复变函数课件演示文稿
合集下载
复变函数 全套课件
w1
8
2cos
9 16
i
sin
9 16
,
23
w2
8
2
cos
17 16
i sin 1176,
w3
8
2cos
25 16
i sin 2156.
y
w1
这四个根是内接于中
心在原点半径为8 2 的 圆的正方形的四个顶点.
w2
o
w0 x
w3
24
三、典型例题
例1 对于映射 w z 1 , 求圆周 z 2的象. z
3
三角表示法
利用直角坐标与极坐标的关系
x y
r r
cos , sin ,
复数可以表示成 z r(cos i sin )
指数表示法
利用欧拉公式 ei cos i sin ,
复数可以表示成 z rei 称为复数 z 的指数表示式.
4
方根
w
n
z
r
1 n
cos
2kπ
i sin
2kπ
n
n
6
2cos
12
i
sin
12 ,
w1
6
2cos
7 12
i sin 712,
w2
6
2cos
5 4
i
sin
5 4
.
22
例 计算 4 1 i 的值.
解
1i
2cos
4
i
sin
4
4
1
i
8
2cos 4
2k 4
i sin
4
2k
4
即
w0
8
复数与复变函数第一章-复数与复变函数PPT课件
xrcosq, yrsinq,
q q 复数z=x+yi 可表示为 z r (c o s is in),称为复
数z的三角表示式. 再利用Euler公式
eiqcosqisin q,
复数z=x+yi 又可表示为 z reiq , 称为复数的
指数表示式, 其中r=|z|, q=Argz.
例1.3 将 z 122i化为三角表示式与指数表示式.
5
解: 显然, r = | z | = 1, 又
sin
5
cos
2
5
cos 3 ,
10
cos
5
sin
2
5
sin 3
10
.
因此 zcos3isin3ei130
10
10
当 z 0时, ArgzArgz. 当 z reiq 时, z reiq .
共轭复数的几何性质
一对共轭复数z和 z 在 复平面的位置是关于 实轴对称的.
由此引出方根的概念。
二、复数的乘幂与方根
2. 复数的方根 复数求方根是复数乘幂的逆运算。
定义 设 z是给定的复数,n 是正整数,求所有满足 wn z的 复数 w ,称为把复数 z开 n 次方,或者称为求复数 z的 n 次方根,记作 wn z 或 wz1/n. 复数 z的 n 次方根一般是多值的。
二、复数的乘幂与方根
有时, 在进行说明后, 把主辐的角是定辐角义主为值满, 单足位是弧
>> x=sym('x','real');y=sy
0q2 的辐角, 这时上式仍然>成> 立x=3. ;y=4;z=x+y*i;
当z=0时, Argz没有意义, 即零>>向th量eta没=a有ng确le(z定)
q q 复数z=x+yi 可表示为 z r (c o s is in),称为复
数z的三角表示式. 再利用Euler公式
eiqcosqisin q,
复数z=x+yi 又可表示为 z reiq , 称为复数的
指数表示式, 其中r=|z|, q=Argz.
例1.3 将 z 122i化为三角表示式与指数表示式.
5
解: 显然, r = | z | = 1, 又
sin
5
cos
2
5
cos 3 ,
10
cos
5
sin
2
5
sin 3
10
.
因此 zcos3isin3ei130
10
10
当 z 0时, ArgzArgz. 当 z reiq 时, z reiq .
共轭复数的几何性质
一对共轭复数z和 z 在 复平面的位置是关于 实轴对称的.
由此引出方根的概念。
二、复数的乘幂与方根
2. 复数的方根 复数求方根是复数乘幂的逆运算。
定义 设 z是给定的复数,n 是正整数,求所有满足 wn z的 复数 w ,称为把复数 z开 n 次方,或者称为求复数 z的 n 次方根,记作 wn z 或 wz1/n. 复数 z的 n 次方根一般是多值的。
二、复数的乘幂与方根
有时, 在进行说明后, 把主辐的角是定辐角义主为值满, 单足位是弧
>> x=sym('x','real');y=sy
0q2 的辐角, 这时上式仍然>成> 立x=3. ;y=4;z=x+y*i;
当z=0时, Argz没有意义, 即零>>向th量eta没=a有ng确le(z定)
《复数与复变函数》PPT课件
例1 指明下列不等式所确定的区域, 是有界的还
是无界的,单连通的还是多连通的.
