福建省2012届高考数学最新联考试题分类大汇编(6)不等式 解析版
2012高考福建理科数学精彩试题及问题详解(高清版)
2012年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题,满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足z i =1-i ,则z 等于( )A .-1-iB .1-iC .-1+iD .1+i A .3+4i B .5+4i C .3+2i D .5+2i2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 3.下列命题中,真命题是( )A .x 0∈R ,0e 0x≤ B .x ∈R ,2x>x 2C .a +b =0的充要条件是1ab=- D .a >1,b >1是ab >1的充分条件4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A .球 B .三棱锥 C .正方体 D .圆柱 5.下列不等式一定成立的是( )A .lg(x 2+14)>lg x (x >0) B .sin x +1sin x≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D .2111x >+(x ∈R ) 6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为()A .14 B .15 C .16 D .177.设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数8.已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )AB..3 D .59.若函数y =2x图象上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为( )A .12 B .1 C .32D .2 10.函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有()()12121()22x x f f x f x +≤[+],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3];④对任意x 1,x 2,x 3,x 4∈[1,3],有12341()44x x x x f +++≤[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是( )A .①②B .①③C .②④D .③④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.11. (a +x )4的展开式中x 3的系数等于8,则实数a =________.12.阅读右图所示的程序框图,运行相应的程序,输出的s 值等于________. 13.已知△ABC的等比数列,则其最大角的余弦值为________.14.数列{a n }的通项公式πcos12n n a n =+,前n 项和为S n ,则S 2 012=________. 15.对于实数a 和b ,定义运算“*”:22*.a ab a b a b b ab a b ⎧-≤=⎨->⎩,,,设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.17.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin13°cos17°;②sin 215°+cos 215°-sin15°cos15°;③sin 218°+cos 212°-sin18°cos12°;④sin 2(-18°)+cos 248°-sin(-18°)cos48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 18.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1.(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.19.如图,椭圆E :22221x y a b +=(a >b >0)的左焦点为F 1,右焦点为F 2,离心率12e =.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M 的坐标;若不存在,说明理由.20.已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.21. (1)选修4-2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵1ab⎛⎫= ⎪⎝⎭A(a>0)对应的变换作用下得到的曲线为x2+y2=1.①求实数a,b的值;②求A2的逆矩阵.(2)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),π32⎛⎫⎪⎪⎝⎭,圆C的参数方程为22c o s,2s i nxyθθ=+⎧⎪⎨=⎪⎩(θ为参数).①设P为线段MN的中点,求直线OP的平面直角坐标方程;②判断直线l与圆C的位置关系.(3)选修4-5:不等式选讲已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].①求m的值;②若a,b,c∈R+,且11123ma b c++=,求证:a+2b+3c≥9.22.(文)已知函数f(x)=ax sin x-32(a∈R),且在[0,π2]上的最大值为π32-.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.1. A 由z i=1-i,得221i(1i)i i i i+11ii i11z---=====----.2. B ∵a1+a5=10=2a3,∴a3=5.故d=a4-a3=7-5=2.3. D ∵a>1>0,b>1>0,∴由不等式的性质得ab>1,即a>1,b>1⇒ab>1.4. D ∵圆柱的三视图中有两个矩形和一个圆,∴这个几何体不可以是圆柱.5. C ∵x2+1≥2|x|⇔x2-2|x|+1≥0,∴当x≥0时,x2-2|x|+1=x2-2x+1=(x-1)2≥0成立;当x<0时,x2-2|x|+1=x2+2x+1=(x+1)2≥0成立.故x2+1≥2|x|(x∈R)一定成立.6. C∵由图象知阴影部分的面积是3122121211)d()32326x x x x=⋅-=-=⎰,∴所求概率为11616=.7. C ∵D (x )是最小正周期不确定的周期函数, ∴D (x )不是周期函数是错误的.8. A 由双曲线的右焦点与抛物线y 2=12x 的焦点重合,知32pc ==,c 2=9=4+b 2,于是b 2=5,b =2y x =±20y ±=.故该双曲线的焦点到其渐近线的距离为d == 9. B 由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x的图象与直线x +y -3=0的交点P 时取得最大值,即得2x=3-x ,即x =1=m .10. D ①如图1,图1在区间[1,3]上f (x )具有性质P ,但是是间断的,故①错.②可设f (x )=|x -2|(如图2),当x ∈[1,3]时易知其具有性质P ,但是f (x 2)=|x2-2|=222,1x x x x ⎧-≤≤⎪⎨-<≤⎪⎩P (如图3).故②错.图2图3③任取x 0∈[1,3],则4-x 0∈[1,3], 1=f (2)=004()2x x f +-≤12[f (x 0)+f (4-x 0)]. 又∵f (x 0)=1,f (4-x 0)≤1, ∴12[f (x 0)+f (4-x 0)]≤1. ∴f (x 0)=f (4-x 0)=1.故③正确.④3412123422()()42x x x x x x x x f f ++++++= ≤34121()+()222x x x x f f ++⎡⎤⎢⎥⎣⎦≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],故④正确.11.答案:2 解析:∵T r +1=4C ra r x4-r,∴当4-r =3,即r =1时,T 2=14C ·a ·x 3=4ax 3=8x 3.故a=2.12.答案:-3解析:(1)k =1,1<4,s =2×1-1=1; (2)k =2,2<4,s =2×1-2=0; (3)k =3,3<4,s =2×0-3=-3; (4)k =4,直接输出s =-3.13.答案:4-解析:设△ABC 的最小边长为a (m >0),2a ,故最大角的余弦值是2222cos 4θ===-. 14.答案:3 018 解析:∵函数πcos2n y =的周期2π4π2T ==,∴可用分组求和法:a 1+a 5+…+a 2 009=50311+1=503++个…;a 2+a 6+…+a 2 010=(-2+1)+(-6+1)+…+(-2 010+1)=-1-5-…-2 009=503(12009)2--=-503×1 005;a 3+a 7+…+a 2 011=50311+1=503++个…;a 4+a 8+…+a 2 012=(4+1)+(8+1)+…+(2 012+1)=503(52013)2⨯+=503×1009;故S 2 012=503-503×1 005+503+503×1 009 =503×(1-1 005+1+1 009)=3 018.15.答案:,0)解析:由已知,得()22200x x x f x x x x ⎧≤⎪⎨⎪⎩-,,=-+,>,作出其图象如图,结合图象可知m 的取值范围为0<m <14,当x >0时,有-x 2+x =m ,即x 2-x +m =0, 于是x 1x 2=m .当x <0时,有2x 2-x -m =0,于是314x =.故123(14m x x x =.设h (m )=m (1,∵h ′(m )=(1+[m()]=10<,∴函数h (m )单调递减. 故x 1x 2x 3的取值范围为,0). 16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A , 则231()5010P A +==. (2)依题意得,X 1X 2的分布列为(3)由(2)得,E (X 1)=1×125+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车.17.解:方法一:(1)选择②式,计算如下: sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34. 方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)-sin αcos α-12sin 2α=12-12cos2α+12+14cos2ααα-14(1-cos2α)=11131cos2cos24444αα--+=.18.解:(1)以A 为原点,AB ,AD ,1AA 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E (2a,1,0),B 1(a,0,1),故1AD =(0,1,1),1B E =(2a -,1,-1),1AB =(a,0,1),AE =(2a,1,0).∵1AD ·1B E =2a-×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0), 使得DP ∥平面B 1AE .此时DP =(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ). ∵n ⊥平面B 1AE ,∴n ⊥1AB ,n ⊥AE ,得00.2ax z ax y +=⎧⎪⎨+=⎪⎩,取x =1,得平面B 1AE 的一个法向量n =(1,2a-,-a ). 要使DP ∥平面B 1AE ,只要n ⊥DP ,有2a-az 0=0,解得012z =.又DP 平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时12AP =.(3)连接A 1D ,B 1C ,由长方体ABCD A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD 是平面A 1B 1E 的一个法向量,此时1AD =(0,1,1).设1AD 与n 所成的角为θ,则11·cos ||||a aAD AD θ--==n n .∵二面角A -B1E -A 1的大小为30°, ∴|cos θ|=cos303a =, 解得a =2,即AB 的长为2.19.解:方法一:(1)因为|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 所以4a =8,a =2. 又因为12e =,即12c a =,所以c =1. 所以b故椭圆E 的方程是22143x y +=. (2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m , 所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 设M (x 1,0),则0MP MQ ⋅=对满足(*)式的m ,k 恒成立.因为MP =(14k x m --,3m),MQ =(4-x 1,4k +m ), 由0MP MQ ⋅=,得211141612430kx k k x x m m m-+-+++=,整理,得(4x 1-4)k m+x 12-4x 1+3=0.(**)由于(**)式对满足(*)式的m ,k 恒成立,所以1211440,430,x x x -=⎧⎨-+=⎩解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M .方法二:(1)同方法一.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且∆=0,即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+,y 0=kx 0+m =3m , 所以P (4k m -,3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ). 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.取k =0,m =此时P (0),Q (4),以PQ 为直径的圆为(x -2)2+(y)2=4,交x 轴于点M 1(1,0),M 2(3,0);取12k =-,m =2,此时P (1,32),Q (4,0),以PQ 为直径的圆为225345()()2416x y -+-=,交x 轴于点M 3(1,0),M 4(4,0).所以若符合条件的点M 存在,则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0),所以MP =(41k m --,3m),MQ =(3,4k +m ), 从而1212330k kMP MQ m m⋅=--++=, 故恒有MP MQ ⊥,即存在定点M (1,0),使得以PQ 为直径的圆恒过点M .20.解:(1)由于f ′(x )=e x+2ax -e ,曲线y =f (x )在点(1,f (1))处切线斜率k =2a =0,所以a =0,即f (x )=e x-e x .此时f ′(x )=e x-e ,由f ′(x )=0得x =1.当x ∈(-∞,1)时,有f ′(x )<0;当x ∈(1,+∞)时,有f ′(x )>0. 所以f (x )的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P(x0,f(x0)),曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0)+f(x0),令g(x)=f(x)-f′(x0)(x-x0)-f(x0),故曲线y=f(x)在点P处的切线与曲线只有一个公共点P等价于函数g(x)有唯一零点.因为g(x0)=0,且g′(x)=f′(x)-f′(x0)=e x-e x0+2a(x-x0).(1)若a≥0,当x>x0时,g′(x)>0,则x>x0时,g(x)>g(x0)=0;当x<x0时,g′(x)<0,则x<x0时,g(x)>g(x0)=0.故g(x)只有唯一零点x=x0.由P的任意性,a≥0不合题意.(2)若a<0,令h(x)=e x-e x0+2a(x-x0),则h(x0)=0,h′(x)=e x+2a.令h′(x)=0,得x=ln(-2a),记x′=ln(-2a),则当x∈(-∞,x*)时,h′(x)<0,从而h(x)在(-∞,x*)内单调递减;当x∈(x*,+∞)时,h′(x)>0,从而h(x)在(x*,+∞)内单调递增.①若x0=x*,由x∈(-∞,x*)时,g′(x)=h(x)>h(x*)=0;x∈(x*,+∞)时,g′(x)=h(x)>h(x*)=0,知g(x)在R上单调递增.所以函数g(x)在R上有且只有一个零点x=x*.②若x0>x*,由于h(x)在(x*,+∞)内单调递增,且h(x0)=0,则当x∈(x*,x0)时有g′(x)=h(x)<h(x0)=0,g(x)>g(x0)=0;任取x1∈(x*,x0)有g(x1)>0.又当x∈(-∞,x1)时,易知g(x)=e x+ax2-[e+f′(x0)]x-f(x0)+x0f′(x0)<e x1+ax2-[e+f′(x0)]x-f(x0)+x0f′(x0)=ax2+bx+c,其中b=-[e+f′(x0)],c=e x1-f(x0)+x0f′(x0).由于a<0,则必存在x2<x1,使得ax22+bx2+c<0.所以g(x2)<0.故g(x)在(x2,x1)内存在零点,即g(x)在R上至少有两个零点.③若x0<x*,仿②并利用3e6xx>,可证函数g(x)在R上至少有两个零点.综上所述,当a<0时,曲线y=f(x)上存在唯一点P(ln(-2a),f(ln(-2a))),曲线在该点处的切线与曲线只有一个公共点P.21. (1)选修4-2:矩阵与变换解:①设曲线2x2+2xy+y2=1上任意点P(x,y)在矩阵A对应的变换作用下的像是P′(x′,y′).由1x ay b'⎛⎫⎛⎫=⎪ ⎪'⎝⎭⎝⎭x axy bx y⎛⎫⎛⎫=⎪ ⎪+⎝⎭⎝⎭,得,.x axy bx y'=⎧⎨'=+⎩又点P′(x′,y′)在x2+y2=1上,所以x′2+y′2=1,即a2x2+(bx+y)2=1,整理得(a2+b2)x2+2bxy+y2=1.依题意得222,22,a bb⎧+=⎨=⎩解得1,1,ab=⎧⎨=⎩或1,1,ab=-⎧⎨=⎩因为a>0,所以1,1. ab=⎧⎨=⎩②由①知,1 01 1⎛⎫= ⎪⎝⎭A,21 0 1 0 1 01 1 1 12 1⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A,所以|A2|=1,(A2)-1=1 02 1⎡⎤⎢⎥-⎣⎦.(2)选修4-4:坐标系与参数方程解:①由题意知,M,N的平面直角坐标分别为(2,0),(0,3).又P 为线段MN 的中点,从而点P 的平面直角坐标为(1,3),故直线OP 的平面直角坐标方程为3y x =.②因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),(0,3),所以直线l 30y +-=.又圆C 的圆心坐标为(2,),半径r =2,圆心到直线l 的距离32d r ==<,故直线l 与圆C 相交. (3)选修4-5:不等式选讲解:①因为f (x +2)=m -|x |,f (x +2)≥0等价于|x |≤m ,由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1. ②由①知111123a b c++=,又a ,b ,c ∈R +,由柯西不等式得 a +2b +3c =(a +2b +3c )(11123a b c++)≥29=.。
