,当A∪B=S时,P(AB)取最小值,最小值为P(AB)=0.6+0.7-1=0.3 。

概率论与数理统计浙江大学第四版课后习题答案

概率论与数理统计浙江大学第四版课后习题答案
值?最大值是多少?(2)在什么条件下 P(AB)取到最小值?最小值是多少?
(1)A
.B
时,P(AB) =
0.6 为最大值,
因为 A、B一定相容,相交
所以 A和 B重合越大时 P(AB)越大
(2)A
∪B
=
S
时,P(AB)=0.3为最小值
6、若事件 A的概率为 0.7,是否能说在 10次实验中 A将发生 7次?为什么? 种种 Nhomakorabea解
解解法
法法一
一一组
组组成
成成一
一一个
个个偶
偶偶数
数数四
四四位
位位数
数数有
有有
首位奇: A
51 A51 A82 A51 A51 A82 +
A41 A41 A82 41.8.7 41
112 4
首位偶: A4 A4 A8

P(A) =
1

P(ABC) =
1,
2 444
111
∴P(AB) =P(A)P(B) =
, P(AC) =P(A)P(C) =
, P(BC) =P(B)P(C) =
444

P(A)P(B)P(C) =
1 ≠P(ABC)
8
20、某人忘记了电话号码的最后一个数字,因而他随意地拨号。求他拨号不超过三次而接通
(1)最小号码为 5,即从 6、7、8、9、10里选两个,所求概率为
C532
=
1C10 12
(2)号码全为偶数,即从 2,4,6,8,10里选三个,所求概率为
CC

推荐-概率论与数理统计答案浙江大学主编 精品

推荐-概率论与数理统计答案浙江大学主编  精品

第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBCAC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生); 3(1)错。

依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率论与数理统计课后答案(浙江大学版)

概率论与数理统计课后答案(浙江大学版)

P(
A
B),
P(
A
B),
P(
___
AB),
P[(
A
B)(
___
AB)]

解: P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375 ,
___
P(AB) 1 P(AB) 0.875 ,
___
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)(AB)] 0.625 P(AB) 0.5
每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一
2
概率论与数理统计及其应用习题解答
特定的销售点得到 k(k n) 张提货单的概率。
解:根据题意, n(n M ) 张提货单分发给 M 个销售点的总的可能分法
有 M n 种,某一特定的销售点得到 k(k n) 张提货单的可能分法有
C
k n
6 7 5 4 840 0.0408。
11 12 13 12 20592
9,一只盒子装有 2 只白球,2 只红球,在盒中取球两次,每次任取 一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另
一只也是红球的概率。
解:设“得到的两只球中至少有一只是红球”记为事件 A ,“另一只
也是红球”记为事件 B 。则事件 A 的概率为
P(N1
|
M)
P( N1 )P(M P(M )
|
N1 )
0.6 0.01 0.025
0.24

P( N 2
|
M)
P(N2 )P(M P(M )
|
N2)