(1) Re(z2 ) 1; (2) arg z ; (3) 1 3;
3
z
(4) z 1 z 1 4; (5) z 1 z 1 1.
解 (1)当 z x iy 时,
Re(z2 ) x2 y2, Re(z2 ) 1 x2 y2 1, 无界的单连通域(如图).
y z
z
o
x
有界!
17
1.2.2 区域与Jordan曲线
定义1.5 区域: 如果平面点集D满足以下两个条件,则称它
为一个区域.
(1) D是一个开集; (2) D是连通的,就是说D中任何 两点都可以用完全属于D的一条
D
z2
z1
•
•
折线连结起来.
D加上D的边界称为闭域。记为D=D+D
18
说明
不包含边界!
第一章 复数与复变函数
• 第一节 复数 • 第二节 复平面上的点集 • 第三节 复变函数 • 第四节 复球面与无穷远点
1
第一节 复数
• 1 复数域
形如 z x iy y x 的数,称为复数。其中实数 和
分别称为复数的实部和虚部,常记为
x Re z, y Im z
全体复数并引进四则运算后称为复数域
32
(3) 0 z 1 i 2,
以 (1 i) 为圆心, 2为半径 的去心圆盘, 是多连通域. (4) arg( z i) ,
4 以 i 为端点, 斜率为1的半射线 (不包括端点i ), 不是区域.
33
(5) 0 arg z i , zi 4
当 z x iy 时,
zi zi
第2章复变函数与解析函数精品PPT课件
①在 z
(分母在 z 0
0不连为续0的)在两z个0 处函连数续f(z;)与g(z)的和,差,积,商
②若函数 hg(z)在点 z 0 处连续,函数 w f(h)
在 h0 g(z0连) 续,则复合函数 wf[g(z)]
在 z 0 处连续(证略).
例3 求 lim z 1 zi z 2
解: 因为 z 1 在点zi 处连续,故 z2
注:连续的条件:
(1) 在z 0处有定义;
(2) z 0 处的极限值等于该点的函数值.
2)连续充要条件: 定理 函数 f(z) u (x ,y ) i(v x ,y ),在 z0 x0iy0 处连续的充要条件是u(x, y) 和 v(x, y) 都 在点(x0, y0)处连续.
3)连续函数性质:
x2 y2
x2 y2
化为一个复变函数.
解 设 zxiy ,wuiv, 则 wuiv 2xiy x2 y2
将 x 1 (z z) ,y 1 (z z) 以及 x2 y2 zz 得 2 w312i (z0)
2z 2z
二.复变函数的极限与连续性 1.极限:
1)定义 设函数f(z) 在 z 0 的去心邻域内有定义,若对任
2. 可导与连续的关系
若函数wf(z)在点z 0 处可导,则 f (z)在点 z 0 处必
连续.反之不一定.
3.用定义求导的步骤 1)求增量比; 2)求增量比的极限.
例1 求 f ( z) z 2 的导数.
二.解析函数的概念及求导法则
1. 解析函数的定义
1) 点处解析: 如果f(z)不仅在点 z 0处可导,且在点 z 0 的某邻域内的处处可导,则称f(z)在点 z 0处解析;
3)运算法则:类似于实函数极限的运算法则. 例
复变函数与积分变换第1章复数与复变函数精品PPT课件
(5)乘法对于加法的分配律 z1(z2z3)z1z2z1z3 复数运算的其它结果:
(1)z0z, 0z0 (2) z1z, z11
z
(3)若 z1z2 0,则 z 1 与 z 2 至少有一个为零, 反之亦然.
共轭复数的运算性质:
(1) z z
(2) z1z2 z1z2
(3) z1z2 z1z2
Argz
并规定按逆时针方向取值为正,顺时针方
向取值为负.
4.复数的三角表示式
称 zr(coissin )
为复数 z的三角表示式.
5.复数的指数表示式
称 z rei为复数 z的指数表示式.