2012年福建省高考数学试卷(理科)答案与解析
2012年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出分四个选项中,只有一项是符合题目要求的.===≤的充要条件是,但是4.(5分)(2012•福建)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不sinx+≥(x∈R)时,不等式两边相等;sinx+6.(5分)(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()By=((﹣=取自阴影部分的概率为=7.(5分)(2012•福建)设函数,则下列结论错误的是()=(8.(5分)(2012•福建)已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则B∵双曲线的右焦点与抛物线∴双曲线的一条渐近线方程为∴双曲线的焦点到其渐近线的距离等于9.(5分)(2012•福建)若函数y=2x图象上存在点(x,y)满足约束条件,B10.(5分)(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()在](≤=[f二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(4分)(2012•福建)(a+x)4的展开式中x3的系数等于8,则实数a=2.×12.(4分)(2012•福建)阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3.13.(4分)(2012•福建)已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为.据三角形三边长成公比为,aaa﹣14.(4分)(2012•福建)数列{a n}的通项公式a n=ncos+1,前n项和为S n,则S2012= 3018.cos ncos的规律,即可求出数列的规律即可求出结ncos=0ncos的每四项和为15.(4分)(2012•福建)对于实数a和b,定义运算“*”:a*b=设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是.=)轴的左边,得到,),又在,)上成立,y=(,即故答案为:三、解答题:本大题共5小题,共80分,解答题写出文字说明,证明过程或演算步骤.16.(13分)(2012•福建)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为(Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(Ⅱ)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.××+3×=2.86×+2.9×××+3×=2.86××=2.7917.(13分)(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.﹣,可得这个常数的=++sin2,化简可得结果.sin30..++sin sin﹣sin=++()﹣﹣+cos2﹣=1﹣+.18.(13分)(2012•福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.为原点,,,为原点,,,的方向为,,,==(•.此时的法向量=⊥平面⊥,⊥=,﹣,﹣,只要⊥,即有•,有此得t=,AP=的一个法向量,此时与==|,解得19.(13分)(2012•福建)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.,;,,∴的方程为.(Ⅱ)由===,),此时,,,,﹣),交20.(14分)(2012•福建)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.==,则c=,使得四、选考题(题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分。
12年高考真题——理科数学(福建卷)
2012年普通高等学校招生全国统一考试(福建)卷数学(理科)一.选择题(本大题共10小题,每小题5分,共50分。
在每小题给也的四个选项中,只有一项是符合题目要求的)1.若复数z 满足1zi i =-,则z 等于( )(A )1i -- (B )1i - (C )1i -+ (D )1i + 2.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( ) (A )1 (B )2 (C )3 (D )4 3.下列命题中,真命题是( ) (A )0x R ∃∈,00x e≤ (B )x R ∀∈,22x x >(C )0a b +=的充要条件是1a b =- (D )1a >,1b >是1ab >的充分条件 4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) (A )球 (B )三棱锥 (C )正方体 (D )圆柱5.下列不等式一定成立的是( ) (A )()21lg lg 04x x x ⎛⎫+>> ⎪⎝⎭(B )()1sin 2,sin x x k k Z x π+≥≠∈ (C )()212||x x x R +≥∈ (D )()2111x R x >∈+ 6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ) (A )41 (B )51 (C )61 (D )71 7.设函数()()()10x D x x ⎧⎪=⎨⎪⎩为有理数为无理数,则下列结论错误的是( )(A )()D x 的值域为{}0,1 (B )()D x 是偶函数 (C )()D x 不是周期函数 (D )()D x 不是单调函数8.双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) (A )5 (B )24 (C )3 (D )59.若直线xy 2=上存在点(),x y 满足条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )(A )12 (B )1 (C )32 (D )210.函数()f x 定义在[],a b 上,若()()1212122x x f f x f x +⎛⎫≤+⎡⎤⎪⎣⎦⎝⎭对[]12,,x x a b ∀∈都成立,则称()f x 在[],a b 上具有性质P 。
2012年高考文科数学解析分类汇编:不等式(逐题详解)1
2012年高考文科数学解析分类汇编:不等式(逐题详解)12012年高考文科数学解析分类汇编:不等式一、选择题 11.(2012年高考(重庆文))已知2log 3log a =+2log9log b =-3log 2c =则a,b,c 的大小关系是 () A .a b c =< B .a b c => C .a b c<<D .a b c >>2 2.(2012年高考(重庆文))不等式102x x -<+ 的解集是为 ( )A .(1,)+∞B .(,2)-∞-C .(-2,1)D .(,2)-∞-∪(1,)+∞[3 3.(2012年高考(浙江文))若正数x,y 满足x+3y=5xy,则3x+4y 的最小值是 ()A .245B .285C .5D .64 4.(2012年高考(天津文))已知 1.20.2512,(),2log 22a b c -===,则,,a b c 的大小关系为()A .c b a <<B .c a b <<C .b a c<<D .b c a <<5 5.(2012年高考(天津文))设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数32z x y=-的最小值为()A .5-B .4-C .2-D .36 6.(2012年高考(四川文))若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y=+的最大值是 ()A .12B .26C .28D .337 7.(2012年高考(陕西文))小王从甲地到乙地的时速分别为a 和b(a<b),其全程的平均时速为v,则 () A .a<v<B .C2a b+B.C .118.(2012年高考(课标文))已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是 ( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)129.(2012年高考(湖南文))设 a >b >1,0c < ,给出下列三个结论:① c a >c b ;② ca <cb ; ③ log ()log ()baa cbc ->-,其中所有的正确结论的序号是__.[中*国教育@^出~版网、]()A .①B .① ②C .② ③D .①②③1310.(2012年高考(广东文))(线性规划)已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y=+的最小值为() A .3B .1C .5-D .6-1411.(2012年高考(福建文))若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m的最大值为()A .-1B .1C .32D .21512.(2012年高考(大纲文))已知ln x π=,5log 2y =,12z e -=,则() A .x y z << B .z x y << C .z y x<<D .y z x <<1613.(2012年高考(安徽文))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y-的最小值是()A .3-B .0C .32D .3二、填空题1714.(2012年高考(浙江文))设z=x+2y,其中实数x,y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩, 则z 的取值范围是_________.1815.(2012年高考(四川文))设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;③若|1=,则||1a b -<;④若33||1ab -=,则||1a b -<.其中的真命题有____________.(写出所有真命题的编号)1916.(2012年高考(上海文))满足约束条件2||2||≤+y x 的目标函数x y z -=的最小值是_________ .2017.(2012年高考(陕西文))观察下列不等式213122+< 231151233++<, 222111712344+++<照此规律,第五个...不等式为 。
【数学】2012新题分类汇编:不等式(高考真题+模拟新题)
不等式(高考真题+模拟新题)大纲理数3.E1[2011·全国卷] 下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3 大纲理数3.E1[2011·全国卷] A 【解析】 对A 项,若a >b +1,则a -b >1,则a >b ;若a >b ,不能得到a >b +1.对B 项,若a >b -1,不能得到a >b ;对C 项,若a 2>b 2,可得(a +b )(a -b )>0,不能得到a >b ;对D 项,若a 3>b 3,则a >b ,反之,若a >b ,则a 3>b 3,a 3>b 3是a >b 成立的充分必要条件,故选A.大纲文数5.E1[2011·全国卷] 下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3 大纲文数5.E1[2011·全国卷] A 【解析】 对A 项,若a >b +1,则a -b >1,则a >b ;若a >b ,不能得到a >b +1.对B 项,若a >b -1,不能得到a >b ;对C 项,若a 2>b 2,可得(a +b )(a -b )>0,不能得到a >b ;对D 项,若a 3>b 3,则a >b ,反之,若a >b ,则a 3>b 3,a 3>b 3是a >b 成立的充分必要条件,故选A.课标文数6.E1[2011·浙江卷] 若a ,b 为实数,则“0<ab <1”是“b <1a”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件课标文数6.E1[2011·浙江卷] D 【解析】 当0<ab <1,a <0,b <0时,有b >1a ;反过来b <1a,当a <0时,则有ab >1,∴“0<ab <1”是“b <1a”的既不充分也不必要条件.课标理数9.E2[2011·广东卷] 不等式|x +1|-|x -3|≥0的解集是________. 课标理数9.E2[2011·广东卷] {x |x ≥1} 【解析】 由|x +1|≥|x -3|两边平方得x 2+2x +1≥x 2-6x +9,即8x ≥8,解得x ≥1.课标理数4.E2[2011·山东卷] 不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7] B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞) 课标理数4.E2[2011·山东卷] D 【解析】 当|x -5|+|x +3|=10时,求出x 1=6,x 2=-4,画出数轴,显然当x ≥6或x ≤-4时,满足|x -5|+|x +3|≥10.课标理数1.A1,E3[2011·北京卷] 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( )A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞) 课标理数1.A1,E3[2011·北京卷] C 【解析】 由P ∪M =P ,可知M ⊆P ,而集合P ={x |-1≤x ≤1},所以-1≤a ≤1,故选C.课标文数1.A1,E3[2011·北京卷] 已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)D .(-∞,-1)∪(1,+∞) 课标文数1.A1,E3[2011·北京卷] D 【解析】 因为集合P ={x |-1≤x ≤1},所以∁U P ={x |x <-1或x >1},故选D.课标文数6.E3[2011·福建卷] 若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 课标文数6.E3[2011·福建卷] C 【解析】 由方程x 2+mx +1=0有两个不相等的实数根,得Δ=m 2-4>0,解得m <-2或m >2,故选C.课标文数5.E3[2011·广东卷] 不等式2x 2-x -1>0的解集是( )A.⎝⎛⎭⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D.⎝⎛⎭⎫-∞,-12∪(1,+∞) 课标文数5.E3[2011·广东卷] D 【解析】 不等式2x 2-x -1>0化为(x -1)(2x +1)>0,解得x <-12或x >1,故选D.课标文数1.E3[2011·山东卷] 设集合M ={x |(x +3)(x -2)<0},N ={x |1≤x ≤3},则M ∩N =( )A .[1,2)B .[1,2]C .(2,3]D .[2,3] 课标文数1.E3[2011·山东卷] A 【解析】 由解不等式知识知M ={x |-3<x <2},又N ={x |1≤x ≤3},所以M ∩N ={x |1≤x <2}.课标文数6.E5[2011·安徽卷] 设变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x ≥0,则x +2y 的最大值和最小值分别为( )A .1,-1B .2,-2C .1,-2D .2,-1 课标文数6.E5[2011·安徽卷] B 【解析】 画出可行域(如图所示阴影部分).可知当直线u =x +2y 经过A (0,1),C (0,-1)时分别对应u 的最大值和最小值.故u max =2,u min =-2.大纲文数4.E5[2011·全国卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤6,x -3y ≤-2,x ≥1,则z =2x +3y 的最小值为( )A .17B .14C .5D .3 大纲文数4.E5[2011·全国卷] C 【解析】 通过约束条件画出可行域,可知z 的最小值为5,故选C.课标理数8.E5,F3[2011·福建卷] 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2] 课标理数8.E5,F3[2011·福建卷] C 【解析】 画出不等式组表示的平面区域(如图1-2), 又OA →·OM →=-x +y ,取目标函数z =-x +y ,即y =x +z ,作斜率为1的一组平行线,图1-2当它经过点C (1,1)时,z 有最小值,即z min =-1+1=0; 当它经过点B (0,2)时,z 有最大值,即z max =-0+2=2.