第一章 《计数原理》章末检测
【新】高中数学第一章计数原理章末评估验收新人教A版选修2-3
第一章 计数原理章末评估验收(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.十字路口来往的车辆,如果不允许回头,则不同的行车路线有( ) A .24种 B .16种 C .12种D .10种解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.答案:C2.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )A .C 25 B .25C .52D .A 25解析:“去”或“不去”,5个人中每个人都有两种选择,所以,出现的可能情况有2×2×2×2×2=25(种).答案:B3.C 03+C 14+C 25+C 36+…+C 1720的值为( ) A .C 321 B .C 320 C .C 420 D .C 421解析:原式=(C 04+C 14)+C 25+C 36+…+C 1720=(C 15+C 25)+C 36+…+C 1720=(C 26+C 36)+…+C 1720=C 1721=C 21-1721=C 421.答案:D4.(1+x )7的展开式中x 2的系数是( ) A .42 B .35 C .28D .21解析:由二项式定理得T 3=C 27·15·x 2=21x 2,所以x 2的系数为21. 答案:D5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:从1,3,5,7,9这五个数中每次取出两个不同数的排列个数为A 25=20,但lg 1-lg 3=lg 3-lg 9,lg 3-lg 1=lg 9-lg 3,所以不同值的个数为20-2=18.答案:C6.设f (x )=(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1,则f (x )等于( )A .(2x +2)5B .2x 5C .(2x -1)5D .(2x )5解析:f (x )=C 05(2x +1)5(-1)0+C 15(2x +1)4(-1)1+C 25(2x +1)3(-1)2+C 35(2x +1)2(-1)3+C 45(2x +1)1(-1)4+C 55(2x +1)0(-1)5=[(2x +1)-1]5=(2x )5.答案:D7.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,则共有出场方案的种数是( )A .6A 33 B .3A 33 C .2A 33D .A 22A 14A 44解析:先选一名男歌手排在两名女歌手之间,有A 14种选法,这两名女歌手有A 22种排法,再把这三人作为一个元素,与另外三名男歌手排列有A 44种排法,根据分步乘法计数原理知,有A 14A 22A 44种出场方案.答案:D8.若⎝⎛⎭⎪⎪⎫x -123x n的展开式中的第4项为常数项,则展开式的各项系数的和为( ) A.112 B.124 C.116D.132解析:T 4=C 3n (x )n -3⎝ ⎛⎭⎪⎪⎫-123x 3=-18C 3n x n -32-1,令n -32-1=0,解得n =5,再令x =1,得⎝ ⎛⎭⎪⎫1-125=132. 答案:D9.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1 B.1121 C.1021D.521解析:从袋中任取2个球共有C 215=105种,其中恰好1个白球1个红球共有C 110C 15=50(种),所以恰好1个白球1个红球的概率为50105=1021.答案:C10.(2015·课标全国Ⅰ卷)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:在(x 2+x +y )5的5个因式中,2个取因式中x 2剩余的3个因式中1个取x ,其余因式取y ,故x 5y 2的系数为C 25C 13C 22=30.答案:C11.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162解析:由题意知可分为两类:(1)选0,共有C 23C 12C 13A 33=108(个);(2)不选0,共有C 23A 44=72(个).由分类加法计数原理得108+72=180(个).答案:C 12.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S 等于( )A .23 008B .-23 008C .23 009D .-23 009解析:设(x -2)2 006=a 0x2 006+a 1x2 005+…+a 2 005x +a 2 006.则当x =2时,有a 0(2)2 006+a 1(2)2 005+…+a 2 005(2)+a 2 006=0.①当x =-2时,有a 0(2)2 006-a 1(2)2 005+…-a 2 005(2)+a 2 006=23 009.②①-②有a 1(2)2 005+…+a 2 005(2)=-23 0092=-23 008.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知⎝⎛⎭⎪⎫mx -1x 6的展开式中x 3的系数为15,则m 的值为________.解析:因为T r +1=C r 6(mx )6-r(-x -12)r =(-1)r m 6-r ·C r6x 6-r -12r ,由6-r -12r =3,得r=2.所以(-1)r m6-r·C r 6=m 4C 26=15⇒m =±1.答案:±114.5个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有________种. 解析:甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有A 33A 24=72(种). 答案:7215.平面直角坐标系中有五个点,分别为O (0,0),A (1,2),B (2,4),C (-1,2),D (-2,4).则这五个点可以确定不同的三角形个数为________.解析:五点中三点共线的有O ,A ,B 和O ,C ,D 两组.故可以确定的三角形有C 35-2=10-2=8(个).答案:816.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴某大型展览会的三个不同场馆服务,不同的分配方案有________种(用数字作答).解析:先分组C 25C 23C 11A 22,再把三组分配乘以A 33得:C 25C 23C 11A 22A 33=90(种).答案:90三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),求不同的买法有多少种(用数字作答).解:分两类:第一类,买5本2元的有C 58种; 第二类,买4本2元的和2本1元的有C 48C 23种. 故不同的买法共有C 58+C 48C 23=266(种).18.(本小题满分12分)已知⎩⎪⎨⎪⎧C x n =C 2xn ,C x +1n =113C x -1n ,试求x ,n 的值.解:因为C xn =C n -xn =C 2x n ,所以n -x =2x 或x =2x (舍去),所以n =3x . 又由C x +1n =113C x -1n ,得n !(x +1)!(n -x -1)!=113·n !(x -1)!(n -x +1)!,整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!, 3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1). 所以x =5,n =3x =15.19.(本小题满分12分)设(1-2x )2 013=a 0+a 1x +a 2x 2+…+a 2 013x2 013(x ∈R).(1)求a 0+a 1+a 2+…+a 2 013的值; (2)求a 1+a 3+a 5+…+a 2 013的值; (3)求|a 0|+|a 1|+|a 2|+…+|a 2 013|的值. 解:(1)令x =1,得a 0+a 1+a 2+…+a 2 013=(-1)2 013=-1.①(2)令x =-1,得a 0-a 1+a 2-a 3+…-a 2 013=32 013.②与①式联立,①-②得 2(a 1+a 3+…+a 2 013)=-1-32 013, 所以a 1+a 3+…+a 2 013=-1+32 0132(3)T r -1=C r2 013(-2x )r=(-1)r.C r 2 013(2x )r, 所以a 2k -1<0,a 2k >0(k ∈N *).所以|a 0|+|a 1|+|a 2|+…+|a 2 013|=a 0-a 1+a 2-…-a 2 013=32 013(令x =-1).20.(本小题满分12分)设⎝⎛⎭⎪⎪⎫32+133n的展开式的第7项与倒数第7项的比是1∶6,求展开式中的第7项.解:T 7=C 6n (32)n -6⎝ ⎛⎭⎪⎪⎫1336,T n +1-6=T n -5=C 6n (32)6⎝ ⎛⎭⎪⎪⎫133n -6. 由⎣⎢⎢⎡⎦⎥⎥⎤C 6n (32)n -6⎝ ⎛⎭⎪⎪⎫1336∶⎣⎢⎢⎡⎦⎥⎥⎤C 6n (32)6⎝ ⎛⎭⎪⎪⎫133n -6=1∶6, 化简得6n3-4=6-1,所以n3-4=-1,解得n =9.所以T 7=C 69(32)9-6⎝ ⎛⎭⎪⎪⎫1336=C 39×2×19=563.21.(本小题满分12分)某校高三年级有6个班级,现要从中选出10人组成高三女子篮球队参加高中篮球比赛,且规定每班至少要选1人参加.这10个名额有多少不同的分配方法?解:法一 除每班1个名额以外,其余4个名额也需要分配.这4个名额的分配方案可以分为以下几类:(1)4个名额全部给某一个班级,有C 16种分法; (2)4个名额分给两个班级,每班2个,有C 26种分法;(3)4个名额分给两个班级,其中一个班级1个,一个班级3个.由于分给一班1个,二班3个和一班3个、二班1个是不同的分法,因此是排列问题,共有A 26种分法;(4)分给三个班级,其中一个班级2个,其余两个班级每班1个,共有C 16·C 25种分法; (5)分给四个班,每班1个,共有C 46种分法.故分配方法共有N =C 16+C 26+A 26+C 16·C 25+C 46=126(种).法二 该问题也可以从另外一个角度去考虑:因为是名额分配问题,名额之间无区别,所以可以把它们视作排成一排的10个相同的球,要把这10个球分开成6段(每段至少有一个球).这样,每一种分隔办法,对应着一种名额的分配方法.这10个球之间(不含两端)共有9个空位,现在要在这9个位子中放进5块隔板,放法共有N =C 59=126(种).故共有126种分配方法.22.(本小题满分12分)设a >0,若(1+a ·x 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,求a 的值.解:通项公式为T r +1=C r na r x r2.若含x 2项,则r =4,此时的系数为C 4n ·a 4; 若含x 项,则r =2,此时的系数为C 2n ·a 2. 根据题意,有C 4n a 4=9C 2n a 2, 即C 4n a 2=9C 2n .①又T 3=135x ,即有C 2n a 2=135.② 由①②两式相除,得C 4n C 2n =9C 2n135.结合组合数公式,整理可得3n 2-23n +30=0,解得n =6,或n =53(舍去),将n =6代入②中,得15a 2=135, 所以a 2=9,因为a >0,所以a =3.。
数学人教B版选修2-3章末测试 第一章计数原理A 含解析
第一章测评A(基础过关卷)(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若C 2m =28,则m 等于( ) A .9 B .8 C .7 D .62.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A .60种B .20种C .10种D .8种 3.在(x -3)10的展开式中,x 6的系数是( )A .-27C 610B .27C 410C .-9C 610 D .9C 4104.某人射击8枪命中4枪,这4枪恰有3枪连中的不同种数有( ) A .720 B .480 C .224 D .205.已知集合A ={-1,-2,1,2,3},B ={0,2,4,6,8},从A ,B 中各取一个元素,分别作为平面直角坐标系中点的横、纵坐标,则在第二象限中不同点的个数为( )A .10B .8C .6D .26.以一个正方体的顶点为顶点的四面体的个数为( ) A .70 B .64 C .58 D .527.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的有( )A .98个B .105个C .112个D .210个 8.设二项式⎝⎛⎭⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是( )A .15B .6C .4D .29.4位同学参加某种形式的竞赛,竞赛规则是:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( )A .48B .36C .24D .1810.设a ∈Z ,且0≤a <13,若512 016+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12二、填空题(本大题共5小题,每小题5分,共25分)11.在(x+43y)20的展开式中,系数为有理数的项共有__________项.12.5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有__________种排法.(用数字作答)13.设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=__________.14.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共有__________种.15.如图所示,在排成4×4方阵的16个点中,中心4个点在某一个圆内,其余12个点在圆外,在16个点中任取3个点构成三角形,其中至少有一个点在圆内的三角形共有__________个.三、解答题(本大题共4小题,共25分.解答应写出必要的文字说明、证明过程或演算步骤)16.(6分)已知有6名男医生,4名女医生.(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,共有多少种分派方法?(2)把10名医生分成两组,每组5人且每组要有女医生,共有多少种不同的分法?若将这两组医生分派到两地去,又有多少种分派方法?17.(6分)在二项式(ax m+bx n)12(a>0,b>0,m,n≠0)中有2m+n=0,如果它的展开式中系数最大的项恰是常数项.