概率论与数理统计(浙大) 习题答案 第1章

概率论与数理统计(浙大) 习题答案 第1章

第一章 概率论的基本概念1. 写出下列随机试验的样本空间.(1)记录一个小班一次数学考试的平均分数(充以百分制记分).解: }100 , ,1 ,0|{n i ni S ⋅⋅⋅==, 其中n 为小班人数. (2)同时掷三颗骰子, 记录三颗骰子点数之和;解: S ={3, 4, ⋅⋅⋅ , 18}.(3)生产产品直到得到10件正品为止, 记录生产产品的总件数;解: S ={10, 11, 12, ⋅⋅⋅ , n , ⋅⋅⋅ }.(4)对某工厂出厂的产品进行检查, 合格的记上“正品”, 不合格的记上“次品”, 如连续查出2个次品就停止检查, 或检查4个产品, 停止检查, 记录检查的结果.解: S ={00, 100, 0100, 0101, 1010, 0110,1100, 0111, 1011, 1101, 1110, 1111},其中0表示次品, 1表示正品.(5)在单位圆内任意取一点, 记录它的坐标;解: S ={(x , y )|x 2+y 2<1}.(6)将一尺之棰成三段, 观察各段的长度.解: S ={(x , y , z )|x >0, y >0, z >0, x +y +z =1}, 其中x , y , z 分别表示第一、二、三段的长度.2. 设A , B , C 为三事件, 用A , B , C 的运算关系表示下列各事件.(1)A 发生, B 与C 不发生;解: 表示为: A ⎺B ⎺C 或A -(AB +AC )或A -(B ⋃C ).(2)A , B 都发生, 而C 不发生;解: 表示为: AB ⎺C 或AB -ABC 或AB -C .(3)A , B , C 中至少有一个发生;解: 表示为: A +B +C .(4)A , B , C 都发生;解: 表示为: ABC(5)A , B , C 都不发生;解: 表示为: ⎺A ⎺B ⎺C 或S - (A +B +C)或C B A ⋃⋃(6)A , B , C 中不多于一个发生;解: 即A , B , C 中至少有两个同时不发生相当于⎺A ⎺B , ⎺B ⎺C ,⎺A ⎺C 中至少有一个发生.故表示为: ⎺A ⎺B +⎺B ⎺C +⎺A ⎺C .(7)A , B , C 中不多于二个发生;解: 相当于: ⎺A , ⎺B , ⎺C 中至少有一个发生.故表示为: ⎺A +⎺B +⎺C 或ABC .(8)A , B , C 中至少有二个发生.解: 相当于: AB , BC , AC 中至少有一个发生.故表示为: AB +BC +AC .3. 设A , B 是两事件且P (A )=0.6, P (B )=0.7. 问: (1)在什么条件下P (AB )取得最大值, 最大值是多少?(2)在什么条件下P (AB )取得最小值, 最小值是多少?解: (1)因为P (AB )=P (A )+P (B )-P (A ⋃B ), 且P (A )<P (B )≤P (A ⋃B ), 所以当A ⊂B 时, P (A ⋃B )=P (B ), P (AB )取到最大值, 最大值为P (AB )=P (A )=0.6.(2)当A ⋃B =S 时, P (AB )取到最小值, 最小值为P (AB )=0.6+0.7-1=0.3.4. 设A , B , C 是三事件, 且P (A )=P (B )=P (C )=1/4, P (AB )=P (BC )=0, P (AC )=1/8. 求A , B , C 至少有一个发生的概率. 解: P (A , B , C 至少有一个发生)=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =(3/4)-(1/8)+0=5/8.5. 在一标准英语字典中有55个由两个不同的字母所组成的单词, 若从26个英文字母中任取两个字母予以排列, 问能排成上述单词的概率是多少?解: 记A 表“能排成上述单词”. 因为从26个任选两个来排列, 排法有226A 种. 每种排法等可能. 字典中的二个不同字母组成的单词: 55个, 所以1301155)(226==A A P .6. 在房间里有10人. 分别佩戴从1号到10号的纪念章, 任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;解: 记“三人纪念章的最小号码为5”为事件A . 因为10人中任选3人为一组: 选法有310C 种, 且每种选法等可能. 又事件A相当于: 有一人号码为5, 其余2人号码大于5. 这种组合的种数有251C ⨯. 所以1211)(31025=⨯=C C A P .(2)求最大的号码为5的概率.解: 记“三人中最大的号码为5”为事件B , 同上, 10人中任选3人, 选法有310C 种, 且每种选法等可能, 又事件B 相当于: 有一人号码为5, 其余2人号码小于5, 选法有241C ⨯种, 所以2011)(31024=⨯=C C B P . 7. 某油漆公司发出17桶油漆, 其中白漆10桶、黑漆4桶, 红漆3桶. 在搬运中所有标签脱落, 交货人随意将这些标签发给顾客, 问一个定货4桶白漆, 3桶黑漆和2桶红漆顾客, 能按所订颜色如数得到定货的概率是多少?解: 记所求事件为A .在17桶中任取9桶的取法有310C 种, 且每种取法等可能. 取得4白3黑2红的取法有2334410C C C ⨯⨯, 故2431252)(6172334410=⨯⨯=C C C C A P .8. 在1500个产品中有400个次品, 1100个正品, 任意取200个.(1)求恰有90个次品的概率;解: 用A 表示取出的产品恰有90个次品. 在1500个产品中任取200个, 取法有2001500C 种, 每种取法等可能. 200个产品恰有90个次品, 取法有110110090400C C 种. 因此2001500110110090400)(C C C A P =. (2)至少有2个次品的概率.解: 用B 表示至少有2个次品. B 0表示不含有次品, B 1表示只含有一个次品. 同上, 200个产品不含次品, 取法有2001100C 种,200个产品含一个次品, 取法有19911001400C C 种. 因为⎺B =B 0+B 1且B 0, B 1互不相容, 所以P (B )=1-P (⎺B )=1-[P (B 0)+P (B 1)]20015002001100199110014001C C C C +-=.9. 从5双不同鞋子中任取4只, 这4只鞋子中至少有2只配成一双的概率是多少?解: 样本空间所含的样本点数为410C , 用A 表示4只全中至少有2支配成一对, 则⎺A 表示4只全不配对. ⎺A 所包含的样本点数为4452⨯C (先从5双鞋中任取4双, 再从每双中任取一只). 因此2182)(410445=⋅=C C A P , 21132181)(1)(=-=-=A P A P .10. 在11张卡片上分别写上Probabitity 这11个字母, 从中任意连抽7张, 求其排列结果为Abitity 的概率.解: 所有可能的排列构成样本空间, 其中包含的样本点数为711P . 用A 表示正确的排列, 则A 包含的样本点数为411111*********=C C C C C C C , 则0000024.04)(711==P A P .11. 将3个球随机地放入4个杯子中去, 求杯子中球的最大个数分别为1, 2, 3.解: 记A i 表示杯中球的最大个数为i 个( i =1, 2, 3). 三只球放入四只杯中, 放法有43种, 每种放法等可能. 对A 1: 必须三球放入三杯中, 每杯只放一球. 放法4×3×2种. 故1664234)(31=⨯⨯=A P . 对A 2: 必须三球放入两杯, 一杯装一球, 一杯装两球. 放法有3423⨯⨯C 种. 故169434)(3232=⨯⨯=C A P . 