分式培优训练题
初中数学分式方程的应用培优训练(精选40道习题 附答案详解)
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?
八年级分式培优习题
八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。
二、具体措施:1、思想方面培优辅差。
做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。
了解学生们的学习态度、学习习惯、学习方法等。
从而根据学生的思想心态进行相应的辅导。
定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。
2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。
3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。
2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。
3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。
并开展“手拉手”活动,让优生和差生结成对子。
4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。
这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。
分式培优练习题(完整答案)
分式 (一)一 选择1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知k b a c c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-=4 若2222,2b a b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-∙-÷ 2 111122----÷-a a a a a a 3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x 四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值 五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x 七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( ) A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________. 6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算(1)168422+--x x x x (2)m n n n m m m n n m -+-+--2 9. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++- 12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值. 13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式33+-x x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y -3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a ac bc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x n m -++2的值为( )A 、2B 、3C 、4D 、512. 下列式子:(1)y x y x yx -=--122;(2)c a b a a c a b --=--;(3)1-=--b a a b ;(4)y x yx y x yx +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x (x>0)的值随着x 的增大越来越小;②3-x-1x (x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( ) A 、0个 B 、1个 C 、2个 D 、3个16. 已知分式xy yx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系()A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab -+.18、当21,23-==b a 时,求⎪⎭⎫⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值.19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()n n n ab a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac1 ,2 1-a a ,3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。
济南市八年级数学上册第十五章《分式》经典测试题(培优练)
一、选择题1.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变D 解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =- D解析:D 【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解. 【详解】5222mx x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5,故选D . 【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x-= C .6000600052x x -=+ D .6000600052x x-=+ A 解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.4.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = B解析:B 【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可. 【详解】 解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1. 故选B . 【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.5.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x -++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.6.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .1524x x 3=+ B .1524x x 3=- C .1524x 3x=+ D .1524x 3x=- D 解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程. 【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.7.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2< C解析:C 【分析】根据题意列得2x 131x x 1+<---,求解即可得到答案.【详解】∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-,∴x 2-<-, 解得x 2>. 又x 1≠, ∴x 2>符合题意. 故选:C. 【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ D 解析:D 【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程. 【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D . 【点睛】此题考查分式的实际应用,正确理解题意是解题的关键. 9.计算221(1)(1)x x x +++的结果是( )A .1B .1+1x C .x +1 D .21(+1)x B 解析:B 【分析】根据同分母分式加法法则计算. 【详解】221(1)(1)x x x +++=211(1)1x x x +=++,故选:B . 【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键. 10.下列各式中错误的是( ) A .2c d c d c d c d da a a a-+-----== B .5212525aa a +=++ C .1x y x y y x-=--- D .2211(1)(1)1x x x x -=--- C解析:C 【分析】按同分母分式加减法则计算即可. 【详解】 A.2c d c d c d c d da a a a-+-----==,正确;B.52521252525a aa a a ++==+++,正确; C.x y x y x y x y y x x y x y x y +-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确.故选:C 【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减.二、填空题11.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值. 