2013中考复习冲刺练:几何计算专题

合集下载

中考复习数学《几何图形中的相关计算》专项检测题(含答案)

中考复习数学《几何图形中的相关计算》专项检测题(含答案)

几何图形中的相关计算类型一与折叠、最值有关针对演练1.将一张宽为4 cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A. 83 3 cm2 B. 8 cm2 C. 163 3 cm2 D. 16 cm2第1题图第2题图2. 如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,折痕为BE、BF,则∠EFB的大小为()A. 45°B. 60°C. 65°D. 67.5°3. 小王把一张矩形纸片沿BC折叠,顶点A落在点A′,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是()A. 24B. 30C. 60D. 90 第3题图4.如图,在一张矩形纸片ABCD中,AD=4 cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A. 2 cmB. 2 3 cmC. 4 cmD. 4 3 cm 第4题图5.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为( )A. 35B. 45C. 23D. 32第5题图 第6题图6. 如图,已知在矩形ABCD 中,AB =4,BC =2,点M ,E 在AD 上,点F 在边AB 上,并且DM =1,现将△AEF 沿着直线EF 折叠,使点A 落在边CD 上的点P 处,则当PB +PM 的和最小时,ME 的长度为( )A. 13B. 49C. 23D. 597. 如图,△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AC 的垂直平分线交于点O ,将∠B 沿EF(E 在BC 上,F 在AB 上)折叠,点B 与点O 恰好重合,则∠OEB 的度数为( )A. 108°B. 120°C. 126°D. 128°第7题图 第8题图8. 如图,已知点D 是等腰直角△ABC 斜边AB 的中点,M 是边BC 上的点,将△DBM 沿DM 折叠,点B 的对称点E 落在直线AC 的左侧,EM 交边AC 于点F ,ED 交边AC 于点G .若△FCM 的周长为16,则斜边AB 的长为( ) A. 4 2 B. 8 2 C. 16 2 D. 32 29. 如图,菱形ABCD 中,E 是AD 的中点,将△CDE 沿CE 折叠后,点A 和点D 恰好重合,若菱形ABCD 的面积为43,则菱形ABCD 的周长为( ) A. 8 2 B. 16 2 C. 8 3 D. 16 310.如图,在△ABC 中,∠ACB =90°,AB =5,BC =3,P 是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是________.第10题图第11题图11.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F 是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B 落在B′处.若△CDB′恰为等腰三角形,则DB′的长为________.12. 如图,在完全重合放置的两张矩形纸片ABCD中,AB=4,BC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为________第12题图类型二与旋转有关1. 如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )A. 130°B. 150°C. 160°D. 170°2. 如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.将Rt△ABC绕点B旋转90°至△DBE的位置,连接EC交BD于F,则CF∶FE 的值是( )A. 3∶4B. 3∶5C. 4∶3D. 5∶3第2题图第3题图3. 如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP 绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为( )A. 105°B. 112.5°C. 120°D. 135°4.如图,在矩形ABCD中,AB=,AD=10.连接BD,∠DBC的角平分线BE交DC于点E.现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为_____.第4题图类型三与动点、最值有关1. 如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B. 2 3 C. 2 6 D. 6第1题图 第3题图2在平面直角坐标系中,点A(2,2),点B(32,32),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为( )A. 2B. 3C. 4D. 53. 如图,△ABC 中,CA =CB ,AB =6,CD =4,E 是高线CD 的中点,CE 为⊙C 的半径.G 是⊙C 上一动点,P 是AG 的中点,则DP 的最大值为( )A. 72B. 352C. 2 3D. 4124. 如图,矩形ABCD 中,AD =2AB ,E 、F 分别是AD 、BC 上的点,且线段EF 过矩形对角线AC 的中点,PF∥AC ,则EF ∶BF 的最小值是( ) 第4题图A. 255B. 25C. 2525D. 125. 如图四边形ABCD ,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,BC =3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是()A. 3B. 4C. 5D.6第5题图第6题图6. 如图:已知P是线段AB上的动点(P不与A,B重合),AB=4,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF、PG,设EF的中点为G,当动点P从点A运动到点B时,设PG=m,则m的取值范围是________.7. 如图,在矩形ABCD中,对角线AC、BD交于点O,AC=2AB=4,E是AD边的中点,点P是CD边上一动点,则△OEP周长的最小值是_____第7题图【答案】类型一 与折叠、最值有关1. B 【解析】如解图,当AC ⊥AB 时,三角形面积最小,∵∠BAC =90°,∠ACB =45°,∴AB =AC=4 cm ,∴S △ABC =12×4×4=8 cm 2. 第1题解图2. D 【解析】∵将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,折痕为BE 、BF ,∴∠ABE =∠DBE =∠DBF =∠FBC ,BD 垂直平分EF ,∴∠EBF =12∠ABC =45°,BE =BF ,∴∠BFE =∠BEF =12(180°-45°)=67.5°.3. A 【解析】连接AA′,交BC 于点O ,如解图,由折叠的性质可得:AO =12AA′,∵DE ∥BC ,∴△ABC ∽△ADE ,AC ∶AE =AO ∶AA′=1∶2,∴S △ABC :S △ADE =(AC AE )2=14,∵AB =4,AC =3,∴S △ABC =12AB·AC =12×4×3=6,∴S △ADE=4S △ABC =24.4. B 【解析】∵点E ,F 分别是CD 和AB 的中点,∴EF ⊥AB ,∴EF ∥BC ,∴EG 是△DCH 的中位线,∴DG =HG ,由折叠的性质可得:∠AGH =∠ABH =90°,∴∠AGH =∠AGD =90°,在△AGH和△AGD 中,⎩⎪⎨⎪⎧HG =DG ∠AGH =∠AGD AG =AG,∴△AGH ≌△AGD(SAS),∴AH =AD ,∠HAG =∠DAG ,由折叠的性质可得:∠BAH =∠HAG ,∴∠BAH =∠HAG =∠DAG =13∠BAD =30°,在Rt △ABH 中,AH=AD =4 cm ,∠BAH =30°,∴AB =AH·cos ∠BAH =2 3 cm ,∴CD =AB =2 3 cm.5. B 【解析】根据折叠的性质可知CD =AC =3,B′C =BC =4,∠ACE =∠DCE ,∠BCF =∠B′CF ,CE ⊥AB ,∴B′D =4-3=1,∠DCE +∠B′CF =∠ACE +∠BCF ,∵∠ACB =90°,∴∠ECF =45°,∴△ECF 是等腰直角三角形,∴EF =CE ,∠EFC =45°,∴∠BFC =∠B′FC=135°,∴∠B′FD =∠B′FC -∠EFC =135°-45°=90°,∵S △ABC =12AC·BC =12AB·CE ,∴AC·BC =AB·CE ,根据勾股定理求得AB =5,∴CE =125,∴EF =125,ED =AE =AC 2-CE 2=95,∴DF =EF -ED =35,∴B′F =B′D 2-DF 2=45.6. B 【解析】延长AD 到M′,使得DM′=DM =1,连接PM′,如解图.当PB +PM 的和最小时,M′、P 、B 三点共线.∵四边形ABCD 是矩形,AB =4,BC =2,∴DC =AB =4,AD =BC =2,AD ∥BC ,∴△DPM′∽△CPB ,∴DP CP =DM′CB =12,∴DP =12CP ,∴DP =13DC =43,设AE =x ,则PE =x ,DE =2-x ,在Rt △PDE 中,∵DE 2+DP 2=PE 2,∴(2-x)2+(43)2=x 2,解得x =139,∴ME =AE -AM =139-1=49.7.D 【解析】如解图,连接OB 、OC ,∵∠BAC =64°,AO 为∠BAC 的平分线,∴∠CAO =12∠BAC =12×64°=32°,又∵AB =AC ,∴∠ABC =12(180°-∠BAC)=12(180°-64°)=58°,∵DO 是AC 的垂直平分线,∴OA =OC ,∴∠CAO =∠ACO =32°,∴∠OCE =∠ACB -∠ACO =58°-32°=26°,在△AOB 和△AOC 中,⎩⎪⎨⎪⎧AB =AC ∠BAO =∠CAO AO =AO,∴△AOB ≌△AOC(SAS),∴OB =OC ,∴∠OCB =∠OBC =26°,∵将∠B 沿EF(E 在BC 上,F 在AC 上)折叠,点B 与点O 恰好重合,∴OE =BE ,∴∠BOE =∠OBE =26°,∴∠OEB =180°-∠BOE -∠OBE =128°.8. C 【解析】如解图,连接CD 、DF 、CE.