(1)求常数项是第几项;(2)求ab的取值范围.18.(6分)如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,C3,C4,C5,C6,直径AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点作三角形可作出多少个?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?19.(7分)已知在⎝⎛⎭⎫12x 2-1x n 的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数.参考答案1.解析:C 2m =m (m -1)2×1=28(m >2,且m ∈N +),解得m =8. 答案:B2.解析:四盏熄灭的灯产生的5个空当中放入3盏亮灯,即C 35=10. 答案:C3.解析:因为T r +1=C r 10x10-r (-3)r , 令10-r =6,解得r =4,所以系数为(-3)4C 410=9C 410.答案:D4.解析:把连中三枪看成一个元素(捆绑),另一命中的枪看成一个元素,这两个元素在其余4个元素组成的5个空中插空,共有A 25=20(种).答案:D5.解析:第二象限内的点满足:横坐标为负,纵坐标为正,故有C 12·C 14=8(个). 答案:B6.解析:C 48-6-6=58(个). 答案:C7.解析:当个位与百位数字为0,8时,有A 28A 22个;当个位与百位为1,9时,有A 17A 17A 22个,共A 28A 22+A 17A 17A 22=210(个).答案:D8.解析:T r +1=C r 6x 6-r ⎝⎛⎭⎫-a x r =(-a )r C r6x 6-3r 2, 令r =2,得A =C 26·a 2=15a 2; 令r =4,得B =C 46·a 4=15a 4, 由B =4A 可得a 2=4,又a >0,所以a =2. 答案:D9.解析:当4人中有两人选甲,两人选乙,且得0分有C 24·A 22·C 22·A 22种,当4人都选甲或都选乙,且得0分有C 24·C 22种,故共有C 24·A 22·C 22·A 22+2C 24·C 22=36(种).答案:B10.解析:512 016+a =(13×4-1)2 016+a ,被13整除余1+a ,结合选项可得a =12时,512 016+a 能被13整除.答案:D11.解析:因为T r +1=43rC r 20x20-r y r(r =0,1,2,…,20)系数为有理数,所以r =0,4,8,12,16,20,共6项. 答案:612.解析:先让5名大人全排列,有A 55种排法,两个小孩再依条件插空,有A 24种方法,故共有A 55A 24=1 440种排法.答案:1 44013.解析:由二项展开式知T r +1=C r 21x21-r(-1)r , 所以a 10+a 11=C 1021(-1)10+C 1121(-1)11=C 1021-C 1121=-C 1021+C 1021=0.答案:014.解析:分两类,有4件次品的抽法为C 44C 146种;有3件次品的抽法有C 34C 246种,所以共有C 44C 146+C 34C 246=4 186种不同的抽法.答案:4 18615.解析:分类讨论.有一个顶点在圆内的三角形有:C 14(C 212-4)=248(个).有两个顶点在圆内的三角形有:C 24(C 112-2)=60(个).三个顶点均在圆内的三角形有:C 34=4(个).所以共有248+60+4=312(个). 答案:31216.解:(1)共有C 36·C 24·A 55=14 400(种)分派方法.(2)把10名医生分成两组.每组5人,且每组要有女医生,有C 510·C 55A 22-C 56·C 11·C 44=120(种)不同的分法;若将这两组医生分派到两地去,则共有120·A 22=240(种)分派方法.17.解:(1)设T r +1=C r 12·(ax m )12-r ·(bx n )r =C r 12·a 12-r ·b r x m (12-r )+nr为常数项,则有m (12-r )+nr =0,因为2m +n =0,所以m (12-r )-2mr =0,解得r =4, 故可知常数项是第5项.(2)因为第5项又是系数最大的项,所以有⎩⎪⎨⎪⎧C 412a 8b 4≥C 312a 9b 3,①C 412a 8b 4≥C 512a 7b 5,② 因为a >0,b >0,则由①②可得85≤a b ≤94.18.解:(1)可分三种情况处理:①C 1,C 2,…,C 6这六个点任取三点可构成一个三角形;②C 1,C 2,…,C 6中任取一点,D 1,D 2,D 3,D 4中任取两点可构成一个三角形; ③C 1,C 2,…,C 6中任取两点,D 1,D 2,D 3,D 4中任取一点可构成一个三角形.所以C 36+C 16C 24+C 26C 14=116(个).其中含C 1点的三角形有C 25+C 15·C 14+C 24=36(个). (2)构成一个四边形,需要四个点,且无三点共线,所以共有C 46+C 36C 16+C 26C 26=360(个).19.解:二项展开式的通项T r +1=C r n⎝⎛⎭⎫12x 2n -r ⎝⎛⎭⎫-1x r =(-1)r ⎝⎛⎭⎫12n -r C r n 52-2n r x . (1)因为第9项为常数项,即当r =8时,2n -52r =0,解得n =10.(2)令2n -52r =5,得r =25(2n -5)=6,所以x 5的系数为(-1)6⎝⎛⎭⎫124C 610=1058.(3)要使2n -52r ,即40-5r 2为整数,只需r 为偶数,由于r =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.。
2019-2020学年高中数学 第1章 计数原理章末达标测试(一) 2-3
章末达标测试(一)(本卷满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有A.210个B.300个C.464个D.600个解析由于组成无重复数字的六位数,个位数字小于十位的与个位数字大于十位的一样多,所以有错误!=300(个).答案B2.小王有70元钱,现有面值分别为20元和30元的两种IC 电话卡.若他至少买一张,则不同的买法共有A.7种B.8种C.6种D.9种解析要完成的一件事是“至少买一张IC电话卡”,分3类完成:买1张IC卡,买2张IC卡,买3张IC卡.而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC卡有2种方法,买2张IC卡有3种方法,买3张IC卡有2种方法,共有2+3+2=7种不同的买法.答案A3.若A错误!=6C错误!,则m等于A.9 B.8 C.7 D.6解析由m(m-1)(m-2)=6·错误!,解得m=7。
答案C4.(1+x)3+(1+x)4+…+(1+x)n+2(x≠-1,n∈N*)的展开式中x2的系数是A.C错误!B.C错误!C.C错误!-1 D.C错误!-1解析先把(1+x)3,(1+x)4,…,(1+x)n+2看作等比数列求和.原式=错误!=错误![(1+x)n+3-(1+x)3],原式展开式中x2的系数就是(1+x)n+3与(1+x)3展开式中x3的系数之差,C错误!-C错误!=C错误!-1,故选D.答案D5.若从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数,则不同的取法共有A.66种B.63种C.61种D.60种解析从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数的取法分为两类:第一类取1个奇数,3个偶数,共有C错误! C错误!=20种取法;第二类是取3个奇数,1个偶数,共有C错误!C错误!=40种取法.故不同的取法共有60种,选D.答案D6.五种不同商品在货架上排成一排,其中A,B两种必须连排,而C,D两种不能连排,则不同排法共有A.12 B.20 C.24 D.48解析先排除C,D外的商品,利用捆绑法,将A,B看成一个整体,有A错误!A错误!种排法,再将C,D插空,共有A错误!A错误!A错误!=24种排法.答案C7.已知错误!错误!展开式中,各项系数的和与其二项式系数的和之比为64,则n等于A.4 B.5 C.6 D.7解析展开式中,各项系数的和为4n,二项式系数的和为2n,由已知得2n=64,所以n=6。
【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A版选修2-3(1)
【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A 版选修2-3(时刻:100分钟;总分值:120分)一、选择题(本大题共10小题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.假设A 3m =6C 4m ,那么m 等于( )A .9B .8C .7D .6解析:选C.由m (m -1)(m -2)=6·m m -1m -2m -34×3×2×1,解得m =7.2.(1-x )10展开式中x 3项的系数为( ) A .-720 B .720 C .120D .-120解析:选D.由T r +1=C r 10(-x )r =(-1)r C r 10x r ,r =3,因此系数为(-1)3C 310=-120.3.编号为一、二、3、4、五、六、7的七盏路灯,晚上历时只亮三盏灯,且任意两盏亮灯不相邻,那么不同的开灯方案有( )A .60种B .20种C .10种D .8种解析:选C.四盏熄灭的灯产生的5个空位中放入3盏亮灯,即C 35=10.4.某汽车生产厂家预备推出10款不同的轿车参加车展,但主办方只能为该厂提供6个展位,每一个展位摆放一辆车,而且甲、乙两款车不能摆放在1号展位,那么该厂家参展轿车的不同摆放方案的种类为( )A .C 210A 48B .C 19A 59 C .C 18A 59D .C 18A 58解析:选C.考查分步乘法计数原理和排列数公式,在1号位汽车选择的种数为C 18,其余位置的排列数为A 59,故种数为C 18A 59,应选C.5.(2-x)8展开式中不含x4项的系数的和为( ) A.-1 B.0C.1 D.2解析:选B.(2-x)8展开式的通项为T r+1=C r8·28-r·(-x)r=C r8·28-r·(-1)r·x r2.由r 2=4得r=8.∴展开式中x4项的系数为C88=1.又(2-x)8展开式中各项系数和为(2-1)8=1,∴展开式中不含x4项的系数的和为0.6.把五个标号为1到5的小球全数放入标号为1到4的四个盒子中,不准有空盒且任意一个小球都不能放入标有相同标号的盒子中,那么不同的放法有( )A.36种B.45种C.54种D.96种解析:选A.先把5号球放入任意一个盒子中有4种放法,再把剩下的四个球放入盒子中,依照4的“错位数”是9,得不同的放法有4×9=36种.7.咱们把列位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),那么“六合数”中首位为2的“六合数”共有( )A.18个B.15个C.12个D.9个解析:选B.依题意,那个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数别离为400、040、004;由3、一、0组成6个数别离为310、30一、130、103、013、031;由二、二、0组成3个数别离为220、20二、022;由二、一、1组成3个数别离为21一、12一、112.共计:3+6+3+3=15个.8.已知等差数列{a n}的通项公式为a n=3n-5,那么(1+x)5+(1+x)6+(1+x)7的展开式中含x4项的系数是该数列的( )A.第9项B.第10项C.第19项D.第20项解析:选D.∵(1+x)5+(1+x)6+(1+x)7展开式中含x4项的系数是C45·11+C46·12+C47·13=5+15+35=55,∴由3n-5=55得n=20,应选D.9.记者要为5名志愿者和他们帮忙的2位老人拍照,要求排成一排,2位老人相邻但不排在两头,不同的排法共有( )A.1440种B.960种C.720种D.480种解析:选B.将5名志愿者全排列为A55,因2位老人相邻且不排在两头,故将2位老人看成一个整体插在5名志愿者之间形成的4个空内,为A14,再让2位老人全排列为A22,故不同的排法总数为A55A14A22=960.10.假设(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,那么实数m的值为( )A.1或-3 B.-1或3C.1 D.-3解析:选A.令x=0,取得a0+a1+a2+…+a9=(2+m)9,令x=-2,取得a0-a1+a2-a3+…-a9=m9,因此有(2+m)9m9=39,即m2+2m=3,解得m=1或-3.二、填空题(本大题共5小题,把答案填在题中横线上)11.男、女学生共有8人,从男生当选取2人,从女生当选取1人,共有30种不同的选法,其中女生有________人.解析:设女生有x人,那么C28-x·C1x=30,即8-x7-x2·x=30,解得x=2或3.答案:2或312.假设(3x+1)n(n∈N*) 的展开式中各项系数的和是256,那么展开式中x2项的系数是________.解析:令x=1,得(3+1)n=256,解得n=4,(3x+1)4的展开式中x2项的系数为C24×32=54. 答案:5413.5个人排成一排,要求甲、乙两人之间至少有一人,那么不同的排法有________种.解析:甲、乙两人之间至少有一人,确实是甲、乙两人不相邻,那么有A 33·A 24=72种不同的排法.答案:7214.航空母舰“辽宁舰”将进行一次编队配置科学实验,要求2艘解决型核潜艇一前一后,2艘驱逐舰和2艘护卫舰排列左、右,同侧不能都是同种舰艇,那么舰艇分派方案的方式数是________.解析:先将2艘驱逐舰和2艘护卫舰平均分成两组,再排有C 12C 12A 22A 22种方式,然后排两艘解决型核潜艇有A 22种方式,故舰艇分派方案的方式数为C 12C 12A 22A 22A 22=32.答案:3215.在⎝⎛⎭⎪⎫x 2-13x n 的展开式中,只有第5项的二项式系数最大,那么展开式中常数项为________.解析:由题意知n =8,通项为T r +1=(-1)r ·C r 8·⎝ ⎛⎭⎪⎫128-r ·x 8-43r, 令8-43r =0,得r =6,故常数项为第7项,且T 7=(-1)6·⎝ ⎛⎭⎪⎫122·C 68=7. 答案:7三、解答题(此题共5小题,解许诺写出文字说明、证明进程或演算步骤)16.从编号为1,2,…,9的9个球中任取4个球,使它们的编号之和为奇数,再把这4个球排成一排,共有多少种不同的排法?解:知足条件的4个球的编号有两类取法:①一奇三偶排法数为C 15C 34A 44; ②三奇一偶排法数为C 35C 14A 44.故共有C 15C 34A 44+C 35C 14A 44=1 440种不同的排法.17.已知(1+2x )n 的展开式中,某一项的系数是它前一项系数的2倍,是它后一项的系数的56,求该展开式中二项式系数最大的项.