【详解】解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12,去分母得7-2x=m 将x=12代入得m=6 即当m=6时,原分式方程会出现增根. 故答案为6. 【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.12.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5. 【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案. 【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3 =2a -4-(-8)b 2-(-3), =2a 4b 5. 故答案为:2a 4b 5. 【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.13.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1aa +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论. 【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---;故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±, 解得a =2或a =0或a =6或a =-4, 当a =2时,x =8; 当a =0时,x =-2; 当a =6时,x =4; 当a =-4时,x =2; ∵x , a 都为正整数, ∴符合条件的a 的值为2或6. 故答案为:2或6. 【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键. 14.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4 【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可. 【详解】解:去分母得:2x-3- mx+9 =x-3, 整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3, 把x=3代入(m-1)x=9, 解得:m=4,综上,m 的值为1或4. 故答案为:1或4. 【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 15.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000 解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000012=1.2×10-6. 故答案为:1.2×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.当x _______时,分式22x x-的值为负.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠ 【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围. 【详解】 解:依题意,得220x x -<⎧⎨≠⎩ 解得x <2且x≠0, 故答案为:x <2且x≠0. 【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0. 17.若13x x +=,则231x x x ++的值是_______.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算. 【详解】233111x x x x x=++++,当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.18.已知0534x y z==≠,则2222x y z xy xz yz -+=+-______.1【分析】设从而可得再代入所求的分式化简求值即可得【详解】由题意设则因此故答案为:1【点睛】本题考查了分式的求值根据已知等式将字母用同一个字母表示出来是解题关键解析:1 【分析】设0534x y zk ===≠,从而可得5,3,4x k y k z k ===,再代入所求的分式化简求值即可得. 【详解】由题意,设0534x y zk ===≠,则5,3,4x k y k z k ===, 因此22222222(3)(4(5))535434x y z k k xy x k z yz k k k k k k -+-⋅+=+-⋅+⋅-⋅,222222181615201252k k k k k k -+=+-, 222323k k =, 1=,故答案为:1. 【点睛】本题考查了分式的求值,根据已知等式,将字母,,x y z 用同一个字母表示出来是解题关键.19.计算:11|1|3-⎛⎫-= ⎪⎝⎭______.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4【分析】根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 20.方程2111x x x =--的解是___________.【分析】根据分式方程的性质求解即可得到答案【详解】∵∴∴∵时即分母为0故舍去∴故答案为:【点睛】本题考查了分式方程一元二次方程的知识;解题的关键是熟练掌握分式方程的性质从而完成求解解析:1x =-【分析】根据分式方程的性质求解,即可得到答案.【详解】 ∵2111x x x =-- ∴21x =∴1x =±∵1x =时,10x -=,即分母为0,故舍去∴1x =-故答案为:1x =-.【点睛】本题考查了分式方程、一元二次方程的知识;解题的关键是熟练掌握分式方程的性质,从而完成求解.三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?解析:(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组. 22.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =解析:1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 23.(1)解分式方程:23193x x x +=--(2)先化简代数式+⎛⎫+÷⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值. 解析:(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】 (1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解.(2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1aa 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 解析:(1)1207x =;(2)无解 【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x +=方程两边都乘72x , 得:72+48=7x , 解得:1207x =, 经检验:1207x =是原方程的解; (2)21533x x x-+=--方程两边都乘(3x -), 得:x-2-1=5(x-3),解得:3x =,检验:当3x =时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.25.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 解析:11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝ ()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+; 当12m =-时,原式1123112--==--+. 【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算. 26.计算与求值(1)计算:)01π; (2)求)(2316x +=中x 的值.解析:(15;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))01π+1515=++= (2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.27.先化简,再求值:22131x x x x x ---+-,其中2x =. 解析:()11x x -,12【分析】此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】 解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =- 当2x =时,原式12=【点睛】此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.28.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =. 解析:21(2)x -,19【分析】先计算括号内的运算,然后进行化简,得到最简分式,再把5x =代入计算,即可得到答案.【详解】 解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭ =221[](2)(2)4x x x x x x x +--⨯--- =22224[](2)(2)4x x x x x x x x x ---⨯--- =24(2)4x x x x x -⨯-- =21(2)x -; 当5x =时,原式=211(52)9=-. 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.。