∵点D 为AB 的中点,∠ACB =90°,∴CD =12AB ,BD =12AB,∴CD =BD.∵△ACB 为等腰直角三角形,∴∠ABC =45°,∵CD =DB ,∴∠DCB =45°.∴∠ACD =45°,由折叠的性质可知:∠DEM =∠DBM =45°,BD =DE ,∴CD =ED ,∴∠DCE =∠DEC.∴∠DEF +∠FEC =∠DCF +∠FCE ,∴∠FEC =∠FCE.∴EF =FC.△FCM 的周长=FC +FM +CM =FE +FM +CM =EM +CM =MB +CM =CB ,∴BC =16.在Rt △ACB 中,由勾股定理得:AB =AC 2+BC 2=162+162=16 2.9. A 【解析】∵四边形ABCD 是菱形,∴AD =CD ,又∵CD =AC ,∴AD =CD =AC ,即△ADC 是等边三角形,∴∠D =60°,∴CE =CD·sin60°=32CD ,∵菱形ABCD 的面积=AD·CE =32CD 2=43,∴CD =22,∴菱形ABCD 的周长为22×4=8 2.10. 1【解析】在Rt △ABC 中,由勾股定理可知AC =AB 2-BC 2=52-32=4,由折叠的性质可知BC =CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A 、B′、C 三点在一条直线上时,AB′有最小值,∴AB′=AC -B′C =4-3=1.11. 16或45 【解析】根据题意,若△CDB′恰为等腰三角形需分三种情况讨论:(1)当DB′=DC 时,则DB′=16(易知点F 在BC 上且不与点C 、B 重合);(2)当CB′=CD 时,∵EB =EB′,FB =FB′,∴点E 、F 在BB′的垂直平分线上,∴EF 垂直平分BB′,由折叠的性质可知点F 与点C 重合,不符合题意,舍去;(3)如解图,当CB′=DB′时,作B′G ⊥AB 于点G ,交CD于点H.∵AB ∥CD ,∴B′H ⊥CD ,∵CB′=DB′,∴DH =12CD =8,∴AG =DH =8,∴GE =AG -AE =5,∴B′E =BE =BG+EG =13,在Rt △B′EG 中,由勾股定理得B′G =B′E 2-GE 2=132-52=12,∴B′H =GH -B′G =4,在Rt △B′DH 中,由勾股定理得DB′=DH 2+B′H 2=45,综上所述,DB′=16或4 5.12. 185【解析】由题意知,AF =FC ,AB =CD =AG=4,BC =AD =8,在Rt △ABF 中,由勾股定理知AB 2+BF 2=AF 2,即42+(8-AF)2=AF 2,解得AF =5,∵∠BAF +∠FAE =∠FAE +∠EAG =90°,∴∠BAF =∠EAG ,又∵∠B =∠AGE =90°,AB =AG ,∴△ABF ≌△AGE(ASA),∴AE =AF =5,∴ED =AD -AE =8-5=3,∵S △GAE =12AG·GE =12AE·AE 边上的高,∴AE 边上的高=125,∴S △GED =12ED·AE 边上的高=12×3×125=185. 类型二 与旋转有关1. C 【解析】∵四边形ABCD 是平行四边形 ,∴∠ABC =∠ADC =60°,AD ∥BC ,∴∠ADA′=∠CA′D ,∴∠ADA′+∠DA′B =180°,∴∠DA′B =180°- ∠ADA′=180°-50°=130°,∵AE ⊥BC ,∴∠EAB =90°-∠ABC =90°-60°=30°,由旋转可知∠BA′E′=∠EAB =30°,∴∠DA′E′=∠DA′B +∠BA′E′=130°+30°=160°,故选C.2. A 【解析】∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=8,∵Rt △ABC 绕点B 旋转90°至△DBE 的位置,∴BC =BE =6,AC =DE =8,∠CBE =90°,∠BED =∠ACB =90°,∴△BCE 为等腰直角三角形,∴∠BCE =∠BEC =45°,∴∠DEF =90°-∠BEF =45°,而∠BFC =∠EFD ,∴△BFC ∽△DFE ,∴CF FE =BC DE =68=34.3. D 【解析】连接PP′,如解图,∵四边形ABCD 为正方形,∴∠ABC =90°,BA =BC ,∴△ABP 绕点B 顺时针旋转90°得到△CBP′,∴BP=BP′,∠BPA =∠BP′C ,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′=2PB =22,在△APP′中,∵PA =1,PP′=22,AP′=3,∴PA 2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA =∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C =135°. 4. 9817 【解析】矩形ABCD 中,AB =46,AD =10,∴BD =(46)2+102=14.∵△DFB 为等腰三角形,∴∠FDB =∠FBD ,∴FD =FB.设FD =x ,则AF =10-x ,BF =x ,在Rt △ABF 中,(46)2+(10-x)2=x 2,解得x =9.8,∴DF =BF =9.8.∵AD ∥BC ,∴∠FDB =∠DBC ,∵∠FBD =∠FDB ,∴∠FBD =∠DBC.由题意知BE 平分∠DBC ,∠FBG =∠EBC ,∴∠FBG =∠DBG .如解图,过点D 作DH ∥BF 交BG 的延长线于H 点,则∠H =∠FBG ,∴∠H =∠HBD ,∴BD =DH =14.∵BF ∥DH ,∴FG DG =BF DH ,∴FG +DG DG =BF +DH DH ,即FD DG =9.8+1414,∴9.8DG=9.8+1414,∴DG =9817.类型三 与动点、最值有关1. B 【解析】由题意可知,点D 与点B 关于AC 对称,设BE 与AC 交于点P′,连接P′D ,如解图,则此时P′D+P′E 取得最小值,即P′D +P′E =BE ,而BE 与AB 相等,再由正方形ABCD 的面积为12,可得正方形边长为2 3.2. B 【解析】分三种情况:(1)AB =AC ;(2)BC=BA ;(3)CA =CB.画出图形,即可得到答案.∵点A(2,2),点B(32,32),∴AB =4,如解图,以点A 为等腰三角形的顶点时,符合条件的动点C 有两个,C 1(2-14,0),C 2(2+14,0);以点B 为等腰三角形的顶点时,由于B 到x 轴的距离为32>4,此时不存在x 轴上的点使得BC =BA ;以点C 为等腰三角形的顶点时,C 点为AB 的垂直平分线与x 轴的交点,此时只有唯一一个点(42,0)符合条件.由上可知,共有三个点符合条件,即解图中的C 1,C 2,C 3点.3. A 【解析】连接BG ,如解图,∵CA =CB ,CD ⊥AB ,AB =6,∴AD =BD =12AB =3.又∵CD =4,∴BC =5.∵E 是高线CD 的中点,∴CE =12CD =2,∴CG =CE =2.根据两点之间线段最短可得:BG≤CG +CB =2+5=7.当B 、C 、G 三点共线时,BG 取最大值为7.∵P 是AG 的中点,D 是AB 的中点,∴DP =12BG ,∴DP 的最大值为72.4. A 【解析】如解图,过点O 作OH ⊥BC 于点H ,设AB =x ,BF =y ,∵AD =2AB ,∴AD =2x ,∵线段EF 过矩形对角线AC 的中点,∴H 是BC 的中点,∴FH=x -y ,OH =12x ,由勾股定理得,OF =(x -y )2+(12x )2,由矩形的对称性得,EF =2(x -y )2+(12x )2,设EF ∶BF =m ,则m 2=4(x -y )2+x 2y 2,整理得,(m 2-4)y 2+8xy -5x 2=0,∵y 有正解,∴Δ=(8x)2-4(m 2-4)×(-5x 2)≥0,解得m 2≥45,∴m≥255,∴m 的最小值是255,即EF ∶BF的最小值是255.5. B 【解析】在平行四边形PCQD 中,设对角线PQ与DC 相交于点O ,则O 是DC 的中点,如解图,过点Q 作QH ⊥BC ,交BC 的延长线于点H ,∵AD ∥BC ,∴∠ADC =∠DCH ,即∠ADP +∠PDC =∠DCQ +∠QCH ,∵PD ∥CQ ,∴∠PDC=∠DCQ ,∴∠ADP =∠QCH ,又∵PD =CQ ,在Rt △ADP 和Rt △HCQ 中,⎩⎪⎨⎪⎧∠ADP =∠QCH ∠A =∠QHCPD =CQ ,∴Rt △ADP ≌Rt △HCQ(AAS),∴AD =HC ,∵AD =1,BC =3,∴BH =4,∴当PQ ⊥AB 时,PQ 的长最小,即为4. 6. 3≤m <2 【解析】如解图,分别延长AE 、BF 交于点H ,∵∠A =∠FPB =60°,∴AH ∥PF ,∵∠B =∠EPA =60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分.∵G 为EF 的中点,∴G 正好为PH 的中点,即在P 的运动过程中,G 始终为PH 的中点,∴G 的行动轨迹为△HAB 的中位线MN ,∴MN ∥AB ,PG <AM ,∵当P 在AB 中点时,PH ⊥AB ,∴当P 在AB 中点时,PG 的值最小,∵△AEP 和△PFB 是等边三角形,∴∠A =∠B =60°,∴△AHB 是等边三角形,∴AH =AB =4,∴当P 在AB 中点时,PH =23,∴PG =3,∴PG 的最小值是3,∴3≤m <2.7. 1+13 【解析】∵2AB =4,∴AB =2,∵四边形ABCD 是矩形,∴∠ADC =90°,CD =AB =2, AO =CO,在Rt △ACD 中,AC =4,CD =2,根据勾股定理,得AD =42-22=23,∵点E 是AD 的中点,∴AE =DE =3,又∵AO =CO ,∴OE是△ACD 的中位线,∴OE =12CD =1,OE ∥CD ,∴∠OED =90°,∵△OPE 的周长=OE +OP +EP =1+OP +EP ,∴求△OPE 的周长的最小值就是求OP +EP 的最小值.如解图,延长ED 至E′,使DE′=DE,连接OE′,交CD于点P′,此时OP′+EP′=OP′+E′P′=OE′,即OE′为OP+EP的最小值,在Rt△OEE′中,OE=1,EE′=2ED=23,根据勾股定理,得OE′=12+(23)2=13,即OP+EP的最小值为13,∴△OEP的周长的最小值为1+13.。