∴ z 的取值范围是[0,2],即OA →·OM →的取值范围是[0,2],故选C.课标文数21.E5,C9[2011·福建卷] 设函数f (θ)=3sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x ,y ),且0≤θ≤π.(1)若点P 的坐标为⎝⎛⎭⎫12,32,求f (θ)的值;(2)若点P (x ,y )为平面区域Ω:⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.课标文数21.E5,C9[2011·福建卷] 【解答】 (1)由点P 的坐标和三角函数的定义可得⎩⎨⎧sin θ=32,cos θ=12.于是f (θ)=3sin θ+cos θ=3×32+12=2. (2)作出平面区域Ω(即三角形区域ABC )如图1-7所示,其中A (1,0),B (1,1),C (0,1).图1-7于是0≤θ≤π2.又f (θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6, 且π6≤θ+π6≤2π3, 故当θ+π6=π2,即θ=π3时,f (θ)取得最大值,且最大值等于2;当θ+π6=π6,即θ=0时,f (θ)取得最小值,且最小值等于1.课标理数 5.E5[2011·广东卷] 已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .4 2B .3 2C .4D .3 课标理数5.E5图1-1[2011·广东卷] C 【解析】 z =OM →·OA →=(x ,y )·(2,1)=2x +y ,画出不等式组表示的区域(如图1-1),显然当z =2x +y 经过B (2,2)时,z 取最大值,即z max =2+2=4.课标文数 6.E5[2011·广东卷] 已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .3B .4C .3 2D .4 2 课标文数6.E5图1-1[2011·广东卷] B 【解析】 z =OM →·OA →=(x ,y )·(2,1)=2x +y ,画出不等式组表示的区域(如图1-1),显然当z =2x +y 经过B (2,2)时,z 取最大值,即z max =2+2=4.课标理数8.E5[2011·湖北卷] 已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( )A .[-2,2]B .[-2,3]C .[-3,2]D .[-3,3] 课标理数8.E5[2011·湖北卷] D 【解析】 因为a =()x +z ,3,b =()2,y -z ,且a ⊥b ,所以a·b =2()x +z +3()y -z =0,即2x +3y -z =0.又||x +||y ≤1表示的可行域如图中阴影部分所示(包含边界).图1-1所以当2x +3y -z =0过点B ()0,-1时,z min =-3;当2x +3y -z =0过点A ()0,1时,z max=3.所以z ∈[]-3,3.课标文数8.E5[2011·湖北卷] 直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个课标文数8.E5[2011·湖北卷] B 【解析】 画出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20 表示的可行域,如图阴影部分所示(含边界).图1-1因为直线2x +y -10=0过点A ()5,0,且其斜率为-2,小于直线4x +3y =20的斜率-43,故只有一个公共点()5,0.课标理数7.E5[2011·湖南卷] 设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围为( )A .(1,1+2)B .(1+2,+∞)C .(1,3)D .(3,+∞)课标理数7.E5[2011·湖南卷] A 【解析】 先画出约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1.表示的可行域,如图1-1.图1-1 直线x +y =1与y =mx 的交点为⎝⎛⎭⎫1m +1,m m +1.由图可知,当x =1m +1,y =mm +1时,目标函数z =x +my 有最大值小于2,则有1m +1+m ×mm +1<2,得1-2<m <1+ 2.又因为m >1,故m 的取值范围为1<m <1+2,故选A.课标文数14.E5[2011·湖南卷] 设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +5y 的最大值为4,则m 的值为________.课标文数14.E5[2011·湖南卷] 3 【解析】 先画出约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1表示的可行域:如右图1-3:图1-3 直线x +y =1与y =mx 的交点为⎝⎛⎭⎫1m +1,m m +1,得到当x =1m +1,y =mm +1时目标函数z=x +5y 有最大值4,则有1m +1+5×mm +1=4,得m =3.课标理数13.E5[2011·课标全国卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9,则z =x +2y 的最小值为________.课标理数13.E5[2011·课标全国卷] -6 【解析】 作出可行域如图阴影部分所示, 由⎩⎪⎨⎪⎧y =-2x +3,y =x -9 解得A (4,-5). 当直线z =x +2y 过A 点时z 取最小值,将A (4,-5)代入, 得z =4+2×(-5)=-6.图1-6课标文数14.E5[2011·课标全国卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9,则z =x +2y 的最小值为_________________________________________________________________.课标文数14.E5[2011·课标全国卷] -6 【解析】 作出可行域如图阴影部分所示,由⎩⎪⎨⎪⎧y =-2x +3,y =x -9解得A (4,-5). 当直线z =x +2y 过A 点时z 取最小值,将A (4,-5)代入, 得z =4+2×(-5)=-6.图1-6课标文数7.E5[2011·山东卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z=2x +3y +1的最大值为( )A .11B .10C .9D .8.5图1-1图1-6课标文数12.E5[2011·陕西卷] 如图1-6所示,点(x ,y )在四边形ABCD 内部和边界上运动,那么2x -y 的最小值为________.课标文数12.E5[2011·陕西卷] 1 【解析】 由图象知函数在点A (1,1)时,2x -y =1;在点B (3,2)时,2x -y =23-2>1;在点C (5,1)时,2x -y =25-1>1;在点D (1,0)时,2x -y =2-0=2>1,故最小值为1.大纲文数10.E5[2011·四川卷] 某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元,派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润z =( )A .4650元B .4700元C .4900元D .5000元 大纲文数10.E5[2011·四川卷] C 【解析】 设该公司合理计划当天派用甲、乙卡车的车辆数分别为x ,y ,则根据条件得x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,x ≤8,y ≤7,x ∈N *,y ∈N *,目标函数z =450x+350y -z .作出约束条件所表示的平面区域,然后平移目标函数对应的直线450x +350y -z =0知,当直线经过直线x +y =12与2x +y =19的交点(7,5)时,目标函数取得最大值,即z =450×7+350×5=4900.大纲理数9.E5[2011·四川卷] 某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元,派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z =( )A .4650元B .4700元C .4900元D .5000元大纲理数9.E5[2011·四川卷] C 【解析】 设该公司合理计划当天派用甲、乙卡车的车辆数分别为x ,y ,则根据条件得x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,x ≤8,y ≤7,x ∈N *,y ∈N *,目标函数z =450x+350y .作出约束条件所表示的平面区域,然后平移目标函数对应的直线450x +350y -z =0知,当直线经过直线x +y =12与2x +y =19的交点(7,5)时,目标函数取得最大值,即z =450×7+350×5=4900.课标文数2.E5[2011·天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z=3x -y 的最大值为( )A .-4B .0 C.43D .4课标文数 2.E5[2011·天津卷] D 【解析】 作出可行域,如图1-1所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =2,y =2. 当目标函数z =3x -y 移至(2,2)时,z =3x -y 有最大值4.图1-1课标理数5.E 5[2011·浙江卷] 设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0,若x ,y 为整数,则3x +4y 的最小值是( )A .14B .16C .17D .19 课标理数5.E5[2011·浙江卷] B 【解析】 可行域如图所示:图1-3联立⎩⎪⎨⎪⎧ x +2y -5=0,2x +y -7=0,解之得⎩⎪⎨⎪⎧x =3,y =1.又∵边界线为虚线,且目标函数线的斜率为-34,∴当z =3x +4y 过点(4,1)时,有最小值16.课标文数3.E5[2011·浙江卷] 若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5≥0,2x +y -7≥0,x ≥0,y ≥0,则3x +4y 的最小值是( )A .13B .15C .20D .28 课标文数3.E5[2011·浙江卷] A 【解析】 可行域如图阴影部分所示.联立⎩⎪⎨⎪⎧ x +2y -5=0,2x +y -7=0,解之得⎩⎪⎨⎪⎧x =3,y =1.∴当z =3x +4y 过点(3,1)时,有最小值13.课标文数7.B10,E6[2011·北京卷] 某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件 课标文数7.B10,E6[2011·北京卷] B 【解析】 记平均到每件产品的生产准备费用与仓储费用之和为f (x ),则f (x )=800+x8×x ×1x =800x +x 8≥2800x ×x 8=20,当且仅当800x =x8,即x=80件(x >0)时,取最小值,故选B.课标文数10.B12,E6[2011·福建卷] 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9 课标文数10.B12,E6[2011·福建卷] D 【解析】 f ′(x )=12x 2-2ax -2b , ∵f (x )在x =1处有极值,∴f ′(1)=0,即12-2a -2b =0,化简得 a +b =6, ∵a >0,b >0,∴ab ≤⎝⎛⎭⎫a +b 22=9,当且仅当a =b =3时,ab 有最大值,最大值为9,故选D.课标理数10.N4,E6[2011·湖南卷] 设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值为________.课标理数10.N4,E6[2011·湖南卷] 9 【解析】 方法一:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=1+4x 2y 2+1x 2y 2+4≥5+24x 2y 2×1x 2y 2=9,当且仅当4x 2y 2=1x 2y2时,“=”成立.方法二:利用柯西不等式:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2≥⎝⎛⎭⎫x ×1x +1y ×2y 2=9,当且仅当4x 2y 2=1x 2y2时,等号成立.课标文数3.E6[2011·陕西卷] 设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b2<bC .a <ab <b <a +b 2 D.ab <a <a +b2<b课标文数3.E6[2011·陕西卷] B 【解析】 因为0<a <b ,由基本不等式得ab <a +b2,a <b ,故a +b 2<b +b 2=b ,a =aa <ab ,故答案为B.课标理数16.E6[2011·浙江卷] 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.课标理数16.E6[2011·浙江卷] 2105【解析】 ∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,即(2x +y )2-32·2xy =1,∴(2x +y )2-32·⎝⎛⎭⎫2x +y 22≤1,解之得(2x +y )2≤85,即2x +y ≤2105.课标文数16.E6[2011·浙江卷] 若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________.课标文数16.E6[2011·浙江卷] 233【解析】 ∵x 2+y 2+xy =1,∴(x +y )2-xy =1,即(x +y )2-⎝⎛⎭⎫x +y 22≤1,∴(x +y )2≤43,x +y ≤233.大纲理数7.E6[2011·重庆卷] 已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A.72B .4 C.92D .5大纲理数7.E6[2011·重庆卷] C 【解析】 1a +4b =12(a +b )1a +4b =125+b a +4a b ≥125+2b a ·4ab=92. 当且仅当⎩⎪⎨⎪⎧b a =4a b ,a +b =2即a =23,b =43时取到等号.∴y min =92.大纲文数7.E6[2011·重庆卷] 若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( )A .1+ 2B .1+ 3C .3D .4大纲文数7.E6[2011·重庆卷] C 【解析】 ∵x >2,∴f (x )=x +1x -2=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时取等号.大纲文数15.E6[2011·重庆卷] 若实数a ,b ,c 满足2a +2b =2a +b,2a +2b +2c =2a +b +c ,则c的最大值是_____________________________________________________________________.大纲文数15.E6[2011·重庆卷] 2-log 23 【解析】 2a +b =2a +2b ≥22a +b ,当且仅当a =b 时,2a +b ≥4取“=”.由2a +2b +2c =2a +b +c 得2a +b +2c =2a +b ·2c ,∴2c=2a +b 2a b -1=1+12a b -1≤1+14-1=43,故c ≤log 243=2-log 23.课标文数20.D5,E7[2011·广东卷]设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+n -1(n ≥2).(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n,2a n ≤b n +1+1.课标文数20.D5,E7[2011·广东卷] 【解答】 (1)由a 1=b >0,知a n =nba n -1a n -1+n -1>0,n a n =1b +1b ·n -1a n -1. 令A n =n a n ,A 1=1b,当n ≥2时,A n =1b +1bA n -1=1b +...+1b n -1+1b n -1A 1 =1b + (1)n -1+1b n . ①当b ≠1时,A n =1b ⎝⎛⎭⎫1-1b n 1-1b=b n -1b n (b -1),②当b =1时,A n =n .∴a n =⎩⎪⎨⎪⎧nb n(b -1)b n -1,b ≠1,1, b =1.(2)证明:当b ≠1时,欲证2a n =2nb n (b -1)b n -1≤b n +1+1,只需证2nb n ≤(b n +1+1)b n -1b -1.∵(b n +1+1)b n -1b -1=b 2n +b 2n -1+…+b n +1+b n -1+b n -2+…+1=b n ⎝⎛⎭⎫b n +1b n +b n -1+1b n 1+…+b +1b>b n(2+2+…+2) =2nb n ,∴2a n =2nb n (b -1)b n-1<1+b n +1. 当b =1时,2a n =2=b n +1+1.综上所述2a n ≤b n +1+1.大纲理数22.B12,E8[2011·全国卷] (1)设函数f (x )=ln(1+x )-2xx +2,证明:当x >0时,f (x )>0;(2)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:p <⎝⎛⎭⎫91019<1e 2.大纲理数22.B12,E8[2011·全国卷] 【解答】 (1)f ′(x )=x 2(x +1)(x +2)2.当x >0时,f ′(x )>0,所以f (x )为增函数,又f (0)=0.因此当x >0时,f (x )>0.