对A 3: 必须三球都放入一杯中. 放法有4种.16144)(33==A P . 12. 将50只铆钉随机地取来用在10个部件, 其中有3个铆钉强度太弱, 每个部件用3只铆钉, 若将三个强度太弱的铆钉都装在一个部件上, 则这个部件强度就太弱, 问发生一个部件强度太弱的概率是多少?解: 记A 表示10个部件中有一个部件强度太弱.把随机试验E 看作是用三个钉一组, 三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序. 但10组钉铆完10个部件要分先后次序)对E : 铆法有323344347350C C C C ⨯⨯⨯ 种, 每种装法等可能.对A : 三个次钉必须铆在一个部件上. 这种铆法数为10)(32334434733⨯⨯⨯C C C C ,故 00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P .13. 已知3.0)(=A P , P (B )=0.4, 5.0)(=B A P , 求)|(B A B P ⋃.解: 7.0)(1)(=-=A P A P , 6.0)(1)(=-=B P B P ,B A AB B B A AS A ⋃=⋃==)(. 注意Φ=))((B A AB . 故有 2.05.07.)()()(=-=-=B A P A P AB P .再由加法定理8.05.06.07.0)()()()(=-+=-+=⋃B A P B P A P B A P ,于是 25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A B P .14. 已知41)(=A P , 31)|(=A B P , 21)|(=B A P , 求P (A ⋃B ). 解: 根据条件概率)()|()()()()|(B P A B P A P B P AB P B A P ==, 61213141)|()|()()(=⨯==B A P A B P A P B P . 根据乘法公式1214131)()|()(=⨯==A P A B P AB P . 根据加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B A P .15. 掷两颗骰子, 已知两颗骰子点数之和为7, 求其中有一颗为1点的概率(用两种方法).解法一: (在缩小的样本空间SB 中求P (A |B ), 即将事件B 作为样本空间, 求事件A 发生的概率).掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1, 2, 3, 4, 5,6)并且满足x +y =7, 则样本空间为S ={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)},每种结果(x , y )等可能.A ={掷二骰子, 点数和为7时, 其中有一颗为1点}, 故 3162)(==A P . 解法二: 用公式)()()|(B P AB P B A P =. S ={(x , y )| x =1, 2, 3, 4, 5, 6; y =1, 2, 3, 4, 5, 6}, 每种结果均可能.A =“掷两颗骰子, x , y 中有一个为1点”,B =“掷两颗骰子, x +y =7”.则 6166)(2==B P , 262)(=AB P , 故 31626162)()()|(2====B P AB P B A P . 16. 据以往资料表明, 某3口之家, 患某种传染病的概率有以下规律:P {孩子得病}=0.6,P {母亲得病|孩子得病}=0.5,P {父亲得病|母亲及孩子得病}=0.4.求母亲及孩子得病但父亲未得病的概率.解: 令A ={孩子得病}, B ={母亲得病}, C ={父亲得病}, 则 P (A )=0.6, P (B |A )=0.5, P (C |AB )=0.4,所以 P (⎺C|AB )=1-P (C |AB )=1-0.4=0.6.P (AB )=P (A )P (B |A )=0.6×0.5=0.3,所求概率为P (AB ⎺C )=P (AB )·P (⎺C|AB )=0.3×0.6=0.18.17. 已知在10只晶体管中有2只次品, 在其中取两次, 每次任取一只, 作不放回抽样, 求下列事件的概率:(1)两只都是正品;(2)二只都是次品(记为事件B );(3)一只是正品, 一只是次品(记为事件C );(4)第二次取出的是次品(记为事件D );解: 设A i ={第i 次取出的是正品)(i =1, 2).(1)452897108)|()()(12121=⨯==A A P A P A A P . (2)45191102)|()()(12121=⨯==A A P A P A A P . (3))()()(21212121A A P A A P A A A A P +=⋃)|()()|()(121121A A P A P A A P A P +=45169810292108=⨯+⨯=. (4))()(21212A A A A P A P +=519110292108)|()()|()(121121=⨯+⨯=+=A A P A P A A P A P .18. 某人忘记了电话号码的最后一个数字, 因而他随机地拨号, (1)求他拨号不超过三次而接通所需的电话的概率; (2)若已知最后一个数字是奇数, 那么此概率是多少?解: 设A i ={第i 次拨号拨对}(i =1, 2, 3), A ={拨号不超过3次而拨通}, 则321211A A A A A A A ++=, 且三种情况互斥, 所以 )|()|()()|()()()(2131211211A A A P A A P A P A A P A P A P A P ++=. 于是(1)103819810991109101)(=⨯⨯+⨯+=A P . (2)53314354415451)(=⨯⨯+⨯+=A P .19. (1)设甲袋中装有n 只白球, m 只红球, 乙袋中装有N 只白球, M 只红球, 今从甲袋中任取一只球放入乙袋中, 再从乙袋中任意取一只球, 问取到白球的概率是多少?解: 用A 1表示“从甲袋中取得白球放入乙袋”, A 2表示“从甲袋中取得红球放入乙袋”. 再记B 表“再从乙袋中取得白球”. 因为 B =A 1B +A 2B 且A 1, A 2互斥,所以 P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)111++⨯+++++⨯+=M N N m n m M N N m n n )1)(()(+++++=N M n m n N m n .19. (2)第一只盒子装有5只红球, 4只白球; 第二只盒子装有4只红球, 5只白球. 先从第一盒子中任取2只球放入第二盒中去, 然后从第二盒子中任取一只球, 求取到白球的概率. 解: 记C 1为“从第一盒子中取得2只红球”. C 2为“从第一盒子中取得2只白球”. C 3为“从第一盒子中取得1只红球, 1只白球”, D 为“从第二盒子中取得白球”, 显然C 1, C 2, C 3两两互斥, C 1⋃C 2⋃C 3=S , 由全概率公式, 有P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D|C 3)995311611711529141529242925=⋅⋅+⋅+⋅=C C C C C C C .20. 某种产品的高标为“MAXAM”, 其中有2个字母已经脱落, 有人捡起随意放回, 求放回后仍为“MAXAM”的概率. 