2013年中考数学解题方法及提分突破训练:几何变换法专题

2013年中考数学解题方法及提分突破训练:几何变换法专题

解题方法及提分突破训练:几何变换法专题在几何题或代数几何综合题的解证过程中,经常会使用几何变换的观点来解决问题。

从图形的特点出发,利用几何变换,可将图形的全部或一部分移动到一个新的位置,构成一个新的关系,从而使问题获得解决。

这种几何变换不改变被移动部分图形的形状和大小,而只是它的位置发生了变化,这种移动有利于找出图形之间的关系,从而使解题更为简捷。

移动图形一般有三种方法:(1)平移法。

(2)旋转法:利用旋转变换。

(3)对称:可利用中心对称和轴对称。

一真题链接1.(2012中考)如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD= .2.(2012泰安)将抛物线23y x=向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3y x=++B.23(2)3y x=-+C.23(2)3y x=+-D.23(2)3y x=--3.(2012绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。

4.(2012张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换。

.二名词释义在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。

中学数学中所涉及的变换主要是初等变换。

有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

2013年中考数学几何综合题专题突破复习最新版

2013年中考数学几何综合题专题突破复习最新版

专题七┃ 京考解读
(2)将图①中的菱形 BEFG 绕点 B 顺时针旋转,使菱形 BEFG 的对角线 BF 恰好与菱形 ABCD 的边 AB 在同一条直线 上,原问题中的其他条件不变(如图②).你在(1)中得到的两个 结论是否发生变化?写出你的猜想并加以证明.
(3)若图①中∠ABC=∠BEF=2α(0°<α <90°),将菱形 BEFG 绕点 B 顺时针 旋转任意角度,原问 题中的其他条件不变, 请你直接写出PPGC的值 (用含 α 的式子表示).
专题七┃ 京考解读
解:(1)证明∵AF 平分∠BAD,∴∠BAF=∠DAF. ∵四边形 ABCD 是平行四边形,∴AD∥BC,AB∥CD. ∴∠DAF=∠CEF,∠BAF=∠F. ∴∠CEF=∠F.∴CE=CF. (2)∠BDG= 45 °. (3)分别联结 GB、GE、GC(如图). ∵AB∥DC,∠ABC=120°, ∴∠ECF=∠ABC=120°. ∵FG∥CE 且 FG=CE, ∴四边形 CEGF 是平行四边形. 由(1)得 CE=CF,∴▱CEGF 是菱形. ∴EG=EC,∠GCF=∠GCE =12∠ECF=60°.
专题七┃ 京考解读
年份 分值
考点
2008~ 2012年 北京几 何综合 题考点
对比
2008 2009 2010 2011
8分
阅读理解、菱形性质、旋转变换、构造全等三 角形、三角函数
8分
平行四边形性质、旋转变换、动点问题及构造 函数解析式、求自变量取值范围、分类讨论
8分 解三角形、构造等腰梯形、三角形全等
8分
平行四边形性质、特殊到一般、构造图形(全 等三角形或等边三角形或特殊平行四边形)
2012 7分 旋转变换、对称变换、构造全等三角形