(2)p =100×99×98×…×8110020.又99×81<902,98×82<902,…,91×89<902,所以p <⎝⎛⎭⎫91019.由(1)知:当x >0时,ln(1+x )>2xx +2.因此,⎝⎛⎭⎫1+2x ln(1+x )>2. 在上式中,令x =19,则19ln 109>2,即⎝⎛⎭⎫10919>e 2. 所以p <⎝⎛⎭⎫91019<1e 2.课标文数22.B12,E8[2011·湖南卷] 设函数f (x )=x -1x-a ln x (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k .问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.课标文数22.B12,E8[2011·湖南卷] 【解答】 (1)f (x )的定义域为(0,+∞).f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,其判别式Δ=a 2-4.①当|a |≤2时,Δ≤0,f ′(x )≥0.故f (x )在(0,+∞)上单调递增. ②当a <-2时,Δ>0,g (x )=0的两根都小于0. 在(0,+∞)上,f ′(x )>0.故f (x )在(0,+∞)上单调递增.③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42.当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 故f (x )分别在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. (2)由(1)知,a >2.因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2),所以,k =f (x 1)-f (x 2)x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1,于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a ,则ln x 1-ln x 2x 1-x 2=1.即ln x 1-ln x 2=x 1-x 2.亦即x 2-1x 2-2ln x 2=0(x 2>1).(*)再由(1)知,函数h (t )=t -1t -2ln t 在(0,+∞)上单调递增,而x 2>1,所以x 2-1x 2-2ln x 2>1-11-2ln1=0.这与(*)式矛盾.故不存在a ,使得k =2-a .课标文数21.B12,E8[2011·陕西卷] 设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值;(2)讨论g (x )与g ⎝⎛⎭⎫1x 的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立.课标文数21.B12,E8[2011·陕西卷] 【解答】 (1)由题设知f (x )=ln x ,g (x )=ln x +1x.∴g ′(x )=x -1x2.令g ′(x )=0得x =1,当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调减区间.当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调增区间, 因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点. 所以g (x )的最小值为g (1)=1.(2)g ⎝⎛⎭⎫1x =-ln x +x .设h (x )=g (x )-g ⎝⎛⎭⎫1x =2ln x -x +1x, 则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g ⎝⎛⎭⎫1x ,当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0. 因此,h (x )在(0,+∞)内单调递减, 当0<x <1时,h (x )>h (1)=0.即g (x )>g ⎝⎛⎭⎫1x .当x >1时,h (x )<h (1)=0,即g (x )<g ⎝⎛⎭⎫1x .(3)由(1)知g (x )的最小值为1,所以,g (a )-g (x )<1a ,对任意x >0成立⇔g (a )-1<1a,即ln a <1,从而得0<a <e. 课标理数19.E9[2011·安徽卷](1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy .(2)1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c . 课标理数19.E9[2011·安徽卷] 【解析】 本题考查不等式的基本性质,对数函数的性质和对数换底公式等基本知识,考查代数式的恒等变形能力和推理论证能力.【解答】 (1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xy⇔xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1).既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy .其中x =log a b ≥1,y =log b c ≥1.故由(1)立知所要证明的不等式成立.课标理数21.B12,E9[2011·湖北卷](1)已知函数f (x )=ln x -x +1,x ∈(0,+∞),求函数f (x )的最大值; (2)设a k ,b k (k =1,2,…,n )均为正数,证明:①若a 1b 1+a 2b 2+…+a n b n ≤b 1+b 2+…+b n ,则ab 11ab 22…ab nn ≤1;②若b 1+b 2+…+b n =1,则1n ≤bb 11bb 22…bb nn ≤b 21+b 22+…+b 2n . 课标理数21.B12,E9[2011·湖北卷] 【解答】(1)f (x )的定义域为(0,+∞),令f ′(x )=1x-1=0,解得x =1,当0<x <1时,f ′(x )>0,f (x )在(0,1)内是增函数; 当x >1时,f ′(x )<0,f (x )在(1,+∞)内是减函数. 故函数f (x )在x =1处取得最大值f (1)=0.(2)证明:①由(1)知,当x ∈(0,+∞)时,有f (x )≤f (1)=0,即ln x ≤x -1. ∵a k ,b k >0,从而有ln a k ≤a k -1,得b k ln a k ≤a k b k -b k (k =1,2,…,n ), 求和得∑k =1nln ab kk ≤∑k =1na kb k -∑k =1nb k ,∵∑k =1n a k b k ≤∑k =1n b k ,∴∑k =1nln ab kk ≤0,即ln(ab 11ab 22…ab nn )≤0,∴ab 11ab 22…ab nn ≤1.②(i)先证bb 11bb 22…bb nn ≥1n ,设a k =1nb k(k =1,2,…,n ),则∑k =1n a k b k =∑k =1n 1n =1=∑k =1n b k ,于是由①得⎝⎛⎭⎫1nb 1b 1⎝⎛⎭⎫1nb 2b 2…⎝⎛⎭⎫1nb n b n ≤1,即1bb 11bb 22…bb nn≤nb 1+b 2+…+b n =n ,∴bb 11bb 22…bb nn ≥1n.(ii)再证bb 11bb 22…bb nn ≤b 21+b 22+…+b 2n , 记S =∑k =1nb 2k ,设a k =b k S (k =1,2,…,n ),则∑k =1n a k b k =1S ∑k =1nb 2k=1=∑k =1n b k , 于是由①得⎝⎛⎭⎫b 1S b 1⎝⎛⎭⎫b 2S b 2…⎝⎛⎭⎫b n S b n ≤1, 即bb 11bb 22…bb nn ≤Sb 1+b 2+…+b n =S ,∴bb 11bb 22…bb nn ≤b 21+b 22+…+b 2n . 综合(i)(ii),②得证.课标文数20.B12,E9[2011·湖北卷] 设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l .(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f (x )+g (x )=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x -1)恒成立,求实数m 的取值范围.课标文数20.B12,E9[2011·湖北卷] 【解答】 (1)f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3. 由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线, 故有f (2)=g (2)=0,f ′(2)=g ′(2)=1.由此得⎩⎪⎨⎪⎧ 8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f (x )=x 3-4x 2+5x -2, 所以f (x )+g (x )=x 3-3x 2+2x .依题意,方程x (x 2-3x +2-m )=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根.所以Δ=9-4(2-m )>0,即m >-14.又对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x -1)恒成立.特别地,取x =x 1时,f (x 1)+g (x 1)-mx 1<-m 成立,得m <0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m >0, 故0<x 1<x 2.对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x >0, 则f (x )+g (x )-mx =x (x -x 1)(x -x 2)≤0, 又f (x 1)+g (x 1)-mx 1=0,所以函数f (x )+g (x )-mx 在x ∈[x 1,x 2]的最大值为0.于是当-14<m <0时,对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x -1)恒成立.综上,m 的取值范围是⎝⎛⎭⎫-14,0. 大纲理数10.E9[2011·重庆卷] 设m ,k 为整数,方程mx 2-kx +2=0在区间(0,1)内有两个不同的根,则m +k 的最小值为( )A .-8B .8C .12D .13 大纲理数10.E9[2011·重庆卷] D 【解析】 设f (x )=mx 2-kx +2,由f (0)=2,知f (x )的图象恒过定点(0,2).因此要使已知方程在区间(0,1)内有两个不同的根,即f (x )的图象在区间(0,1)内有两个不同的交点,必有⎩⎪⎨⎪⎧m >0,f (1)=m -k +2>0,0<k2m <1,Δ=k 2-8m >0,即⎩⎪⎨⎪⎧m >0,k >0,m -k +2>0,2m -k >0,k 2-8m >0,在直角坐标系mOk 中作出满足不等式平面区域,如图1-4所示,设z =m +k ,则直线m+k -z =0经过图中的阴影中的整点(6,7)时,z =m +k 取得最小值,即z min =13.图1-4[2011·金堂月考] 设a,b∈R,若a-|b|>0,则下列不等式中正确的是()A.b-a>0 B.a3+b3<0C.b+a>0 D.a2-b2<0[2011·黄冈质检] 已知x>y>z,且x+y+z=0,下列不等式中成立的是()A.xy>yzB.xz>yzC.xy>xzD.x|y|>z|y|[2011·新都一中月考] 下列四个不等式:①a<0<b;②b<a<0;③b<0<a;④0<b<a,其中能使1a<1b成立的充分条件有__________.[2011·浠水模拟] 不等式x2-x-6x-1>0的解集为()A.{x|x<-2或x>3}B.{x|x<-2或1<x<3}C.{x|-2<x<1或x>3}D.{x|-2<x<1或1<x<3}[2011·湖南师大附中月考] 不等式4x-3·2x+2<0的解集是__________.[2011·四川金堂中学月考] 下列不等式的证明过程正确的是 ( )A .若a 、b ∈R ,则b a +a b ≥2b a ·ab =2B .若a ∈R -,则a +4a ≥-2a ·4a=-4C .若a 、b ∈R +,则lg a +lg b ≥2lg a lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2[2011·重庆模拟] 设x ,y ∈R ,a >1,b >1,若a x =b y =2,2a +b =8,则1x +1y的最大值为__________.[2011·北京`西城一模] 已知平面区域Ω=⎩⎪⎨⎪⎧⎪⎪⎪(x ,y )⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ≤x +1,y ≥0,x ≤1, M =⎩⎪⎨⎪⎧⎪⎪⎪(x ,y )⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ≤-|x |+1,y ≥0,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为( )A.14B.13 C.12 D.23。
2012年普通高等学校招生全国统一考试(福建卷)—数学(理)解析版
2012年普通高等学校招生全国统一考试(福建卷)数学(理科)第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分·在每小题给出的四个选项中,只有一项是符合题目要求的·1.若复数z 满足i zi -=1,则z 等于( )A .i --1B .i -1C .i +-1D .i +1 考点:复数的运算· 难度:易·分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可·解答:iiz -=1 111)())(1(--=--=---=i i i i i i ·2.等差数列}{n a 中,7,10451==+a a a ,则数列}{n a 的公差为( ) A .1 B .2 C .3 D .4 考点:等差数列的定义· 难度:易·分析:本题考查的知识点为复等差数列的通项公式d n a a n )1(1-+=·解答:273104211=⇒⎩⎨⎧=+=+d d a d a · 3.下列命题中,真命题是( ) A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 考点:逻辑· 难度:易·分析:本题考查的知识点为复逻辑中的充要条件的判定· 解答:A 中,,R x ∈∀0>xe·B 中,22,4,2x x x x===∃,22,x x x<∃·C 中,⎩⎨⎧≠=+00b b a 的充要条件是1-=b a·D 中,1,1>>b a 可以得到1>ab ,当1>ab 时,不一定可以得到1,1>>b a · 4.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 考点:空间几何体的三视图· 难度:易·分析:本题考查的知识点为空间几何体的三视图,直接画出即可· 解答:圆的正视图(主视图).侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图).侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图).侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图).侧视图(左视图)为矩形,俯视图为圆· 5.下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+ 考点:不等式及基本不等式· 难度:中·分析:本题考查的知识点为不等式的性质及基本不等式的性质· 解答:A 中,)410(4122x x x x x =+=≥+时,当· B 中,])1,0((sin 2sin 1sin ∈≥+x x x ;))0,1[(sin 2sin 1sin -∈-≤+x xx · C 中,)(0)1|(|1||222R x x x x ∈≥-=+-·D 中,)](1,0(112R x x ∈∈+· 6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .41B .51C .61D .71考点:积分的计算和几何概型·难度:中·分析:本题考查的知识点为公式法计算积分和面型的几何概型· 解答:111)(=⨯=ΩS ,⎰-=10)()(dx x x A S 61|)2132(10223=-=x x · 所以61)()()(=Ω=A S S A P ·7.设函数⎩⎨⎧=为无理数为有理数x x x D ,0,1)(,则下列结论错误的是( )A .)(x D 的值域为}1,0{B .)(x D 是偶函数C .)(xD 不是周期函数 D .)(x D 不是单调函数考点:分段函数的解析式及其图像的作法· 难度:中·分析:本题考查的知识点为分段函数的定义,单调性.奇偶性和周期性的定义和判定· 解答:A 中,)(x D 由定义直接可得,)(x D 的值域为}1,0{·B 中,)(x D 定义域为R ,)(,0,1)(x D x x x D =⎩⎨⎧=-为无理数为有理数,所以)(x D 为偶函数·C 中,)(,0,1)1(xD x x x D =⎩⎨⎧=+为无理数为有理数,所以可以找到1为)(x D 的一个周期· D 中,......1)2(,0)2(,1)1(===D D D ,所以不是单调函数·8.双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .5考点:双曲线的定义· 难度:中·分析:本题考查的知识点为双曲线的定义,焦点,渐近线,抛物线的定义· 解答:抛物线x y 122=的焦点为)0,3(· 双曲线中,5492=-=b · 双曲线渐近线方程为x y 25±=· 所以焦点到渐近线的距离5)25(12532=+=d ·9.