解:第r +1项系数为C r n 2r ,第r 项系数为C r -1n 2r -1, 第r +2项系数为C r +1n 2r +1,依题意得 ⎩⎪⎨⎪⎧C r n 2r =2C r -1n2r -1C r n 2r =56C r+1n 2r +1,整理得⎩⎪⎨⎪⎧C r n =C r -1nC r n =53C r +1n ,即⎩⎪⎨⎪⎧2r =n +15n -r =3r +1,求得:n =7.故二项式系数最大的项是第4项和第5项.T 4=C 37(2x )3=280x32,T 5=C 47(2x )4=560x 2.18.已知(2x i +1x2)n ,i 是虚数单位,x >0,n ∈N *.(1)若是展开式中的倒数第3项的系数是-180,求n 的值; (2)对(1)中的n ,求展开式中系数为正实数的项.解:(1)由已知,得C n -2n (2i)2=-180,即4C 2n=180, 因此n 2-n -90=0,又n ∈N *,解得n =10. (2)(2x i +1x2)10展开式的通项为T k +1=C k 10(2x i)10-k x -2k =C k 10(2i)10-k x 5-52k . 因为系数为正实数,且k ∈{0,1,2,…,10},因此k =2,6,10. 因此所求的项为T 3=11 520,T 7=3 360x -10,T11=x-20.19.已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.(1)从A∪B中掏出3个不同的元素组成三位数,那么能够组成多少个?(2)从集合A中掏出1个元素,从集合B中掏出3个元素,能够组成多少个无重复数字且比4 000大的自然数?解:由1<log 2x <3,得2<x <8,又x ∈N *,因此x 为3,4,5,6,7,即A ={3,4,5,6,7},因此A ∪B ={3,4,5,6,7,8}.(1)从A ∪B 中掏出3个不同的元素,能够组成A 36=120个三位数. (2)假设从集合A 中取元素3,那么3不能作千位上的数字,有C 35·C 13·A 33=180个知足题意的自然数;假设不从集合A 中取元素3,那么有C 14C 34A 44=384个知足题意的自然数.因此,知足题意的自然数共有180+384=564个.20.7名师生站成一排照相留念,其中教师1人,男生4人,女生2人,在以下情形下,各有不同站法多少种?(1)两名女生必需相邻而站; (2)4名男生互不相邻;(3)假设4名男生身高都不等,按从高到低的顺序站; (4)教师不站中间,女生不站两头.解:(1)两名女生站在一路有站法A 22种,视为一种元素与其余5人全排,有A 66种排法.故有不同站法A 22·A 66=1 440种.(2)先站教师和女生,有站法A 33种,再在教师和女生站位的距离(含两头)处插入男生,每空一人,有插入方式A 44种.故共有不同站法A 33·A 44=144种. (3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右,或从右到左的不同.故共有不同站法2·A 77A 44=420种.(4)中间和两头是特殊位置,可如下分类求解:①教师站两头之一,另一端由男生站,有A 12·A 14·A 55种站法,②两头全由男生站,教师站除两头和正中间的另外4个位置之一,有A 24·A 14·A 44种站法.故共有不同站法2 112种.。
【新】高中数学第一章计数原理章末检测新人教A版选修2-3
第一章计数原理章末检测时间:120分钟满分: 150分一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种解析:因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种进行排列,共有C23A33=18种.故选B.答案:B2.若A3n=12C2n,则n等于( )A.8 B.5或6C.3或4 D.4解析:A3n=n(n-1)(n-2),C2n=12n(n-1),∴n(n-1)(n-2)=6n(n-1),又n∈N*,且n≥3,解得n=8.答案:A3.关于(a-b)10的说法,错误的是( )A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小解析:由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.答案:C4.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是( )A.8 B.12C.16 D.24解析:∵A2n=n(n-1)=132,∴n=12(n=-11舍去).故选B.答案:B5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A.(C126)2A410个B.A226A410个C.(C126)2104个D.A226104个解析:2个英文字母可重复,都有C126种不同取法.4个不同数字有A410种不同排法.由分步乘法计数原理知满足条件的牌照号码有C126·C126·A410=(C126)2·A410个.答案:A6.某学习小组男、女生共8人,现从男生中选2人,从女生中选1人,分别去做3种不同的工作,共有90种不同的安排方法,则男、女生人数为( )A.2,6 B.3,5C.5,3 D.6,2解析:设男生有x人,则女生有(8-x)人,∵C2x·C18-x·A33=90,∴x=3.故选B.答案:B7.由数字0,1,2,3,4,5可以组成的无重复数字且奇偶数字相间的六位数的个数有 ( ) A.72 B.60C.48 D.52解析:只考虑奇偶相间,则有2A33A33种不同的排法,其中0在首位的有A22A33种不符合题意,所以共有2A33A33-A22A33=60种.答案:B8.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 ( )A.40 B.74C.84 D.200解析:分三类:第一类:前5个题目的3个,后4个题目的3个,第二类:前5个题目的4个,后4个题目的2个,第三类:前5个题目的5个,后4个题目的1个,由分类加法计数原理得C35C34+C45C24+C55C14=74. 答案:B9.若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=( )A.9 B.10C.-9 D.-10解析:x10的系数为a10,∴a10=1,x9的系数为a9+C110·a10,∴a9+10=0,∴a9=-10.故应选D.答案:D10.张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数共有( ) A .12 B .24 C .36D .48解析:第一步,将两位爸爸排在两端有2种排法;第二步,将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有2A 33种排法,故总的排法有2×2×A 33=24种. 答案:B11.设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ) A .5 B .6 C .7D .8解析:由题意得a =C m2m ,b =C m 2m +1, ∴13C m2m =7C m2m +1, ∴m !m !·m !=m +!m !m +!, ∴m +m +1=13,解得m =6,经检验为原方程的解,选B.答案:B12.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A .72 B .120 C .144D .168解析:先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A 22C 13A 23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A 22A 34=48(种)安排方法,故共有36+36+48=120(种)安排方法. 答案:B二、填空题(本大题共4小题,每小题4分,共16分,将答案填在题中的横线上)13.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).解析:先将6名志愿者分为4组,其中有两个组各2人,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有C 26·C 24A 22·A 44=1 080种.答案:1 080 14.⎝⎛⎭⎪⎫x y-y x 8的展开式中x 2y 2的系数为________.(用数字作答) 解析:T r +1=C r8·⎝⎛⎭⎪⎫x y 8-r·⎝ ⎛⎭⎪⎫-y x r=(-1)r·C r 8·x 16-3r 2·y 3r -82,令⎩⎪⎨⎪⎧16-3r2=2,3r -82=2,得r =4.所以展开式中x 2y 2的系数为(-1)4·C 48=70. 答案:7015.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).解析:3个人各站一级台阶有A 37=210种站法,3个人中有2个人站在一级,另一人站在另一级,有C 23A 27=126种站法.共有210+126=336种站法.故填336. 答案:33616. 已知(1+kx 2)6(k ∈N *)的展开式中x 8的系数小于120,则k =________. 解析:x 8的系数为C 46k 4=15k 4,由已知得,15k 4<120,∴k 4<8,又k ∈N *,∴k =1. 答案:1三、解答题(本大题共有6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(12分)用1、2、3、4、5、6这六个数字可组成多少个无重复数字且不能被5整除的五位数?解析:解法一 五位数不能被5整除,则末位只能从1、2、3、4、6五个数字中选1个,有A 15种方法;再从余下的5个数字中选4个放在其他数位,有A 45种方法.由分步乘法计数原理得,所求五位数有A 15A 45=600个.解法二 不含有数字5的无重复数字的五位数有A 55个;含有数字5的无重复数字的五位数中,末位不含5有A 14种方法,其余数位有A 45种方法,共有A 14A 45个.因此可组成不能被5整除的无重复数字的五位数个数为A 55+A 14A 45=600个.解法三 由1~6组成的无重复数字的五位数有A 56个,其中能被5整除的有A 45个.因此,所求的五位数共有A 56-A 45=720-120=600个. 18.(12分)二项式⎝ ⎛⎭⎪⎫x -2x n 的展开式中:(1)若n =6,求倒数第二项;(2)若第5项与第3项的系数比为56∶3,求各项的二项式系数和.解析:(1)二项式⎝ ⎛⎭⎪⎫x -2x n 的通项是T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎫-2x r ,当n =6时,倒数第二项是T 6=C 56(x )6-5·⎝ ⎛⎭⎪⎫-2x 5=-192x -92.(2)二项式⎝ ⎛⎭⎪⎫x -2x n 的通项是T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎫-2x r ,则第5项与第3项分别为T 5=C 4n (x )n -4⎝ ⎛⎭⎪⎫-2x 4和T 3=C 2n (x )n -2⎝ ⎛⎭⎪⎫-2x 2,所以它们的系数分别为16C 4n 和4C 2n .由于第5项与第3项的系数比为56∶3,则16C 4n ∶4C 2n =56∶3,解得n =10,所以各项的二项式系数和为C 010+C 110+…+C 1010=210=1 024.19.(12分)已知(a 2+1)n的展开式中各项系数之和等于⎝⎛⎭⎪⎫165x 2+1x 5的展开式的常数项,并且(a 2+1)n的展开式中系数最大的项等于54,求a 的值.解析:⎝⎛⎭⎪⎫165x 2+1x 5展开式的常数项为C 45⎝⎛⎭⎪⎫165x 2⎝ ⎛⎭⎪⎫1x 4=16.(a 2+1)n 展开式的系数之和2n=16,n =4.∴(a 2+1)n 展开式的系数最大的项为C 24(a 2)2×12=6a 4=54, ∴a =± 3.20.(12分)某单位职工义务献血,在体检合格的人中,O 型血的共有28人,A 型血的共有7人,B 型血的共有9人,AB 型血的有3人. (1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解析:从O 型血的人中选1人有28种不同的选法,从A 型血的人中选1人有7种不同的选法,从B 型血的人中选1人有9种不同的选法,从AB 型血的人中选1人有3种不同的选法. (1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情都能完成,所以由分类加法计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘法计数原理,共有28×7×9×3=5 292种不同的选法.21.(13分)如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点异色.如果只有5种颜色可供使用,求不同的染色方法种数.解析:解法一 由题设知,四棱锥S ABCD 的顶点S ,A ,B 所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S,A,B染好时,不妨设其颜色分别为1、2、3.若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S,A,B已染好时,C、D还有7种染法.故不同的染色方法有60×7=420种.解法二以S,A,B,C,D顺序分步染色.第一步,S点染色,有5种方法:第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S,A分别在同一条棱上,有3种方法;第四步,C点染色,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类:当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法计数原理、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420种.解法三按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理得不同的染色方法共有A55+2×A45+A35=420种.22.(13分)某班要从5名男生3名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数.(1)所安排的女生人数必须少于男生人数;(2)其中的男生甲必须是课代表,但又不能担任数学课代表;(3)女生乙必须担任语文课代表,且男生甲必须担任课代表,但又不能担任数学课代表.解析:(1)所安排的女生人数少于男生人数包括三种情况,一是2个女生,二是1个女生,三是没有女生,依题意得(C55+C13C45+C23C35)A55=5 520.(2)先选出4人,有C47种方法,连同甲在内,5人担任5门不同学科的课代表,甲不担任数学课代表,有A14·A44种方法,∴方法数为C47·A14·A44=3 360.(3)由题意知甲和乙两个人确定担任课代表,需要从余下的6人中选出3个人,有C36=20种结果,女生乙必须担任语文课代表,则女生乙就不需要考虑,其余的4个人,甲不担任数学课代表,∴甲有3种选择,余下的3个人全排列共有3A33=18;综上可知共有20×18=360.。