中考冲刺300题——几何压轴1(11-20)

中考冲刺300题——几何压轴1(11-20)

春中考冲刺讲师:小鞠老师讲师:小鞠老师1.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.【解答】(1)证明:①在四边形ADBC 中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE 是等腰直角三角形,∴DE=CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD=CD;(2)解:AD﹣BD=CD;理由:如图2,在AD 上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE===CD,∵DE=AD﹣AE=AD﹣BD,∴AD﹣BD=CD.讲师:小鞠老师2.如图,在⊙O 中,AB 是直径,BC 是弦,BC=BD,连接CD 交⊙O 于点E,∠BCD=∠DBE.(1)求证:BD 是⊙O 的切线.(2)过点E 作EF⊥AB 于F,交BC 于G,已知DE=2,EG=3,求BG的长.讲师:小鞠老师讲师:小鞠老师【解答】(1)证明:如图1,连接AE,则∠A=∠C,∵AB是直径,∴∠AEB=90°,∴∠A+∠ABE=90°,∵∠C=∠DBE,∴∠ABE+∠DBE=90°,即∠ABD=90°,∴BD是⊙O的切线(2)解:如图2,延长EF交⊙O于H,∵EF⊥AB,AB是直径,∴,∴∠ECB=∠BEH,∵∠EBC=∠GBE,∴△EBC∽△GBE,∴,∵BC=BD,∴∠D=∠C,∵∠C=∠DBE,∴∠D=∠DBE,∴BE=DE=2,又∠AFE=∠ABD=90°,∴BD∥EF,∴∠D=∠CEF,∴∠C=∠CEF,∴CG=GE=3,∴BC=BG+CG=BG+3,∴,∴BG=﹣8(舍)或BG=5,即BG的长为5.讲师:小鞠老师3.如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.【解答】解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠FAC=45°,∴∠ACF=∠AFC=(180°﹣45°)=67.5°,∴∠DCF═∠EFC=22.5°,∵∠FEC=90°,O为CF 的中点,∴OE=CF=OC=OF,同理:OD=CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO到点M,使OM=EO,连接DM、CM、DE,如图2所示:∵O为CF的中点,∴OC=OF,在△COM和△FOE 中,,∴△COM≌△FOE(SAS),∴∠MCF=∠EFC,CM=EF,∵四边形ABCD是正方形,∴AB=BC=CD,∠BAC=∠BCA=45°,∵△ABC绕点A逆时针旋转α得△AEF,∴AB=AE=EF=CD,AC=AF,∴CD=CM,∠ACF=∠AFC,∵∠ACF=∠ACD+∠FCD,∠AFC=∠AFE+∠CFE,∠ACD=∠AFE=45°,∴∠FCD=∠CFE=∠MCF,∵∠EAC+∠DAE=45°,∠FAD+∠DAE=45°,∴∠EAC=∠FAD,在△ACF中,∵∠ACF+∠AFC+∠CAF=180°,∴∠DAE+2∠FAD+∠DCM+90°=180°,∵∠FAD+∠DAE=45°,∴∠FAD+∠DCM=45°,∴∠DAE=∠DCM,在△ADE和△CDM 中,,∴△ADE≌△CDM(SAS),∴DE=DM,∵OE=OM,∴OE⊥OD,在△COM和△COD 中,,∴△COM≌△COD(SAS),∴OM=OD,∴OE=OD,∴OE=OD,OE⊥OD;(3)点O经过的路径长为:πd=8π.讲师:小鞠老师4.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是AG=CF.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cosB=,请直接写出CF的长.讲师:小鞠老师中考几何压轴1(#11-20)思考让我快乐讲师:小鞠老师【解答】解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG=CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,∴,在Rt△ACE中,∵∠C=30°,∴=sinC=,∴=,∴AG=CF;(3)CF的长为2.5或5.思考让我快乐5.如图,四边形ABCD 是菱形,∠BAD=120°,点E 在射线AC 上(不包括点A 和点C),过点E 的直线GH 交直线AD 于点G,交直线BC 于点H,且GH∥DC,点F 在BC 的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E 在线段AC 上时,①判断△AEG 的形状,并说明理由.②求证:△DEF 是等边三角形.(2)如图2,当点E 在AC 的延长线上时,△DEF 是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.中考几何压轴1(#11-20)讲师:小鞠老师中考几何压轴1(#11-20)思考让我快乐讲师:小鞠老师【解答】(1)①解:△AEG是等边三角形;理由如下:∵四边形ABCD是菱形,∠BAD=120°,∴AD∥BC,AB=BC=CD=AD,AB∥CD,∠CAD=∠BAD=60°,∴∠BAD+∠ADC=180°,∴∠ADC=60°,∵GH∥DC,∴∠AGE=∠ADC=60°,∴∠AGE=∠EAG=∠AEG=60°,∴△AEG是等边三角形;②证明:∵△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∴∠DCF=60°=∠CAD,在△AED和△CFD中,,∴△AED≌△CFD(SAS)∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE+∠CDE=60°,∴∠CDF+∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形;(2)解:△DEF是等边三角形;理由如下:同(1)①得:△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∠CAD=∠BAD=60°∴∠FCD=60°=∠CAD,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE﹣∠CDE=60°,∴∠CDF﹣∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形.思考让我快乐中考几何压轴1(#11-20)讲师:小鞠老师6.已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF 为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF.②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.讲师:小鞠老师【解答】(1)证明:①如图1中,∵△EFC与△AFC都是等腰直角三角形,∴FA=FC,FE=FG,∠AFC=∠EFG=90°,∴∠AFE=∠CFG,∴△AFE≌△CFG(SAS).②∵△AFE≌△CFG,∴AE=CG,∠AEF=∠CGF,∵△AEB是等腰直角三角形,∴AE=BE,∠BEA=90°,∴CG=BE,∵△EFG是等腰直角三角形,∴∠FEG=∠FGE=45°,∴∠AEF+∠BEG=45°,∵∠CGE+∠CGF=45°,∴∠BEG=∠CGE,∴BE∥CG,∴四边形BECG是平行四边形.(2)解:如图2中,延长ED到G,使得DG=ED,连接CG,FG.∵点D是BC的中点,∴BD=CD,∵∠EDB=∠GDC,∴EB=GC,∠EBD=∠GCD,在Rt△AEB与Rt△AFC中,∵∠EAB=∠FAC=30°,∴=,=,∴=,∵∠EBD=∠2+60°,∴∠DCG=∠2+60°,∴∠GCF=360°﹣60°﹣(∠2+60°)﹣∠3=360°﹣120°﹣(∠2+∠3)=360°﹣120°﹣(180°﹣∠1)=60°+∠1,∵∠EAF=30°+∠1+30°=60°+∠1,∴∠GCF=∠EAF,∴△CGF∽△AEF,∴==,∠CFG=∠AFE,∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,∴tan∠DEF==,∴∠DEF=30°,∴FG=EG,∵ED=EG,∴ED=FG,∴=.(3)cos∠DEF=cos∠AEH===.讲师:小鞠老师7.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是∠NAB=∠MAC,NB与MC的数量关系是NB=CM;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.讲师:小鞠老师【解答】解:(一)(1)结论:∠NAB=∠MAC,BN=MC.理由:如图1中,∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.故答案为∠NAB=∠MAC,BN=CM.(2)如图2中,①中结论仍然成立.理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.(二)如图3中,在A1C1上截取A1N=A1B1,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.∵∠C1A1B1=∠PA1Q,∴∠QA1B1=∠PA1N,∵A1A=A1P,A1B1=AN,∴△QA1B1≌△PA1N(SAS),∴B1Q=PN,∴当PN的值最小时,QB1的值最小,在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=8,∴A1M=A1B1•sin60°=4,∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,∴A1C1=4,∴NC1=A1C1﹣A1N=4﹣8,在Rt△NHC1,∵∠C1=45°,∴NH=4﹣4,根据垂线段最短可知,当点P与H重合时,PN的值最小,∴QB1的最小值为4﹣4.思考让我快乐8.在Rt△ABC中,∠ACB=90°,D是△ABC内一点,连接AD,BD.在BD左侧作Rt△BDE,使∠BDE=90°,以AD和DE为邻边作▱ADEF,连接CD,DF.(1)若AC=BC,BD=DE.①如图1,当B,D,F三点共线时,CD与DF之间的数量关系为DF=CD.②如图2,当B,D,F三点不共线时,①中的结论是否仍然成立?请说明理由.(2)若BC=2AC,BD=2DE,=,且E,C,F三点共线,求的值.中考几何压轴1(#11-20)讲师:小鞠老师讲师:小鞠老师【解答】解:(1)①如图1中,连接CF.设AC交BF于G.∵四边形AFED是平行四边形,∴AF=DE,DE∥AF,∵BD=DE,∴AF=BD,∵∠BDE=90°,∴∠EDF=∠DFA=90°=∠BCG,∵∠CGB=∠AGF,∴∠CBD=∠CAF,∵BC=AC,∴△BCD≌△ACF(SAS),∴∠BCD=∠ACF,CD=CF,∴∠BCA=∠DCF=90°,∴△CDF是等腰直角三角形,∴DF=CD.故答案为DF=CD.②结论仍然成立.理由:如图2中,连接CF.延长BD交AF的延长线于H,设AC交BH于G.∵四边形AFED是平行四边形,∴AF=DE,DE∥AF,∵BD=DE,∴AF=BD,∵∠BDE=90°,∴∠DEH=∠DHA=90°=∠BCG,∵∠CGB=∠AGH,∴∠CBD=∠CAF,∵BC=AC,∴△BCD≌△ACF(SAS),∴∠BCD=∠ACF,CD=CF,∴∠BCA=∠DCF=90°,∴△CDF是等腰直角三角形,∴DF=CD.(3)==.讲师:小鞠老师9.如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,点M是AB的中点,连接MC,点P 是线段BC延长线上一点,且PC<BC,连接MP交AC于点H.将射线MP绕点M逆时针旋转60°交线段CA的延长线于点D.(1)找出与∠AMP相等的角,并说明理由.(2)如图2,CP=BC,求的值.(3)在(2)的条件下,若MD=,求线段AB的长.讲师:小鞠老师【解答】解:(1)∠D=∠AMP.理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°.∴∠D+∠DMA=60°.由旋转的性质知,∠DMA+∠AMP=60°.∴∠D=∠AMP;(2)如图,过点C作CG∥BA交MP于点G.∴∠GCP=∠B=30°,∠BCG=150°.∵∠ACB=90°,点M是AB的中点,∴CM=AB=BM=AM.∴∠MCB=∠B=30°.∴∠MCG=120°.∵∠MAD=180°﹣60°=120°.∴∠MAD=∠MCG.∵∠DMG﹣∠AMG=∠AMC﹣∠AMG,∴∠DMA=∠GMC.在△MDA与△MGC中,∴△MDA≌△MGC(ASA).∴AD=CG.∵CP=BC.∴CP=BP.∵CG∥BM,∴△CGP∽△BMP.∴==.设CG=AD=t,则BM=3t,AB=6t.在Rt△ABC中,cosB==.∴BC=3t.∴==;(3)如图,由(2)知△CGP∽△BMP.则MD=MG=.∵CG∥MA.∴∠CGH=∠AMH.∵∠GHC=∠MHA,∴△GHC∽△MHA.∴===.∴HG=MG=×=.∴MH=﹣=.由(2)知,CG=AD=t,则BM=AM=CA=3t.∴CH=t,AH=t.∵∠MHA=∠DHM,∠HMA=∠D.∴△MHA∽△DHM.∴=.∴MH2=AH•DH,即()2=t t.解得t1=,t2=﹣(舍去).∴AB=6t=2.思考让我快乐中考几何压轴1(#11-20)讲师:小鞠老师10.我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p=(周长的一半),则S=②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,△ABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=,S为三角形面积,则S=pr.思考让我快乐【解答】解:(1)由①得:S==10,由②得:p==10,S==10;(2)公式①和②等价;推导过程如下:∵p=,∴2p=a+b+c,①中根号内的式子可化为:(ab+)(ab﹣)=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=[(a+b)2﹣c2][c2﹣(a﹣b)2]=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b)=×2p×(2p﹣2c)(2p﹣2b)(2p﹣2a)=p(p﹣a)(p﹣b)(p﹣c),∴=;(3)连接OA、OB、OC,如图所示:S=S△AOB+S△AOC+S△BOC=rc+rb+ra=()r=pr.初三中考冲刺系列中考几何压轴1(#11-20)讲师:小鞠老师。