若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )A .21 B .1 C .23D .2 考点:线性规划· 难度:中·分析:本题考查的知识点为含参的线性规划,需要画出可行域的图形,含参的直线要能画出大致图像·所以,若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则mm 23≥-,即1≤m ·10.函数)(x f 在],[b a 上有定义,若对任意],[,21b a x x ∈,有)]()([21)2(2121x f x f x x f +≤+,则称)(x f 在],[b a 上具有性质P ·设)(x f 在[1,3]上具有性质P ,现给出如下命题: ①)(x f 在]3,1[上的图像时连续不断的; ②)(2x f 在]3,1[上具有性质P ;③若)(x f 在2=x 处取得最大值1,则1)(=x f ,]3,1[∈x ; ④对任意]3,1[,,,4321∈x x x x ,有)]()()()([41)2(43214321x f x f x f x f x x x x f +++≤+++·其中真命题的序号是( )A .①②B .①③C .②④D .③④考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为函数定义的理解,说明一个结论错误只需举出反例即可,说明一个结论正确要证明对所有的情况都成立· 解答:A 中,反例:如图所示的函数)(x f 的是满足性质P 的,但)(x f 不是连续不断的·B 中,反例:x x f -=)(在]3,1[上具有性质P ,22)(x x f -=在]3,1[上不具有性质P ·C 中,在]3,1[上,)]4()([21)2)4(()2(x f x f x x f f -+≤-+=, 1)(1)2()()4(1)2()()(2)4()(max max =⇒⎪⎩⎪⎨⎧==≤-==≤≥-+x f f x f x f f x f x f x f x f , 所以,对于任意1)(],3,1[,21=∈x f x x ·D 中,=+++)2(4321x x x x f )2)()((4321x x x x f +++)]()()()([41))]()((21))()((21[21)]2()2([21432121214321x f x f x f x f x f x f x f x f x x f x x f +++≤+++≤+++≤· 第Ⅱ卷(非选择题 共100分)二.填空题:本大题共4小题,每小题4分,共16分·把答案填在答题卡的相应位置·11.4)(x a +的展开式中3x 的系数等于8,则实数=a _________·【2】 考点:二项式定理· 难度:易·分析:本题考查的知识点为二项式定理的展开式,直接应用即可· 解答:4)(x a +中含3x 的一项为r rr r x aC T -+=441,令3=r ,则83434=-a C ,即2=a ·12.阅读右图所示的程序框图,运行相应地程序,输出的s 值等于_____________________·【3-】考点:算法初步· 难度:易·分析:本题考查的知识点为算法中流程图的读法,直接根据箭头的指向运算即可· 解答: 1,1==s k ;2,1112==-⨯=k s ; 3,0212==-⨯=k s ; 4,3302=-=-⨯=k s ;结束·13.已知ABC ∆_________·【42-】 考点:等比数列和余弦定理· 难度:易·分析:本题考查的知识点为等比数列的定义和余弦定理的应用· 解答:设ABC ∆三边为m c m b m a 2,2,===, 则可得C ∠所对的边最大,且22cos 222=-+=abc b a C · 14.数列}{n a 的通项公式12cos+=πn n a n ,前n 项和为n S ,则=2012S ___________·【3018】 考点:数列和三角函数的周期性· 难度:中·分析:本题考查的知识点为三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和· 解答: 1012cos )14(12)14(cos )14(14+=+⨯+=++⨯+=+ππn n n a n , 1)24(1cos )24(12)24(cos )24(24++-=+⨯+=++⨯+=+n n n n a n ππ,10123cos )34(12)34(cos )34(34+=+⨯+=++⨯+=+ππn n n a n ,14412cos )44(12)44(cos)44(44++=+⨯+=++⨯+=+n n n n a n ππ, 所以++14n a ++24n a ++34n a 644=+n a · 即30186420122012=⨯=S · 15.对于实数b a ,,定义运算“*”:⎩⎨⎧>-≤-=*ba ab b ba ab a b a ,,22,设)1()12()(-*-=x x x f ,且关于x 的方程为)()(R m m x f ∈=恰有三个互不相等的实数根321,,x x x ,则321x x x 的取值范围是_____·【)0,1631(-】 考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为新定义的理解,函数与方程中根的个数·解答:由题可得,⎩⎨⎧>--≤-=0),1(0),12()(x x x x x x x f可得0,21),41,0(132<=+∈x x x m , 且↑↑→||,,41132x x x m 所以41=m 时,=max 321||x x x 1631-, 所以∈m )0,1631(-·三.解答题:本大题共6小题,共84分·解答应写出文字说明,证明过程或演算步骤·16.(本小题满分13分)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲.乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车my =中随机抽取50辆,统计书数据如下:将频率视为概率,解答下列问题:(I )从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (II )若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由· 考点:统计概率及随机变量·难度:易· 分析: 解答:(I )首次出现故障发生在保修期内的概率为2315010P +== (II )随机变量1X 的分布列为 随机变量2X 的分布列为(III )1139123 2.86255010EX =⨯+⨯+⨯=(万元) 2191.82.9 2.791010EX =⨯+⨯=(万元) 12EX EX > 所以应该生产甲品牌汽车·17.(本小题满分13分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数· (1)02217cos 13sin 17cos 13sin -+; (2)02215cos 15sin 15cos 15sin -+;(3)02212cos 18sin 12cos 18sin -+; (4)00020248cos )18sin(48cos )13(sin --+-; (5)00020255cos )25sin(55cos )25(sin --+-·(I )试从上述五个式子中选择一个,求出这个常数;(II )根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论· 考点:三角恒等变换· 难度:中· 分析: 解答:(I )选择(2):22013sin 15cos 15sin15cos151sin 3024+-=-= (II )三角恒等式为:22003sin cos (30)sin cos(30)4αααα+---=22002222sin cos (30)sin cos(30)11sin sin )sin sin )22333sin cos 444αααααααααααα+---=++-+=+=(lby lfx )18.(本小题满分13分)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点· (Ⅰ)求证:11AD E B ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由·(Ⅲ)若二面角11A E B A --的大小为030,求AB 的长·考点:立体几何· 难度:中· 分析: 解答:(Ⅰ)长方体1111D C B A ABCD -中,11==AD AA得:1111111111,,AD A D AD A B A D A B A A D ⊥⊥=⇔⊥ 面11A B CD1B E ⊂面11A B CD 11B E AD ⇒⊥(Ⅱ)取1AA 的中点为P ,1AB 中点为Q ,连接PQ 在11AA B ∆中,111111//,////////22PQ A B DE A B PQ DE PD QE PD ⇒⇒⇒面AE B 1 此时11122AP AA == (Ⅲ)设11A D AD O = ,连接AO ,过点O 作1OH B E ⊥于点H ,连接AH 1AO ⊥面11A B CD ,1O H B E ⊥1A H B E⇒⊥ 得:AHO ∠是二面角11A E B A --的平面角30AHO ο⇒∠=在Rt AOH ∆中,30,90,2AHO AOH AH OH οο∠=∠==⇒=在矩形11A B CD 中,1,CD x AD ==11112222222228B OE x xS x ∆=--⨯-⨯=1222x =⇔=得:2AB =19.(本小题满分13分)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e ·过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8· (Ⅰ)求椭圆E 的方程·(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q ·试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由·考点:三角恒等变换·难度:难·分析:解答:(Ⅰ)设c 则2212342c e a c a b a ==⇔=⇔= 2ABF ∆的周长为22121288482,1AB AF BF AF AF BF BF a a b c ++=⇔+++=⇔=⇔===椭圆E 的方程为22143x y += (Ⅱ)由对称性可知设000(,)(0)P x y y >与(,0)M x220031434x x y y y k y '+=⇒==⇒=- 直线00000033(1):()(4,)4x x l y y x x Q y y --=--⇒ 000003(1)0()(4)0(1)(1)(3)x M P M Q x x x y x x x x y -=⇔--+⨯=⇔-=-- (*) (*)对0(2,2)x ∈-恒成立1x ⇔=, 得(1,0)M20.(本小题满分14分)已知函数R a ex ax e x f x ∈-+=,)(2(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P ·考点:导数·难度:难·分析:解答:(Ⅰ)2()()2x x f x e ax ex f x e ax e '=+-⇒=+-由题意得:(1)200f e a e a '=+-=⇔=()01,()0x f x e e x f x x ''=->⇔><⇔<得:函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞(Ⅱ)设00(,())P x f x ; 则过切点P 的切线方程为000()()()y f x x x f x '=-+令000()()()()()g x f x f x x x f x '=---;则0()0g x =切线与曲线只有一个公共点P ()0g x ⇔=只有一个根0x000()()()2()xx g x f x f x e e a x x '''=-=-+-,且0()0g x '=(1)当0a ≥时,00()0,()0g x x x g x x x ''>⇔><⇔<得:当且仅当0x x =时,min 0()()0g x g x ==由0x 的任意性,0a ≥不符合条件(lby lfx )(2)当0a <时,令00()2()()20ln(2)x x x h x e e a x x h x e a x x a ''=-+-⇒=+=⇔==- ①当0x x '=时,00()0,()0h x x x h x x x ''>⇔><⇔<当且仅当0x x =时,0()()0()g x g x g x ''≥=⇒在x R ∈上单调递增()0g x ⇔=只有一个根0x②当0x x '>时,()0,()0h x x x h x x x ''''>⇔><⇔<得:0()()0g x g x '''<=,又,(),,()x g x x g x ''→+∞→+∞→-∞→+∞存在两个数0x x ''<使,0()()0g x g x ''''==得:00()0()()0g x x x x g x g x '''''<⇔<<⇒<=又,()x g x '→+∞→+∞存在1x x ''>使()0g x ''=,与条件不符·③当0x x '<时,同理可证,与条件不符从上得:当0a <时,存在唯一的点(ln(2),(ln(2))P a f a --使该点处的切线与曲线只有一个公共点P21.本题设有(1).(2).(3)三个选考题,每题7分,请考生任选2题作答,满分14分·如果多做,则按所做的前两题计分·作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框图黑,并将所选题号填入括号中·(1)(本小题满分7分)选修4-2:矩阵与变换设曲线12222=++y xy x 在矩阵 ⎝⎛=b a A 0(0)1a ⎫>⎪⎭对应的变换作用下得到的曲线为122=+y x ·(Ⅰ)求实数b a ,的值· (Ⅱ)求2A 的逆矩阵·解:(Ⅰ)设曲线12222=++y xy x 上任一点(,)P x y 在矩阵A 对应变换下的像是(,)P x y ''' 则220()()11x a x ax x ax ax bx y y b y bx y y bx y''=⎛⎫⎛⎫⎛⎫⎛⎫⎧==⇔⇒++=⎨ ⎪ ⎪⎪ ⎪''+=+⎝⎭⎝⎭⎝⎭⎝⎭⎩ 得:222222()212,221,1a b x bxy y a b b a b +++=⇒+==⇔==(Ⅱ)由(Ⅰ)得:21010101011111121A A ⎛⎫⎛⎫⎛⎫⎛⎫=⇒== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21101()21A A -⎛⎫=⇒= ⎪-⎝⎭【考点定位】本题主要考查矩阵与变换等基础知识,考查运算求解能力,考查转化化归思想.(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为几点,x 轴的正半轴为极轴建立极坐标系·已知直线l上两点N M ,的极坐标分别为)2,332(),0,2(π,圆C 的参数方程θθθ(sin 23cos 22⎩⎨⎧+-=+=y x 为参数)·(Ⅰ)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程;(Ⅱ)判断直线l 与圆C 的位置关系·【解析】(Ⅰ)由题意知(2,0),M N ,因为P 是线段MN中点,则P因此OP 直角坐标方程为:.y x =(Ⅱ)因为直线l 上两点(2,0),(0,3M N∴l 30y -=,圆心(2,,半径2r =.32d ∴==<r ,故直线l 和圆C 相交. 【考点定位】本题主要考查极坐标与参数方程的互化.圆的参数方程等基础知识,考查运算求解能力,考查转化化归思想·(3)(本小题满分7分)选修4-5:不等式选讲已知函数R m x m x f ∈--=|,2|)(,且0)2(≥+x f 的解集为]1,1[-·(Ⅰ)求m 的值;(Ⅱ)若R c b a ∈,,,且m cb a =++31211,求证:932≥++c b a · 【解析】(1)∵(2)f x m x x +=-≥0,≤∴m ,∴0m m x m >⇒-<< (2)0111f x x m +≥⇔-≤≤⇒= (2)由(1)知1111,,,23a b c R a b c++=∈,由柯西不等式得(lby lfx ) 11123(23)()23a b c a b c a b c +++++++29≥= 【考点定位】本题主要考查绝对值不等式.柯西不等式等基本知识,考查运算求解能力,考查化归转化思想。
2012年普通高等学校招生全国统一考试(福建卷)数学试题 (文科)解析版
第 4页 (共 7页)
(1) (2)
求三棱锥 A-MCC1 的体积; 当 A1M+MC 取得最小值时,求证:B1M⊥平面 MAC。
A.1006
B.2012
C.503
D.0
12.已知 f(x)=x³-6x²+9x-abc,a<b<c,且 f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f (1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0. 其中正确结论的序号是
第 2页 (共 7页)
A.①③
的根本。
第 1页 (共 7页)
7.直线 x+ 2 y -2=0 与圆 x2+y2=4 相交于 A,B 两点,则弦 AB 的长度等于
A. 2 5
B 2 3.
C. 3
D.1
8.函数 f(x)=sin(x- )的图像的一条对称轴是
4
A.x=
4
B.x=
2
ห้องสมุดไป่ตู้
C.x=-
4
D.x=-
2
1, x o 9.设 f (x) 0, x 0
,
g(x)
1,x为有理数
,则
f(g(π))的值为
1, x 0
0, x是无理数
A1
B0
C -1
D .π
【解析】因为 g(π)=0 所以 f(g(π))=f(0)=0 。 B 正确
【答案】B
【考点定位】该题主要考查函数的概念,定义域和值域,考查求值计算能力。
10.若直线 y=2x 上存在点(x,y)满足约束条件
2012年全国各地高考数学试题及解答分类汇编大全(06 数列)