解: 设A 1, A 2, ⋅⋅⋅ , A 10分别表示字母MA , MX , MA , MM , AX , AA , AM , XA , XM , AM 脱落的事件, 则101)(=i A P (i =1, 2, ⋅⋅⋅ , 10), 用B 表示放回后仍为“MAXAM”的事件, 则21)|(=i A B P (i =1, 2, ⋅⋅⋅ , 10), 1)|()|(64==A B P A B P , 所以由全概公式得5311011101821101)|()()(101=⨯+⨯+⨯⨯==∑=i i i A B P A P B P .21. 已知男子有5%是色盲患者, 女子有0.25%是色盲患者. 今从男女人数相等的人群中随机地挑选一人, 恰好是色盲患者, 问此人是男性的概率是多少?解: A 1={男人}, A 2={女人}, B ={色盲}, 显然A 1⋃A 2=S , A 1 A 2=∅. 由已知条件知21)()(21==A P A P ,%5)|(1=A B P ,%25.0)|(2=A B P . 由贝叶斯公式, 有)|()()|()()|()()()()|(22111111A B P A P A B P A P A B P A P B P B A P B A P +== 2120100002521100521100521=⋅+⋅⋅=.22. 一学生接连参加同一课程的两次考试. 第一次及格的概率为p , 若第一次及格则第二次及格的概率也为p ; 若第一次不及格则第二次及格的概率为2p . (1)若至少一次及格则他能取得某种资格, 求他取得该资格的概率. (2)若已知他第二次已经及格, 求他第一次及格的概率.解: A i ={他第i 次及格}(i =1, 2).已知P (A 1)=P (A 2|A 1)=p , 2/)|(12p A A P =.(1)B ={至少有一次及格}, 则21}{A A B ==两次均不及格,所以 )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-=)]|(1)][(1[1121A A P A P ---=22123)21)(1(1p p p p -=---=. (2)由乘法公式, 有P (A 1A 2)=P (A 1)P (A 2| A 1)=p 2.由全概率公式, 有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2p p p p p p +=⋅-+⋅=. 于是 1222)|(2221+=+=p p p p p A A P .23. 将两信息分别编码为A 和B 传递出去, 接收站收敛到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1, 若收站收到的信息是A , 问原发信息是A 的概率是多少?解: 设B 1, B 2分别表示发报台发出信号“A ”及“B ”, 又以A 1有A 2分别表示收报台收到信号“A ”及“B ”. 则有32)(1=B P , 31)(2=B P , P (A 1|B 1)=0.98, P (A 2|B 1)=0.08, P (A 1|B 2)=0.01, P (A 2|B 2)=0.91,从而由Beyes 公式得)|()()|()()|()()|(2121111111B A P B P B A P B P B A P B P A B P i += 19719601.03198.03298.032=⨯+⨯⨯=.24. 有两箱同种类的零件, 第一箱装50只, 其中10只一等品; 第二箱装30只, 其中18只一等品, 今从两箱中任挑出一箱, 然后从该箱中取零件两次, 每次任取一只, 作不放回抽样. 试求(1)第一次取到的零件是一等品的概率; (2)第一次取到的零件是一等品的条件下, 第二次取到的也是一等品的概率. 解: (1)记A i ={在第i 次中取到一等品}(i =1, 2), B ={挑到第i 箱}. 则有4.03018215121)|()()|()()(2121111=⨯+⨯=+=B A P B P B A P B P A P . (2))|()()|()()(2212121121B A A P B P B A A P B P A A P +=19423.030182129175121499=⨯⨯+⨯⨯=, 4856.04.019423.0)()()|(12112===A P A A P A A P .25. 某人下午5:00下班, 他所积累的资料表明: 到家时间 5:35~5:39 5:40~5:44 5:45~5:49 5:50~5:54 5:54之后的, 试求他是乘地铁回家的概率.解: 设A ={乘地铁}, B ={乘汽车}, C ={在5:47到家}, 由题意, AB =∅, A ⋃B =S .已知P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5, 由贝叶斯公式有)()|()()|()()|()()()|()|(B P B C P A P A C P A P A C P C P A P A C P C A P +== 6923.05.02.05.045.05.045.0=⨯+⨯⨯=.26. (1)设有4个独立工作的元件1, 2, 3, 4. 它们的可靠性分别为p 1, p 2, p 3, p 4, 将它们按图1-3的方式联接, 求系统的可靠性.解: 记A i 表示第i正常.因为A =A 1A 2A 3+A 1A 4两种情况不互斥, 所以P (A )=P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A 4)-P (A 1)P (A 2)P (A 3)P (A 4) =p 1p 2p 3+p 1p 4-p 1p 2p 3p 4 (A 1, A 2, A 3, A 4独立).26. (2)设有5独立工作的元件1, 2, 3, 4, 5, 它们的可靠性均为p , 将它们按图1-4的方式联接, 求系统的可靠性. 解: 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4, 5), B 表示系统正常, 则)()(2345453121A A A A A A A A A A P B P ⋃⋃⋃=)()()()(2345453121A A A P A A P A A A P A A P +++= )()()(432154215321A A A A P A A A A P A A A A P ---)()()(5432543215431A A A A P A A A A A P A A A A P --- )()(45432154321A A A A A P A A A A A P -+24222522p p p p +-+=.27. 如果一危险情况C 发生时, 一电路闭合并发出警报, 我们可以借用两个或多个开关并联以改善可靠性. 在C 发生时这些开关每一个都应闭合, 且至少一个开关闭合了, 警报就发出, 如果两个这样开关并联接, 它们每个具有0.95的可靠性(即在情况C 发生时闭合的概率). (1)这时系统的可靠性(即电路闭合的概率)是多少?(2)如果需要有一个可靠性至少为0.9999的系统, 则至少需要用多少只开关并联?这里各开关闭合与否都是相互独立的.解: (1)设A i 表示第i 个开关闭合, A 表示电路闭合, 于是A =A 1⋃A 2. 由题意当两个开关并联时P (A )=0. 96. 再由A 1, A 2的独立性得P (A )=P (A 1⋃A 2)=P (A 1)+P (A 2)-P (A 1A 2)=P (A 1)+P (A 2)-P (A 1)P (A 2)=2⨯0.96-(0.96)2=0.9984.(2)设至少需要n 个开关闭合, 则∏==≥-=--=⋃=ni i i n i A P A P A P 1419999.004.01)](1[1)()(, 即 0.04n ≤0.00001,所以 58.304.0lg 00001.0lg =≥n , 故至少需要4只开关联.28. 