初中数学几何计算专题练习(含答案)

初中数学几何计算专题练习(含答案)

初中数学几何计算专题练习(含答案)第一题已知直角三角形的直角边长分别为6cm和8cm,求斜边的长度。

答案:根据勾股定理,直角三角形的斜边的长度可以通过以下公式计算:斜边长度= √(直角边1的平方 + 直角边2的平方)将已知的直角边长代入计算:斜边长度= √(6cm^2 + 8cm^2)斜边长度= √(36cm^2 + 64cm^2)斜边长度= √(100cm^2)斜边长度≈ 10cm因此,直角三角形的斜边长度约为10cm。

第二题在平面直角坐标系中,点A的坐标为(3, 4),点B的坐标为(7, 2),求线段AB的长度。

答案:根据两点间距离公式,可以计算出线段AB的长度:线段AB的长度= √((x2 - x1)^2 + (y2 - y1)^2)将点A和点B的坐标代入计算:线段AB的长度= √((7 - 3)^2 + (2 - 4)^2)线段AB的长度= √(4^2 + (-2)^2)线段AB的长度= √(16 + 4)线段AB的长度= √20 ≈ 4.47因此,线段AB的长度约为4.47。

第三题已知正方形的边长为10cm,求正方形的对角线长度。

答案:正方形的对角线长度可以通过以下公式计算:对角线长度 = 边长* √2将已知的边长代入计算:对角线长度= 10cm * √2对角线长度≈ 14.14cm因此,正方形的对角线长度约为14.14cm。

第四题已知圆的半径为5cm,求圆的周长和面积。

答案:圆的周长可以通过以下公式计算:周长= 2πr将已知的半径代入计算:周长= 2π * 5cm周长≈ 2 * 3.14 * 5cm周长≈ 31.4cm圆的面积可以通过以下公式计算:面积= πr^2将已知的半径代入计算:面积 = 3.14 * (5cm)^2面积 = 3.14 * 25cm^2面积≈ 78.5cm^2因此,圆的周长约为31.4cm,面积约为78.5cm^2。

以上是初中数学几何计算专题练习的一些题目和答案。

2013年中考数学专题复习题8 几何最值问题解法探讨

2013年中考数学专题复习题8 几何最值问题解法探讨

【2013年中考攻略】专题8:几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A 1+BC .55 D .52【答案】A 。

【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。

【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大, 此时,∵AB=2,BC=1,∴OE=AE=12AB=1。

DE====,∴OD 1。

故选A 。

例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。

【答案】4。

【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,在BA 上截取BE=BN ,连接EM 。

∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM。

在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM,BM=BM , ∴△BME≌△BMN(SAS )。

中考数学总复习《几何压轴题》专项提升练习题(附答案)

中考数学总复习《几何压轴题》专项提升练习题(附答案)

中考数学总复习《几何压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________专题02三角形之直角、等腰问题 题型训练训练题01【2023·内蒙古·中考真题】如图,在Rt ABC △中90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC 的值为 .训练题02【2023·山东菏泽·中考真题】无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)训练题03【2023·广东·中考真题】2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=︒时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin500.766︒≈ cos500.643︒≈ tan50 1.192︒≈)训练题04【2023·湖北黄冈·中考真题】综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD 的中点A 处竖直上升30米到达B 处,测得博雅楼顶部E 的俯角为45︒,尚美楼顶部F 的俯角为30︒,已知博雅楼高度CE 为15米,则尚美楼高度DF 为 米.(结果保留根号)训练题05【2023·河北沧州·模拟预测】如图1,嘉淇在量角器的圆心O 处下挂一铅锤,制作了一个简易测角仪.将此测角仪拿到眼前,使视线沿着仪器的直径刚好到达树的最高点M .(1)在图1中,过点A 画出水平线,并标记观测M 的仰角α.若铅垂线在量角器上的读数为53︒,求α的值;(2)如图2,已知嘉淇眼睛离地1.5米,站在B 处观测M 的仰角为(1)中的α,向前走1.25米到达D 处,此时观测点M 的仰角为45︒,求树MN 的高度.(注:3tan 374︒≈ 3sin 375︒≈ 4cos375≈︒) 训练题06【2023·四川成都·八年级期末联考】如图 在等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥于点G 点M N 分别是DE DG 上的动点 且DN EM = 则FM FN +的最小值为 .训练题07【2022·陕西西安·滨河期末】如图 直线y =x ﹣3分别交x 轴 y 轴于B A 两点 点C (0 1)在y 轴上 点P 在x 轴上运动 则2PC +PB 的最小值为 .训练题08【2021·四川甘孜·中考真题】如图 腰长为22+2的等腰ABC 中 顶角∠A =45° D 为腰AB 上的一个动点将ACD 沿CD 折叠 点A 落在点E 处 当CE 与ABC 的某一条腰垂直时 BD 的长为 .训练题09【2022·福建泉州·九年级联考】如图 ABC 和AGF 是等腰直角三角形 90BAC G ∠=∠=︒ AGF 的边AF AG 交边BC 于点D E .若4=AD 3AE = 则BEDC 的值是 .训练题10【2021·宁夏固元·联考一模】如图在直角△BAD中延长斜边BD到点C 使得BD=2DC 连接AC 如果则的值是()A.B.C.D.答案&解析5 tanB3=tan CAD∠3 3351315训练题01【2023·内蒙古·中考真题】【答案】5【简证】因为tan 311tan 4522ABC CD ABD α∠=⎧⇒=⇒=⎨∠=︒⎩ 故5AD DC =【常规法】解:过点D 作DF AB ⊥于点F∵90ACB ∠=︒ 3AC = 1BC =∴223110AB =+=∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△∴==10AB AB ' 90BAB '∠=︒∴ABB '是等腰直角三角形∴45ABB '∠=︒又∵DF AB ⊥∴45FDB ∠=︒∴DFB △是等腰直角三角形∴DF BF =∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ∵ 90C AFD ∠=∠=︒ CAB FAD ∠=∠∴AFDACB ∴DF AF BC AC= 即3AF DF = 又∵=10AF DF -45°α∴10=4 DF∴105=10=42AD⨯51=3=22CD-∴52==512ADCD故答案为:5.训练题02【2023·山东菏泽·中考真题】【答案】大楼的高度BC 为303m .【分析】如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥ 则四边形CQHB 是矩形 可得QH BC = BH CQ = 求解3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= 可得704030CQ BH ==-= tan 30103PQ CQ =︒= 可得403103303BC QH ==-=.【详解】解:如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥则四边形CQHB 是矩形 ∴QH BC = BH CQ =由题意可得:80AP = 60PAH ∠=︒ 30PCQ ∠=︒ 70AB = ∴3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= ∴704030CQ BH ==-= ∴tan 30103PQ CQ =︒=∴403103303BC QH ==-= ∴大楼的高度BC 为303m .训练题03【2023·广东·中考真题】【答案】15.3m【分析】连接AB 作作CD AB ⊥于D 由等腰三角形“三线合一”性质可知2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中利用sin AD ACD AC∠=求出AD 继而求出AB 即可.【详解】解:连接AB 作CD AB ⊥于D∵AC BC = CD AB ⊥∴CD 是边AB 边上的中线 也是ACB ∠的角平分线∴2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中 10m AC = 50ACD ∠=︒ sin AD ACD AC ∠= ∴sin 5010AD ︒= ∴10sin50100.7667.66AD =︒≈⨯=∴()227.6615.3215.3m AB AD =≈⨯=≈答:A B 两点间的距离为15.3m .训练题04【2023·湖北黄冈·中考真题】【答案】3053-/5330-+【分析】过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N 首先证明出四边形ECAM 是矩形 得到15AM CE == 然后根据等腰直角三角形的性质得到15AC EM BM === 进而得到15==AD AC 然后利用30︒角直角三角形的性质和勾股定理求出53BN = 即可求解.【详解】如图所示 过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N由题意可得 四边形ECAM 是矩形 ∴15AM CE == ∵30AB = ∴15BM AB AM =-= ∵博雅楼顶部E 的俯角为45︒ ∴45EBM ∠=︒ ∴45BEM ∠=︒ ∴15AC EM BM ===∵点A 是CD 的中点 ∴15==AD AC 由题意可得四边形AMFN 是矩形 ∴15NF AD == ∵尚美楼顶部F 的俯角为30︒ ∴60NBF ∠=︒ ∴30BFN ∠=︒ ∴2BF BN =∴在Rt BNF △中 222BNNF BF += ∴()222152BN BN +=∴解得53BN =∴3053FD AN AB BN ==-=-.故答案为:3053-.训练题05【2023·河北沧州·模拟预测】【答案】(1)37︒(2)树MN 的高度为5.25米【分析】(1)根据互余的性质计算即可.(2) 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米.解直角三角形求解即可.【详解】(1)如图1;905337α=︒-︒=︒;(2)如图 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米. 在Rt APM △中 4( 1.5)tan 373MP AP x ==-︒(米) 在Rt MCP 中 1.5CP MP x ==-(米) 4( 1.5)( 1.5) 1.253AC AP CP x x ∴=-=---=(米) 解得 5.25x =. 答:树MN 的高度为5.25米.训练题06【2023·四川成都·八年级期末联考】【答案】23【分析】过点E 作AE EF ⊥ 使得2AE DF == 证得AEM FDN ≅ 利用全等三角形的性质证得FN AM = 求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长 在Rt AEF 中利用勾股定理即可求解.【详解】解:过点E 作AE EF ⊥ 使得2AE DF == 如图所示∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF ==∴45DEF ∠=︒ 222222EF =+=∴9045AEM DEF ∠=︒-∠=︒∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥∴45FDN ∠=︒∴FDN AEM ∠=∠在AEM △和FDN 中AE DF AEM FDN EM DN =⎧⎪∠=∠⎨⎪=⎩∴AEM FDN≅()SAS ∴FN AM =∴求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长∴在Rt AEF 中()222222223AF AE EF =+=+=的最小值为23即FM FN故答案为:23训练题07【2022·陕西西安·滨河期末】【答案】4【分析】过P作PD⊥AB于D依据△AOB是等腰直角三角形可得∠BAO=∠ABO=45°=∠BPD进而得到△BDP是等腰直角三角形故PD22=PB当C P D在同一直线上时CD⊥AB PC+PD的最小值等于垂线段CD的长求得CD的长即可得出结论.【详解】如图所示过P作PD⊥AB于D∵直线y=x﹣3分别交x轴y轴于B A两点令x=0 则y=﹣3;令y=0 则x=3∴A(0 ﹣3)B(3 0)∴AO=BO=3又∵∠AOB=90°∴△AOB是等腰直角三角形∴∠BAO=∠ABO=45°=∠BPD∴△BDP是等腰直角三角形∴PD22=PB∴2PC+PB2=(PC22+PB)2=(PC+PD)当C P D在同一直线上即CD⊥AB时PC+PD的值最小最小值等于垂线段CD 的长此时△ACD是等腰直角三角形又∵点C(0 1)在y轴上∴AC=1+3=4∴CD22=AC=22即PC+PD的最小值为22∴2PC+PB的最小值为222⨯=4 故答案为:4.训练题08【2021·四川甘孜·中考真题】【答案】2或22【分析】分两种情况:当CE ⊥AB 时 设垂足为M 在Rt △AMC 中 ∠A =45° 由折叠得:∠ACD =∠DCE =22.5° 证明△BCM ≌△DCM 得到BM =DM 证明△MDE 是等腰直角三角形 即可得解;当CE ⊥AC 时 根据折叠的性质 等腰直角三角形的判定与性质计算即可;【详解】当CE ⊥AB 时 如图设垂足为M 在Rt △AMC 中 ∠A =45°由折叠得:∠ACD =∠DCE =22.5°∵等腰△ABC 中 顶角∠A =45°∴∠B =∠ACB =67.5°∴∠BCM =22.5°∴∠BCM =∠DCM在△BCM 和△DCM 中90BMC DMC CM CM BCM DCM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△BCM ≌△DCM (ASA )∴BM =DM由折叠得:∠E =∠A =45° AD =DE∴△MDE 是等腰直角三角形∴DM =EM设DM =x 则BM =x DE 2=x∴AD 2=x .∵AB=22+2∴2x2x=22+2 解得:x2=∴BD=2x=22;当CE⊥AC时如图∴∠ACE=90°由折叠得:∠ACD=∠DCE=45°∵等腰△ABC中顶角∠A=45°∴∠E=∠A=45°AD=DE∴∠ADC=∠EDC=90°即点D E都在直线AB上且△ADC△DEC△ACE都是等腰直角三角形∵AB=AC==22+2∴AD22=AC=22BD=AB﹣AD=(22+2)﹣(22)2=综上BD的长为2或22.故答案为:2或22.训练题09【2022·福建泉州·九年级联考】【答案】916【分析】利用等腰直角三角形的性质先证明AED BEA ∽ 可得34BE AE AB AD ==,设3BE x = 则4AB x AC ==,再证明ADE CDA △∽△ 可得34AC AE CD AD == 可得163CD x = 从而可得结论. 【详解】解:∵ABC 和AGF 是等腰直角三角形 ∴45,B F FAG AB AC ∠=∠=∠=︒=∵AEB AED ∠=∠∴AED BEA ∽∴AD AE DE AB BE AE ==,而4=AD 3AE = ∴34BE AE AB AD == 设3BE x = 则4AB x AC ==同理可得:ADE CDA △∽△∴AD AE DE CD AC AD == ∴34AC AE CD AD == ∴BE AC AB CD = ∴344x x x CD =,即163CD x = ∴3916163BE x CD x ==.训练题10【2021·宁夏固元·联考一模】【答案】D【详解】解:如图 延长AD 过点C 作CE ⊥AD 垂足为E∵ 即∴设AD =5x 则AB =3x∵∠CDE =∠BDA ∠CED =∠BAD∴△CDE ∽△BDA∴∴CE = DE =∴AE = ∴tan ∠CAD =.5tanB 3=53AD AB =12CE DE CD AB AD BD ===32x 52x 152x 15CE AE =。