2012年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题:1. (2012安徽文)公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( ) (A )1 ()B 2 ()C 4 ()D 8 【解析】选A2231177551616421a a a a a a =⇔=⇔==⨯⇔=2. (2012安徽理){}n a 的各项都是正数,且31116a a =,则162log a =( ) ()A 4 (B ) 5 ()C 6 ()D 7 【解析】选B29311771672161616432log 5a a a a a a q a =⇔=⇔=⇒=⨯=⇔=3.(2012北京文)已知为等比数列,下面结论种正确的是( )(A )a 1+a 3≥2a 2 (B )2223212a a a ≥+ (C )若a 1=a 3,则a 1=a 2(D )若a 3>a 1,则a 4>a 2 【解析】当01<a ,0<q ,时,可知01<a ,03<a ,02>a ,所以A 选项错误;当1-=q 时,C 选项错误:当0<q 时,241313a a q a q a a a <⇒<⇒>,与D 选项矛盾,因此描述均值定理的B 选项为正确答案,故选B 。
【答案】B4. (2012福建理) 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A.1B.2C.3D.4 【答案】B【解析】153210a a a +==,35a =,所以432d a a =-= 【点评】本题考查等差数列的中项公式,定义.5. (2012福建文)数列{a n }的通项公式2cosπn n a n =,其前n 项和为S n ,则S 2012等于( ) A.1006 B.2012 C.503 D.06.(2012湖北文、理)定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x =④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为 ( )A .① ②B .③ ④C .① ③D .② ④ 考点分析:本题考察等比数列性质及函数计算. 难易度:★【解析1】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n nf a f a +===;对于④,11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.解析2:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a an n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等. 7. (2012江西文) 观察下列事实|x|+|y|=1的不同整数解(x,y )的个数为4 , |x|+|y|=2的不同整数解(x,y )的个数为8, |x|+|y|=3的不同整数解(x,y )的个数为12 ….则|x|+|y|=20的不同整数解(x ,y )的个数为( )A.76B.80C.86D.92 【答案】B【解析】本题主要为数列的应用题,观察可得不同整数解的个数可以构成一个首先为4,公差为4的等差数列,则所求为第20项,可计算得结果.8. (2012辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )(A) 12 (B) 16 (C) 20 (D)24 【答案】B【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
2012年高考真题理科数学解析汇编:不等式.pdf
一、学习目标 1、懂得学好各门学科、全面打好基础以及参加社会生活和社会实践的重要意义。
2、能根据学科特点和个人实际选择学习方法,提高学习效率;开阔眼界,学习通过多种渠道获得知识。
3、学会发挥个人特长,培养多方面的兴趣;积极参加社会生活和社会实践,在生活和实践中增长才干。
二、学习重难点 重点:兼顾全面基础与学科特长 难点:从社会生活和社会实践中学习 三、体验学习 (二)小组合作总结 小强向学习成绩好的小明和小丽请教学英语的好方法。
小明说:“早晨七点背单词记的最牢。
”小丽说:“错了,晚上八点才最好。
”小强迷惑了,为什么两个人的方法不一样,究竟谁的才是最好的?他该怎么做? 四、快乐链接 进入初中后,李明的数学成绩越来越好,语文成绩却下降了。
妈妈问他原因,他说数学老师讲课很有意思,他很喜欢,而语文老师的上课方式他不太喜欢,上语文课的时候就不想听,慢慢地对语文也没什么兴趣了。
想一想:①李明是以什么标准来确定 自己的学习喜好? ②如果李明这样继续下去,会有什么后果? ③在你的学习中,有类似的情况吗?如果你是李明,你会如何去学习你不感兴趣的学科? ④作为李明的同龄人,你觉得中学阶段的我们可以仅凭自己的喜好来决定学或不学或用不用功学哪门课吗?(结合课本30页“比尔.盖茨的建议”谈启示) 五、自主检测 1.王博认为:在初中的学习中,语文、数学、英语是主课,必须学好,其他学科是辅科,可以少花时间,及格即可。
对此认识正确的是( ) A.这是科学的学习方法 B.这不利于我们的全面发展 C.主次分明,以主带辅,共同提高 D.有利于培养起学习语、数、外的兴趣 2.初一学生小华决定利用假期参加义工组织的活动。
通过这种方式体验社会生活,可以( ) ①把课堂学到的理论知识与社会实践联系起来,加深对课堂的理解 ②能培养和锻炼小华的实践能力 ③早日独立,摆脱父母的管教 ④培养小华的社会责任感A. ①②③B. ②③④C. ①③④D. ①②④ 3.阿强觉得一个人独自学习效果好,而小伟觉得与伙伴一起学习效果更好;小丽在周围同学说话的时候也能看书,而阿华却做不到。
2012年普通高等学校招生全国统一考试(福建卷)—数学(理)解析版
2012年普通高等学校招生全国统一考试(福建卷)数学(理科)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分·在每小题给出的四个选项中,只有一项是符合题目要求的·1、若复数z 满足i zi -=1,则z 等于( )A .i --1B .i -1C .i +-1D .i +1 考点:复数的运算· 难度:易·分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可·解答:iiz -=1 111)())(1(--=--=---=i i i i i i ·2、等差数列}{n a 中,7,10451==+a a a ,则数列}{n a 的公差为( ) A .1 B .2 C .3 D .4 考点:等差数列的定义· 难度:易·分析:本题考查的知识点为复等差数列的通项公式d n a a n )1(1-+=·解答:273104211=⇒⎩⎨⎧=+=+d d a d a · 3、下列命题中,真命题是( ) A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 考点:逻辑· 难度:易·分析:本题考查的知识点为复逻辑中的充要条件的判定· 解答:A 中,,R x ∈∀0>xe·B 中,22,4,2x x x x===∃,22,x x x<∃·C 中,⎩⎨⎧≠=+00b b a 的充要条件是1-=b a·D 中,1,1>>b a 可以得到1>ab ,当1>ab 时,不一定可以得到1,1>>b a · 4、一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 考点:空间几何体的三视图· 难度:易·分析:本题考查的知识点为空间几何体的三视图,直接画出即可· 解答:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆· 5、下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+ 考点:不等式及基本不等式· 难度:中·分析:本题考查的知识点为不等式的性质及基本不等式的性质· 解答:A 中,)410(4122x x x x x =+=≥+时,当· B 中,])1,0((sin 2sin 1sin ∈≥+x x x ;))0,1[(sin 2sin 1sin -∈-≤+x xx · C 中,)(0)1|(|1||222R x x x x ∈≥-=+-·D 中,)](1,0(112R x x ∈∈+· 6、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .41B .51C .61D .71考点:积分的计算和几何概型·难度:中·分析:本题考查的知识点为公式法计算积分和面型的几何概型· 解答:111)(=⨯=ΩS ,⎰-=10)()(dx x x A S 61|)2132(10223=-=x x · 所以61)()()(=Ω=A S S A P ·7、设函数⎩⎨⎧=为无理数为有理数x x x D ,0,1)(,则下列结论错误的是( )A .)(x D 的值域为}1,0{B .)(x D 是偶函数C .)(xD 不是周期函数 D .)(x D 不是单调函数考点:分段函数的解析式及其图像的作法· 难度:中·分析:本题考查的知识点为分段函数的定义,单调性、奇偶性和周期性的定义和判定· 解答:A 中,)(x D 由定义直接可得,)(x D 的值域为}1,0{·B 中,)(x D 定义域为R ,)(,0,1)(x D x x x D =⎩⎨⎧=-为无理数为有理数,所以)(x D 为偶函数·C 中,)(,0,1)1(xD x x x D =⎩⎨⎧=+为无理数为有理数,所以可以找到1为)(x D 的一个周期· D 中,......1)2(,0)2(,1)1(===D D D ,所以不是单调函数·8、双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .5考点:双曲线的定义· 难度:中·分析:本题考查的知识点为双曲线的定义,焦点,渐近线,抛物线的定义· 解答:抛物线x y 122=的焦点为)0,3(· 双曲线中,5492=-=b · 双曲线渐近线方程为x y 25±=· 所以焦点到渐近线的距离5)25(12532=+=d ·9、若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )A .21 B .1 C .23D .2 考点:线性规划· 难度:中·分析:本题考查的知识点为含参的线性规划,需要画出可行域的图形,含参的直线要能画出大致图像·所以,若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则mm 23≥-,即1≤m ·10、函数)(x f 在],[b a 上有定义,若对任意],[,21b a x x ∈,有)]()([21)2(2121x f x f x x f +≤+,则称)(x f 在],[b a 上具有性质P ·设)(x f 在[1,3]上具有性质P ,现给出如下命题: ①)(x f 在]3,1[上的图像时连续不断的; ②)(2x f 在]3,1[上具有性质P ;③若)(x f 在2=x 处取得最大值1,则1)(=x f ,]3,1[∈x ; ④对任意]3,1[,,,4321∈x x x x ,有)]()()()([41)2(43214321x f x f x f x f x x x x f +++≤+++·其中真命题的序号是( )A .①②B .①③C .②④D .③④考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为函数定义的理解,说明一个结论错误只需举出反例即可,说明一个结论正确要证明对所有的情况都成立· 解答:A 中,反例:如图所示的函数)(x f 的是满足性质P 的,但)(x f 不是连续不断的·B 中,反例:x x f -=)(在]3,1[上具有性质P ,22)(x x f -=在]3,1[上不具有性质P ·C 中,在]3,1[上,)]4()([21)2)4(()2(x f x f x x f f -+≤-+=, 1)(1)2()()4(1)2()()(2)4()(max max =⇒⎪⎩⎪⎨⎧==≤-==≤≥-+x f f x f x f f x f x f x f x f , 所以,对于任意1)(],3,1[,21=∈x f x x ·D 中,=+++)2(4321x x x x f )2)()((4321x x x x f +++)]()()()([41))]()((21))()((21[21)]2()2([21432121214321x f x f x f x f x f x f x f x f x x f x x f +++≤+++≤+++≤· 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分·把答案填在答题卡的相应位置·11、4)(x a +的展开式中3x 的系数等于8,则实数=a _________·【2】 考点:二项式定理· 难度:易·分析:本题考查的知识点为二项式定理的展开式,直接应用即可· 解答:4)(x a +中含3x 的一项为r rr r x aC T -+=441,令3=r ,则83434=-a C ,即2=a ·12、阅读右图所示的程序框图,运行相应地程序,输出的s 值等于_____________________·【3-】考点:算法初步· 难度:易·分析:本题考查的知识点为算法中流程图的读法,直接根据箭头的指向运算即可· 解答: 1,1==s k ;2,1112==-⨯=k s ; 3,0212==-⨯=k s ; 4,3302=-=-⨯=k s ;结束·13、已知ABC ∆_________·【42-】 考点:等比数列和余弦定理· 难度:易·分析:本题考查的知识点为等比数列的定义和余弦定理的应用· 解答:设ABC ∆三边为m c m b m a 2,2,===, 则可得C ∠所对的边最大,且22cos 222=-+=abc b a C · 14、数列}{n a 的通项公式12cos+=πn n a n ,前n 项和为n S ,则=2012S ___________·【3018】 考点:数列和三角函数的周期性· 难度:中·分析:本题考查的知识点为三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和· 解答: 1012cos )14(12)14(cos )14(14+=+⨯+=++⨯+=+ππn n n a n , 1)24(1cos )24(12)24(cos )24(24++-=+⨯+=++⨯+=+n n n n a n ππ,10123cos )34(12)34(cos )34(34+=+⨯+=++⨯+=+ππn n n a n ,14412cos )44(12)44(cos)44(44++=+⨯+=++⨯+=+n n n n a n ππ, 所以++14n a ++24n a ++34n a 644=+n a · 即30186420122012=⨯=S · 15、对于实数b a ,,定义运算“*”:⎩⎨⎧>-≤-=*ba ab b ba ab a b a ,,22,设)1()12()(-*-=x x x f ,且关于x 的方程为)()(R m m x f ∈=恰有三个互不相等的实数根321,,x x x ,则321x x x 的取值范围是_____·【)0,1631(-】 考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为新定义的理解,函数与方程中根的个数·解答:由题可得,⎩⎨⎧>--≤-=0),1(0),12()(x x x x x x x f可得0,21),41,0(132<=+∈x x x m , 且↑↑→||,,41132x x x m 所以41=m 时,=max 321||x x x 1631-, 所以∈m )0,1631(-·三、解答题:本大题共6小题,共84分·解答应写出文字说明,证明过程或演算步骤·16、(本小题满分13分)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿my =车中随机抽取50辆,统计书数据如下:将频率视为概率,解答下列问题:(I )从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (II )若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由· 考点:统计概率及随机变量·难度:易· 分析: 解答:(I )首次出现故障发生在保修期内的概率为2315010P +== (II )随机变量1X 的分布列为 随机变量2X 的分布列为(III )1139123 2.86255010EX =⨯+⨯+⨯=(万元) 2191.82.9 2.791010EX =⨯+⨯=(万元) 12EX EX > 所以应该生产甲品牌汽车·17、(本小题满分13分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数· (1)02217cos 13sin 17cos 13sin -+; (2)02215cos 15sin 15cos 15sin -+;(3)02212cos 18sin 12cos 18sin -+; (4)00020248cos )18sin(48cos )13(sin --+-; (5)00020255cos )25sin(55cos )25(sin --+-·(I )试从上述五个式子中选择一个,求出这个常数;(II )根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论· 考点:三角恒等变换· 难度:中· 分析: 解答:(I )选择(2):22013sin 15cos 15sin15cos151sin 3024+-=-= (II )三角恒等式为:22003sin cos (30)sin cos(30)4αααα+---=22002222sin cos (30)sin cos(30)11sin sin )sin sin )22333sin cos 444αααααααααααα+---=++-+=+=(lby lfx )18、(本小题满分13分)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点· (Ⅰ)求证:11AD E B ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由·(Ⅲ)若二面角11A E B A --的大小为030,求AB 的长·考点:立体几何· 难度:中· 分析: 解答:(Ⅰ)长方体1111D C B A ABCD -中,11==AD AA 得:1111111111,,AD A D AD A B A DA B A A D ⊥⊥=⇔⊥面11A B CD1B E ⊂面11A B CD 11B E AD ⇒⊥(Ⅱ)取1AA 的中点为P ,1AB 中点为Q ,连接PQ 在11AA B ∆中,111111//,////////22PQ A B DE A