高中数学选修2-3 第一章 计数原理 章末检测题 附答案解析
高中数学选修2-3第一章计数原理章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从n 个人中选出2个,分别从事两项不同的工作,若选派方案的种数为72,则n 的值为()A .6B .8C .9D .122.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A .3×3!B .3×(3!)3C .(3!)4D .9!3.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A .85B .56C .49D .284.从集合{0,1,2}到集合{1,2,3,4}的不同映射的个数是()A .81B .64C .24D .125.(2012·重庆卷)82x x 的展开式中常数项为()A.3516B.358C.354D .1056.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()A .2B .-1C .0D .17.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:序号123456节目如果A 、B 两个节目相邻且都不排在3号位置,那么节目单上不同的排序方式有()A .144种B .192种C .96种D .72种8.(x +1)4(x -1)5的展开式中x 4的系数为()A .-40B .10C .40D .459.已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A .33B .34C .35D .3610.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A .320B .160C .96D .6011.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种12.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,不同的吃法有()A .6种B .12种C .20种D .40种二、填空题(本大题共4个小题,每小题4分,共16分.请把正确的答案填写在题中的横线上)13.84x x 展开式中含x 的整数次幂的项的系数之和为___________________.(用数字作答)14.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.15.已知(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11,那么a 1+a 2+a 3+…+a 11=________.16.如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有________条.三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有0,1,2,3,4,5共六个数字.(1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.18.(本小题满分12分)已知3241nx x 展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项.19.(本小题满分12分)(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?20.(本小题满分12分)设a >0,若(1+ax 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,那么a 等于多少?21.(本小题满分13分)带有编号1、2、3、4、5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n行中从左到右第14与第15个数的比为23,求n的值;(3)求n阶(包括0阶)杨辉三角的所有数的和.参考答案一、选择题1.【解析】∵A2n=72,∴n=9.【答案】C2.【解析】把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.【答案】C3.【解析】分两类计算,C22C17+C12C27=49,故选C.【答案】C4.【解析】利用可重复的排列求幂法可得答案为43=64(个).【答案】B5.【解析】T r+1=C r8(x)8-r2rx=12rC r8x4-r2-r2=12rC r8x4-r,令4-r=0,则r=4,∴常数项为T5=124C48=116×70=358.【答案】B6.【解析】(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.【答案】D7.【解析】第一步,将C、D、E、F全排,共有A44种排法,产生5个空,第二步,将A、B捆绑有2种方法,第三步,将A、B插入除2号空位和3号空位之外的空位,有C13种,所以一共有144种方法.【答案】A8.【解析】(x+1)4(x-1)5=(x-1)5(x2+4x x+6x+4x+1),则x4的系数为C35×(-1)3+C25×6+C15×(-1)=45.【答案】D9.【解析】①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33,故选A.【答案】A10.【解析】不同的涂色方法种数为5×4×4×4=320种.【答案】A11.【解析】利用分步计数原理求解.第一步先排甲,共有A 14种不同的排法;第二步再排其他人,共有A 55种不同的排法,因此不同的演讲次序共有A 14·A 55=480(种).【答案】C12.【解析】方法一(树形图):如图所示,先吃A 的情况,共有10种,如果先吃D ,情况相同,所以不同的吃法有20种.方法二:依题意,本题属定序问题,所以有A 66A 33·A 33=20种.【答案】C 二、填空题13.【解析】∵384418841rrr r r r T Cx C xx --+==,当r =0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为C 08+C 48+C 88=72.【答案】7214.【解析】满足题设的取法分三类:①四个奇数相加,其和为偶数,在5个奇数中任取4个,有C 45=5(种);②两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数中任取2个,有C 25·C 24=60(种);③四个偶数相加,其和为偶数,4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).【答案】6615.【解析】令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+…+a 11=-64;∴a 1+a 2+…+a 11=-65.【答案】-6516.【解析】把质点沿网格线从点A 到点B 的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C 37=35.【答案】35三、解答题17.【解析】(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A 35个;第二类,2在个位时有A 14A 24个;第三类,4在个位时有A 14A 24个.由分类加法计数原理知,共有四位偶数A 35+A 14A 24+A 14A 24=156个.(2)五位数中5的倍数可分为两类:第一类,个位上的数字是0的五位数有A 45个,第二类,个位上的数字是5的五位数有A 14A 34个.故满足条件的五位数有A 45+A 14A 34=216(个).18.【解析】(1)由题设知C n -2n =45,即C 2n =45,∴n =10.则21011130341211010r r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,令11r -3012=3,得r =6,含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项,即T 6=C 510x55-3012=252x 2512.19.【解析】(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C 24种插法;二是2张同时插入,有C 14种插法,再考虑3人可交换有A 33种方法.所以,共有A 33(C 24+C 14)=60(种).(2)可先让4人坐在4个位置上,有A 44种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A 25种插法,所以所求的坐法为A 44·A 25=480(种).20.【解析】T r +1=C r n (ax 12)r =C r n a r x r 2,∴4422229135nnn C a C a C a x x⎧=⎪⎨=⎪⎩,∴()()()()()22123914!211352n n n n n n a n n a ⎧----=⎪⎪⎨-⎪=⎪⎩,即()()()22231081270n n a n n a ⎧--=⎪⎨-=⎪⎩,∴(n -2)(n -3)n (n -1)=25.∴3n 2-23n +30=0.解得n =53(舍去)或n =6,a2=27030=9,又a>0,∴a=3.21.【解析】(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.【解析】(1)C320=1140.(2)C13nC14n=23⇒14n-13=23,解得n=34.(3)1+2+22+…+2n=2n+1-1.。
2020版高中数学 第一章 计数原理章末检测试卷 新人教A版选修2-3
第一章 计数原理章末检测试卷(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若A 5m =2A 3m ,则m 的值为( ) A .5 B .3 C .6D .7考点 排列数公式 题点 利用排列数公式计算 答案 A解析 依题意得m !(m -5)!=2×m !(m -3)!,化简得(m -3)·(m -4)=2, 解得m =2或m =5, 又m ≥5,∴m =5,故选A.2.一次考试中,要求考生从试卷上的9个题目中选6个进行解答,其中至少包含前5个题目中的3个,则考生答题的不同选法的种数是( ) A .40 B .74 C .84D .200考点 组合的应用题点 有限制条件的组合问题 答案 B解析 分三类:第一类,从前5个题目中选3个,后4个题目中选3个;第二类,从前5个题目中选4个,后4个题目中选2个;第三类,从前5个题目中选5个,后4个题目中选1个,由分类加法计数原理得C 35C 34+C 45C 24+C 55C 14=74.3.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210等于( ) A .32 B .-32 C .1 024 D .512考点 二项式定理题点 逆用二项式定理求和、化简 答案 A解析 由二项式定理,得a 10-2C 110a 9+22C 210a 8-…+210=C 010(-2)0a 10+C 110(-2)1a 9+C 210(-2)2a 8+…+C 1010(-2)10=(a -2)10=(-2)10=25=32.4.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A .A 34种 B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种考点 排列组合综合问题 题点 分组分配问题 答案 C解析 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种. 5.(x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2D .0考点 二项展开式中的特定项问题 题点 求多项展开式中特定项的系数 答案 A解析 常数项为C 22·22·C 05=4,x 7系数为C 02·C 55·(-1)5=-1,因此x 7系数与常数项之差的绝对值为5. 6.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数为( ) A .A 44A 55 B .A 23A 44A 35 C .C 13A 44A 55 D .A 22A 44A 55考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 D解析 先把每个品种的画看成一个整体,而水彩画只能放在中间,则油画与国画放在两端有A 22种放法,再考虑4幅油画本身排放有A 44种方法,5幅国画本身排放有A 55种方法,故不同的陈列法有A 22A 44A 55种. 7.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3的值为( )A .-122121B .-6160C .-244241D .-1考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 B解析 令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,再令x =-1可得a 0-a 1+a 2-a 3+a 4-a 5=35.两式相加除以2求得a 0+a 2+a 4=122,两式相减除以2可得a 1+a 3+a 5=-121.又由条件可知a 5=-1,故a 0+a 2+a 4a 1+a 3=-6160.8.圆周上有8个等分圆周的点,以这些等分点为顶点的锐角三角形或钝角三角形的个数是( )A .16B .24C .32D .48考点 组合的应用题点 与几何有关的组合问题 答案 C解析 圆周上8个等分点共可构成4条直径,而直径所对的圆周角是直角,又每条直径对应着6个直角三角形,共有C 14C 16=24(个)直角三角形,斜三角形的个数为C 38-C 14C 16=32(个).9.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额且各校分配的名额互不相等,则不同的分配方法种数为( ) A .96 B .114 C .128D .136考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意可得每所学校至少有1个名额的分配方法种数为C 217=136,分配名额相等有22种(可以逐个数),则满足题意的方法有136-22=114(种).10.