中考冲刺几何综合问题—知识讲解及典型例题解析

中考冲刺几何综合问题—知识讲解及典型例题解析

;;中考冲刺:几何综合问题—知识讲解及典型例题解析【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要 考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选 择题、填空题、几何推理计算题以及代数与几何的综合计算题 ,还有更注重考查学生分析问题和解决问 题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多, 题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有 实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能 力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等)2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等)3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图 1,在正方形 ABCD 中,点 E 、F 分别是边 BC 、AB 上的点,且 CE=BF ,连接 DE ,过点 E 作 EG ⊥DE,使 EG=DE ,连接 FG ,FC .(1)请判断:FG 与 CE 的数量关系和位置关系;(不要求证明)(2)如图 2,若点 E 、F 分别是 CB 、BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出 判断判断予以证明;(3)如图 3,若点 E 、F 分别是 BC 、AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直 接写出你的判断.【思路点拨】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.【答案与解析】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【总结升华】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,注意这类题目的解题规律,图形变了,条件不变,证明的方法思路完全一样,属于中考常考题型.举一反三:【变式】已知:如图(1),射线AM//射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC,且AD+DE=AB=a.(1)求证:∆ADE∽∆BEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)设AE=m,请探究:∆BEC的周长是否与m值有关?若有关,请用含有m的代数式表示∴1∆BEC的周长;若无关,请说明理由.【答案】(1)证明:∵DE⊥EC,∴∠DEC=90︒.∴∠AED+∠BEC=90︒.又∵∠A=∠B=90︒,∴∠AED+∠EDA=90︒.∴∠BEC=∠EDA.∴∆ADE∽∆BEC.(2)证明:如图,过点E作EF//BC,交CD于点F,∵E是AB的中点,容易证明EF=1(AD+BC).2在Rt∆DEC中,∵DF=CF,∴EF=12 CD.1(A D+BC)=CD.22∴AD+BC=CD.(3)解:∆AED的周长=AE+AD+DE=a+m,BE=a-m.设AD=x,则DE=a-x.∵∠A=90︒,∴DE2=AE2+AD2.即a2-2ax+x2=m2+x2.a2-m2∴x=.2a由(1)知∆ADE∽∆BEC,∆ADE的周长AD a+m2a=∴a2-m2==∆BEC的周长BE a-m2a.∴∆BEC的周长=2a⋅∆ADE的周长=2a.a+m∴∆BEC的周长与m值无关.2.在△ABC中,∠ACB=45º.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=42,BC=3,CD=x,求线段CP的长.(用含x的式子表示)【思路点拨】(1)由题干可以发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解.(2)是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,和上题一样找AC的垂线,就可以变成第一问的条件,然后一样求解.(3)D在BC之间运动和它在BC延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X还是4-X.分类讨论之后利用相似三角形的比例关系即可求出CP.【答案与解析】(1)结论:CF⊥BD;证明如下:ΘAB=AC,∠ACB=45º,∴∠ABC=45º.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90º,∴∠DAB=∠FAC,∴△DAB≌△FAC,∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90º.即CF⊥BD.(2)CF⊥BD.(1)中结论仍成立.理由是:过点A作AG⊥AC交BC于点G,∴AC=AG可证:GAD≌CAF∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF=90º.即CF⊥BD(3)过点A作AQ⊥BC交CB的延长线于点Q,易证△AQD∽△DCP,∴ CP = CD ,∴ = , ∴CP = - + x . ∴ CP = CD , ∴ = , ∴CP = + x . ①点 D 在线段 BC 上运动时,∵∠BCA=45º,可求出 AQ= CQ=4.∴DQ=4-x ,CP x DQ AQ4 - x 4 x 2 4②点 D 在线段 BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x.过 A 作 AQ⊥BC,∴∠Q=∠FQC=90°,∠ADQ=∠AFC,则△AQD∽△ACF.∴CF⊥BD,∴△AQD∽△DCP,CP x DQ AQ4+x 4x 2 4【总结升华】此题综合性强,需要综合运用全等、相似、正方形等知识点,属能力拔高性的题目.3.如图,正方形ABCD 的边长为 6,点 E 是射线 BC 上的一个动点,连接 AE 并延长,交射线 DC 于点 F △,将 ABE 沿直线 AE 翻折,点 B 坐在点 B ′处.自主探究:(1)当=1 时,如图 1,延长 AB ′,交 CD 于点 M .①CF 的长为; ②判断 AM 与 FM 的数量关系,并证明你的结论.(2)当点 B ′恰好落在对角线 AC 上时,如图 2,此时 CF 的长为, 拓展运用:(3)当=2 时,求 sin ∠DAB ′的值.= .(【思路点拨】1)①利用相似三角形的判定与性质得出FC=AB即可得出答案;②利用翻折变换的性质得出∠BAF=∠MAF,进而得出AM=FM;(2)根据翻折变换的性质得出∠BAE=∠MAF,进而得出AM=MF,利用△ABE∽FCE得出答案即可;(3)根据①如图1,当点E在线段BC上时,延长AB′交DC边于点M,②如图3,当点E在线段BC 的延长线上时,延长AD交B′E于点N,分别利用勾股定理求出即可.【答案与解析】解:(1)①当=1时,∵AB∥FC,∴△ABE∽FCE,∴==1,∴FC=AB=6,②AM=FM,理由如下:∵四边形ABCD是正方形,∴AB∥DC,∴∠BAF=∠AFC,∵△ABE沿直线AE翻折得到△AB′E,∴∠BAF=∠MAF,∴∠MAF=∠AFC,∴AM=FM;(2)如图2,∵当点B′恰好落在对角线AC上时,∴∠1=∠2,∵AB∥FC,∴∠1=∠F,∴∠2=∠F,∴AC=FC,∵AB=BC=6,∴AC=FC=6,∵AB∥FC,∴△ABE∽FCE,∴===,(3)①如图1,当点E在线段BC上时,延长AB′交DC边于点M,∵AB∥CF,∴△ABE∽△FCE,∴==2,∵AB=6,∴CF=3,∴DF=CD+CF=9,由(1)知:AM=FM,∴AM=FM=9﹣DM,在△Rt ADM中,由勾股定理得:DM′2=(9﹣DM)2﹣62,解得:DM=,则MA=,∴sin∠DAB′==,②如图3,当点E在线段BC的延长线上时,延长AD交B′E于点N,由(1)知:AN=EN,又BE=B′E=12,点∴NA=NE=12﹣B′N,在△Rt AB′N中,由勾股定理得:B′N2=(12﹣B′N)2﹣62,解得:B′N=,AN=,∴sin∠DAB′=故答案为:6;6=.,.【总结升华】此题主要考查了翻折变换的性质以及相似三角形的判定与性质和勾股定理等知识,熟练利用相关性质和进行分类讨论得出是解题关键.类型二、几何计算型问题4.已知如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60︒保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中,当y取最小值时,判断△PQC的形状,并说明理由.【思路点拨】(1)属于纯静态问题,只要证两边的三角形全等就可以了.(2)是双动点问题,所以就需要研究在P,Q运动过程中什么东西是不变的.题目给定∠MPQ=60°,其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以很自然想到要通过相似三角形找比例关系.(3)条件又回归了当动点静止时的问题,由第二问所得的二次函数,很轻易就可以求出当x取对称轴的值时y有最小值,接下来就变成了“给定PC=2,求△PQC形状”的问题了,由已知的BC=4,自然看出P 是中点,于是问题轻松求解.【答案与解析】(1)证明:∵△MBC是等边三角形∴MB=MC,∠MBC=∠MCB=60︒∵M是AD中点∴AM=MD∵AD∥BC∴∠AMB=∠MBC=60︒,∠DMC=∠MCB=60︒∴△AMB≌△DMC∴AB=DC∴梯形ABCD是等腰梯形.∴ PC ∴ x 而(2)解:在等边 △MBC 中, MB = MC = BC = 4,∠MBC = ∠MCB = 60︒,∠MPQ = 60︒∴∠BMP + ∠BPM = ∠BPM + ∠QPC = 120︒∴∠BMP = ∠QPC∴ △BMP ∽△CQPCQ = BM BP∵ PC = x ,MQ = y ∴ BP = 4 - x ,QC = 4 - y4 - y 1 = ∴ y = x 2 - x + 4 4 4 - x4(3)解: △PQC 为直角三角形,∵ y = 1(x - 2)2 + 34 ∴当 y 取最小值时, x = PC = 2∴ P 是 BC 的中点, MP ⊥ BC , ∠MPQ = 60︒,∴∠CPQ = 30︒,∴∠PQC = 90︒∴ △PQC 为直角三角形.【总结升华】以上题目是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相 等,某角固定时,将动态问题化为静态问题去求解 .如果没有特殊条件,那么就需要研究在动点移动中 哪些条件是保持不变的.举一反三:【变式】已知:如图,N 、M 是以 O 为圆心,1 为半径的圆上的两点,B 是 MN 上一动点(B 不与点 M 、N 重合),∠MON=90°,BA⊥OM 于点 A ,BC⊥ON 于点 C ,点 D 、E 、F 、G 分别是线段 OA 、AB 、BC 、CO的中点,GF 与 CE 相交于点 P ,DE 与 AG 相交于点 Q .(1)四边形 EPGQ(填“是”或者“不是”)平行四边形;(2)若四边形 EPGQ 是矩形,求 OA 的值.【答案】(1)是.证明:连接OB,如图①,∵BA⊥OM,BC⊥ON,∴∠BAO=∠BCO=90°,∵∠AOC=90°,∴四边形OABC是矩形.∴AB∥OC,AB=OC,∵E、G分别是AB、CO的中点,∴AE∥GC,AE=GC,∴四边形AECG为平行四边形.∴CE∥AG,∵点D、E、F、G分别是线段OA、AB、BC、CO的中点,∴GF∥OB,DE∥OB,∴PG∥EQ,∴四边形EPGQ是平行四边形;(2)解:如图②,∴ AD ,AE=1,在①的条件下,设 CP 1= x ,S VP FC = y ,求 y 与 x 之间的函数关系式, 3 ∵口 EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,AE= , BEBC x y y : = : x 设 OA=x ,AB=y ,则 2 2 2得 y 2=2x 2,又∵OA 2+AB 2=OB 2, 即 x 2+y 2=12.∴x 2+2x 2=1,解得:x=3 . 3即当四边形 EPGQ 是矩形时,OA 的长度为3 3 .5.在 Y ABCD 中,过点 C 作 CE⊥CD 交 AD 于点 E,将线段 EC 绕点 E 逆时针旋转 90o 得到线段 EF(如图 1)(1)在图 1 中画图探究:①当 P 为射线 CD 上任意一点(P 1 不与 C 重合)时,连结EP 1 绕点 E 逆时针旋转 90o 得到线段 EC 1.判断直线 FC 1 与直线 CD 的位置关系,并加以证明; ②当 P 2 为线段 DC 的延长线上任意一点时,连结 EP 2,将线段 EP 2 绕点 E 逆时针旋转 90o 得到线段 EC 2.判断直线 C 1C 2 与直线 CD 的位置关系,画出图形并直接写出你的结论.4 (2)若 AD=6,tanB=1 1 并写出自变量 x 的取值范围.图1 备用图【思路点拨】(1)本题在于如何把握这个旋转 90°的条件.旋转 90°自然就是垂直关系,于是出现了一 系列直角三角形,于是证角、证线就手到擒来了.(2)是利用平行关系建立函数式,但是不要忘记分类讨论.【答案与解析】(1)①直线 FG 与直线 CD 的位置关系为互相垂直. 112,- - . , , 证明:如图 1,设直线 FG 与直线 CD 的交点为 H .1 G 1AE F G 2 P H 1 DBCP 2图 1∵线段 EC 、EP 分别绕点 E 逆时针旋转 90°依次得到线段 EF 、EG , 1 1∴ ∠PEG = ∠CEF = 90° EG = EP ,EF = EC . 1 1 1 1∵ ∠G EF = 90° ∠PEF , ∠PEC = 90° ∠PEF ,1 1 1 1∴ ∠G EF = ∠PEC .1 1∴ △G EF ≌△PEC .1 1∴ ∠G FE = ∠PCE .1 1∵ EC ⊥ C D ,∴ ∠PCE = 90°, 1∴ ∠G FE = 90° 1∴ ∠EFH = 90°.∴ ∠FHC = 90°.∴ FG ⊥ CD . 1②按题目要求所画图形见图 1,直线 G G 与直线 CD 的位置关系为互相垂直.1 2(2)∵四边形 ABCD 是平行四边形,∴ ∠B = ∠ADC .∵ AD = 6,AE = 1 tan B = 4 3 , ∴ DE = 5 tan ∠EBC = tan B = 4 3. 可得 CE = 4 .由(1)可得四边形 EFCH 为正方形.∴ CH = CE = 4 .P 1 2 2 2 2 1 ①如图 2,当 P 点在线段 CH 的延长线上时,1 G 1A EFD H BC 图 2∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S△P FG 1 1 1 x( x - 4) = ⨯ FG ⨯ PH = 1 1 . ∴ y = 1 2x 2 - 2 x ( x > 4) . ②如图 3,当 P 点在线段 CH 上(不与 C 、H 两点重合)时, 1G 1 FB A ECD P 1 H图 3∵ FG = CP = x ,PH = x - 4 ,1 1 1 ∴ S △P FG 1 = 1 x(4 - x) FG ⨯ PH = 1 1 . 1 ∴ y = - x2 + 2 x (0 < x < 4) . 2③当 P 点与 H 点重合时,即 x = 4 时, △PFG 不存在. 1 1 1综上所述, y 与 x 之间的函数关系式及自变量 x 的取值范围是 y =1 2 x 2 - 2 x ( x > 4) 或 1 y = - x 2 + 2 x (0 < x < 4) . 2【总结升华】本题着重考查了二次函数的解析式、图形的旋转变换、三角形全等、探究垂直的构成情况 等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.举一反三: 【变式】已知,点 P 是∠MON 的平分线上的一动点,射线 PA 交射线 OM 于点 A ,将射线 PA 绕点 P 逆时针 旋转交射线 ON 于点 B ,且使∠APB+∠MON=180°.(1)利用图 1,求证:PA=PB ;(2)如图2,若点C是AB与OP的交点,当△SPOB=3S△PCB时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.【答案】(1)作PE⊥OM,PF⊥ON,垂足为E、F∵四边形OEPF中,∠OEP=∠OFP=90°,∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB,即∠EPA+∠APF=∠APF+∠FPB,∴∠EPA=∠FPB,由角平分线的性质,得PE=PF,∴△EPA≌△FPB,即PA=PB;(2)∵S△POB=3S△PCB,∴PO=3PC,由(1)可知△PAB为等腰三角形,则∠PBC=又∵∠BPC=∠OPB(公共角),∴△PBC∽△POB,11(180°-∠APB)=∠MON=∠BOP,22∴PB PC=PO PB,即PB2=PO•PC=3PC2,∴PB=3PC(3)作BH⊥OT,垂足为H,当∠MON=60°时,∠APB=120°,由PA=PB,得∠PBA=∠PAB=12(180°-∠APB)=30°,又∵∠PBD=∠ABO,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=12(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°,在△OBP中,∵∠BOP=30°,∴∠BPO=45°,在Rt△OBH中,BH=1OB=1,OH=3,2在Rt△PBH中,PH=BH=1,∴OP=OH+PH=3+1.。

中考冲刺数学专题10 几何计算问题(含答案)

中考冲刺数学专题10 几何计算问题(含答案)

中考冲刺数学专题10——几何计算问题【备考点睛】几何计算问题常见的有:求线段的长、求角的度数,、求图形的面积等。

研究几何图形及其和相关的问题时,“几何计算”具有广泛的意义:一、几何图形的大小及形状、几何图形间的位置关系,在许多时候本来就需要运用相关的数量来表示,无疑地就会涉及到几何量的计算;二、当我们注重研究图形的动点问题,图形的变换及运动问题,在坐标系里研究图形的一些问题时,就愈是不可避免地要借助几何量的计算;三、那些基于实际而模型化为几何图形的应用类问题,更是必须依靠几何量的计算来解决。