例3 求 Arg2(2i)和 Arg3 (4i). 解
A 2 r2 i) g a (2 r 2 g i) 2 (k
25
25
zz(16 8i)1 ( 6 8i)64 25252525 125
1.1.3 复数的各种表示、模与辐角
1.复数的几何表示
由复数 zxiy的定义可知,复数是由一对 有序实数 (x, y) 惟一确定的,于是可建立全 体复数和 x O y 平面上的全部点之间的一一
对应关系,即可以用横坐标为 x,纵坐标
所以
rz (1)2( 3)22
设 argz,
则
tant 3 3
1
又因为 z1i 3 位于第II象限,
所以 argz 2 ,
于是
3
z 1i
3 2(cos2isin2)
i 2
2e 3
3
3
1.1.4. 复数的幂与根
1. 复数的乘幂
设 n为正整数,n个非零相同复数 z的乘积,
称为 的 z次幂n,记为 ,z即n
6
(1)z0z, 0z0 (2) z1z, z11
z
(3)若 z1z2 0,则 z 1 与 z 2 至少有一个为零, 反之亦然.
共轭复数的运算性质:
(1) z z
(2) z1z2 z1z2
(3) z1z2 z1z2
Argz
并规定按逆时针方向取值为正,顺时针方
向取值为负.
4.复数的三角表示式
称 zr(coissin )
为复数 z的三角表示式.
5.复数的指数表示式
称 z rei为复数 z的指数表示式.
例3 求 Arg2(2i)和 Arg3 (4i). 解
A 2 r2 i) g a (2 r 2 g i) 2 (k
25
25
zz(16 8i)1 ( 6 8i)64 25252525 125
1.1.3 复数的各种表示、模与辐角
1.复数的几何表示
由复数 zxiy的定义可知,复数是由一对 有序实数 (x, y) 惟一确定的,于是可建立全 体复数和 x O y 平面上的全部点之间的一一
对应关系,即可以用横坐标为 x,纵坐标
所以
rz (1)2( 3)22
设 argz,
则
tant 3 3
1
又因为 z1i 3 位于第II象限,
所以 argz 2 ,
于是
3
z 1i
3 2(cos2isin2)
i 2
2e 3
3
3
1.1.4. 复数的幂与根
1. 复数的乘幂
设 n为正整数,n个非零相同复数 z的乘积,
称为 的 z次幂n,记为 ,z即n
6
复变函数与积分变换第1章复数与复变函数幻灯片PPT
,z2对应的向量分别为 1, 由复数的运算法那么知复数的加减法与向量
的加减法一致,于是在平面上以
为邻边的平行四边形的对角线 就表示
复数z1+z2〔图1.2〕,对角线 就表示复数z1-z2.
图1.2
页 退出
复变函数与积分变换
由上述几何解释知下面两个不等式成立:
出版社 理工分社
其中
表示向量 的长度,也就是复平面上点z1,z2之间的距
页 退出
复变函数与积分变换
复数域 形如
1.1复数
出版社 理工分社
的数称为复数,其中x和y是任意的实数,分别称为复数z的实部与虚部,记作
x=Re z,y=lm z;而i(也可记为 )称为纯虚数单位.
当Im z=0时,z=Re z可视为实数;而当Re z=0,Im z≠0时,z称为纯虚数;特别
地,当Re z=Im z=0时,记z=0+i0=0.
页 退出
复变函数与积分变换
出版社 理工分社
页 退出
复变函数与积分变换
出版社 理工分社
如图1.1所示,复数z=x+iy还可以用向量 来表示,x与y分别是向量 在x轴与 y轴上的投影.这样,复数z就与平面上的向量 建立了一一对应的关系. 引进了复平面后,为方便起见, “复数z〞、“点z〞及“向量 〞三者不再区分. 向量 的长度称为复数z=x+iy的模或绝对值,记作|z|,于是
页 退出
复变函数与积分变换
例1.4求z=1的n次方根. 解因为 所以 特别地,1的立方根为
它们均匀地分布在以原点为中心,以1为半径的圆周上 〔图1.5〕.