冀教版初中数学八年级上册12.1分式同步分层训练培优卷(附答案解析)
冀教版初中数学八年级上册 12.1 分式同步分层训练培优卷班级:姓名:同学们:练习开始了,希望你认真审题,细致做题,运用所学知识解决本练习。
祝你收获满满,学习进步,榜上有名!一、选择题1.若分式x−1x+1的值为0,则x=()A.−1B.1 C.±1D.02.若把分式3xyx+y中x和y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的2倍B.缩小为原来的12 C.缩小为原来的14D.扩大为原来的4倍3.将分式x 2yx−y中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大为原来的6倍B.扩大为原来的9倍C.不变D.扩大为原来的3倍4.下列各式从左往右变形正确的是()A.ab+2=ab B.ab=a2b2C.a b=a−3b−3D.ab=13a13b5.如果把分式3xx2+y2中的x和y都扩大3倍,那么分式的值()A .扩大9倍B .扩大3倍C .不变D .缩小3倍6.对于非负整数x ,使得 x 2+3x+3是一个正整数,则符合条件x 的个数有( )A .3个B .4个C .5个D .6个7.关于x ,y 的方程xy ﹣x +y =﹣3的整数解(x ,y )的对数为( ) A .3B .4C .5D .68.若 12y 2+3y+7 的值为 18 ,则 14y 2+6y−9 的值是( )A .−12B .−117C .−17D .17二、填空题 9.若分式x+3x 2−9有意义,则x 应满足的条件是 . 10.若分式x 2−4x+1的值为0,则x 的值为 .11.若a 3+3a 2+a =0,则2022a 2a 4+2015a 2+1= .12.某段高速公路全长280公里,交警部门在高速公路上距入口3千米处设立了限速标志牌,并在以后每隔5公里处设置一块限速标志牌;此外交警部门还在距离入口10千米处设置了摄像头,并在以后每隔16千米处都设置一个摄像头(如图),则在此段高速公路上,离入口 千米处刚好同时设置有标志牌和摄像头.13.如图,在长方形ABCD 中,AB=10,BC=13.E ,F ,G ,H 分别是线段AB ,BC ,CD ,AD 上的定点.现分别以BE ,BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH的重合部分恰好是一个正方形,且BE=DG,Q,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,S3.若S2S1=37,则S3= .三、解答题14.综艺类节目《奔跑吧》火爆荧幕﹐给观众带来激情和欢乐的同时,也启示我们,团队合作、互助友爱是成功的重要因素,瞧!“撕名牌”游戏正在火热进行,下列“名牌”上的分式中,哪些是最简分式,哪些不是最简分式?如果不是最简分式,请你将其化成最简分式.15.已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,求(a5+b5+c5)÷abc的值.四、综合题16.阅读下列材料,解答下面的问题:我们知道方程2x+3y=12有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12,得:y= 12−2x3,根据x、y为正整数,运用尝试法可以知道方程2x+3y=12的正整数解为{x=3y=2.问题:(1)请你直接写出方程3x﹣y=6的一组正整数解.(2)若12x−3为自然数,则满足条件的正整数x的值有()个.A.5 B.6 C.7 D.8(3) 2020-2021学年七年级某班为了奖励学生学习的进步,购买单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有哪几种购买方案?17.我们知道,假分数可以化为整数与真分数的和的形式,例如:32=1+12,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:x+1x−2,x2x+2·····像这样的分式是假分式;像1x−2,xx2−1·····这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式.例如:x+1x−2=(x−2)+3x−2=1+3x−2;x2x+2=(x+2)(x−2)+4x+2=x−2+4x+2,解决下列问题:(1)将分式x−2x+3化为整式与真分式的和的形式为:(直接写出结果即可)(2)如果分式x 2+2xx+3的值为整数,求x的整数值1.【答案】B【解析】【解答】解:∵分式x−1x+1的值为0,∴{x−1=0x+1≠0,∴x=1,故答案为:B.【分析】当分子为零分母不为零时,分式的值为零.2.【答案】A【解析】【解答】解:把原式中x和y都扩大为原来的2倍得,3·2x·2y 2x+2y=12xy2(x+y)=6xy x+y=23xy x+y∴把原式中x和y都扩大为原来的2倍后,分式的值扩大为原来的2倍。
分式培优专题训练
1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n m m ---=-中,成立的是( )A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 【题型2:分式的约分】4.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.【题型3:分式的定义及有无意义】1.(辨析题)下列各式πa ,11x +,15x y +,22a b a b --,23x -,0中,是分式的有___ ________;是整式的有_____ ____。
2.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 3.(探究题)当x _______时,分式2212x x x -+-的值为零. 4.分式24x x -,当x _______时,分式有意义;当x _______时,分式的值为零. 5.分式31x a x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零;B .分式无意义C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零7.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 8.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±9.(2005.杭州市)当m =________时,分式2(1)(3)32mm m m ---+的值为零. 10.(妙法巧解题)已知13x y 1-=,求5352x xy y x xy y+---的值.1.下列运算正确的是( ) A.326x xx = B.0=++y x y x C.1-=-+-y x y x D.ba xb x a =++ 2.下列分式运算,结果正确的是( ) A.n m m n n m =•3454; B.bc ad d c b a =• C . 222242b a a b a a -=⎪⎭⎫ ⎝⎛-; D.3334343y x y x =⎪⎪⎭⎫ ⎝⎛3.已知a-b 0≠,且2a-3b=0,则代数式ba b a --2的值是( )A.-12B.0C.4D.4或-124.已知72=y x ,则222273223y xy x y xy x +-+-的值是( ) A.10328 B.1034 C.10320 D.1037 5.如果y=1-x x ,那么用y 的代数式表示x 为( ) A. 1+-=y y x B. 1--=y y x C. 1+=y y x D. 1-=y y x 7.若将分式x x x +22化简得1+x x ,则x 应满足的条件是( ) A. x>0 B. x<0 C.x 0≠ D. x 1-≠8.计算:(1)222210522y x ab b a y x -⋅+;(2) 232222)()()(x y xyxy x y y x -⋅+÷-;(3) (3))22(2222a b ab b a a b ab aba -÷-÷+--9.若m 等于它的倒数,求分式22444222-+÷-++m mm m m m 的值;1. 若432zyx ==,求222z y x zxyz xy ++++的值.2. 如果32=b a ,且a ≠2,求51-++-b a b a 的值。
分式培优练习题(完整标准答案)
分式培优练习题(完整标准答案)分式(一)选择1.下列运算正确的是()。
A。
-4=1 B。
(-3)-1=1 C。
(-2m-n)2=4m-n D。
(a+b)-1=a-1+b-12.分式 y-z/x+z+x-y 的最简公分母是()。
A。
2 B。
C。
D。
23.用科学计数法表示的数-3.6×10-4写成小数是()。
A。
0. B。
-0.0036 C。
-0. D。
-0.若分式 x-2/x-5x+6 的值为 k,则 x 的值为()。
A。
2 B。
-2 C。
2或-2 D。
2或35.计算 |1+(1/x-1)/(x-1)| 的结果是()。
A。
1 B。
x+1 C。
x+1/x-1 D。
x/(x-1)6.工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派 x 人挖土,其它的人运土,列方程①72-x=3x+72④=3.上述所列方程,正确的有()个。
A。
1 B。
2 C。
3 D。
47.在分式a/(x^2+2πx+y)+m/(x-2) 中,分式的个数是()。
A。
2 B。
3 C。
4 D。
58.若分式方程 (1-a)/(x-2)+(a+x)/(x-1)=3 有增根,则 a 的值是()。
A。
-1 B。
C。
1 D。
29.若 1/(11-ba)=1/(ab+ba)=-3,则 (a-b)/(a+b) 的值是()。
A。
-2 B。
2 C。
3 D。