几何计算是深入研究图形性质和图形间关系的重要手段,是用代数形式刻划变动中图形性质的主要凭借。

也就是说,许多以图形为基础的研究性问题,许多几何与代数相结合的问题,许多图形的变换及其它形式运动的问题,都是以计算为基础,为依据,为桥梁。

因此几何计算问题就成了中考中不得不考的一类问题,在填空选择各类题型中都可以体现,且往往会多处出现。

【经典例题】类型一、用解直角三角形的知识进行几何计算例题1 如图,在ABC Rt ∆中,190==︒=∠BC ,AC ACB 。

将ABC ∆绕点C 逆时针旋转30°得到111C B A ∆, 1CB 与AB 相交于点D 。

求BD 的长。

解答:分析:注意到,45︒=∠B 若作CB DG ⊥于点G ,如图(1`)则 可得DBG Rt ∆中,DG =BG ,同时在︒=∠∆30DCG ,CDG Rt 中, 而CB =1,从而可构造关于BD 的方程,求得其值。

解:如图(2),作CB DG ⊥于点G ,设BD =x ,DGB Rt ∆ 中,,45︒=∠B x BD BG DG 2222===∴ 在DCG Rt ∆中,︒=∠=∠301CB B DCG ,x x DG CG 262233=⋅==∴。

,1==+CB BG CG 即,12226=+x x 解得226-=x 。

BD ∴的长为226-。

2013年中考数学几何部分专题5

2013年中考数学几何部分专题5

学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线…………………罗平轻松学习辅导中心中考包分签约班复习专题基本图形及其位置关系一:【课前预习】 (一):【知识梳理】1.直线、射线、线段之间的区别: 联系:射线是直线的一部分。

线段是射线的一部分,也是直线的一部分.2.直线和线段的性质:(1)直线的性质:①经过两点 直线,即两点确定一条直线; ②两条直线相交,有 交点.(2)线段的性质:两点之间的所有连线中,线段最短,即两点之间,线段最短. 3.角的定义:有公共端点的 所组成的图形叫做角;角也可以看成是由一条射线绕着它的端点旋转而成的图形.(1) 角的度量:把平角分成180份,每一份是1°的角,1°=6 0′,1′= 6 0″ (2)角的分类:(3)相关的角及其性质:①余角:如果两个角的和是直角,那么称这两个角互为余角.②补角:如果两个角的和是平角,那么称这两个角互为补角.③对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角. ④互为余角的有关性质:①∠1+∠2=90°⇔∠1、∠2互余;②同角或等角的余角相等,如果∠l 十∠2=90○ ,∠1+∠3= 90○,则∠2 ∠3. ⑤互为补角的有关性质:①若∠A +∠B=180○⇔∠A 、∠B 互补;②同角或等角的补角相等.如果∠A +∠C=180○,∠A+∠B=180°,则∠B ∠C . ⑥对顶角的性质:对顶角相等.(4)角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.同一平面内两条直线的位置关系是:相交或平行5.“三线八角”的认识:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角即位置相同的角;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.6.平行线的性质:(1)两条平行线被第三条直线所截, 角相等, 角相等,同旁内角互补.(2)过直线外一点 直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上7.任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.8.平行线的定义:在同一平面内. 的两条直线是平行线。

2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

2012年中考数学压轴题分类解析专题7:几何三大变换相关问题授课老师:黄立宗典型例题选讲:例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上,再打开得到折痕EF.(1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长;(2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的条件下,利用图4证明四边形AEA′F是菱形.例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示);(2)如图2,若AB= BC=kAC,AD =ED=kAE则线段BD与CE的数量关系为,∠BMC= (用α表示);(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示).例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D 的坐标;(3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB 的点P的坐标(点P、O、D分别与点N、O、B对应).例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。

(1)求该抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数。

数学中考几何复习冲刺专题

数学中考几何复习冲刺专题

3 1.73
图) ,在以航标 C 为圆心,120m 为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危 险?
4:(本题满分 7 分)如图 6,梯形 ABCD 是拦水坝的横断面图, (图中 i 1 : 3 是指坡面的铅直高度 DE 与水平 宽度 CE 的比) ,∠B=60° ,AB=6,AD=4,求拦水坝的横断面 ABCD 的面积. (结果保留三位有效数字.参考 A D 数据: 3 ≈1.732, 2 ≈1.414) B i=1: 3 E 图6 C
5 3 5 3 5 3 2 2 3 cm 2 B cm 2 C cm 2 D cm 2 2 4 4 2
【题型四】证明题型:
(一)三角形全等
【判定方法 1:SAS】 例 1 如图,AC 是菱形 ABCD 的对角线,点 E、F 分别在边 AB、AD 上,且
1
AE=AF。 求证:△ACE≌△ACF A E B 例2 在正方形 ABCD 中,AC 为对角线,E 为 AC 上一点,连接 EB、ED. (1)求证:△BEC≌△DEC; (2)延长 BE 交 AD 于 F,当∠BED=120°时,求∠EFD 的度数.

例 5 如图 4.矩形纸片 ABCD 的边长 AB=4,AD=2.将矩形纸片沿 EF 折叠, 使点 A 与点 C 重合,折叠后在其 一面着色(图),则着色部分的面积为( A. 8 B.
A P D

11 2
C. 4
D.
5 2G D Fຫໍສະໝຸດ CBEC
A 图6
E
B
图4
图5
【题型三】涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角 函数计算等。 例 6 如图 3,P 为⊙O 外一点,PA 切⊙O 于 A,AB 是⊙O 的直径,PB 交⊙O 于 C, PA=2cm,PC=1cm,则图中阴影部分的面积 S 是 ( A. ) 图3

2013中考总结复习冲刺练:几何计算专题

2013中考总结复习冲刺练:几何计算专题

2013中考总结复习冲刺练:几何计算专题一、中考要求证明与计算,是几何命题的两大核心内容。

几何计算题,通常需要借助几何中的概念、定义、定理、公理等知识,求解相关几何元素的数值。

在解题时,要求能准确灵活地选用有关知识,采用各种数学方法(既可以是几何方法,也可以是代数方法),加以求解。

为了能在有限的时间内,迅速准确地解题,就需要在平时练习中,强化基础题,多采用一题多解、优化方案等训练方法,积累经验,达到熟能生巧的效果。

二、知识网络图如图1所示:三、基础知识整理几何计算题的重点比较分散,从知识点本身来说,解直角三角形的知识具有计算题得天独厚的优势,所以涉及解直角三角形的试题大部分是计算题。

但是,在实际命题时,更多的是圆的有关计算题和四边形的计算题,它们与其它几何知识都有密切的联系,能在主要考查一个知识点的同时,考查其他知识点。

就题型而言,各种题型中都能见到几何计算题的身影,比如线与角计算题、三角形计算题、相似形计算题等等,综合性计算题则更多出现在中档解答题和压轴题中。

需要说明的是,根据中考命题改革的大趋势,几何计算题的难度比以前有所下降,更突出在题目的内容、形式、解法上有所创新,所以,我们不必把重点放到一些繁难的计算题上,而应扎实学好基础知识,多分析解题使用到的数学思想方法,比如方程与函数、分类讨论、转化构造等数学思想方法,重视数学知识的实际应用。

四、考点分析(所选例题均为2004年中考试题)1、线与角计算题所用知识主要有线段的中点、角平分线、线段或角的和差倍分、余角、补角的基本概念的定义,以及角的计量、对顶角性质、平行线性质等。

难度不大,可直接利用上述定义、几何计算题线与角计算题三角形计算题四边形计算题相似形计算题解直角三角形计算题圆的有关计算题几何综合计算题图1定理解题。

例1(黑龙江)如图1,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=____________.图1分析:∠AOC+∠DOB= (∠AOD+∠DOB+∠COB)+∠DOB = (∠AOD+∠DOB)+(∠COB+∠DOB) = ∠AOB + ∠COD = 900+ 900= 1800.2、三角形计算题三角形的内角和定理、三边关系定理及其推论,等腰三角形的性质、全等三角形的性质、特殊三角形(比如等边三角形、含有300的直角三角形)的性质、勾股定理、边长、周长及面积的计算等都是三角形计算题的常用知识。

2013中考总结复习冲刺练:动态几何问题

2013中考总结复习冲刺练:动态几何问题

2013中考总结复习冲刺练:动态几何问题【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

在这一讲,我们着重研究一下动态几何问题的解法,第一部分真题精讲【例1】(2012,密云,一模)如图,在梯形ABC D中,AD BCB C=,梯形的高为4.动点D C=,10AD=,5∥,3M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段C D以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).MBC(1)当M N AB∥时,求t的值;(2)试探究:t为何值时,M N C△为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。

但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。

对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M,N是在动,意味着BM,MC以及DN,NC都是变化的。

但是我们发现,和这些动态的条件密切相关的条件DC,BC长度都是给定的,而且动态条件之间也是有关系的。

所以当题中设定MN//AB时,就变成了一个静止问题。

由此,从这些条件出发,列出方程,自然得出结果。

【解析】解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.ABMCNED∵AB DE ∥,AB M N ∥.∴D E M N ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴M C NC ECCD =. (这个比例关系就是将静态与动态联系起来的关键)∴1021035t t -=-.解得5017t =.【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。

2013中考总结复习冲刺练:用方程思想解几何问题

2013中考总结复习冲刺练:用方程思想解几何问题
5
C
面积不变性
B
8 x 10 D
6
A
2、如图, ⊿ABC中,D、E是AB、AC上的
点,且DE∥BC,若DE=2,BC=3,BD=1,
2 则AD的长是——————
A
相似性质
D
1
x 2 3
E C
B
3、如图,⊙O的弦AB⊥半径OE于D,若AB=12,
10 DE=2,则⊙O的半径是——————
勾股定理
A
AB∥CD,AB=1,CD=6
(2)若设AD=m,在线段AD 上存在唯一的一个点P,使 得以点P、A、B为顶点的三 角形和以点P、C、D为顶点 的三角形相似?求m的取值 范围。
A P
1 B
m
C D
6
例2: 如图,在直角梯形ABCD中,∠A=90°,
AB∥CD,AB=1,CD=6
(3)若设AD=m,在线段AD 上存在两个点P,使得以点P、 A、B为顶点的三角形和以点 P、C、D为顶点的三角形相 似?求m的值。
A P
1 B
m
C D
6
例3:如图,矩形ABCD中,AB=16cm,AD=6cm,动点P、
Q分别从点A、C同时出发,点P以3cm/s的速度向点B 移动,一直到达B点为止;点Q以2cm/s的速度向点D 移动,一直到达D点为止。P、Q两点出发后, (1)经过多少秒可得四边形PBCQ的面积为33cm2? (2)经过几秒可得点P与点Q 间的距离等于10cm? (3)是否存在经过几秒得点P、Q的连线与对角线AC垂 直的可能?若存在,求出经过几秒?如不存在,请 说明理由。
o r-2 D
r
2 6
B
E
3 4、 在RtABC中, C Rt, AB AC 2, SinA , 5 AC=8 求AC的长.