图1.5
出版社 理工分社
页 退出
复变函数与积分变换
复变函数解读课件
幂级数展开式的应用
幂级数展开式在数学、物理、工程等 领域有广泛的应用,如求解微分方程、
研究函数的奇点和极点等。
洛朗兹级数展开式
洛朗兹级数展开式的定义
01
将复变函数表示为洛朗兹函数的无穷级数形式,可以用于研究
函数的局部行为和性质。
洛朗兹级数展开式的收敛性
02
洛朗兹级数展开式在一定条件下收敛,收敛条件决定了函数的
解析函数的性 质
在解析区域内,解析函数具有无限次 可微性,且满足柯西-黎曼条件。
全纯函数的性质
全纯函数
如果一个复数函数在某个区域内有定义,并且在该区域内可微,则称该函数为全纯函数。
全纯函数的性质
全纯函数具有零点孤立性、增长性、最大值最小值定理等性质。
共轭函数与解析函数的判别
共轭函数
如果一个复数函数的共轭复数也满足解析函 数的条件,则称该函数为共轭函数。
复数的性质
复数具有加法、减法、乘法和除法等 运算性质,满足交换律、结合律和分 配律等基本运算规则。
复数的几何意 义
1 2
3
复平面
复数可以用几何图形表示,通常在直角坐标系中,实部表示 为横轴,虚部表示为纵轴,形成一个二维平面称为复平面。
点的表示
每个复数$z=a+bi$在复平面上对应一个点$(a,b)$。
连续性的性质
连续性具有传递性、局部性等性质,并且满足中值定理。
一致连续与一致收敛
一致连续是指函数在整个定义域上具有连续性,而一致收敛则是 指函数序列在无穷远点处的极限存在。
一致连续与一致收敛
01
一致连续的定义
如果对于任意给定的正数$varepsilon$,存在正数$delta$,使得当两
复变函数工科第十一讲优秀课件
c n n
nn1
在收敛圆|z1|=1上, 当 z = 0 时,
原级当数z 成= 2为时n,1原( 级1) n 数1n 成, 级为数收1 敛, ;发散.
n1 n
此例表明, 在收敛圆周上既有级
数的收敛点,也有级数的发散点.
(3)(cosin)zn n0
解 因 为 cncosin1 2(enen)
所 以limcn1 c n
C1
z2
z0 z1
0
x
当|Z1 - Z0 |由小逐渐变大时,C1必定逐渐接近 一个以Z0为中心,R为半径的圆周CR ,在CR的内部都
是红色,外部都是蓝色.
这个红蓝两色的分界圆周CR称为幂级数的收敛圆.在收
敛圆外部,级数发散.收敛圆内部,级数绝对收敛.
收敛圆的半径R 称为收敛半径.
所以幂级数 c(n z z0)n 的收敛范围是以Z0为中 n0
例 求下列幂级数的收敛半径
( 1 ) z n
n3
n 1
(并讨论在收敛圆周上的情形)
(2)
(z 1)n
(并讨论 z = 0,0
( 1 )
解
zn n3
n 1
因为
(并讨论在收敛圆周上的情形)
limcn1 c n
n
lni m
n
3
n1
1
所以收敛半径 R = 1
n 0
n 0
n 0
f(z)g(z)( anzn)( bnzn)
n0
n0
(anb0an1b1an2b2a0bn)zn, ( zR) n0
2、设幂级数 cn ( z z0 )n 的收敛半径为R,那么 n0
原级数在圆|z|=1内收敛, 在圆周外发散.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主值支 w l n z l n |z | i a r g z L n z l n z i 2 k ,k Z .
(2)运算性 (3)解析性
Ln(z1z2)Ln(z1)Ln(z2);Ln(z1/z2)Ln(z1)Ln(z2);
Ln(z)nnLn(z);Ln(nz)1 nLn(z).
作业!
2 i
2
c o s z s i n z
注: 正、余弦函数可以大于1.
函数图像
2.性质
(1)单值性
(2)周期性 T 2.
(3)奇偶性 cosz 偶 ,sinz 奇 .
(4)三角公式
(5)解析性 整 个 复 平 面 解 析 且 ( s i n z ) ' c o s z , ( c o s z ) ' s i n z .