已知二项式⎝⎛⎭⎪⎪⎫x +13x n 的展开式中第4项为常数项,则1+(1-x )2+(1-x )3+…+(1-x )n 中x 2项的系数为( ) A .-19 B .19 C .-20D .20考点 二项式定理的应用 题点 二项式定理的简单应用 答案 D解析 ⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式T k +1=C k n (x )n -k ⎝ ⎛⎭⎪⎪⎫13x k =C k n 526n k x -,由题意知n 2-5×36=0,得n =5,则所求式子中x 2项的系数为C 22+C 23+C 24+C 25=1+3+6+10=20.故选D.11.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( ) A .C 28C 23 B .C 28A 66 C .C 28A 26D .C 28A 25考点 排列组合综合问题 题点 排列与组合的综合应用 答案 C解析 先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即为A 26,共有C 28A 26种调整方法.12.已知等差数列{a n }的通项公式为a n =3n -5,则(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是该数列的( ) A .第9项 B .第10项 C .第19项D .第20项考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案 D解析 ∵(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是C 45+C 46+C 47=5+15+35=55,∴由3n -5=55得n =20.故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.考点 组合数公式 题点 组合数公式的应用 答案 2或3解析 设女生有x 人,则C 28-x C 1x =30, 即(8-x )(7-x )2·x =30,解得x =2或3.14.学校公园计划在小路的一侧种植丹桂、金桂、银桂、四季桂4棵桂花树,垂乳银杏、金带银杏2棵银杏树,要求2棵银杏树必须相邻,则不同的种植方法共有________种. 考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 240解析 分两步完成:第一步,将2棵银杏树看成一个元素,考虑其顺序,有A 22种种植方法; 第二步,将银杏树与4棵桂花树全排列,有A 55种种植方法. 由分步乘法计数原理得,不同的种植方法共有A 22·A 55=240(种).15.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为____.考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案π6或5π6解析 由题意,得T 4=C 36sin 3x =20sin 3x =52,∴sin x =12.∵x ∈[0,2π],∴x =π6或x =5π6.16.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有________种. 考点 两个计数原理的应用 题点 两个原理的综合应用 答案 30解析 先把A ,B 放入不同盒中,有3×2=6(种)放法,再放C ,D , 若C ,D 在同一盒中,只能是第3个盒,1种放法;若C ,D 在不同盒中,则必有一球在第3个盒中,另一球在A 或B 的盒中,有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法. 三、解答题(本大题共6小题,共70分)17.(10分)已知A ={x |1<log 2x <3,x ∈N *},B ={x ||x -6|<3,x ∈N *}.试问:(1)从集合A 和B 中各取一个元素作直角坐标系中点的坐标,共可得到多少个不同的点?(2)从A ∪B 中取出三个不同的元素组成三位数,从左到右的数字要逐渐增大,这样的三位数有多少个? 考点 两个计数原理的应用 题点 两个原理的综合应用解 A ={3,4,5,6,7},B ={4,5,6,7,8}.(1)从A 中取一个数作为横坐标,从B 中取一个数作为纵坐标,有5×5=25(个),而8作为横坐标的情况有5种,3作为纵坐标的情况有4种,故共有5×5+5+4=34(个)不同的点. (2)A ∪B ={3,4,5,6,7,8},则这样的三位数共有C 36=20(个).18.(12分)已知(1+2x )n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的56倍,试求展开式中二项式系数最大的项. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 二项式的通项为T k +1=C kn(2k)2k x ,由题意知展开式中第k +1项系数是第k 项系数的2倍,是第k +2项系数的56倍,∴⎩⎪⎨⎪⎧C k n 2k=2C k -1n ·2k -1,C k n 2k =56C k +1n ·2k +1,解得n =7.∴展开式中二项式系数最大两项是T 4=C 37(2x )3=28032x 与T 5=C 47(2x )4=560x 2. 19.(12分)10件不同厂生产的同类产品:(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法? 考点 排列组合综合问题 题点 排列与组合的综合应用解 (1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A 48=1 680(或C 48·A 44)(种). (2)分步完成,先将获金质奖章的两件商品布置在6个位置中的两个位置上,有A 26种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A 48种方法,共有A 26·A 48=50 400(或C 48·A 66)(种).20.(12分)设⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)求⎝ ⎛⎭⎪⎫1+12x m展开式中所有含x 的奇次幂的系数和.考点 二项式定理的应用 题点 二项式定理的简单应用解 (1)依题意a 0=1,a 1=m 2,a 2=C 2m ⎝ ⎛⎭⎪⎫122.由2a 1=a 0+a 2,求得m =8或m =1(应舍去),所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)因为⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+…+a m x m,即⎝⎛⎭⎪⎫1+12x 8=a 0+a 1x +a 2x 2+…+a 8x 8. 令x =1,则a 0+a 1+a 2+a 3+…+a 8=⎝ ⎛⎭⎪⎫328,令x =-1,则a 0-a 1+a 2-a 3+…+a 8=⎝ ⎛⎭⎪⎫128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数. 考点 排列的应用 题点 数字的排列问题解 (1)1,2,3,4的再生数的个数为A 44=24,其中最大再生数为4 321,最小再生数为1 234. (2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个); 若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求b a. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 (1)根据题意得C 1m +C 1n =7, 即m +n =7,①f (x )中的x 2的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n =7-m 代入上式得x 2的系数为m 2-7m +21=⎝ ⎛⎭⎪⎫m -722+354, 故当m =3或m =4时,x 2的系数的最小值为9. 当m =3,n =4时,x 3的系数为C 33+C 34=5;当m =4,n =3时,x 3的系数为C 34+C 33=5. (2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 04+C 14×0.003+C 03+C 13×0.003≈2.02. (3)由题意可得a =C 48=70,再根据⎩⎪⎨⎪⎧C k8·2k≥C k +18·2k +1,C k8·2k ≥C k -18·2k -1,即⎩⎪⎨⎪⎧k ≥5,k ≤6,求得k =5或6,此时,b =7×28,∴b a =1285.。
2019_2020学年高中数学第1章计数原理章末综合检测(一)课件新人教B版选修2_3
排列共有
2A
4 4
种
编
排
方
法
.
故
实
Hale Waihona Puke 施顺序的
编
排
方
法
共
有
2×2A44=96 种.故选 C.
第一章 计数原理
10.将 18 个参加青少年科技创新大赛的名额分配给 3 所学
校,要求每所学校至少有 1 个名额且各校分配的名额互不相
等,则不同的分配方法种数为( )
A.96
B.114
C.128
D.136
解析:选 B.由题意可得每所学校至少有 1 个名额的分配方
第一章 计数原理
3.某中学高三学习雷锋志愿小组共有 16 人,其中一班、二
班、三班、四班各 4 人,现从中任选 3 人,要求这三人不能
全是同一个班的学生,且三班至多选 1 人,则不同选法的种
数为( )
A.484
B.472
C.252
D.232
解析:选 B.若三班有 1 人入选,则另两人从三班以外的 12 人 中选取,共有 C14C212=264 种选法.若三班没有人入选,则要 从三班以外的 12 人中选 3 人,又这 3 人不能全来自同一个班, 故有 C312-3C34=208 种选法.故总共有 264+208=472 种不同 的选法.
第一章 计数原理
14.如果(3x2-x23)n 的展开式中含有非零常数项,则正整数 n 的最小值为________. 解析:展开式通项 Tr+1=Crn(3x2)n-r(-x23)r=Cnr ·3n-r· (-2)r·x2n-5r. 由题意得 2n-5r=0,n=52r(r=0,1,2,…,n),故当 r =2 时,正整数 n 有最小值,n 的最小值为 5. 答案:5
高中数学选修课件第一章计数原理章末优化总结
1 2
二项式展开式的应用
利用二项式展开式求解一些特定数列的和问题。
二项式系数的性质
利用二项式系数的性质求解组合数的问题。
3
二项式定理在概率论中的应用
利用二项式定理求解一些概率问题,如抛硬币、 抽奖等。
概率与统计中的高级计数技巧
分步计数原理与分类计数原理的综合运用
根据问题的实际情况,灵活选择分步或分类计数原理进行求解。
计数原理在概率论、 统计学、计算机科学 等领域具有广泛应用 。
它提供了系统的方法 来确定在特定条件下 不同事件的组合数或 排列数。
计数原理的基本思想
分类计数原理
当完成一件事情有多种方法时,根据方法的种类将事件分为不相交的类别,然 后分别计算每类方法下的可能情况数,最后将各类情况数相加得到总的可能情 况数。
THANKS
感谢观看
题目1
将4个相同的小球放进3个不同的盒子中,每个盒子至少 放一个,有多少种不同的放法?
题目2
用0,1,2,3,4这5个数字可以组成多少个无重复数字 的三位数?
答案解析
将4个小球分为3组,一组1个,另两组都是1个,然后将3 组小球放入3个不同的盒子中,即C(3,1)=3,所以共有3 种不同的放法。
答案解析
高中数学选修课件第一章计数原理 章末优化总结
汇报人:XX 20XX-01-29
目录
• 计数原理概述 • 计数原理基础知识回顾 • 计数原理在解题中的应用技巧 • 计数原理的拓展与提高 • 计数原理的章末总结与反思 • 练习题精选及解析
01计数Leabharlann 理概述计数原理的定义与重要性
计数原理是数学中的 一个基本概念,用于 解决各种计数问题。
包括加法原理、乘法原理、排列的性 质(如排列的有序性、排列与元素顺 序有关等)、组合的性质(如组合的 无序性、组合与元素顺序无关等)。
2019-2020学年同步人教A版高中数学选修2-3_章末综合检测二项式定理
第一章 计数原理
运用二项式定理的解题策略 (1)正用:求形式简单的二项展开式时可直接由二项式定理展开, 展开时注意二项展开式的特点:前一个字母是降幂,后一个字母 是升幂.形如(a-b)n 的展开式中会出现正负间隔的情况.对较繁 杂的式子,先化简再用二项式定理展开. (2)逆用:逆用二项式定理可将多项式化简,对于这类问题的求解, 要熟悉公式的特点、项数、各项幂指数的规律以及各项的系数. [注意] 逆用二项式定理时如果项的系数是正负相间的,则是(a -b)n 的形式.
第一章 计数原理
x2-x235展开式中的常数项为(
)
A.80
B.-80
C.40
D.-40
答案:C
栏目 导引
第一章 计数原理
(1+2x)5 的展开式的第三项的系数为________,第三项的二项 式系数为________. 答案:40 10
栏目 导引
第一章 计数原理
二项式定理的正用与逆用 (1)用二项式定理展开1+1x4; (2)化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
栏目 导引
第一章 计数原理
求二项展开式中的特定项或其系数
已知
x-2xn展开式中第三项的系数比第二项的系数大
162,求:
(1)n 的值;
(2)展开式中含 x3 的项.
栏目 导引
第一章 计数原理
【解】 (1)因为 T3=C2n( x)n-2(-2x)2=4C2nxn-2 6, T2=C1n( x)n-1(-2x)=-2C1nxn-2 3, 依题意得 4C2n+2C1n=162,所以 2C2n+C1n=81, 所以 n2=81,n=9. (2)设第 r+1 项含 x3,则 Tr+1=C9r( x)9-r(-2x)r=(-2)rC9rx9-23r, 所以9-23r=3,r=1,所以第二项为含 x3 的项, T2=-2C19x3=-18x3.
高中数学第一章计数原理章末小结知识整合与阶段检测课
末
小
结
核心要点归纳
知
识
整
合
与
阶
段
阶段质量检测
检
测
知识整合与阶段检测 1.两个计数原理
运用两个基本原理解题的关键在于正确区分“分类”与“分 步”,分类就是能“一步到位”——任何一类中任何一种方法都能 完成整个事件;而分步则只能“局部到位”——任何一步中任何一 种方法只能完成事件的某一部分.
2.排列与组合 (1)定义:从 n 个不同元素中取出 m(m≤n)个元素,若按照一 定的顺序排成一列,叫作从 n 个不同的元素中任意取出 m 个元素 的一个排列;若合成一组,则叫作从 n 个不同元素中取出 m 个元 素的一个组合. 即排列和顺序有关,组合与顺序无关.