B PQ DE PD QE PD ⇒⇒⇒面AE B 1 此时11122AP AA == (Ⅲ)设11A DAD O =,连接AO ,过点O 作1OH B E ⊥于点H ,连接AH1AO ⊥面11A B CD ,1O H B E ⊥1A H B E⇒⊥ 得:AHO ∠是二面角11A E B A --的平面角30AHO ο⇒∠=在Rt AOH ∆中,30,90,2AHO AOH AH OH οο∠=∠==⇒=在矩形11A B CD 中,1,CD x AD ==11112222222228B OE x xS x ∆=--⨯-⨯=1222x =⇔=得:2AB =19、(本小题满分13分)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e ·过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8· (Ⅰ)求椭圆E 的方程·(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q ·试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由·考点:三角恒等变换·难度:难·分析:解答:(Ⅰ)设c 则2212342c e a c a b a ==⇔=⇔= 2ABF ∆的周长为22121288482,1AB AF BF AF AF BF BF a a b c ++=⇔+++=⇔=⇔===椭圆E 的方程为22143x y += (Ⅱ)由对称性可知设000(,)(0)P x y y >与(,0)M x220031434x x y y y k y '+=⇒==⇒=- 直线00000033(1):()(4,)4x x l y y x x Q y y --=--⇒ 000003(1)0()(4)0(1)(1)(3)x M P M Q x x x y x x x x y -=⇔--+⨯=⇔-=--(*) (*)对0(2,2)x ∈-恒成立1x ⇔=, 得(1,0)M20、(本小题满分14分)已知函数R a ex ax e x f x ∈-+=,)(2(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P ·考点:导数·难度:难·分析:解答:(Ⅰ)2()()2x x f x e ax ex f x e ax e '=+-⇒=+-由题意得:(1)200f e a e a '=+-=⇔=()01,()0x f x e e x f x x ''=->⇔><⇔<得:函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞(Ⅱ)设00(,())P x f x ; 则过切点P 的切线方程为000()()()y f x x x f x '=-+令000()()()()()g x f x f x x x f x '=---;则0()0g x =切线与曲线只有一个公共点P ()0g x ⇔=只有一个根0x000()()()2()xx g x f x f x e e a x x '''=-=-+-,且0()0g x '=(1)当0a ≥时,00()0,()0g x x x g x x x ''>⇔><⇔<得:当且仅当0x x =时,min 0()()0g x g x ==由0x 的任意性,0a ≥不符合条件(lby lfx )(2)当0a <时,令00()2()()20ln(2)x x x h x e e a x x h x e a x x a ''=-+-⇒=+=⇔==- ①当0x x '=时,00()0,()0h x x x h x x x ''>⇔><⇔<当且仅当0x x =时,0()()0()g x g x g x ''≥=⇒在x R ∈上单调递增()0g x ⇔=只有一个根0x②当0x x '>时,()0,()0h x x x h x x x ''''>⇔><⇔<得:0()()0g x g x '''<=,又,(),,()x g x x g x ''→+∞→+∞→-∞→+∞存在两个数0x x ''<使,0()()0g x g x ''''==得:00()0()()0g x x x x g x g x '''''<⇔<<⇒<=又,()x g x '→+∞→+∞存在1x x ''>使()0g x ''=,与条件不符·③当0x x '<时,同理可证,与条件不符从上得:当0a <时,存在唯一的点(ln(2),(ln(2))P a f a --使该点处的切线与曲线只有一个公共点P21、本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分·如果多做,则按所做的前两题计分·作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框图黑,并将所选题号填入括号中·(1)(本小题满分7分)选修4-2:矩阵与变换设曲线12222=++y xy x 在矩阵 ⎝⎛=b a A 0(0)1a ⎫>⎪⎭对应的变换作用下得到的曲线为122=+y x ·(Ⅰ)求实数b a ,的值· (Ⅱ)求2A 的逆矩阵·解:(Ⅰ)设曲线12222=++y xy x 上任一点(,)P x y 在矩阵A 对应变换下的像是(,)P x y ''' 则220()()11x a x ax x ax ax bx y y b y bx y y bx y''=⎛⎫⎛⎫⎛⎫⎛⎫⎧==⇔⇒++=⎨ ⎪ ⎪⎪ ⎪''+=+⎝⎭⎝⎭⎝⎭⎝⎭⎩ 得:222222()212,221,1a b x bxy y a b b a b +++=⇒+==⇔==(Ⅱ)由(Ⅰ)得:21010101011111121A A ⎛⎫⎛⎫⎛⎫⎛⎫=⇒== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21101()21A A -⎛⎫=⇒= ⎪-⎝⎭【考点定位】本题主要考查矩阵与变换等基础知识,考查运算求解能力,考查转化化归思想、(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为几点,x 轴的正半轴为极轴建立极坐标系·已知直线l上两点N M ,的极坐标分别为)2,332(),0,2(π,圆C 的参数方程θθθ(sin 23cos 22⎩⎨⎧+-=+=y x 为参数)·(Ⅰ)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程;(Ⅱ)判断直线l 与圆C 的位置关系·【解析】(Ⅰ)由题意知(2,0),M N ,因为P 是线段MN中点,则P因此OP 直角坐标方程为:.y x =(Ⅱ)因为直线l 上两点(2,0),(0,3M N∴l 30y -=,圆心(2,,半径2r =、32d ∴==<r ,故直线l 和圆C 相交、 【考点定位】本题主要考查极坐标与参数方程的互化、圆的参数方程等基础知识,考查运算求解能力,考查转化化归思想·(3)(本小题满分7分)选修4-5:不等式选讲已知函数R m x m x f ∈--=|,2|)(,且0)2(≥+x f 的解集为]1,1[-·(Ⅰ)求m 的值;(Ⅱ)若R c b a ∈,,,且m cb a =++31211,求证:932≥++c b a · 【解析】(1)∵(2)f x m x x +=-≥0,≤∴m ,∴0m m x m >⇒-<< (2)0111f x x m +≥⇔-≤≤⇒= (2)由(1)知1111,,,23a b c R a b c++=∈,由柯西不等式得(lby lfx ) 11123(23)()23a b c a b c a b c +++++++29≥= 【考点定位】本题主要考查绝对值不等式、柯西不等式等基本知识,考查运算求解能力,考查化归转化思想。
福建省2012年高考数学 最新联考试题分类大汇编(6)不等式试题
福建省2012年高考数学 最新联考试题分类大汇编(6)不等式试题一、选择题:6. (福建省泉州市2012年3月普通高中毕业班质量检查理科)已知实数,x y 满足2220,0,4,x y x y x y ⎧-+≥⎪+≥⎨⎪+≤⎩则2z x y =+的最大值是 A .5 B .1- C .2D.【答案】B10.(福建省宁德市2012年高三毕业班质量检查文科)若0.23log 0.5,3,sin 2a b c ===,则( C )A .a b c <<B .c a b <<C .a c b <<D .c b a <<9.(福建省宁德市2012年高三毕业班质量检查理科) “0a ≥”是“2,10x R a x x ∃∈++≥为真命题”的( C )A .充要条件B .必要但不充分条件C .充分但不必要条件D .既不充分也不必要条件11.(福建省莆田市2012年3月高三毕业班教学质量检查文科)如图是定义在[-4,6]上的函数()f x 的图象,若(2)1f -=, 则不等式2(1)1f x -+<的解集是 ( B ) A.(,)-∞⋃+∞ B.(]C .(2,1)-D.(-1,1)二、填空题:13.(福建省福州市2012年3月高中毕业班质量检查理科)在约束条件⎪⎩⎪⎨⎧≥-+≤≤01,2,1:y x y x 下,目标函数)0,0(>>+=b a by ax z 的最大值为1,则ab 的最大值等于_____ . 13. 18【解析】画出可行域知)0,0(>>+=b a by ax z 过()1,2取得最大值,所以21a b +=()211212.2228a b ab a b +⎛⎫=⋅≤⨯= ⎪⎝⎭14.(福建省宁德市2012年高三毕业班质量检查文科)若“,(2)10x R a x ∀∈-+>”是真命题,则实数a 的取值集合是 。
12年高考真题——理科数学(福建卷)-推荐下载
)
-1-/8
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
福建省高考数学 最新联考试题分类大汇编(4)数列试题
福建省2012年高考数学 最新联考试题分类大汇编(4)数列试题一、选择题:二、填空题: 11. (福建省泉州市2012年3月普通高中毕业班质量检查理科)已知等差数列}{n a 中, 51a =,322a a =+,则11S = .11.【解析】62,3,d a ==()111116111133.2a a S a +===三、解答题:16. (福建省福州市2012年3月高中毕业班质量检查理科)(本小题满分13分)[在数列}{n a 中,21=a ,点))(,(1N n a a n n ∈+在直线x y 2=上.(I)求数列}{n a 的通项公式;(Ⅱ)若n n a b 2log =,求数列}1{1+⋅n n b b 的前n 项和n T . 16.解:(Ⅰ)由已知得12n n a a +=,所以12n n a a += 又12a =, 所以数列{}n a 是首项为2,公比为2的等比数列,所以1*122()n n n a a n -=⋅=∈N .(Ⅱ)由(Ⅰ)知,2n n a =,所以2log ,n n b a n == 所以11111(1)1n n b b n n n n +==-⋅⋅++, 所以111111*********n T n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++. 解:(Ⅰ)设数列n a 的公比为q ,则213412,1,2a a q a a q ==⎧⎪⎨==⎪⎩………………………………2分17.(福建省晋江市四校2012届高三第二次联合考试文科)(本题满分12分) 等比数列{}n a 中,已知16,252==a a1)求数列{}n a 的通项n a。
2012年高考文科数学福建卷-答案
2012年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】22(2i)44i i 34i +=++=+【提示】直接根据复数的乘法的运算法则,以及2i 1=-可求出所求。
【考点】复数代数形式的乘除运算。
2.【答案】D【解析】A .由{1,2,3,4}M =,{2,2}N =-,可知2N -∈,但是2M -∉,则N M ∉,故A 错误; B .{1,2,3,4,2}M N M =-≠U ,故B 错误; C .{2}M N N =≠I ,故C 错误; D .{2}M N =I ,故D 正确。
【提示】由{1,2,3,4}M =,{2,2}N =-,则可知,2N -∈,但是2M -∉,则N M ∉,{1,2,3,4,2}M N M =-≠U ,{2}M N N =≠I ,从而可判断。
【考点】集合的包含关系判断及应用。
3.【答案】D【解析】因为向量(1,2)a x =-r ,(2,1)b =r ,a b ⊥r r,所以2(1)20x -+=,解得0x =。
故选D 。
【提示】直接利用向量垂直的充要条件,通过坐标运算求出x 的值即可。
【考点】必要条件、充分条件与充要条件的判断,数量积判断两个平面向量的垂直关系。
4.【答案】D【解析】A .球的三视图均为圆,且大小均等;B .三条侧棱两两垂直且相等的适当高度的正三棱锥,一个侧面放到平面上,其三视图均为三角形且形状都相同;C .正方体的三视图可以是三个大小均等的正方形;D .圆柱的三视图中必有一个为圆,其他两个为矩形。
故一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是圆柱。
故选D 。
故答案为:211/ 11。
2012年高考数学试题解析 分项版之专题06 不等式 教师版 文.pdf
第4讲 一次方程(组) 命题点年份(2013~2015)题序题型分值考查方向一次方程(组)的应用201420(1)解答题5近5. 一元一次方程及解法 一元一次方程的概念只含有一个未知数并且含未知数的式子都是整式未知数的次数是1系数不是0的方程叫做一元一次方程.解一元一次方程的步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1. 【易错提示】 掌握移项法则需注意:(1)移项要变号不变号不能移项;(2)可以同时移动多项. 二元一次方程组的解法 二元一次方程组的解二元一次方程组的①________________叫做二元一次方程组的解.解二元一次方程组的方法步骤二元一次方程组________方程.解二元一次方程组的思路与方法消元是解二元一次方程组的基本思路方法有③____消元法和④____消元法两种. 一次方程(组)的应用 列一次方程(组)解应用题的步骤(1)审:弄清题意和数量关系弄清已知量和未知量明确各数量之间的关系;(2)设:设未知数(可设直接或间接未知数);(3)列:根据相等关系列出需要的代数式进而列出方程(组);(4)解:解方程(组);(5)答:检验所求的未知数的值是否符合题意写出答案. 【易错提 实际问题中注意检验解题结果既要检验解题结果是否使方程(组)成立又要检验是否符合实际意义检验步骤不需写在解题过程中. 解二元一次方程组时若方程组其中一个方程中的未知数系数为1或-1则采用代入消元法求解;解二元一次方程组时若相同未知数的系数相等或互列方程(组)的关键是寻找等量关系寻找等量关系常用的方法有:(1)抓住不变量;(2)找关键词;(3)画线段图或列表格;(4)运用数学公式. 命题点1 一次方程(组)及解法 (2014·宿松三模)解方程:(2x+1)=(2x-1)-1.【解答】 解一元一次方程在去括号、移项及系数化为1时应注意符号变化. (2015·东营)解方程组:【思路点拨】 本题考查的是解二元一次方程组由于方程组中y的系数互为相反数所以此题可以采用加减消元法解答两式相加求出x的值再代入①式求出y的值.【解答】 解二元一次方程组时要仔细观察方程组的特点灵活地选择代入消元法和加减消元法.用代入法的关键是能将一个未知数用含另一个未知数的代数式表示.如果两个方程中的某一个未知数的系数成倍数关系那么采用加减消元法. 1.(2014·海南)方程x+2=1的解是( )=3 .=-3x=1 .=-1(2015·无锡)方程2x-1=3x+2的解为________.(2014·安徽预测)已知代数式2a+13am-2是同类项则2m+3n=________.(2015·重庆卷)解二元一次方程组:命题点2 一次方程(组)的应用 (2014·蚌埠二模)夏季来临天气逐渐炎热起来.某商店将某种碳酸饮料每瓶的价格上调了10将某种果汁饮料每瓶的价格下调了5已知调价前买这两种饮料各一瓶共花费7元调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元问这两种饮料在调价前每瓶各多少元?【思路点拨】 本题中有两个等量关系:①调价前:碳酸饮料1瓶+果汁饮料1瓶共花费7元;②调价后:碳酸饮料3瓶+果汁饮料2瓶共花费17.5元依据这两个等量关系可以列出方程组.【解答】 建立方程或方程组的模型解决问题首先要认真审题读懂题意抓住题目中的关键语句找出等量关系然后列出符合题意的方程或方程组进而求解. 1.(2015·杭州)某村原有林地108公顷旱地54公顷为保护环境需把一部分旱地改造为林地使旱地面积占林地面积的20设把x公顷旱地改为林地则可列方程A.54-x=20-x=20(108+x)+x=20-x=20(54+x)(2015·福州)有48支队520名运动员参加篮球、排球比赛其中每支篮球队10人每支排球队12人每名运动员只能参加一项比赛篮球、排球队各有多少支参赛? 1.(2015·咸宁)方程2x-1=3的解是( )=-1 .=-2=1 .=2(2014·泸州)若x=2是关于x的方程2x+3m-1=0的解则m的值为( )-1 . 3.(2014·合肥包河模拟)二元一次方程x-2y=1有无数多个解下列四组值中不是该方程的解的是( ) B. C. D. 4.(2015·南充)学校机房今年和去年共购置了100台计3倍则今年购置计算机的数量是( )台 B.50台台D.台(2015·河北)利用消元法解方程组下列做法正确的是( )要消去y可以将①×5+②×2要消去x可以将①×3+②5) C.要消去y可以将①×5+②×3要消去x可以将①×(-5)+②×2(2015·马鞍山二模)已知则x+y等于( )7.(2015·包河一模)今年植树60位团员去植树他们共种了130棵树苗其中男生每人种3棵女生每人种2棵.设男生有x人女生有y人根据题意列方程组正确的是( ) B. C. D. 8.(2014·娄底)已知关于x的方程2x+a-5=0的解是x=2则a的值为________.若3x+5与x的和是单项式则n=________.(2014·安徽毕业模拟)已知是二元一次方程组的解则a-b的值为________.(2014·湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观共589人到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56设到雷锋纪念馆的人数为x人可列方程为______________.