§2.3 初等函数
• 指数函数 • 对数函数 • 三角函数与反三角函数 • 双曲函数与反双曲函数 • 幂函数 • 小结
2.3.1 指数函数
1.定义 对于复数z =x+iy,定义指数函数为
w e z e x p (z ) e x ( c o sy is in y ) 函数图像
注:
x 0 E u l e r 公 式 : e i y ( c o s y is i n y ) ;
017-44/1-2
教学方式与要求
• 方式
板书结合PPT 源于课本稍高于课本
• 要求
适当做笔记 按质完成作业
《复变函数与积分变换》主要内容
解析函数(讲 共9周36课时
级数
两者关系: 留数
积分变换
Fourier 变换
Laplace变换
复球面
4.4 罗朗级数
反 函 数
( 3 ) 1 ( n ) z 1 n e 1 n L n z |z |1 n e i a r g z n 2 k ( k 0 , 1 ,,n 1 ) n 值 ; n
(4)p, 其 中 p,q互 质 且 q0,则
q
函数图像
zq peq pL nzeq pln|z|iq p(argz2k)eq pln|z|{cos[p(argz2k)]isin[p(argz2k)]},
w L n z 在 除 原 点 及 正 实 轴 外 均 解 析 且 ( L n z ) ' 1 / z .
3.举例 例2.计算ln(4).
2.3.3 三角函数
1.定义
s i n ( z ) e i z e i z,c o s ( z ) e i z e i z,t a n ( z ) s i n z ,c o t ( z ) c o s z .
2. 对 具 体 取 值 进 行 讨 论
3.举例
例3.计算下列函数值 (1). 31i , (2).i2i, (3).1 2.
小结
初等函数是复变函数的主要研究对像.
介绍了常见的基本初等函数,注意与实变初等 函数类比学习,着重掌握它们之间的区别.
要求: 会计算基本初等函数值.
展望
第三章 复变函数积分.
反三角函数
定义 如果sinw=z,则称w为z的反正弦函数,记为
w A rcsinz iL n(iz1z2).
同样,有
w A rcco sz iL n(zz2 1 )
wArctanz1iLnzi. 2 iz
均为多值函数.
函数图像
2.3.4 双曲与反双曲函数
• 双曲函数与反双曲函数
ez ez
sh z
q
q
p
当 k 0 ,1 , ,q 1 时 ,zq 共 有 q 个 不 同 取 值 q 值 .
( 5 ) 为 无 理 数 或 复 数 时 , z e l n z e i 2 k ( k 0 , 1 , 2 , ) 无 穷 多 值 函 数 .
结论:一般情形下幂函数为多值函数
(1 ) 0 z z0 e 0 L n z 1 ; 函数图像
互 为
( 2 ) n z n e n L n z e n [ l n | z | i ( a r g z 2 k ) ] e n l n | z | e i n a r g z | z | n e i n a r g z 单 值 ;
z
( 4 ) 解 析 性 整 个 复 平 面 解 析 且 ( e z ) ' e z .
3.举例 例1.计算e3i4.
2.3.2 对数函数
1.定义 指 数 函 数 的 反 函 数 , 满 足 e w z ( 0 ) 的 w ,即
2.性质
(1)多值性
w Ln z
函数图像
w L n z l n |z | i A r g z l n |z | i ( a r g z 2 k ) .
复变函数课件演示文稿
参考教材
• 1.数学物理方法(第三版),汪德新 编,科学出版社, 2007年4月.
• 2. 数学物理方法与计算机仿真,杨华军 编,电子工业 出版社,2006年7月.
• 3. MATLAB及在电子信息课程中的应用( 第3版 ),陈 怀琛 等 编著,电子工业出版社, 2006.
• 4.复变函数与积分变换典型题分析解集(第二版),李建 林 编,西北工业大学出版社, 2001年1月.
y0ez ex.
2.性质 ( 1 ) e z e x i y e x e i y |e z | e x , A r g e z y 2 k , k 0 , 1 ,.
(2 )e z 1e z 2 e z 1 z 2 ,e z 1/e z 2 e z 1 z 2 . (3) limez 不.
Arsh z Ln(z
z 2 1),
2
c h z ez ez Arch z Ln(z z 2 1), 2
t h z sh z Arth z 1 Ln(1 z ),
ch z
2 1 z
coth z ch z Arth z 1 Ln(1 z ).
sh z
2 z 1
注:双曲函数与三角函数的关系为
函数图像
Q:双曲正(余)弦的单值性、 周期性、奇偶性如何?
s h z i s i n ( i z ) , c h z c o s ( i z ) , t h z i t a n ( i z ) , c o t h z i c o t i z .
2.3.5 幂函数
1.定义
z e L n z ( C , z 0 ) ; 规 定 z 0 , R 时 , z 0 .