-310.已知 b0,且ab≠0,其中第 7 个式子是 1/(a+7b),一组按规律排列的式子:-b^2/a,-b^5/a^2,-b^8/a^3,-b^11/a^4,……,其中第 n 个式子是 -b^(3n-2)/a^n。
若 7m=3,7n=5,则 72m-n=()。
A。
-1 B。
1 C。
2 D。
311.化简 (a^2-ab+b^2)/(a-b)^2.2.若 0<x<1,且 x+1/x=6,求 x-1/x 的值。
浙教版七下数学第5章《分式》单元培优测试题(含参考答案)
浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。
故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。
2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。
B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。
【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。
4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。
A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。
上海莘光学校八年级数学上册第十五章《分式》基础卷(培优专题)
一、选择题1.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度 B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度2.若整数a 使得关于x 的方程3222ax x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .283.下列命题中,属于真命题的是( ) A .如果0ab =,那么0a = B .253xx x-是最简分式 C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等4.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-5.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯6.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d ab d+++++=4,那么d a a b c b c d ++++++b ca c d ab d+++++的值为( )A .1B .12C .0D .47.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+8.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯9.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( ) A .20本B .25本C .30本D .35本10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -111.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .112.3333x a a y x y y x +--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22xy +13.已知227x ,y ==-,则221639yx y x y ---的值为( ) A .-1B .1C .-3D .314.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a15.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<<二、填空题16.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x++,11z x y ++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.17.已知2510m m -+=,则22125m m m -+=____. 18.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______.19.计算:22311x x x -=+-____________. 20.2112111a a a a +-+--=___________. 21.关于x 的方程53244x mxx x++=--无解,则m =________. 22.已知方程3a 1a a 44a --=--,且关于x 的不等式组x a x b>⎧⎪⎨⎪≤⎩只有4个整数解,那么b 的取值范围是____________. 23.已知关于x 的分式方程211a x +=+的解是负数,则a 的取值范围_____________. 24.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.25.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________. 26.计算:051)-+=__.三、解答题27.解方程: (1)x 21x 1x-=- (2)3142x x -=-+ 28.计算.(1)因式分解:243x y xy y ++.(2)解方程:22312442x x x x-=--+-. 29.解分式方程:(1)1171.572x x +=(2)21533x x x-+=-- 30.计算:2212yx y x y ---.。
人教版八年级数学上册 第15章 分式 培优训练(含答案)
人教版 八年级数学 第15章 分式 培优训练一、选择题1. 若分式||x -1(x -2)(x +1)的值为0,则x 等于 ( ) A .-1B .-1或2C .-1或1D .12. 计算2x 2-1 ÷1x -1的结果是( ) A.2x -1B.2x 3-1C.2x +1D .2(x +1)3. (2020·成都)已知x =2是分式方程1的解,那么实数k 的值为( ) A .3B .4C .5D .64. 若△÷a 2-1a =1a -1,则“△”可能是( ) A.a +1aB.a a -1C.a a +1D.a -1a5. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =420080x - B .3000x +80=4200xC .4200x =3000x -80D .3000x =420080x +6. (2020·福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A.62103(1)-=x x B.621031=-x C.621031-=x x D.62103=x7. 当分式的值为0时,x 的值是 ( )A .5B .-5C .1或5D .-5或5 8. △△△x △△△x △m x △3△3m3△x △3△△△△△△△m △△△△△△( )A. m <92B. m <92△m ≠32C. m >△94D. m >△94△m ≠△349. 关于x 的方程+=0可能产生的增根是 ( ) A .x=1B .x=2C .x=1或x=2D .x=-1或x=210. 已知=,则的值为 ( ) A .B .C .D .二、填空题11. 计算:y 2x2·x y =________.12. (2020·杭州)若分式11x +的值等于1,则x =________.13. 分式32(x +1),2x -15(x -1),2x +1x2-1的最简公分母是________________.14. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.15. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.16. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.三、解答题17. △△△△△△△△aa△b(1b△1a)△a△1b△△△a△2△b△13.18. △△△△△△△△(1△1a△1)÷a2△4a△4a2△a△△△a△△1.19. (2020·襄阳)(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?20. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.21. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版八年级数学第15章分式培优训练-答案一、选择题1. 【答案】D[解析] 因为分式||x-1(x-2)(x+1)的值为0,所以|x|-1=0,x-2≠0,x+1≠0,解得x=1.2. 【答案】C3. 【答案】B【解析】把x=2代入分式方程计算即可求出k的值.解:把x=2代入分式方程得:1=1,解得:k=4.故选:B.4. 【答案】A[解析] △=a2-1a·1a-1=(a+1)(a-1)a·1a-1=a+1a.5. 【答案】D【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x+人,再结合快递公司人数不变可列方程:3000x=420080x+.故选项D正确.6. 【答案】A【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱列分式方程A ,因此本题选A .7. 【答案】B [解析] 由分式的值为0,得-5=0,解得x=±5.但当x=5时,x 2-4x -5=0,故舍去,所以分式的值为0时,x 的值是-5.8. 【答案】B △△△△△x △mx △3△3m3△x △3△△x △mx △3△3mx △3△3△△△x △9△2m 2△△△△△⎩⎪⎨⎪⎧9△2m 2>09△2m 2≠3△△m <92△m ≠32△△△B.9. 