(2015·北京)《九章算术》是中国传统数学最重要的著作奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二直金十两;牛二、羊五直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊值金10两;2头牛、5只羊值金8两.x两每只羊值金y两可列方程组为____________.(2015·广州)解方程:5x=3(x-4).(2015·成都)解方程组:(2015·无锡)解方程组:(2015·日照)已知关于x、y的二元一次方程组的解满足x+y=0求m的值.一件工程甲队单独做10天完成乙队单独做30天完成.现在两队合作3天余下的由乙单独完成.问开始到完工共用了多少天时间?(2015·泸州)某小区为了绿化环境计划分两次购进A、B两种花草第一次分别购进A、B两种花草30棵和15棵共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的AB两种花草价格均分别相同).求A、B两种花草每棵的价格分别是多少元? 19.(2013·绵阳)朵朵幼儿园的阿姨给小朋友分苹果如果每人3个还差3个如果每人2个又多2个请问共有多少个小朋友?( )个 B.5个个 D.个20.(2013·黄石四川雅安地震期间为了紧急安置60名地震灾民需要搭建可容纳6人或4人的帐篷若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民则不同的搭建方案有( )种 B.11种种 D.种(2015·绍兴)某校规划在一块长AD为18 宽AB为13 的长方形场地ABCD上设计分别与AD平行的横向通道和纵向通道其余部分铺上草皮.如图1若设计三条AM∶AN=8∶9问通道的宽是多少? 参考答案 考点解读两个方程的公共解 ②一元一次 ③代入 ④加减各个击破例1 去括号得:4x+4x+1=4x-4x+1-1移项得:8x=-1系数化为1得:x=-例2 ①+②得:3x=15. ∴x=5.将x=5代入①得:5+y=6. ∴y=1. ∴方程组的解为题组训练 1. 2.x=-3 3.13 4.②-①得=1.将y=1代入①得x=3. ∴原方程组的解为例3 设调价前碳酸饮料每瓶x元果汁饮料每瓶y元依题意得: 解得 答:调价前这种碳酸饮料每瓶的价格为3元这种果汁饮料每瓶的价格为4元.题组训练 1. 2.设有x支篮球队和y支排球队参赛由题意得解得 答:28支、20支参赛.整合集训 2. 3. 4. 5. 6. 7. 8.1 9. 10.-1 11.2x+56=589-x 12. 13.去括号得5x=3x-12. 移项得5x-3x=-12. 合并同类项得2x=-12. 系数化为1得x=-6. 14.①+②得4x=4解得x=1将x=1 代入①解得y=2所以方程组的解为 15.由②得:2x-2y=1.③ ①-③得:y=4. 把y=4代入①得:x=原方程组的解为 16.由题意得解得 将代入3x+5y=m+2得3×(-3)+5×3=m+2.解得m=4. 17.设余下的由乙单独完成用了x天由题意得 (+)×3+=1.解得x=18.18+3=21. 答:开始到完工共用了21天时间. 18.设A种花草每棵的价格x元种花草每棵的价格y元根据题意得: 解得答:A种花草每棵的价格是20元种花草每棵的价格是5元. 19. 20. 21.设通道的宽为x =8y =8∶9=9y解得 答:通道的宽是1 初中学习网,资料共分享!我们负责传递知识!。
2012年高考理科数学福建卷(含答案解析)
数学试卷 第1页(共21页)数学试卷 第2页(共21页) 数学试卷 第3页(共21页)绝密★启用前2012年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足i 1i z =-,则z 等于( )A .1i --B .1i -C .1i -+D .1i +2. 等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( )A .1B .2C .3D .4 3. 下列命题中,真命题是( )A .0x ∃∈R ,0e 0x ≤B .x ∀∈R ,22x x >C .0a b +=的充要条件是1ab=-D .1a >,1b >是1ab >的充分条件4. 一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 ( )A .球B .三棱锥C .正方体D . 圆柱 5. 下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>>B .1sin 2(π,k )sin x x k x +≠∈≥ZC .22||(x x x ∈+1≥R)D .211()1x x ∈+>R6. 如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .14 B .15 C .16D .177. 设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是 ( )A .()D x 的值域为{0,1}B .()D x 是偶函数C .()D x 不是周期函数D .()D x 不是单调函数8. 已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )AB.C .3D .59. 若函数2x y =图象上存在点(,)x y 满足约束条件30,230,,x y x y x m +-⎧⎪--⎨⎪⎩≤≤≥则实数m 的最大值为( )A .12 B .1 C .32D .210. 函数()f x 在[,]a b 上有定义,若对任意12,[,]x x a b ∈,有12121()[()()]22x x f f x f x ++≤,则称()f x 在[,]a b 上具有性质P .设()f x 在[1,3]上具有性质P ,现给出如下命题: ①()f x 在[1,3]上的图象是连续不断的; ②2()f x在上具有性质P ;③若()f x 在2x =处取得最大值1,则()1f x =,[1,3]x ∈; ④对任意1x ,2x ,3x ,4[1,3]x ∈,有123412341()[()()()()]44x x x x f f x f x f x f x ++++++≤.其中真命题的序号是( )A .①②B .①③C .②④D .③④第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11.4()a x +的展开式中3x 的系数等于8,则实数a =_______. 12.阅读右图所示的程序框图,运行相应的程序,输出的s 值等于________.13.已知ABC △的等比数列,则其最大角的余弦值为________.14.数列{}n a 的通项公式ππcos12n n a =+,前n 项和为n S ,则2012S =________.15.对于实数a 和b ,定义运算“*”;22,,*,.a ab a b a b b ab a b ⎧-=⎨-⎩≤>设()(21)*(1)f x x x =--,且关于x 的方程()(f x m m =∈R)恰有三个互不相等的实数根1x ,2x ,3x ,则123x x x 的取值范围是_______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已将频率视为概率,解答下列问题:(Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(Ⅱ)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应产生哪种品牌的轿车?说明理由.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)17.(本小题满分13分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)22sin 13cos 17sin13cos17+-; (2)22sin 15cos 15sin15cos15+-; (3)22sin 18cos 12sin18cos12+-; (4)22sin (18)cos 48sin(18)cos48-+--; (5)22sin (25)cos 55sin(25)cos55-+--.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.(本小题满分13分)如图,在长方体1111ABCD A B C D -中,11AA AD ==,E 为CD 中点. (Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的长;若不存在,说明理由;(Ⅲ)若二面角11A B E A --的大小为30,求AB 的长.19.(本小题满分13分)如图,椭圆E :22221(0)x y a b a b +=>>的左焦点为1F ,右焦点为2F ,离心率12e =.过1F 的直线交椭圆于A 、B 两点,且2ABF △的周长为8. (Ⅰ)求椭圆E 的方程;(Ⅱ)设动直线l :y kx m =+与椭圆E 有且只有一个公共点P ,且与直线4x =相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.20.(本小题满分14分)已知函数2()e e x f x ax x =+-,a ∈R .(Ⅰ)若曲线()y f x =在点(1(1))f ,处的切线平行于x 轴,求函数()f x 的单调区间; (Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4—2:矩阵与变换设曲线22221x xy y ++=在矩阵01a A b ⎛⎫= ⎪⎝⎭(0)a >对应的变换作用下得到的曲线为221x y +=.(Ⅰ)求实数a ,b 的值;(Ⅱ)求2A 的逆矩阵.(2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),π)2,圆C的参数方程为22cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数). (Ⅰ)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (Ⅱ)判断直线l 与圆C 的位置关系. (3)(本小题满分7分)选修4—5:不等式选讲已知函数|2|f x m x =--(),m ∈R ,且2()0f x +≥的解集为[1,1]-. (Ⅰ)求m 的值; (Ⅱ)若,,a b c ∈R ,且11123m a b c++=,求证:239a b c ++≥.2012年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)答案解析又双曲线的渐近线方程故选B.30x y+-≤⎧数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)(2)1f =,又42x f +⎛ ⎝又()1f x ≤1≤,所以对于④,f ⎛⎛ ⎝4)()]f x +216,1()E X >可知甲品牌轿车首次出现故障发生在保修期内的轿车数数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)21315cos 15sin15cos151sin3024+-=-=;3(30)sin cos(30)4ααα---=,(30)sin cos(30)ααα---2131⎫⎛【提示】(Ⅰ)选择②,由22sin 15cos 15sin15cos151sin3024+-=-=,可得这个常数的值.(Ⅱ)推广,得到三角恒等式223sin cos (30)sin cos(30)4αααα+---=,直接利用两角(0,1,1)AD ∴=,a B E ⎛=- ,(,0,1)AB a =,,1,0a AE ⎛= 1101102aAD B E =-⨯+⨯+,11B E AD ∴⊥;(Ⅱ)假设在棱,使得DP ∥平面此时(0,DP =-的法向量(,,)n x y z =n ⊥平面1B AE ,n AB ⊥,n AE ⊥,得,02ax y +=⎩取1x =,得平面AE 的一个法向量1,,2a n ⎛=- ⎝⎭,只要n DP ⊥,有2a n DP =-1AP =; 11B C A D ∥1AD B ∴⊥11EB C B =1AD ∴⊥平面平面11A B CD ,AD ∴是平面的一个法向量,此时(0,1,1)AD =,设AD 与n 所成的角为11cos ||||n AD n AD θ==,二面角A -的大小为30, cos30,即y 轴,可求出向量AD 与B E 的坐标,验证其数量积为30建立关于||F =0MP MQ =①,①对0(0,2)x ∈数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)③当0<x x '时,同理可证,与条件不符;∴当<0a 时,存在唯一的点[]ln(2),ln(2)P a f a ⎡⎤--⎣⎦使该点处的切线与曲线只有一个公共点P .【提示】(Ⅰ)求导函数,利用曲线()f x 在点[]1,(1)f 处的切线平行于x 轴,可求a 的值,令()e e 0xf x '=-<,可得函数()f x 的单调减区间;令()0f x '>,可得单调增区间;(Ⅱ)设点[]00,()P x f x ,曲线()y f x =在点P 处的切线方程为000()()()y f x x x f x '=-+, 令000()()()()()g x f x f x x x f x '=---,曲线在该点处的切线与曲线只有一个公共点P 等价于()g x 有唯一零点,求出导函数,再进行分类讨论:(Ⅰ)若0a ≥,()g x 只有唯一零点0x x =,由P 的任意性0a ≥不合题意;(Ⅱ)若<0a ,令00()e e 2()x xh x a x x =-+-,则()0h x =,()e 2xh x a '=+,可得函数的单调性,进而可研究()g x 的零点,由此可得结论.【考点】利用导数研究曲线上某点切线方程,利用导数研究函数的单调性 21.【答案】(Ⅰ)1a =1b =(Ⅱ)2110()21-⎛⎫= ⎪-⎝⎭A【解析】(Ⅰ)设曲线22221x xy y ++=上任一点(,)P x y ,在矩阵A 对应变换下的项是(),P x y ''',则220()()11x a x ax x axax bx y y b y bx y y bx y''=⎛⎫⎛⎫⎧⎛⎫⎛⎫==⇒⇒++=⎨ ⎪ ⎪ ⎪ ⎪''+=+⎝⎭⎝⎭⎝⎭⎝⎭⎩, 2222()21a b x bxy y ∴+++=, 222a b ∴+=,22b =,1a ∴=,1b =;(Ⅱ)由(Ⅰ)得:21010101011111121⎛⎫⎛⎫⎛⎫⎛⎫=⇒== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A A , 2110||1()21-⎛⎫=⇒= ⎪-⎝⎭A A .【提示】(Ⅰ)确定点在矩阵0(0)1a a b ⎛⎫=> ⎪⎝⎭A 对应的变换作用下得到点坐标之间的关系,利用变换前后的方程,即可求得矩阵A ;23.【答案】(Ⅰ)(2)||0f x m x +=-≥,||x m ∴≤,>0<<m m x m ⇒-,(2)011f x x +≥⇒-≤≤,1m ∴=;(Ⅱ)由(Ⅰ)知111123a b c++=,a ,b ,c ∈R , 由柯西不等式得:211123(23)2392323a b c a b c a bc a b c a bc ⎛⎫+++++++≥++= ⎪⎪⎝⎭⎭. 【提示】(Ⅰ)由条件可得(2)||f x m x +=-,故有||0m x -≥的解集为[]1,1-,即||x m ≤的解集为[]1,1-,故1m =;(Ⅱ)根据111233223(23111232233)a b c a c a b a b c a b c a b a b b c c c ⎛⎫++=++++++++ ⎪⎝⎭++=++,利用基本不等式证明它大于或等于9.【考点】带绝对值的函数,不等式的证明数学试卷第19页(共21页)数学试卷第20页(共21页)数学试卷第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)不等式
一、选择题:
6. (福建省泉州市2012年3月普通高中毕业班质量检查理科)已知实数,x y 满足
22
20,0,4,
x y x y x y ⎧-+≥⎪+≥⎨⎪+≤⎩则2z x y =+的最大值是 A .5 B .1- C .2
D.
【答案】
B
10.(福建省宁德市
2012年高三毕业班质量检查文科)若
0.2
3log 0.5,3,sin 2a b c ===,则
( C )
A .a b c <<
B . c a b <<
C .a c b <<
D .c b a <<
9.(福建省宁德市2012年高三毕业班质量检查理科) “0a ≥”是“2
,10
x R ax x ∃∈++≥为真命题”的 (C )
A .充要条件
B .必要但不充分条件
C .充分但不必要条件
D .既不充分也不必要条件
11.(福建省莆田市2012年3月高三毕业班教学质量检查文科)如图是定义在[-4,6]上的函
数()f x 的图象,若(2)1f -=, 则不等式2(1)1f x -+<的解集是 ( B ) A
.(,)-∞⋃+∞ B
.(
C .(2,1)-
D .(-1,1)
二、填空题:
13.(福建省福州市2012年3月高中毕业班质量检查理科)在约束条件⎪⎩
⎪
⎨⎧≥-+≤≤01,2,
1:y x y x 下,
目标函数)0,0(>>+=b a by ax z 的最大值为1,则ab 的最大值等于_____ .
13. 18
【解析】画出可行域知)0,0(>>+=b a by ax z 过()1,2取得最大值,所以21a b +=,
()2
11
212.2228
a b ab a b +⎛⎫=⋅≤⨯= ⎪
⎝⎭
14.(福建省宁德市2012年高三毕业班质量检查文科)若 “,(2)10x R a x ∀∈-+>”是真命题,则实数a 的取值集合是 。
{}2
14.(福建省莆田市2012年3月高三毕业班教学质量检查理科)如图是定义在[-4,6]上的函数()f x 的图象,若(2)1,f -=
则不等式2
(1)1f x -+<的解集是 。
(
13.(福建省莆田市2012年3月高三毕业班教学质量检查理科)已知点P (1,0)与点Q (a ,
b )在直线10x y -+=两侧。
若2a ≥,则
1
b a -的取值范围为 。
(1,)+∞。