三个独立地去破译份密码, 已知各人能译出的概率分别为1/5, 1/3, 1/4, 问三个中至少有一个能将此密码译出的概率是多少?解: 设A , B , C 分别表示{第一、二、三人独立译出密码}, D 表示{密码被译出}, 则)(1)()(C B A P C B A P D P ⋃⋃-=⋃⋃=)()()(1)(1C P B P A P C B A P -=⋂⋂-=534332541=⨯⨯-=.29. 设第一个盒子装有3只蓝球, 2只绿球, 2只白球;第二个盒子装有2只蓝球, 3只绿球, 4只白球. 独立地分别在两只盒子中各取一只球.(1)求至少有一只蓝球的概率;(2)求有一只蓝球一只白球的概率;(3)已知至少有一只蓝球, 求有一只蓝球一只白球的概率. 解: 记A 1, A 2, A 3分别表示是从第一只盒子中取到一只蓝球, 一只绿球, 一只白球, B 1, B 2, B 3分别表示是从第二只盒子中取到一只蓝球, 一只绿球, 一只白球. 则A i 与B i 独立(i =1, 2, 3).(1)所求概率为9592739273)()()()(111111=⨯-+=-+=⋃B A P B P A P B A P . (2)所求概率为)()()()()(13311331B P A P B P A P B A B A P +=⋃631692729473=⨯+⨯=. (3)所求概率为P (A 1B 3⋃A 3B 1| A 1⋃B 1)=P (A 1B 3| A 1⋃B 1)+P (A 3B 1| A 1⋃B 1))())(()())((111113111131B A P B A B A P B A P B A B A P ⋃⋃+⋃⋃= )())()())(11131311131131B A P B A B A A P B A P B B A B A P ⋃⋃+⋃⋃= 35169/563/16)()()(111331==⋃+=B A P B A P B A P .30. A , B , C 三人在同一办公室工作, 房间有三部电话, 据统计知, 打给A , B , C 的电话的概率分别为2/5, 2/5, 1/5. 他们三人常因工作外出, A , B , C 三人外出的概率分别为1/2, 1/4, 1/4, 设三人的行动相互独立, 求:(1)无人接电话的概率;(2)被呼叫人在办公室的概率;若某一时间段打进3个电话, 求:(3)这3个电话打给同一人的概率;(4)这3个电话打给不同人的概率;(5)这3个电话都打给B , 而B 却都不在的概率. 解: 设A 1, B 1, C 1分别表示A , B , C 三个人外出的事件, A , B , C 分别表示打给三个人的电话的事件.(1)P (无人接电话)=P (A 1B 1C 1)=P (A 1)P (B 1)P (C 1)321414121=⨯⨯=. (2)用D 表示被呼叫人在办公室的事件, 则C C B B A AD 111++=,)()(111C C B B A A P D P ++=)()(()()()(111C P C P BP P B P A P A P ++=2013514352435221=⨯+⨯+⨯=.(3)用E 表示3个电话打给同一个人的事件, E 1, E 2, E 3分别表示3个电话是打给A , B , C , 则E =E 1+E 2+E 3,)()()()(321E P E P E P E P ++=12517)51()52()52(333=++=.(4)用F 表示3个电话打给不同的人的事件, 则F 由六种互斥情况组成, 每种情况为打给A , B , C 的三个电话, 每种情况的概率为1254515252=⨯⨯, 于是 1252412546)(=⨯=F P . (5)由于是知道每次打电话都给B , 其概率是1, 所以每一次打给B 电话而B 不在的概率为41, 且各次情况相互独立, 于是 P (3个电话都打给B , B 都不在的概率)641)41(3==.31. 袋中装有m 只正品硬币, n 只次品硬币(次品硬币的两面均印有国徽). 在袋中任取一只, 将它投掷r 次, 已知每次都得到国徽. 问这只硬币是正品的概率为多少?解: 用A 表示出现r 次国徽的事件, B 表示任取一只是正品的事件, 则r r nm n n m m B A P B P B A P B P A P 1)21()|()()|()()(⨯+++=+=,)()|()()|(A P B A P B P A B P =r n m m2⋅+=.32. 设一枚深炸弹击沉一潜水艇的概率为1/3, 击伤的概率为1/2, 击不中的概率为1/6, 并设击伤两次也会导致潜水艇下沉, 求施放4枚深炸能击沉潜水艇的概率.解: 用A 表示施放4枚深炸击沉潜水艇的事件, 则433446131]21)61()61[(1)(1)(-=⨯+-=-=C A P A P .33. 设根据以往记录的数据分析, 某船只运输某种物品损坏的情况共有三种: 损坏2%(这一事件记为A 1), 损坏10%(事件A 2), 损坏90%(事件A 3), 且知P (A 1)=0.8, P (A 2)=0.15, P (A 3)=0.05, 现在从已被运输的物品中随机地取3件, 发现这3件都是好的(这一事件记为B ), 试分别求P (A 1|B ), P (A 2|B ), P (A 3|B )(这里设物品件数很多, 取出一件后不影响后一件是否是好品的概率). 解: 因为B 表取得三件好物品.B =A 1B +A 2B +A 3B , 且三种情况互斥,由全概率公式, 有P (B )=P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3) =0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3=0.8624,8731.08624.0)98.0(8.0)()|()()()()|(31111=⨯===B P A B P A P B P B A P B A P , 1268.08624.0)9.0(15.0)()|()()()()|(32222=⨯===B P A B P A P B P B A P B A P , 0001.08624.0)1.0(05.0)()|()()()()|(33333=⨯===B P A B P A P B P B A P B A P .34. 将A , B , C 三个字母一一输入信道, 输出为原字母的概率为α, 而输出为其它一字母的概率都是(1-α)/2. 今将字母串AAAA , BBBB , CCCC 之一输入信道, 输入AAAA , BBBB , CCCC 的概率分别为p 1, p 2, p 3 (p 1+p 2+p 3=1), 已知输出为ABCA , 问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的. )解: 用A , B , C 分别表示输入信号为AAAA , BBBB , CCCC ,用H 表示输出信号为ABCA . 由于每个字母的输出是相互独立的, 于是有4)1(]2/)1[()|(2222αααα-=-=A H P , 8)1(]2/)1[()|(33αααα-=-=B H P , 8)1(]2/)1[()|(33αααα-=-=C H P . 又P (A )=p 1, P (B )=p 2, P (C )=p 3, 由贝叶斯公式得)()|()()|()()|()()|()|(C P C H P B P B H P A P A H P A P A H P H A P ++= 33231221228)1(8)1(4)1(4)1(p p p p ⋅-+⋅-+⋅-⋅-=αααααααα ))(1(223211p p p p +-+=ααα.。