【答案】C10. 【答案】D [解析] ∵=,∴=6. ∴a+=5.∴a+2=25,即a 2++2=25.∴=a 2++1=24. ∴=.二、填空题11. 【答案】12x12. 【答案】0 【解析】本题考查了分式的值的意义,因为分式11x +的值等于1,所以分子、分母相等,即x +1=1,解得x =0,当x =0时,分母x +1≠0,所以分式11x +的值等于1时,x =0,因此本题答案为0.13. 【答案】10(x +1)(x -1) [解析] 因为x2-1=(x +1)(x -1),所以三个分式的最简公分母是10(x +1)(x -1).14. 【答案】±1 [解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解.故答案为±1.15. 【答案】6 [解析] 因为对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,所以-2+a =0,4-b =0,解得a =2,b =4,则a +b =6.16. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0,所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2),得x(x -1)=2(x +2)+(x -1)(x +2).解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0.所以原分式方程的解为x =-12.(3)方程两边同乘x(x +1)(x -1),得三、解答题17. 【答案】△△△△△a a△b ·a△b ba △a△1b△1b △a△1b△a b .(4△)△△a△2△b△13△△△△△a b △2×3△6.(6△)18. 【答案】△△(1△1a△1)÷a 2△4a△4a 2△a △a△2a△1·a△a△1△△a△2△2△a a△2.△a △△1△△△△△a a△2△△1△1△2△13.19. 【答案】设原来每天用水量为x 吨,则现在每天用水量是45x 吨,根据题意,得 120120345x x -=,即1501203x x -=,解得x =10. 经检验,x =10是原方程的解且符合实际,则45x =8. 答:现在每天用水量是8吨.20. 【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. 依题意得-=10,解得x=40.经检验,x=40是原方程的解且符合题意.1.5x=60.答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.21. 【答案】 解:(1)1(2)设该商品在乙商场的原价为x 元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。
《分式与分式方程》单元提高训练题(培优卷)
《分式与分式方程》单元提高训练题(培优卷)一.选择题(共10小题)1.某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.67.若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.已知x2﹣5x+1=0,则的值是.15.已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=+ +,则++=三.解答题(共10小题)21.市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A 型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.已知非零实数a、b满足等式,求的值.28.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.。
分式培优训练含答案
分式培优训练含答案专训一:分式求值的方法分式的求值是数学方法运用的考查,既要突出式子的化简计算,又要灵活选用方法。
常见的分式求值方法有设参数求值、活用公式求值、整体代入法求值、巧变形法求值等。
直接代入法求值需要先化简,再代入参数求值,例如题目a+2a÷(a+1)(a-1)+2/(a-1),其中a=5.活用公式求值需要熟悉公式,例如题目x2-5x+1=(x2+3xy+y2)/(2xy),求x4+(x4)/(x2+3xy+y2)的值。
整体代入法求值需要将分式整体代入,/(x2y2z2)+4/(x+y+z)=1,且x+y+z≠0,求(x+y)/(z+x)+y/(z+y)的值。
巧变形法求值需要巧妙变形,例如题目4x2-4x+1=1/(2x),求2x+(2x)/(4x2-4x+1)的值。
设参数求值需要设定参数,例如题目x2-y2+/(xy+yz+xz)=2/3,y+z/x+z+x+y=4/3,求x/y的值。
专训二:六种常见的高频考点本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现。
分式方程是中考必考内容之一,一般考查解分式方程,并要求会用增根的意义解题。
考题常以解答题的形式出现,有时也会出现在选择题和填空题中。
分式的概念是指由两个整式相除得到的表达式,分式有意义的条件是分母不能为0.选择题和填空题常考查分式的有、无意义条件。
分式的基本性质包括分式的加减乘除和约分,考试中常以选择题和填空题的形式出现。
1.4x^2 - 2x + 12.分式的有关运算3.下列运算中,正确的个数是(2)4.m^4n^4m^2/n^3 = mnx-y/11 ÷(y-x)/22 = -2mn/(m-n) = n/(m-n)a-b)/(a-2) = 1/25.a-21/2 + 34/a-16.10.计算:(a+1)/(a-2) ÷ 1/(a-1) 的结果是 (B) a-1/a+111.计算:-1/(a+2) + 2/(a^2+2a+2) = -a^2+1/a^2+2a+212.化简:1/(m+1) - 1/(m+2) = -1/(m^2+3m+2)13.(1) (2a^2+2a)/(a-1)^2 + (a-4a^4)/(a-1+a) = (2a^2-2a)/(a-1)2) x^2+2x(1-1/x)/(x-1) = (x+1)/(x-1)选x=3,原式的值为 10/314.先化简:(x^2-1)/(x-1) = x+1整数指数幂15.下列计算正确的是 (B) x^2/x^6 = x^-416.下列说法正确的是 (A) -1/2 + 2 = 3/217.计算(π-3) + (-2)^3 = -1+8 = 718.由2×10^5个直径为5×10^-5cm的圆球体细胞排成的细胞链的长是 5cm19.分式方程 (x+2a)/(x-13) = x-3/(x-3)20.若关于x的方程 (x-1)/(x-2) = 1/a+1 的解为x=3,则a 等于 (C) -221.解分式方程:(x-2)/(x-1) + 1/(x-2) = 1/x,得到 x=322.2x+1/x-3 = 1,得到 x=11.解:原式 = [a/(a+1) + 2/(a-1) - 12/(a+1)(a-1)],化简后得到 (3a+1)/(a+1),再代入a=5,得到原式的值为 2/3.2.解:由 x^2 - 5x + 1 = 0,解出x = (5 + √21)/2,代入 x + 1/x = 5,得到 x^2 + 1/x^2 = 23,代入原式,化简得到 (x^2 + 3)/(x^4 + 1) - 2 = 527/4.3.解:将分子化简得到 xy(x+y)/(x+y)^3,代入 x+y=12,xy=9,得到原式的值为 1/8.4.解:将等式两边同时乘以 (x+y+z),化简得到(xy+yz+zx)/(xyz) + 1 = (x+y+z)/(x+y)(y+z)(z+x),代入已知条件,化简得到 (x+y+z)/(xy+yz+zx) = 0,所以原式的值为 0.5.解:将等式移项得到 4x^2 - 4x + 1 = 0,化简得到 (2x-1)^2 = 0,解得 x = 1/2,代入原式得到 2.6.解:设k ≠ 0,代入已知条件,解出 x = 2k,y = 3k,z = 4k,代入原式化简得到 2.1.B2.A3.A4.B2.(答案不唯一) a+1/(x+y+z) + y(x+y+z)/(z+x) =(a(x+y+z)+y(x+y+z))/(z+x) = (ax+ay+yz+y^2+z^2)/(z+x)3.26.D4.删除此段落5.解:(1) 原式 = (a+2)(a-2)a+2/[(a-2)(2a-2)] = (a+2)/2(a-2) - 1/(a-2) = (a^2-2)/2(a-2) = -3/2 (a=0) (2) 原式 = (x-11)/[(x-1)(2x-1)] = -1/(2x-1) + 3/(x-1) = (4x-3)/(2x-1)(x-1)6.删除此段落7.解:(1) 最简公分母是15m^2n^2.840n/39m * 2/5mn^2 = -8/13m^2n (2) 最简公分母是(a+1)^2(a-1)。
分式培优练习题(完整标准答案)