(2)二项式系数性质 ①Cnm=Cnn-m; ②Cnr +1=Cnr +Crn-1; ③Cn0+C1n+Cn2+…+Cnn=2n.
3.二项式定理 (1)二项式定理 (a+b)n=Cn0an+C1nan-1b+C2nan-2b2+…+Crnan-rbr+… +Cnnbn 这个公式称为二项式定理. 其中 Crn(r=0,1,2,…,n)叫二项式系数. Tr+1=Crnan-rbr 称为二项式展开式的第 r+1 项,又称为 二项式通项.
②某些元素要求“相邻”的问题,采用捆绑法,即将要求 “相邻”的元素捆绑为一个元素,注意内部元素是否有序.
③某些元素要求“不相邻”的问题,采用插空法,即将要 求“不相邻”的元素插入其他无限制条件的元素之间的空位或 两端.
④直接计数困难的问题,采用间接法,源自从方法总数中减 去不符合条件的方法数.
⑤排列和组合的综合题,采用“先组后排”,即先选出元 素,再排序.
(2)排列数公式:①Anm=n(n-1)(n-2)…(n-m+1),规定 An0=1.
高中数学第1章计数原理章末小结与测评教学案苏教版选
第1章计数原理一、两个计数原理的应用1.分类计数原理首先要根据问题的特点确定一个合适的分类标准,然后在这个标准下分类;其次,完成这件事的任何一种方法必须属于某一类.分别属于不同类的两种方法是不同的方法.2.分步计数原理首先根据问题的特点确定一个分步的标准.其次分步时要注意,完成一件事必须并且只有连续完成这n个步骤后,这件事才算完成.二、排列与组合概念及公式1.定义从n个不同元素中取出m(m≤n)个元素,若按照一定的顺序排成一列,则叫做从n个不同元素中取出m个元素的一个排列;若合成一组,则叫做从n个不同元素中取出m个元素的一个组合.即排列和顺序有关,组合与顺序无关.2.排列数公式(1)A m,n=n(n-1)(n-2)…(n-m+1),规定A错误!=1。
当m=n时,A错误!=n(n-1)(n-2)·…·3·2·1。
(2)A错误!=错误!,其中A错误!=n!,0!=1.三、排列与组合的应用1.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算并作答.2.处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列.按元素的性质“分类”和按事件发生的连续过程“分步”,始终是处理排列组合问题的基本方法和原理,通过解题训练注意积累分类和分步的基本技能.3.解排列组合应用题时,常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类和准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团"排列问题中先整体后局部的策略;(10)构造模型的策略.四、二项式定理及二项式系数的性质1.二项式定理公式(a+b)n=C错误!a n+C错误!a n-1b+…+C错误!a n-r b r+…+C错误!b n,其中各项的系数C错误!(r=0,1,2,…,n)称为二项式系数,第r+1项C错误!a n-r b r称为通项.[说明](1)二项式系数与项的系数是不同的概念,前者只与项数有关,而后者还与a,b的取值有关.(2)运用通项求展开式的特定值(或特定项的系数),通常先由题意列方程求出r,再求所需的项(或项的系数).2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,体现了组合数性质C错误!=C错误!。
高中数学 第一章 计数原理章末测试A 新人教A版选修23
第一章 计数原理测评A (基础过关卷)(时间:100分钟 满分:100分)一、选择题(本大题共10个小题,每题5分,共50分)1.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A .10B .11C .12D .152.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A .12种B .36种C .30种D .24种3.如果⎝⎛⎭⎪⎫3x 2-2x 3n的展开式中含有非零常数项,则正整数n 的最小值为( )A .3B .6C .5D .104.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i =1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( )A .30B .18C .36D .485.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为( ) A .60 B .48 C .36 D .246.若自然数n 使得竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1 000的“可连数”的个数为( )A .27B .36C .39D .487.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A ,B ,C ,D ,E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B ,C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D ,E 两地可随意安排在其余两天送达.则安排这四天运送物资到五个受灾地点的不同运送顺序的种数为( )A .72B .18C .36D .248.三张卡片的正反面上分别写有1与2,3与4,5与6(6可作9用),把这三张卡片拼在一起表示一个三位数,则三位数的个数是( )A .12B .24C .48D .729.在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是( )A .-15B .85C .-120D .27410.设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为( ) A .2 B .3 C .4 D .5 二、填空题(本大题共有5小题,每题5分,共25分)11.如图为一电路图,若只闭合一条线路,从A 到B 共有________条不同的线路可通电.12.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是__________(用数字作答).13.若(ax -1)5的展开式中x 3的系数是80,则实数a 的值是__________. 14.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =________.15.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是__________.把符合条件的所有数按从小到大的顺序排列,则321是第__________个数(用数字作答).三、解答题(本大题共4小题,共25分)16.(6分)有6个球,其中3个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?17.(6分)甲、乙、丙三名教师按下列规定分配到6个班级里去任课,一共有多少种不同的分配方法?(1)一人教1个班,一人教2个班,另一个人教3个班; (2)每人教2个班;(3)两个人各教1个班,另一个人教4个班.18.(6分)7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法. (1)7人站成一排,要求较高的3个学生站在一起;(2)7人站成一排,要求最高的站在中间,并向左右两边看,身高逐渐递减.19.(7分)已知⎝ ⎛⎭⎪⎫x +12x n 的展开式中前三项的系数成等差数列.(1)求n 的值;(2)求展开式中系数最大的项.参考答案一、1.解析:分类讨论:分有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N =11.答案:B2.解析:分三步,第一步先从4位同学中选2人选修课程甲,共有C 24种不同的选法,第二步给第3位同学选课程,必须从乙、丙中选取,共有2种不同的选法,第三步给第4位同学选课程,也有2种不同的选法,故共有N =C 24×2×2=24种不同的选法.答案:D3.解析:展开式通项T r +1=C rn (3x 2)n -r⎝ ⎛⎭⎪⎫-2x 3r =C r n ·3n -r ·(-2)r ·x 2n -5r . 由题意得2n -5r =0,n =52r (r =0,1,2,…,n ),故当r =2时,正整数n 有最小值,n的最小值为5.答案:C4.解析:由于a 1,a 3,a 5的大小顺序已定,且a 1≠1,a 3≠3,a 5≠5,∴a 1可取2,3,4,若a 1=2或3,则a 3可取4,5,当a 3=4时,a 5=6,当a 3=5时,a 5=6;若a 1=4,则a 3=5,a 5=6.而其他的三个数字可以任意排列,因而不同的排列方法共有(2×2+1)A 33=30种.答案:A5.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A 22·A 33=12种(先把除甲、乙、丙外的两个人排好,有A 22种方法,再把甲、乙、丙插入其中,有A 33种方法,因此此类方法有A 22·A 33=12种);另一类是乙、丙相邻但不与甲相邻,此类方法有A 23·A 22·A 22=24种方法.综上所述,满足题意的方法种数共有12+24=36.答案:C6.解析:根据题意,要构造小于1 000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时,有C 13=3个;当“可连数”为两位数时,个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 13C 13=9个;当“可连数”为三位数时,有C 13C 14C 13=36个; 故共有3+9+36=48个. 答案:D7.解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 12种方法;第二步是在余下的3天中任选1天,安排送达物资到受灾地点B,C,有A13A22种方法;第三步是在余下的2天中安排送达物资到受灾地点D,E,有A22种方法.由分步计数原理得,不同的运送顺序共有A12·(A13A22)·A22=24种.答案:D8.解析:含5的数字有A22A22A33个,含6的数字有A22A22A33个,含9的数字有A22A22A33个,因此三位数的总个数为3A22A22A33=72.答案:D9.解析:含x4的项的系数为5个因式中取4个含x,另一个取常数的项即可.根据分类、分步计数原理,得-5x4-4x4-3x4-2x4-x4=-15x4,所以原式展开式中,含x4的项的系数是-15.答案:A10.解析:由二项式定理(1+x)8=C08+C18x+C28x2+…+C78x7+C88x8=a0+a1x+a2x2+a3x3+…+a8x8.又C08=1,C18=8,C28=28,C38=56,C48=70,C58=56,C68=28,C78=8,C88=1,可得仅有两个为奇数,即a0=C08=1,a8=C88=1.答案:A二、11.解析:∵按上、中、下三条线路可分为三类,上线路中有3种,中线路中有一种,下线路中有2×2=4种.根据分类加法计数原理知,共有3+1+4=8种不同的线路.答案:812.解析:可分类讨论:第一类,7级台阶上每一级只站一人,则有A37种;第二类,若有一级台阶有2人,另一级有1人,则共有C13A27种,因此共有不同的站法种数是A37+C13A27=336.答案:33613.解析:设通项公式为T r+1=C r5a5-r x5-r·(-1)r,令5-r=3,得r=2,C25a5-2·(-1)2=80,解得a=2.答案:214.解析:∵52能被13整除,∴512 012可化为(52-1)2 012,其展开式的通项为T r+1=C r2 0122 012=1,所以当a=12时,512 012 522 012-r·(-1)r.故(52-1)2 012被13除,余数为C2 0122 012·(-1)+12能被13整除.答案:1215.解析:由题意知,不含0的三位数有2C39个,含0的三位数中,0只能作为个位数,有C29个,共有满足条件的三位数有2C39+C29=204个;百位为1的数共有C28=28个,百位为2的数共有C27+1=22个,百位为3的数从小到大排列且小于321的三位数有310和320.所以321为第28+22+2+1=53个数.答案:204 53三、16.解:分三类:(1)若取1个黑球,和另三个球排4个位置,不同的排法为A 44=24种;(2)若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,所以不同的排法种数为C 23A 24=36;(3)若取3个黑球,从另三个球中选 1个排4个位置,不同的排法种数为C 13A 14=12. 综上,不同的排法种数为24+36+12=72.17.解:(1)若甲教1个班,乙教2个班,丙教3个班,有C 16C 25C 33种分配方法,因未指名谁教几个班,若甲、乙、丙所教班的个数交换后,共有C 16C 25C 33A 33=360种分配方法.(2)若每人各教2个班有C 26C 24C 22=90种分配方法.(3)若甲教4个班,乙、丙各教1个班,有C 46C 12C 11种分配方法.因甲、乙、丙每人都可教4个班,所以共有C 46C 12C 11A 13=90种分配方法.18.解:(1)将3个较高的学生看作元素集团,与其他4名同学全排列. 所以共有A 33A 55=720种排法.(2)从剩余的6人中选出3人有C 36种选法,顺序一定有唯一站法. 所以共有C 36=20种不同排法.19.解:(1)由题意,得C 0n +14C 2n =2×12C 1n ,即n 2-9n +8=0,解得n =8,n =1(舍去). (2)设第r +1项的系数最大,则⎩⎪⎨⎪⎧12r C r 8≥12r +1C r +18,12r C r 8≥12r -1Cr -18.即⎩⎪⎨⎪⎧18-r ≥12r +1,12r ≥19-r .解得2≤r ≤3.∵r ∈{0,1,2,…,8}, ∴r =2或r =3.所以系数最大的项为T 3=7x 5,T 4=727x .。
高中数学第一章计数原理章末综合检测一含解析新人教A版选修2_3