概率论与数理统计课后习题答案1-8章-习题解答

概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

浙江大学概率论与数理统计课后习题以及详解答案

浙江大学概率论与数理统计课后习题以及详解答案

浙江⼤学概率论与数理统计课后习题以及详解答案浙⼤第四版(⾼等教育出版社)第⼀章概率论的基本概念1.[⼀] 写出下列随机试验的样本空间(1)记录⼀个⼩班⼀次数学考试的平均分数(充以百分制记分)([⼀] 1)=n n nn o S 1001, ,n 表⼩班⼈数(3)⽣产产品直到得到10件正品,记录⽣产产品的总件数。

([⼀] 2)S={10,11,12,………,n ,………}(4)对某⼯⼚出⼚的产品进⾏检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出⼆个次品就停⽌检查,或检查4个产品就停⽌检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停⽌检查,或查满4次才停⽌检查。

([⼀] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[⼆] 设A ,B ,C 为三事件,⽤A ,B ,C 的运算关系表⽰下列事件。

(1)A 发⽣,B 与C 不发⽣。

表⽰为:CB A 或A - (AB+AC )或A - (B ∪C )(2)A,B都发⽣,⽽C不发⽣。

表⽰为:CAB或AB-ABC或AB-C(3)A,B,C中⾄少有⼀个发⽣表⽰为:A+B+C(4)A,B,C都发⽣,表⽰为:ABC(5)A,B,C都不发⽣,表⽰为:CA或S-B(A+B+C)或CA?B(6)A,B,C中不多于⼀个发⽣,即A,B,C中⾄少有两个同时不发⽣相当于CA,,中⾄少有⼀个发⽣。

故表⽰为:BBACA++。

BBCAC(7)A,B,C中不多于⼆个发⽣。

相当于:CB,中⾄少有⼀个发⽣。

故表⽰为:ABCA,+A或+BC (8)A,B,C中⾄少有⼆个发⽣。

相当于:AB,BC,AC中⾄少有⼀个发⽣。

故表⽰为:AB+BC+AC6.[三] 设A,B是两事件且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最⼤值,最⼤值是多少?(2)在什么条件下P (AB)取到最⼩值,最⼩值是多少?解:由P (A) = 0.6,P (B) = 0.7即知AB≠φ,(否则AB = φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1⽭盾).从⽽由加法定理得P (AB)=P (A)+P (B)-P (A∪B) (*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最⼤值,最⼤值为P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最⼩值,最⼩值为 P (AB )=0.6+0.7-1=0.3 。

《概率论与数理统计》浙江大学第四版课后习题答案-概率论第四版

《概率论与数理统计》浙江大学第四版课后习题答案-概率论第四版

概率论与数理统计习题答案第四版盛骤(浙江大学)之司秆蘸矗创作浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,分歧格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A,B,C为三事件,用A,B,C的运算关系暗示下列事件。

(1)A发生,B与C不发生。

A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。

AB-ABC或AB-C(3)A,B,C中至少有一个发生暗示为:A+B+C(4)A,B,C都发生,暗示为:ABC(5)A,B,C S-(A+B+C)(6)A,B,C中未几于一个发生,即A,B,C中至少有两个同时不发生(7)A,B,C中未几于二个发生。

(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故暗示为:AB+BC+AC6.[三] 设A,B是两事件且P (A,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P(A,P (B即知AB≠φ,(否则AB=φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B)(*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P(AB)=P(A,(2)从(*)式知,当A∪B=S时,P(AB)取最小值,最小值为P(AB-。

概率论与数理统计 张帼奋 第一章答案

概率论与数理统计 张帼奋 第一章答案

第一章概率论的基本概念1解:该试验的结果有9个:(0,a),(0,b),(0,c),(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)。

所以, (1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a),(1,a),(2,a)。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a),(0,b),(0,c)。

2、解 (1)ABBC AC U U 或ABC ABC ABC ABC U U U ;(2)AB BC AC U U(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABCABC ABC U U ;(4)A B C U U 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得()()()()0=-+=B A p B p A p AB p Y ,但空集≠B A I ,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p Y Y ,即A 与B 交非空,故A 与B 一定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+U(2) A B , 都不发生的概率为:()1()10.90.1P AB P A B =-=-=U U ;(3)A 不发生同时B 发生可表示为:AB I,又因为A B ,不相容,于就是()()0.6P A B P B ==I ;5解:由题知()3.0=BC AC AB p Y Y ,()05.0=ABC P 、 因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++=Y Y 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p Y Y -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--= 15.0=、6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次就是红球”} 若就是放回抽样,每次抽到红球的概率就是:810,抽不到红球的概率就是:210,则 (1)88()0.641010P A =⨯=;(2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C ==若就是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (4)(1)ABBC AC 或ABC ABC ABC ABC ; (5)(2)ABBC AC (6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得,但,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例 (4)对。

证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-= ;(3)A 不发生同时B 发生可表示为:AB ,又因为A B ,不相容,于是()()0.6P A B P B == ;5解:由题知,. 因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

概率论与数理统计答案-第四版-第1章(浙大)

概率论与数理统计答案-第四版-第1章(浙大)

概率论与数理统计答案-第四版-第1章(浙大)LT1、写出下列随机试验的样本空间S:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。