分式 (一)一 选择1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知k b a c c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 4 若2222,2b a b ab a b a ++-=则= 三 化简 1 ()d cd b a cab 234322222-∙-÷ 2 111122----÷-a a a a a a 3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x 四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值 五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x 七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2±C .2D .2±二、填空题: 4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________.6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算 (1)168422+--x x x x (2)m n n n m m m n n m -+-+--2 9. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111xx x x ++++++- 12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值. 13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式3-x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y -3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a acbc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x nm -++2的值为( )A 、2B 、3C 、4D 、512. 下列式子:(1)y x y x y x -=--122;(2)c a ba a c ab --=--;(3)1-=--b a ab ;(4)y x yx y x yx +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x (x>0)的值随着x 的增大越来越小;②3-x-1x (x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( )A 、0个B 、1个C 、2个D 、3个16. 已知分式xy yx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系()A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab-+. 18、当21,23-==b a 时,求⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值. 19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()n n n ab a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac 1 , 2 1-a a , 3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。
苏科版八年级下册第10章《分式》培优拔尖综合习题(带答案)
苏科版八年级下册第10章《分式》培优拔尖习题一.选择题(共12小题)1.下列式子中,a取任何实数都有意义的是()A.B.C.D.2.中国首列商用磁浮列车平均速度为akm/h,计划提速20km/h,已知从A地到B地路程为360km,那么提速后从甲地到乙地节约的时间表示为()A.B.C.D.3.分式的最简公分母是()A.(a2﹣4ab+4b2)(a﹣2b)(a+2b)B.(a﹣2b)2(a+2b)C.(a﹣2b)2(a2﹣4b2)D.(a﹣2b)2(a+2b)24.已知分式的值是a,如果用x、y的相反数代入这个分式所得的值为b,则a、b关系()A.相等B.互为相反数C.互为倒数D.乘积为﹣1 5.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④6.已知,则的值为()A.1B.0C.﹣1D.﹣27.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.1B.C.D.28.已知,则A=()A.B.C.D.x2﹣19.已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.10.郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100B.﹣=100C.﹣=100D.﹣=10011.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.+=1B.++=1C.+=1D.+2(+)=112.观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.二.填空题(共7小题)13.若分式的值为零,则x=.14.计算的结果为.15.与通分后的结果是.16.如果x+=3,则的值等于17.当x=m时,分式+x的值等于m,那么m≠且m≠.18.已知a,b,c,n是互不相等的正整数,且也是整数,则n的最大值是.19.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则=﹣;②若c≠0,则(1﹣a)(1﹣b)=;③若c=5,则a2+b2=15.其中正确的结论是.(填序号)三.解答题(共6小题)20.先约分,再求值:,其中a=2,b=21.若=+,试求A、B的值.22.已知:A=÷(﹣).(1)化简A;(2)当x2+y2=13,xy=﹣6时,求A的值;(3)若|x﹣y|+=0,A的值是否存在,若存在,求出A的值,若不存在,说明理由.23.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)?24.一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.25.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:==+=1+.(1)请写出分式的基本性质;(2)下列分式中,属于真分式的是;A.B.C.﹣D.(3)将假分式,化成整式和真分式的形式.参考答案一.选择题(共12小题)1.【解答】解:A、,无论a为何值,a2+1都大于零,故a取任何实数都有意义,符合题意;B、,a2﹣1有可能小于零,故此选项不合题意;C、,a﹣1有可能小于零,故此选项不合题意;D、,当a=0时,分式无意义,故此选项错误;故选:A.2.【解答】解:由题意可得:﹣=.故选:A.3.【解答】解:分式的分母分别是(a﹣2b)2、(a﹣2b)、(a+2b),所以其最简公分母是(a﹣2b)2(a+2b).故选:B.4.【解答】解:根据题意:用x、y的相反数代入这个分式b==﹣a,所以a、b关系是互为相反数,故选:B.5.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.6.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选:C.7.【解答】解:(a﹣)•===a2+2a∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1故选:A.8.【解答】解:∵,∴A=•(1+)=•=,故选:B.9.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.10.【解答】解:设科普类图书平均每本的价格是x元,则可列方程为:﹣=100.故选:D.11.【解答】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需(x﹣2)个月,根据题意,得++=1或+=1或+2(+)=1.观察选项,只有选项A符合题意.故选:A.12.【解答】解:由上式可知+++…+=(1﹣)=.故选A.二.填空题(共7小题)13.【解答】解:由题意得:x2﹣1=0,且x﹣1≠0,解得:x=﹣1,故答案为:﹣1.14.【解答】解:,故答案为:115.【解答】解:=;=.故答案为:=;=.16.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=7,∵x≠0,∴原式====,故答案为:.17.【解答】解:∵当x=m时,分式+x=m,∴m≠3且m≠﹣3,故答案为:3、﹣3.18.【解答】解:a,b,c,n是互不相等的正整数,且也是整数,∴要使得n尽量大,则a,b,c的值应尽量小∴若a=2,b=3,c=4,则++=++=故此种情况不符合题意;若a=2,b=3,c=5,则,则++=++=故此种情况不符合题意;若a=2,b=3,c=6,则++=++=1故此种情况不符合题意;若a=2,b=3,c=7,则++=++=此时n=42,则也是整数,符合题意故n的最大值为:42.19.【解答】解:∵实数a、b、c满足a+b=ab=c,∴若c≠0,则====﹣,故①正确;若c≠0,,即,故(1﹣a)(1﹣b)=1﹣(a+b)+ab=1﹣ab+ab=1=,故②正确;若c=5,则(a+b)2=c2=25,即a2+2ab+b2=25,故a2+b2=25﹣2ab=25﹣2×5=15,故③正确;故答案为:①②③.三.解答题(共6小题)20.【解答】解:原式==把a=2,b=代入原式==.21.【解答】解:=+=,∴(A+B)x+B﹣A=x﹣3,即A+B=1,B﹣A=﹣3,解得:A=2,B=﹣1.22.【解答】解:(1)A=÷=﹣×=﹣(2)∵x2+y2=13,xy=﹣6∴(x﹣y)2=x2﹣2xy+y2=13+12=25∴x﹣y=±5当x﹣y=5时,A=﹣;当x﹣y=﹣5时,A=.(3)∵|x﹣y|+=0,|x﹣y|≥0,≥0,∴x﹣y=0,y+2=0当x﹣y=0时,A的分母为0,分式没有意义.所以当|x﹣y|+=0,A的值是不存在.23.【解答】解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.24.【解答】解:(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+5)天,依题意,得:+=1,解得:x=20,经检验,x=20是原方程的解,且符合题意.答:规定工期为20天.(2)方案一所需费用为16×20=320(万元);方案二所需费用为16×4+14×20=344(万元).∵320<344,∴选择方案一合算.25.【解答】解:(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故ABD选项是假分式.故选C.(3)=m﹣1+。