初三中考冲刺专题3几何综合.docx

初三中考冲刺专题3几何综合.docx

专题3几何综合【知识精炼】全等三角形的判定方法:1)三边对应相等的两个三角形全等(边边边、SSS)2)两边利它们的夹角对应相等的两个三角形全等(边角边、SAS) 3)两角和它们的平边对应相等的两个三角形全等(角边角、ASA)4)两个角和具屮一个角的对边对应相等的两个三角形全等(角角边、AAS)5)斜边和一条肓角边对应相等的两个肓角三角形全等(斜边胃角边、HL)平行四边形的判左:1)两组对边分别相等的四边形是平行四边形2)对角线互相平分的四边形是平行四边形3)一组对边平行且相等的四边形是平行四边形矩形的判定:1)对角线相等的平行四边形是矩形2)有三个角是直角的四边形是矩形菱形的判定:1)对角线互相垂直的平行四边形是菱形2)四边相等的四边形是菱形重心:三角形的三条中线交于一点,这一点就是三角形的重心,性质如下:1、重心到顶点的距离与重心到对边中点的距离Z比为2: 12、重心和三角形3个顶点组成的3个三和形血积相等3、重心到三角形3个顶点距离的和最小4、三角形内到三边距离Z积最大的点相似一角形的判泄:1)两角对应相等的两个三角形相似2)两边对应成比例且夹角相等的两个三角形相似3)三边对应成比例的两个三角形相似4)直角边和斜边对应成比例的两个直角三角形相似5)平行于三角形一边的直线和其它两这相交,所构成的△与原△相似【典例讲解】例1:如图,卩是厶ABC中BC边上一点,E是AP上的一点,若EB = EC, Z1 = Z2,求证:APIBCo证明:在厶ABE 和厶ACE 中,EB=EC, AE=AE, Z1 = Z2・\ AABE^AACE (笫一步)・・・AB=AC, Z3=Z4 (第二步)・・・AP丄BC (等腰三角形三线合一)上面的证明过程是否正确?若正确,请写出每一步的推理依据;若不正确,请指出关键例2:如图,已知菱形ABCD 的边长为3,延长AB 到点E,使BE=2AB,连结EC 并延长 交AD 的延长线于点F,求AF 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考复习冲刺练:几何计算专题
一、中考要求
证明与计算,是几何命题的两大核心内容。

几何计算题,通常需要借助几何中的概念、定义、定理、公理等知识,求解相关几何元素的数值。

在解题时,要求能准确灵活地选用有关知识,采用各种数学方法(既可以是几何方法,也可以是代数方法),加以求解。

为了能在有限的时间内,迅速准确地解题,就需要在平时练习中,强化基础题,多采用一题多解、优化方案等训练方法,积累经验,达到熟能生巧的效果。

二、知识网络图
如图1所示:
图 1
三、基础知识整理
几何计算题的重点比较分散,从知识点本身来说,解直角三角形的知识具有计算题得天独厚的优势,所以涉及解直角三角形的试题大部分是计算题。

但是,在实际命题时,更多的是圆的有关计算题和四边形的计算题,它们与其它几何知识都有密切的联系,能在主要考查一个知识点的同时,考查其他知识点。

就题型而言,各种题型中都能见到几何计算题的身影,比如线与角计算题、三角形计算题、相似形计算题等等,综合性计算题则更多出现在中档解答题和压轴题中。

需要说明的是,根据中考命题改革的大趋势,几何计算题的难度比以前有所下降,更突出在题目的内容、形式、解法上有所创新,所以,我们不必把重点放到一些繁难的计算题上,而应扎实学好基础知识,多分析解题使用到的数学思想方法,比如方程与函数、分类讨论、转化构造等数学思想方法,重视数学知识的实际应用。

四、考点分析(所选例题均为2004年中考试题)
1、线与角计算题
所用知识主要有线段的中点、角平分线、线段或角的和差倍分、余角、补角的基本概念的定义,以及角的计量、对顶角性质、平行线性质等。

难度不大,可直接利用上述定义、
定理解题。

例1(黑龙江)如图1,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠
DOB=____________.
图1
分析:∠AOC+∠DOB
= (∠AOD+∠DOB+∠COB)+∠DOB = (∠AOD+∠DOB)+(∠COB+∠DOB) = ∠AOB + ∠COD = 900 + 900 = 1800.
2、三角形计算题
三角形的内角和定理、三边关系定理及其推论,等腰三角形的性质、全等三角形的性质、特殊三角形(比如等边三角形、含有300的直角三角形)的性质、勾股定理、边长、周长及面积的计算等都是三角形计算题的常用知识。

解三角形计算题时也经常用到线与角的知识。

例2(江苏连云港)如图2,平面镜A 与B 之间夹角为110°,光线经平面镜A 反射到平面镜B 上,再反射出去,若21∠=∠,则1∠的度数为___________.
分析:根据光的反射定律可知,∠1=∠3,∠2=∠4. 因为21∠=∠,所以∠3 =∠4.
则∠3 、∠4成为顶角为1100角的等腰三角形的两个底角, 因此,∠1 = 12 (1800 – 1100) = 1
2
×700 = 350.
3、四边形计算题
随着对圆的计算、证明要求的降低,很多省市的几何中考重点开始向以四边形为主的内容转移。

比如,河北省连续多年把压轴题锁定在以四边形、三角形为主的直线型图形上。

图2
四边形计算题主要的运用知识有:多边形内角和定理及其推论(外角和定理),各种平行四边形及梯形的性质,平行线等分线段定理,三角形及梯形的中位线定理,四边形的周长尤其是面积的求法,对称问题,折痕问题等。

例3(北京海淀)已知:如图3所示,梯形ABCD 中,AD//BC ,BD 平分∠ABC ,∠A=120°,
B D B
C ==43,求梯形的面积。

图3
分析:此题解法较多,下面提供其一,希望同学们在多想几种解法,分析所用知识点,比较优劣,以便在中考试有所选择,提高解题效率。

过点B 作BE ⊥DA 交DA 的延长线于E 。

∠=B A D 120° ∴∠=E A B 60°
BD ABC 平分,∠ ∴∠=∠12
A D
B
C // ∴∠=∠32 ∴∠=∠=13302°分
在Rt △BDE 中, B D =43, ∴=
==⨯=B E B D E D B D 12
233064,°分
cos
在Rt △BEA 中, ∴=⋅=⨯=A E BE cot 602333
2
∴=-=-=AD ED AE 6245分
()
∴=
+⋅=
⨯+⨯=+S A D B C E B 梯形分
12
12
443234312
6()
4、相似形计算题
相似形是解直角三角形和圆等知识的基础,特别是在圆中,相似形、比例线段更是所处可见。

这部分知识出现在计算题中的也有很多:比例及其性质、相似形的性质、平行线分线段成比例定理等等,另外,引入参数法等重要的数学方法在解题时也经常用到。

例4(山东泰安)有一张直角三角形纸片,两直角边AC=6cm ,BC=8cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE(如图4),则CD 等于( )
A.25/4;
B.22/3;
C.7/4;
D.5/3.
图4
分析:Rt △ABC 中,由勾股定理,得AB = AC 2
+BC 2
=10cm.
将△ABC 折叠,使点B 与点A 重合,点B 与点A 关于折痕所在直线DE 对称,则DE 垂直平分AB ,BE=AB/2=5 cm .
易证Rt △BDE ∽Rt △BAC ,则BD:BE=AB:BC ,所以
BD = AB ·BE BC = 10×58 = 254
.
因此,CD = BC-BD = 8-25/4 =7/4.
故选C.
5、解直角三角形计算题
解直角三角形的全部主要内容都与计算有关。

中考中考查:特殊角的三角函数值,利用三角函数的定义式和各种关系式求解,综合运用勾股定理、直角三角形两锐角互余等直角三角形的性质解直角三角形。

例5(湖北荆门)如图5,将一副三角尺如下图摆放在一起,连结A D ,试求ADB ∠的余切值.
分析:过点A 作DB
的延长线的垂线AE ,垂足为E . 在等腰Rt BDC △中,1451,BD D C BC ∠=︒===
设则
在Rt A B C △中,430,
AB BC ∠=︒=
⋅则
tan 3023
︒==
在Rt A E B △中,2180(13)180(9045)45∠=︒-∠+∠=︒-︒+︒=︒
.
则EB EA AB =
=⋅
sin 453
2
3
︒==
D
C
A
B
A B D
C
E 1 3
4
2 图5
在Rt D EA △
中,13D E BD EB =+=
+,

cos (
1)13
D E AD B EA
∠=
=+=+
6、圆的有关计算题
圆,可谓初中几何集大成者。

他的知识领域几乎涵盖了初中几何的全部内容。

涉及到计算的定理俯拾皆是:垂径定理、圆心角定理、圆周角定理、弦切角定理、切线长定理、相交弦定理以及它们的推论,圆的半径、直径、周长、面积,弧、弓形、扇形、圆柱、圆锥的相关计算公式等,无一不显示着计算题的本性。

例6(陕西)如图6,点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,tan ∠BAC =34

求阴影部分的面积.
分析:此题除了要用到圆的有关知识,主要与解直角三角形知识综合在一起。

∵AB 为直径, 2
:,
90,3tan ,43sin .5sin ,10,344106,68.
5
33
112558624.
2
2
2
ABC AB AC B BAC BAC BC BAC AB AB
BC AC BC S S S ππ∴∠=︒∠=∴∠=
∠==∴=
⨯==
⨯=
⨯=∴⨯⨯-
⨯⨯=- 阴影半圆19.解为直径又=-=
把初中几何甚至代数的知识融为一体,命制的几何综合计算题,在解答时,要注意知识之间的联系,善于发现各种信息之间的结合点,从中提炼出所需的知识点,用来解决问题。

五、创新题一隅
1、已知:如图7,在△ABC 中,∠ABC =90°,O 是AB 上一点,以O 为圆心,
OB
A
B
图6
为半径的圆与AB交于点E,与AC切于点D,连结DB、DE、OC。

⑴从图中找出一对相似三角形(不添加任何字母和辅助线),并证明你的结论;
⑵若AD=2,AE=1,求CD的长。

图7
2、如图8,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B 重合于点D,折痕分别交AB、BC于点F、E.若AD=2,BC=8,
求:(1)BE的长;(2)∠CDE的正切值.
参考答案:
1、(⑴略;⑵CD=3.
2、(1) BE=5;(2)tan∠CDE = 3/5. 图8
E C
B。

相关文档
最新文档