(2)生产产品直到有10件正品为之,记录生产产品的总件数。

(3)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查结果。

(4)在单位圆内任取一点,记录它的坐标。

(1)解:设该班学生数为n,总成绩的可取值为0,1,2,3,…,100n,(2)解:S={10、11、12…}所以试验的样本空间为S={i/n| i=1、2、3…100n}(3)解:设1为正品0为次品S={00,100,1100,010,1111,1110,1011,1101,0111,0110,0101,1010}(4)解:取直角坐标系,则S={(x,y)|x2+y2<1}取极坐标系,则S={(ρ,θ)|ρ<1,0≤θ<2π}2.设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B与C不发生(2)A与B都发生,而C不发生(3)A,B,C中至少有一个要发生(4)A,B,C都发生(5)A,B,C都不发生(6)A,B,C中不多于一个发生(7)A,B,C中不多于两个发生(8)A,B,C中至少有两个发生(i=1,2,3,4,5,6,7,8)解:以下分别用Di来表示(1),(2),(3),(4),(5),(6),(7),(8) (1)A发生,B与C不发生表示,A B,C同时=AB C发生,故D1(2)A与B都发生,而C不发生表示A,B,C同时发生,故D2= AB C(3)法一:A,B,C中至少有一个要发生由和事件定义可知,D3=A∪B∪C法二:A,B,C中至少有一个要发生是事件A,B,C都不发生的对立面,即D3=ABC—P(BC)=3/4-1/8=5/8(2)P(A∪B)=P(A)+P(B)-P(AB)=5/6-1/10=11/15P(⎺A⎺B)̅̅̅̅̅̅̅)=P(A∪B=1-P(A∪B)=1-11/15=4/15P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)—P(AC)—P(BC)+P(ABC)=17/20P(⎺A⎺B⎺C)̅̅̅̅̅̅̅̅̅̅̅̅̅)=P(A∪B∪C=1-P(A∪B∪C)=1-17/20=3/20P(⎺A⎺B C)=P(C)-P(AC)-P(BC)+P(ABC)=7/60P(⎺A⎺B∪C)̅̅̅̅̅̅̅∪C)=P(A∪B=1-P(A)-P(B)+P(AC)+P(BC)+P(ABC)=7/20(3)A.P(A⎺B)=P(A)=1/2因为AB不相容所以AB一个发生另一个一定不发生B.P(A⎺B)=P(A)-P(AB)=3/84.设A,B是两个事件.(1)已知AB̅=A B验证A=B.(2)验证事件A和事件B恰有一个发生的概率为P(A)+P(B)-2P(AB).解:法一(1)∵AB̅=A B,∴(AB̅)∪(AB)=(A B)∪(AB),∴A(B̅∪B)=B(A̅∪A),∴AS=BS,∴A=B.(2)事件A与事件B恰有一个发生即事件A B̅ ∪ A̅BP(A B̅ ∪ A̅B)=P(A B̅)+P(A̅B)=P[A(S-B)]+P[(S-A)B]=P(A-AB)+P(B-AB)=P(A)-P(AB)+P(B)-P(AB)=P(A)+P(B)-2P(AB)法二(1)∵AB̅=A−B ,BA=B−A;又AB̅= BA,∴A−B=B−A∴A=B即证。

概率论与数理统计 课后习题详解(浙大第四版)。盛骤

概率论与数理统计  课后习题详解(浙大第四版)。盛骤
3

利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C10 ,即样本空间
3 S= C10 = 120个基本事件 。
{
}
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5 个号码中取出的,有 C5 种取法,故 A= C5 = 10个基本事件 ,所求概率为
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=
2 2
{
}
5! C 10 1 P ( A) = = 2!3! = = 10! 120 12 C 3!7!
2 5 3 10
(2)令事件 B={最大号码为 5},最大号码为 5,其余两个号码是从 1,2,3,4 的 4 个号码 中取出的,有 C4 种取法,即 B= C4 个基本事件 ,! 2 C4 6 1 P ( B ) = 3 = 2!2! = = C10 10! 120 20 3!7!

《概率论与数理统计》浙江大学第四版课后习题答案

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n n n o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。

表示为: C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生 表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计答案 浙江大学 张帼奋 主编

概率论与数理统计答案 浙江大学 张帼奋 主编

第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBCAC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生); 3(1)错。

依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

浙江大学概率论与数理统计课后习题以及详解答案

浙江大学概率论与数理统计课后习题以及详解答案

浙江大学概率论与数理统计课后习题以及详解答案浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:CB A 或A - (AB+AC )或A -(B ∪C )(2)A,B都发生,而C不发生。

表示为:CAB或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:CA或S-B(A+B+C)或CA?B(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于CA,,中至少有一个发生。

故表示为:BBACA++。

BBCAC(7)A,B,C中不多于二个发生。

相当于:CB,中至少有一个发生。

故表示为:ABCA,+A或+BC (8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P (A) = 0.6,P (B) = 0.7即知AB≠φ,(否则AB = φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B) (*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第二章概率论习题_偶数

浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第二章概率论习题_偶数

第二章 随机变量及其概率分布注意: 这是第一稿(存在一些错误) 第二章概率论习题__偶数.doc2、解 (1)由题意知,此二年得分数X 可取值有0、1、2、4,有(0)10.20.8P X ==-=, (1)0.2(10.2)0.16P X ==⨯-=, (2)0.20.2(10.2)0.032P X ==⨯⨯-=, (4)0.20.20.20.008P X ==⨯⨯=,从而此人得分数X 的概率分布律为: X 0 1 2 4 P 0.8 0.16 0.032 0.008 (2)此人得分数大于2的概率可表示为:(2)(4)0.008P X P X >===;(3)已知此人得分不低于2,即2X ≥,此人得分4的概率可表示为:(4)0.008(4|2)0.2(2)0.0320.008P X P X X P X ==≥===≥+。

4、解 (1)用X 表示男婴的个数,则X 可取值有0、1、2、3,至少有1名男婴的概率可表示为:3(1)1(1)1(0)1(10.51)0.8824P X P X P X ≥=-<=-==--=;(2)恰有1名男婴的概率可表示为:123(1)0.51(10.51)0.3674P X C ==⨯-=;(3)用α表示第1,第2名是男婴,第3名是女婴的概率,则20.51(10.51)0.127α=⨯-=;(4)用β表示第1,第2名是男婴的概率,则20.510.260β==。

6、解 由题意可判断各次抽样结果是相互独立的,停止时已检查了X 件产品,说明第X 次抽样才有可能抽到不合格品。

X 的取值有1、2、3、4、5,有1()(1),1,2,3,4k P X k p p k -==-=, 4(5)(1)P X p ==-;(2)( 2.5)(1)(2)(1)(2)P X P X P X p p p p p ≤==+==+-=-。