分式方程拓展训练培优提高
分式方程拓展训练培优提高分式方程拓展训练一、分式方程的特殊解法1.交叉相乘法例1:解方程:$\frac{1}{x}=\frac{3}{x+2}$解法:交叉相乘得到$x(x+2)=3$,化简后得到$x^2+2x-3=0$,解得$x=1$或$x=-3$,但$x=-3$不符合原方程的定义域,所以解为$x=1$。
2.化归法例2:解方程:$\frac{12}{x-1}-\frac{2}{x-1}=\frac{1}{x-1}$解法:通分得到$\frac{10}{x-1}=\frac{1}{x-1}$,解得$x=11$。
3.左边通分法例3:解方程:$\frac{x-8}{x-7}-\frac{1}{x+7-x}=\frac{8}{x-7-x}$解法:左边通分得到$\frac{(x-8)-(x+7)}{(x-7)(x+7)}=\frac{8}{-2x}$,化简得到$-x^2+2x-15=0$,解得$x=3$或$x=-5$,但$x=-5$不符合原方程的定义域,所以解为$x=3$。
4.分子对等法例4:解方程:$\frac{1}{a}+\frac{1}{a-1}=\frac{b}{x}+\frac{1}{x-1}$,其中$a\neq b$解法:分子对等得到$\frac{x-1+a-1}{ax(a-1)}=\frac{bx+1+abx-ab}{x(x-1)ax(a-1)}$,化简得到$abx^2+(a+b-2)bx+a-1=0$,由于$a\neq b$,所以系数$a+b-2=0$,解得$a=1$,代入原方程得到$x=2$。
5.观察比较法例5:解方程:$\frac{4x}{5x-2}+\frac{17}{5x-2}=\frac{5x+24}{4x}$解法:观察到分母都含有$5x-2$,设$5x-2=t$,则原方程化为$\frac{4}{t}+\frac{17}{t}=\frac{t+24}{4(t+2)}$,化简得到$t^2-50t+76=0$,解得$t=2$或$t=48$,代回得到$x=\frac{4}{5}$或$x=\frac{50}{9}$,但$x=\frac{50}{9}$不符合原方程的定义域,所以解为$x=\frac{4}{5}$。
最新分式培优练习题(完整标准答案)
分式 (一)一 选择1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知k b a c c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-= 4 若2222,2ba b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-∙-÷ 2 111122----÷-a a a a a a 3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x 四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值 五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x 七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________. 6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算 (1)168422+--x x x x (2)mn n n m m m n n m -+-+--2 9. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.1412112-=-++x x x 11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++- 12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值. 13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速. 分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式3-x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y-3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a acbcab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x nm -++2的值为() A 、2 B 、3 C 、4 D 、512. 下列式子:(1)y x y x yx -=--122;(2)c a b a a c a b --=--;(3)1-=--b a ab ;(4)y x yx y x yx +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x(x>0)的值随着x 的增大越来越小; ②3-x-1x (x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( )A 、0个B 、1个C 、2个D 、3个16. 已知分式xyy x -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系( ) A 、相等 B 、互为相反数 C 、互为倒数 D 、乘积为-1 三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab-+. 18、当21,23-==b a 时,求⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值. 19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高? (2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()n n n a b a b 137201,--, 2 9/5, 3 2, 4 53三 1 ac 1 , 2 1-a a , 3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。
八年级数学分式培优和辅中
典型培优1.化简(1)4)222(2-÷+--x x x x x x (2)22224421y xy x y x y x y x ++-÷+--(3) x x x x x x x x 4)44122(22-÷+----+ (4) 先化简,再求值: (-)÷,其中x =1.2.解下列分式方程.(每题5分,共10分)(1)132x x =-; (2)2133112133119x x x x x-++=+--.(3) 2124111x x x +=+--. (4)11322x x x-+=---3.(2008年山东省临沂市)若不等式组的解集为,则a 的取值范围为( )A . a >0 B . a =0 C . a >4 D . a =44、观察下列等式:211211-=⨯;3121321-=⨯;4131431-=⨯;…;111)1(1+-=+n n n n 将以上等式相加得到111)1(1431321211+-=+++⨯+⨯+⨯n n n 。
用上述方法计算101991751531311⨯++⨯+⨯+⨯ ,其结果是( )A. 10150B. 10149C. 101100D. 101995、如果不等式组⎩⎨⎧≥<mx x 5有解且均不在-11<<x 内,那么m 的取值范围是…【 】A .m <-1B .1≤ m <5C .m ≥5D .-1≤ m ≤56、如果方程3)1(2=-x a 的解是x =5,则a = 。
7、若方程 x-3x-2 = m 2-x 无解,则m= .若52=-y y x ,则y x = ____________ . 8.23m m x=-的根为1,则m=__________. 9.当m=________时,关于x 的分式方程213x m x +=--无解. 10.先化简:111122-÷⎪⎭⎫ ⎝⎛-+x x x ,再选一个你喜欢的数代入并求值。
华东师大版八年级下册第16章《分式》培优拔高练习题(附答案)
华东师大版八年级下册第16章《分式》培优拔高练习题一.选择题(共12小题)1.下列分式中,不是最简分式是()A.B.C.D.2.下列分式的约分中,正确的是()A.=﹣B.=1﹣yC.=D.=3.当分式的值为整数时,自然数x的取值可能有()A.3个B.4个C.6个D.8个4.分式的最简公分母是()A.(a2﹣4ab+4b2)(a﹣2b)(a+2b)B.(a﹣2b)2(a+2b)C.(a﹣2b)2(a2﹣4b2)D.(a﹣2b)2(a+2b)25.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④6.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.1B.C.D.27.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.+=1B.++=1C.+=1D.+2(+)=18.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x米,则可得方程=20,…”根据答案,题中被墨汁污染条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成9.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c的大小关系为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a10.已知,则的值为()A.1B.0C.﹣1D.﹣211.设=2,则=()A.B.﹣C.D.﹣12.