章末综合检测(一)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(1-x )10展开式中x 3项的系数为( ) A .-720 B .720 C .120D .-120解析:选D .由T r +1=C r10(-x )r=(-1)r C r10x r,因为r =3,所以系数为(-1)3C 310=-120. 2.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A .8种B .10种C .12种D .32种解析:选B .此人从A 到B ,路程最短的走法应走2纵3横,将纵用0表示,横用1表示,则一种走法就是2个0和3个1的一个排列,只需从5个位置中选2个排0,其余位置排1即可,故共有C 25=10种.3.从4台甲型和5台乙型电视机中任意取出2台,其中甲型与乙型电视机各1台,则不同的取法种数为( )A .60B .40C .30D .20解析:选D .根据题意,分2步进行分析:①先在4台甲型电视机中取出1台,有4种取法;②再在5台乙型电视机中取出1台,有5种取法.则有4×5=20种不同的取法.故选D .4.(2019·郑州高二检测)将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),则不同的排列方法有( )A .12种B .20种C .40种D .60种解析:选C .五个元素没有限制,全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故所求排列数为A 55A 33×2=40.5.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8等于( ) A .-5 B .5 C .90D .180解析:选D .因为(1+x )10=[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以a 8=C 810·22=180.6.圆周上有8个等分圆周的点,以这些等分点为顶点的锐角三角形或钝角三角形的个数A .16B .24C .32D .48解析:选C .圆周上8个等分点共可构成4条直径,而直径所对的圆周角是直角,又每条直径对应着6个直角三角形,共有C 14C 16=24个直角三角形.斜三角形的个数为C 38-C 14C 16=32个.7.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:选A .令x =-1,即得a 0+a 1+a 2+…+a 11=-2.8.若(x 2+m )⎝ ⎛⎭⎪⎫x -2x 6的展开式中x 4的系数为30,则m 的值为( )A .-52B .52C .-152D .152解析:选B .⎝ ⎛⎭⎪⎫x -2x 6展开式的通项公式为T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-2x r=(-2)r C r 6x 6-2r ,令6-2r =2,得r =2,所以x 4项的系数为(-2)2C 26=60,令6-2r =4,得r =1,所以x 4项的系数为(-2)1C 16=-12,所以(x 2+m )·⎝ ⎛⎭⎪⎫x -2x 6的展开式中x 4的系数为60-12m =30,解得m =52.故选B .9.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23 B .C 26A 66 C .C 28A 25D .C 28A 26解析:选D .第一步可先从后排8人中选2人共有C 28种;第二步可认为前排放6个座位,先选出2个座位让后排的2人坐,由于其他人的顺序不变,所以有A 26种坐法.综上知“不同”调整方法的种数为C 28A 26.10.(2019·福州高二检测)为参加校园文化节,某班推荐2名男生3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人.若每人只参加1个项目,并且舞蹈和演唱项目必须有女生参加,则不同推荐方案的种数为( )A .12B .36C .48D .24解析:选D .法一:(直接法)3名女生各参加1项,2名男生在舞蹈、演唱中各参加1项,有A 33A 22=12种方案;有2名女生参加同一项,有C 23A 12A 22=12种方案,所以共有12+12=24种法二:(间接法)2名男生同时参加舞蹈或演唱,有C 23A 12=6种方案,而所有不同的推荐方案共有C 15C 24C 22=30种,故满足条件的推荐方案种数为30-6=24.11.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额且各校分配的名额互不相等,则不同的分配方法种数为( )A .96B .114C .128D .136解析:选B .由题意可得每所学校至少有1个名额的分配方法种数为C 217=136,分配名额相等的有22种(可以逐个数),则满足题意的方法有136-22=114种.12.已知(2x 2+x -y )n 的展开式中各项系数的和为32,则展开式中x 5y 2的系数为( ) A .120 B .30 C .240D .60解析:选A .由题意,(2x 2+x -y )n的展开式中各项系数的和为32,即(2+1-1)n=32,解得n =5.已知(2x 2+x -y )5=[(2x 2+x )-y ]5的通项公式为T r +1=C r 5·(-y )r (2x 2+x )5-r,由展开式中含有x 5y 2,可知r =2,且(2x 2+x )3的展开式中有含x 5的项,由通项公式,可得T t +1=C t 3(2x 2)3-t x t=23-t C t 3x 6-t ,令t =1得,含x 5项的系数为22C 13.所以展开式中,x 5y 2的系数为C 25×C 13×22=120.二、填空题:本题共4小题,每小题5分.13.(2019·长沙高二检测)将5名志愿者分成4组,其中一组有2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方法有________种.(用数字作答)解析:分配方法数为C 25C 13C 12C 11A 33·A 44=240. 答案:24014.(2019·青岛高二检测)设(2x -1)6=a 6x 6+a 5x 5+…+a 1x +a 0,则|a 0|+|a 1|+|a 2|+…+|a 6|=________.解析:因为(2x -1)6=a 6x 6+a 5x 5+…+a 1x +a 0, 由二项式定理可知a 0,a 2,a 4,a 6均为正数,a 1,a 3,a 5均为负数,令x =-1可得|a 0|+|a 1|+|a 2|+…+|a 6|=a 0-a 1+a 2-a 3+a 4-a 5+a 6=(-2-1)6=729.答案:72915.若二项式⎝⎛⎭⎪⎫x -1x n 的展开式中只有第4项的二项式系数最大,则展开式中常数项为________.解析:第4项的二项式系数C 3n 最大,所以n =6,展开式通项T k +1=C k 6x 6-k·⎝⎛⎭⎪⎫-1x k=(-1)k C k6x6-32k ,令6-32k =0,则k =4,所以常数项为(-1)4C 46=15.答案:1516.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有________种.解析:先把A ,B 放入不同盒中,有3×2=6种放法,再放C ,D , 若C ,D 在同一盒中,只能是第3个盒,1种放法;若C ,D 在不同盒中,则必有一球在第3个盒中,另一球在A 或B 的盒中,有2×2=4种放法.故共有6×(1+4)=30种放法. 答案:30三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)⎝ ⎛⎭⎪⎫x +2x 2n的展开式中只有第6项二项式系数最大,求展开式中的常数项.解:因为⎝⎛⎭⎪⎫x +2x 2n的展开式中只有第6项二项式系数最大,所以n =10,所以展开式的通项为T r +1=C r 10(x )10-r ⎝ ⎛⎭⎪⎫2x 2r =2r ·C r10x 5-52r ,令5-52r =0,得r =2.所以展开式中的常数项为T 3=4C 210=180.18.(本小题满分12分)如图有4个编号为A ,B ,C ,D 的小三角形,要在每一个小三角形中涂上红、黄、蓝、白、黑五种颜色中的一种,并且相邻的小三角形颜色不同,共有多少种不同的涂色方法?解:分为两类:第一类:若A ,C 同色,则A 有5种涂法,B 有4种涂法,C 有1种涂法(与A 相同),D 有4种涂法.故N 1=5×4×1×4=80.第二类:若A ,C 不同色,则A 有5种涂法,B 有4种涂法,C 有3种涂法,D 有3种涂法. 故N 2=5×4×3×3=180种.综上可知不同的涂法共有N =N 1+N 2=80+180=260种.19.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?解:(1)将取出的4个球分成三类情况: ①取4个红球,没有白球,有C 44种; ②取3个红球,1个白球,有C 34C 16种; ③取2个红球,2个白球,有C 24C 26种, 故有C 44+C 34C 16+C 24C 26=115种.(2)设取x 个红球,y 个白球,则⎩⎪⎨⎪⎧x +y =5,2x +y ≥7,0≤x ≤4,x ∈N *,0≤y ≤6,y ∈N *,故⎩⎪⎨⎪⎧x =2,y =3或⎩⎪⎨⎪⎧x =3,y =2或⎩⎪⎨⎪⎧x =4,y =1. 因此,符合题意的取法种数有C 24C 36+C 34C 26+C 44C 16=186种.20.(本小题满分12分)设(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10,求下列各式的值. (1)a 0+a 1+a 2+…+a 10; (2)a 6.解:(1)令x =1,得a 0+a 1+a 2+…+a 10=(2-1)10=1. (2)a 6即为含x 6项的系数,T r +1=C r 10(2x )10-r·(-1)r =C r 10(-1)r 210-r·x10-r,所以当r =4时,T 5=C 410(-1)426x 6=13 440x 6,即a 6=13 440.21.(本小题满分12分)由数字1,2,3,4,5组成无重复数字的五位数. (1)共可以组成多少个五位数? (2)其中奇数有多少个?(3)如果将所有的五位数按从小到大的顺序排列,43 125是第几个数?说明理由. 解:(1)由数字1,2,3,4,5组成无重复数字的五位数,共可以组成A 55=120(个)五位数.(2)由1,2,3,4,5组成的无重复数字的五位数奇数中, 个位数字必须从1,3,5中选出,共有C 13种结果.其余四个位置可以用其他四个数字在四个位置进行全排列,共有A 44种结果, 根据分步乘法计数原理得到共有奇数C 13A 44=72(个). (3)考虑大于43 125的数,分四类讨论:①5在首位,将其他4个数字全排列即可,有A 44=24个.②4在首位,5在千位,将其他3个数字全排列即可,有A 33=6个.③4在首位,3在千位,5在百位,将其他2个数字全排列即可,共有A 22=2个.④除上述情况,还有43 215,43 251,43 152共3个数.由(1)知共可以组成120个五位数,则不大于43 125的五位数有120-(24+6+2+3)=85个.所以43 125是第85个数.22.(本小题满分12分)设有编号为1,2,3,4,5的5个小球和编号为1,2,3,4,5的5个盒子,现将这5个小球放入5个盒子中.(1)没有一个盒子空着,但球的编号与盒子的编号不全相同,有多少种投放方法?(2)每个盒子内投入1个球,并且至少有2个球的编号与盒子的编号是相同的,有多少种投放方法?解:(1)先把5个小球放到5个盒子中,没有空盒,有A55种投放方法,球的编号与盒子的编号完全相同的投放方法有1种,故满足题意的投放方法有A55-1=119(种).(2)可分为三类.第一类:5个球的编号与盒子的编号完全相同,有1种投放方法.第二类:3个球的编号与盒子的编号相同,有C35种投放方法.剩下的2个球的投放方法只有1种,所以投放方法有C35×1=10(种).第三类:2个球的编号与盒子的编号相同,有C25种投放方法,剩下的3个球的投放方法有2种,所以投放方法有C25×2=20(种).根据分类加法计数原理得,满足题意的投放方法有1+10+20=31(种).。
高中数学:计数原理章末测试题课标A选修23 试题
卜人入州八九几市潮王学校第一章计数原理单元测试题一、选择题〔本大题一一共12小题,每一小题5分,一共60分〕1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,那么不同报名方法一共有〔〕A .10种B .20种C .25种D .32种2.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,那么不同的选修方案一共有〔〕A .36种B .48种C .96种D .192种3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法一共有〔〕A.1440种B.960种C.720种D.480种4.某城的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不一样的牌照号码一共有〔〕A.()2142610C A 个 B.242610A A 个C.()2142610C 个 D.242610A 个5.〔x -2y 〕10的展开式中x 6y 4项的系数是()A.840B.-840C.210D.-2106.由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有()A.72B.60C.48D.527.用0,1,2,3,4组成没有重复数字的全部五位数中,假设按从小到大的顺序排列,那么数字12340应是第〔〕个数.A.6B.9C.10D.88.AB 和CD 为平面内两条相交直线,AB 上有m 个点,CD 上有n 个点,且两直线上各有一个与交点重合,那么以这m+n-1个点为顶点的三角形的个数是()A.2121m n n m C C C C +B.21121m n n m C C C C -+C.21211m n n m C C C C +-D.2111211---+m n n m C C C C 9.设()10102210102x a x a x a a x+⋅⋅⋅+++=-,那么()()292121020a a a a a a +⋅⋅⋅++-+⋅⋅⋅++的值是()A.0B.-1 C.1D.10.某城的如图,某人要从A 地前往B 地,那么路程最短的走法有()11.从6个正方形拼成的12个顶点(如图)中任取3个顶点作为一组,其中可以构成三角形的组数为()A .208B .204C .200D .19612.从不同号码的五双靴中任取4只,其中恰好有一双的取法种数为〔〕A.120B.240 C二、填空题〔本大题一一共4小题,每一小题4分,一共16分〕13.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法〔用数字答题〕.14.用数字0,1,2,3,4组成没有重复数字的五位数,那么其中数字1,2相邻的偶数有个〔用数字答题〕.15.假设(2x 3+x1)n的展开式中含有常数项,那么最小的正整数n =.16.从班委会5名成员中选出3名,分别担任班级学习HY 、文娱HY 与体育HY ,其中甲、乙二人不能担任文娱HY ,那么不同的选法一共有_____种。
高中数学选修2-3 第一章 计数原理 章末检测题