7、解 (1)用X 表示诊断此人有病的专家的人数,X 的取值有1、2、3、4、5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBC AC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

7解:将全班学生排成一排的任何一种排列视为一样本点,则样本空间共有!30个样本点。

(1)把两个“王姓”学生看作一整体,和其余28个学生一起排列共有!29个样本点,而两个“王姓”学生也有左右之分,所以,两个“王姓”学生紧挨在一起共有!292⋅个样本点。

即两个“王姓”学生紧挨在一起的概率为151!30!292=⋅。

(2)两个“王姓”学生正好一头一尾包含!282⋅个样本点,故两个“王姓”学生正好一头一尾的概率为4351!30!282=⋅。

8、解(1)设A ={“1红1黑1白”},则1112323712()35C C C P A C ==; (2)设B ={“全是黑球”},则33371()35C P B C ==;(3)设C ={第1次为红球,第2次为黑球,第3次为白球”},则2322()7!35P C ⨯⨯==。

9解:设{}号车配对第i i =A ,92,1i ,,⋯=.若将先后停入的车位的排列作为一个样本点,那么共有!9个样本点。

由题知,出现每一个样本点的概率相等,当i A 发生时,第i 号车配对,其余9个号可以任意排列,故(1)()!9!8i =A p 。

(2)1号车配对,9号车不配对指9号车选2~8号任一个车位,其余7辆车任意排列,共有!77⋅个样本点。

故()727!9!7791=⋅=A A p .(3)()()()9191829821A A p A A A A p A A A A p =,()9182A A A A p 表示在事件:已知1号和9号配对情况下,2~8号均不配对,问题可以转化为2~8号车随即停入2~8号车位。

记{}号车配对第1i +=i B ,72,1i ,,⋯=。

则()()()717191821B B p B B p A A A A p -==。

由上知,()71!7!6==i B p ,()421!7!5==j i B B p ,(j i <),()2101!7!4==k j i B B B p ,(k j i <<)……()!7171=B B p 。

则()()∑=-=771!1i ii B B p 故()()()()()∑∑==-=-==707091719821!1721!1!9!7i ii i i i A A p B B p A A A A p 。

10、解 由已知条件可得出:()1()10.60.4P B P B =-=-=;()()()0.70.50.2P AB P A P AB =-=-=;()()()()0.9P A B P A P B P AB =+-=;(1)(())()7(|==()()9P AAB P A P A AB P AB P A B =);(2)()()()0.40.20.2P AB P B P AB =-=-=()(+()()0.5P A B P A P B P AB =-=)于是 (())()2(|==5()()P AAB P AB P A AB P A B P A B =);(3)(())()2(|)()()9P ABA B P AB P AB A B P AB P A B ===。

11解:由题知()5.0=A p ,()3.0=B p ,()4.0=C p ,()2.0=A B p ,()6.0=C B A p则()()()()()Cp C C B A p C p C C B A p C B A p +=()()()Cp C B A p C p +=()()()()C p C B A p B A p C p -+=()()()()()()C p C B A p AB p B p A p C p --++=()()()()()()()C p C B A p A p A B p B p A p C p --++=86.0=12、解 设A ={该职工为女职工},B ={该职工在管理岗位},由题意知,()0.45P A =,()0.1P B =,()0.05P AB =所要求的概率为(1)()1(|)()9P AB P B A P A ==; (2)()()()1(|)()()2P AB P B P AB P A B P B P B -===。

13、解:()()()()()()()5522221122===++===+=====X p X Y p X p X Y p X p X Y p Y p5151514151315121510⨯+⨯+⨯+⨯+⨯= 30077=14、解 设A ={此人取的是调试好的枪 },B ={此人命中},由题意知:3()4P A =,3(|)5P B A =,1(|)20P B A =所要求的概率分别是:(1)37()()(|)()(|)80P B P A P B A P A P B A =+=; (2)()()(|)1(|)()()37P AB P A P B A P A B P B P B ===。

15解:设{}年以内入市时间在11=A,{}年年以上不到入市时间在412=A ,{}年以上入市时间在43=A ,{}股民赢=1B ,{}股民平=2B ,{}股民亏=3B 则()1.011=A B p ,()2.012=A B p ,()7.013=A B p ,()2.021=A B p ,()3.022=A B p ,()5.023=A B p ,()4.031=A B p ,()4.032=A B p ,()2.033=A B p(1)()()()()()()()3312211111A p A B p A p A B p A p A B p B p ++=22.0=(2)()()()33131B p B A p B A p =()()()()()()()()333223113113A p A B p A p A B p A p A B p A p A B p ++=538.0137≈=16、解 设A ,B 分别为从第一、二组中取优质品的事件,C ,D 分别为第一、二次取到得产品是优质品的事件,有题意知:10()30P A =,15()20P B = (1) 所要求的概率是:1113()()()0.54172224P C P A P B =+=≈ (2)由题意可求得:13()()24P D P C ==120101515()0.21362302922019P CD =⨯⨯+⨯⨯≈所要求的概率是:()2825(|)0.3944()7163P CD P C D P D ==≈。

17解:(1)第三天与今天持平包括三种情况:第2天平,第3天平;第2天涨,第3天跌;第2天跌,第3天涨。

则1221331βαααγα++=p(2)第4天股价比今天涨了2个单位包括三种情况:第2天平,第3、4天涨;第2、4天涨,第3天平;第2、3天涨,第4天平。

则32111322αααγα+=p 。

19(1)对。

证明:假设A,B 不相容,则()0=AB p 。

而()0>A p ,()0>B p ,即()()0>B p A p , 故()()()B p A p AB p ≠,即A,B 不相互独立。

与已知矛盾,所以A,B 相容。

(2)可能对。

证明:由()6.0=A p ,()7.0=B p 知 ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,()()42.07.06.0=⨯=B p A p ,()AB p 与()()B p A p 可能相等,所以A,B 独立可能成立。

相关文档
最新文档