已知:2+=22×;3+=32×;4+=42×;5+=52×…,若10+=102×符合前面式子的规律,则a+b=()A.99B.109C.100D.120二.填空题(共8小题)13.对和进行通分,需确定的最简公分母是.14.对于实数a,b定义一种新运算“⊗”:a⊗b=,例如,1⊗3==﹣.则方程x⊗2=﹣1的解是.15.若分式的值为零,则x=.16.已知a+b=5,ab=3,=.17.若关于x的方程=无解,则a的值是.18.要使关于x的方程的解是正数,a的取值范围是.19.已知+=3,求=.20.已知x,y,z,a,b均为非零实数,且满足,则a的值为.三.解答题(共5小题)21.化简求值:,其中.22.上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•﹣=(1)聪明的你请求出盖住部分化简后的结果(2)当x=2时,y等于何值时,原分式的值为523.两个工程队共同参与一项筑路工程.若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元若由甲、乙合作完成此项工程共需36天,共需施工费828万元.(1)求乙队单独完成这项工程需多少天(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?24.如图是学习“分式方程应用”时,老师板书的问题和两名同学所列的方程.15.3分式方程例:有甲、乙两个工程队,甲队修路400米与乙队修路600米所用时间相等.乙队每天比甲队多修20米,求甲队每天修路的长度.冰冰:.庆庆:.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并解答老师的例题.25.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解之,得.所以=这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.参考答案一.选择题(共12小题)1.【解答】解:=,即分子、分母中含有公因式(2x+y),所以它不是最简分式;故选:D.2.【解答】解:A.=,此选项约分错误;B.不能约分,此选项错误;C.==,此选项正确;D.==,此选项错误;故选:C.3.【解答】解;设原式为y,当x取0、1、2、3时,y分别是﹣2、﹣6、6、2.故选:B.4.【解答】解:分式的分母分别是(a﹣2b)2、(a﹣2b)、(a+2b),所以其最简公分母是(a﹣2b)2(a+2b).故选:B.5.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.6.【解答】解:(a﹣)•===a2+2a∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1故选:A.7.【解答】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需(x﹣2)个月,根据题意,得++=1或+=1或+2(+)=1.观察选项,只有选项A符合题意.故选:A.8.【解答】】解:原计划每天铺设管道x米,那么(x﹣10)就应该是实际每天比原计划少铺了10米,而用=20则表示用原计划的时间﹣实际用的时间=20天,那么就说明每天比原计划少铺设10米,结果延期20天完成.故选:B.9.【解答】解:a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c=(﹣)﹣2=9,所以c>a>b.故选:B.10.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选:C.11.【解答】解:=2,∴3x﹣2y=2x+2y,∴x=4y,∴原式==.故选:A.12.【解答】解:根据已知等式的规律知b=10、a=102﹣1=99,则a+b=109,故选:B.二.填空题(共8小题)13.【解答】解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).14.【解答】解:根据题中的新定义,化简得:=﹣1,去分母得:1=2﹣x+4,解得:x=5,经检验,x=5是分式方程的解,故答案为:x=5.15.【解答】解:由题意得:x2﹣1=0,且x﹣1≠0,解得:x=﹣1,故答案为:﹣1.16.【解答】解:当a+b=5、ab=3时,原式====,故答案为:.17.【解答】解:分式方程去分母,可得a(x+1)=2x,即(a﹣2)x=﹣a,当a=2时,方程(a﹣2)x=﹣a无解;当a≠2时,若x=1,则a﹣2=﹣a,即a=1;若x=﹣1,则2﹣a=﹣a(无解);综上所述,a=2或1,故答案为:2或1.18.【解答】解:去分母得:(x+1)(x﹣1)﹣x(x+2)=a,解得x=﹣;因为这个解是正数,所以﹣>0,即a<﹣1;又因为分式方程的分母不能为零,即﹣≠1且﹣≠﹣2,所以a≠±3;则a的取值范围是a<﹣1且a≠﹣3;故答案为:a<﹣1且a≠﹣3.19.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.20.【解答】解:∵,∴+=∴+=a3﹣b3①+=∴+=a3②+=∴+=a3+b3③①+②+③得,++=∴===∴3a3=81∴a=3.故答案为3.三.解答题(共5小题)21.【解答】解:原式====,当时,原式.22.【解答】解:(1)∵(+)÷=[+]×=×=﹣∴盖住部分化简后的结果为﹣;(2)∵x=2时,原分式的值为5,即,∴10﹣5y=2解得y=经检验,y=是原方程的解.所以当x=2,y=时,原分式的值为5.23.【解答】解:(1)设乙队单独完成这项工程需x天,由题意得:×30+=1,解得:x=90,经检验x=90是分式方程的解;答:乙队单独完成这项工程需90天;(2)设甲队每天的施工费为m万元,乙队每天的施工费为n万元,由题意得:,解得:;答:甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)∵乙队单独完成这项工程需90天,甲、乙合作完成此项工程共需36天,∴甲队单独完成这项工程的天数为=60,设乙队施工a天,甲队施工b天,由题意得:,由①得:b=60﹣a,把b=60﹣a代入②得:15×(60﹣a)+8a≤840,解得:a≥30,即乙队最少施工30天;答:乙队最少施工30天.24.【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米所需时间或乙队修路600米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间或乙队修路600米所需时间.(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可)(3)①选冰冰的方程.去分母,得2(x+20)=3x.解得x=40.经检验x=40是原分式方程的解.答:甲队每天修路的长度为40米.②选庆庆的方程.去分母,得600﹣400=20y.解得y=10.经检验y=10是原分式方程的解.所以.答:甲队每天修路的长度为40米.25.【解答】解:(1)由分母为x﹣1,可设2x2+3x+6=(x﹣1)(2x+a)+b.因为(x﹣1)(2x+a)+b=2x2+ax﹣2x﹣a+b=2x2+(a﹣2)x﹣a+b,所以2x2+3x+6=2x2+(a﹣2)x﹣a+b.所以,解得.所以分式==2x+5+.(2)由分母为x2+2,可设5x4+9x2﹣3=(x2+2)(5x2+a)+b.因为(x2+2)(5x2+a)+b=5x4+ax2+10x2+2a+b=5x4+(a+10)x2+2a+b,所以5x4+9x2﹣3=5x4+(a+10)x2+2a+b.所以,解得.所以==5x2﹣1﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 卷
一、填空题。
1、分式方程133
x m x x +=--有增根,则m=_______________。
2、若关于x 的分式方程
1121x m x x -=+--无解,则m=_________。
3、计算2221113256
x x x x x x ++=+++++_______________。
4、若某工厂计划a 天完成b 件产品,由于情况发生变化,要求提前x 天完成任务,则现在每天要比原计划每天多生产___________件。
5、解方程:
11112176x x x x -=-----得x=__________。
二、解答题
1、甲、乙二人一个月里两次同时到一家粮油商店买大米,两次大米的价格有变化,但他们两人购买的方式不一样,其中甲每次总是购买相同重量的大米,乙每次只能拿出相同数量的钱来买米,而不管能买多少,问这两种买米方式哪一种更合算?请说明理由.
2、当a 为何值时,
12221(2)(1)x x x a x x x x --+-=-+-+的解是负数?
3、已知2222000,2001,2004,a x b x c x +=+=+=且abc=24, 求
111a b c bc ca ab a b c
++---的值。
4、若关于x的分式方程
23
11
a
x x x
=+
--
无解,求a的值。
5、当k满足什么条件时,关于x的分式方程
63
1(1)
x k
x x x x
+
=+
--
的解为非负数?
6、如果
2
42
1
14
x
x x
=
++
,求
42
2
535
3
x x
x
-+
的值。
7、已知111
a b c
++=,2221
a b c
++=,求a+b+c的值。
8、(2001•哈尔滨)某公司生产的960件新产品,需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天加工产品是甲工厂每天加工产品的1.5倍,公司需付甲工厂加工费用每天80元,乙工厂费用每天120元.
(1)求甲乙两个工厂每天各能加工多少件产品?
(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家同时合作完成.在加工过程中,公司派一名工程师每天到厂进行指导,并负担每天5元的误餐补助.请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.。