高中数学选修2-3第一章计数原理章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从n 个人中选出2个,分别从事两项不同的工作,若选派方案的种数为72,则n 的值为()A .6B .8C .9D .12【解析】∵A 2n =72,∴n =9.【答案】C2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A .3×3!B .3×(3!)3C .(3!)4D .9!【解析】把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.【答案】C3.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A .85B .56C .49D .28【解析】分两类计算,C 22C 17+C 12C 27=49,故选C.【答案】C4.从集合{0,1,2}到集合{1,2,3,4}的不同映射的个数是()A .81B .64C .24D .12【解析】利用可重复的排列求幂法可得答案为43=64(个).【答案】B5.(2012·重庆卷)82x x 的展开式中常数项为()A.3516B.358 C.354D .105【解析】T r +1=C r 8(x )8-r 2r x =12r C r 8x 4-r 2-r 2=12r r 8x 4-r,令4-r =0,则r =4,∴常数项为T 5=124C 48=116×70=358.【答案】B6.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()A .2B .-1C .0D .1【解析】(a 0+a 2+a 4)2-(a 1+a 3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.【答案】D7.某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:序号123456节目如果A、B两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有()A.144种B.192种C.96种D.72种【解析】第一步,将C、D、E、F全排,共有A44种排法,产生5个空,第二步,将A、B捆绑有2种方法,第三步,将A、B插入除2号空位和3号空位之外的空位,有C13种,所以一共有144种方法.【答案】A8.(x+1)4(x-1)5的展开式中x4的系数为()A.-40B.10C.40D.45【解析】(x+1)4(x-1)5=(x-1)5(x2+4x x+6x+4x+1),则x4的系数为C35×(-1)3+C25×6+C15×(-1)=45.【答案】D9.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36【解析】①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33,故选A.【答案】A10.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A.320B.160C.96D.60【解析】不同的涂色方法种数为5×4×4×4=320种.【答案】A11.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种【解析】利用分步计数原理求解.第一步先排甲,共有A 14种不同的排法;第二步再排其他人,共有A 55种不同的排法,因此不同的演讲次序共有A 14·A 55=480(种).【答案】C12.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,不同的吃法有()A .6种B .12种C .20种D .40种【解析】方法一(树形图):如图所示,先吃A 的情况,共有10种,如果先吃D ,情况相同,所以不同的吃法有20种.方法二:依题意,本题属定序问题,所以有A 66A 33·A 33=20种.【答案】C二、填空题(本大题共4个小题,每小题4分,共16分.请把正确的答案填写在题中的横线上)13.84x x 展开式中含x 的整数次幂的项的系数之和为___________________.(用数字作答)【解析】∵38441884rrr rr r T Cx C xx --+==,当r =0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为C 08+C 48+C 88=72.【答案】7214.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.【解析】满足题设的取法分三类:①四个奇数相加,其和为偶数,在5个奇数中任取4个,有C45=5(种);②两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数中任取2个,有C25·C24=60(种);③四个偶数相加,其和为偶数,4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).【答案】6615.已知(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11,那么a1+a2+a3+…+a11=________.【解析】令x=0,得a0=1;令x=1,得a0+a1+a2+…+a11=-64;∴a1+a2+…+a11=-65.【答案】-6516.如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A到点B的不同路径之中,最短路径有________条.【解析】把质点沿网格线从点A到点B的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C37=35.【答案】35三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有0,1,2,3,4,5共六个数字.(1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.【解析】(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A35个;第二类,2在个位时有A14A24个;第三类,4在个位时有A14A24个.由分类加法计数原理知,共有四位偶数A35+A14A24+A14A24=156个.(2)五位数中5的倍数可分为两类:第一类,个位上的数字是0的五位数有A45个,第二类,个位上的数字是5的五位数有A14A34个.故满足条件的五位数有A45+A14A34=216(个).18.(本小题满分12分)已知3241nx x 展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项.【解析】(1)由题设知C n -2n =45,即C 2n =45,∴n =10.则21011130341211010r r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,令11r -3012=3,得r =6,含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项,即T 6=C 510x55-3012=252x 2512.19.(本小题满分12分)(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?【解析】(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C 24种插法;二是2张同时插入,有C 14种插法,再考虑3人可交换有A 33种方法.所以,共有A 33(C 24+C 14)=60(种).(2)可先让4人坐在4个位置上,有A 44种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A 25种插法,所以所求的坐法为A 44·A 25=480(种).20.(本小题满分12分)设a >0,若(1+ax 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,那么a 等于多少?【解析】T r +1=C r n (ax 12)r =C r n a r x r 2,∴4422229135nnn C a C a C a x x⎧=⎪⎨=⎪⎩,∴()()()()()22123914!211352n n n n n n a n n a ⎧----=⎪⎪⎨-⎪=⎪⎩,即()()()22231081270n n a n n a ⎧--=⎪⎨-=⎪⎩,∴(n -2)(n -3)n (n -1)=25.∴3n 2-23n +30=0.解得n =53(舍去)或n =6,a 2=27030=9,又a >0,∴a =3.21.(本小题满分13分)带有编号1、2、3、4、5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?【解析】(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A 45种放法.(3)将其中的4个球投入一个盒子里共有C 45C 14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C 25A 44种不同的放法.22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n 行中从左到右第14与第15个数的比为23,求n 的值;(3)求n 阶(包括0阶)杨辉三角的所有数的和.【解析】(1)C 320=1140.(2)C 13nC 14n =23⇒14n -13=23,解得n =34.(3)1+2+22+…+2n =2n +1-1.。
章末检测卷8:第一章 计数原理
章末检测卷(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如图所示,使电路接通,开关不同的开闭方式有( )A .11种B .20种C .21种D .12种答案 C解析 当第一组开关有一个接通时,电路接通有C 12(C 13+C 23+C 33)=14(种)方式;当第一组开关有两个接通时,电路接通有C 22(C 13+C 23+C 33)=7(种)方式.所以共有14+7=21(种)方式,故选C.2.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A .2人或3人B .3人或4人C .3人D .4人答案 A解析 设女生有x 人,则C 28-x ·C 1x =30,即(8-x )(7-x )2·x =30, 解得x =2或3.3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A .C 16C 294B .C 16C 299C .C 3100-C 394D .C 3100-C 294答案 C解析 不考虑限制条件,从100件产品中任取3件,有C 3100种取法,然后减去3件全是正品的取法C 394,故有C 3100-C 394种取法.4.已知集合M ={1,-2,3},N ={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( )A .18B .17C .16D .10答案 B解析 分两类.第一类:M 中的元素作横坐标,N 中的元素作纵坐标,则在第一、二象限内的点有3×3=9(个); 第二类:N 中的元素作横坐标,M 中的元素作纵坐标,则在第一、二象限内的点有4×2=8(个). 由分类加法计数原理,共有9+8=17(个)点在第一、二象限.5.在(1-x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n -5=0,则自然数n 的值是( )A .7B .8C .9D .10答案 B解析 a 2=C 2n ,a n -5=(-1)n -5C n -5n =(-1)n -5C 5n , ∴2C 2n +(-1)n -5C 5n =0. 即(-1)n -5(n -2)(n -3)(n -4)120=-1, ∴(n -2)(n -3)(n -4)=120且n -5为奇数,∴n =8.6.设(2-x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则|a 1|+|a 2|+…+|a 6|的值是( )A .665B .729C .728D .63答案 A解析 由x =0,得a 0=26,令x =-1,得a 0-a 1+a 2-…+a 6=36即|a 1|+|a 2|+…+|a 6|=36-26=665.7.若⎝⎛⎭⎪⎫x +a 3x 8的展开式中,x 4的系数为7,则实数a =( ) A.12B .-12C .-18D.18答案 A解析 T r +1=C r 8x 8-r ⎝ ⎛⎭⎪⎫a 3x r =a r C r 8x 8-43r , 由8-43r =4得r =3, 由已知条件得a 3C 38=7,则a 3=18,得a =12. 8.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有( )A .15种B .18种C .30种D .36种答案 C解析 先把A ,B 放入不同盒中,有3×2=6(种)放法,再放C ,D ,若C ,D 在同一盒中,只能是第3个盒,1种放法;若C ,D 在不同盒中,则必有一球在第3个盒中,另一球在A 或B 的盒中,有2×2=4(种)放法.故共有6×(1+4)=30(种)放法.9.(x 2+2)⎝⎛⎭⎫1x 2-15的展开式的常数项是( )A .-3B .-2C .2D .3答案 D解析 第一个因式取x 2,第二个因式取含1x 2的项得:1×C 45(-1)4=5;第一个因式取2,第二个因式取常数项得:2×(-1)5=-2,故展开式的常数项是5+(-2)=3.10.设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .130答案 D解析 在x 1,x 2,x 3,x 4,x 5这五个数中,因为x i ∈{-1,0,1},i =1,2,3,4,5,所以满足条件1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3的可能情况有“①一个1(或-1),四个0,有C 15×2种;②两个1(或-1),三个0,有C 25×2种;③一个-1,一个1,三个0,有A 25种;④两个1(或-1),一个-1(或1),两个0,有C 25C 13×2种;⑤三个1(或-1),两个0,有C 35×2种.故共有C 15×2+C 25×2+A 25+C 25C 13×2+C 35×2=130(种),故选D.11.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66C .C 28A 26D .C 28A 25答案 C解析 先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,∴为A 26.共有C 28A 26种调整方法.12.设n ∈N +,则7C 1n +72C 2n +…+7n C n n 除以9的余数为( )A .0B .2C .7D .0或7答案 D解析 7C 1n +72C 2n +…+7n C n n=(1+7)n -1=8n -1=(9-1)n -1=C 0n 9n +C 1n 9n -1(-1)+…+C n n (-1)n -1. 当n 为奇数时,除以9的余数为-2+9=7.当n 为偶数时,除以9的余数为0.二、填空题(本大题共4小题,每小题5分,共20分)13.三名教师教六个班的数学,则每人教两个班,分配方案共有________种.答案 90解析 C 26·C 24·C 22=90.14.8次投篮中,投中3次,其中恰有2次连续命中的情形有________种.答案 30解析 将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A 26=30(种).15.5个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有________种. 答案 72解析 甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有A 33·A 24=72(种)不同的排法.16.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 5,4种退烧药b 1,b 2,b 3,b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的实验方案有________种.答案 14解析 分3类:当取a 1,a 2时,再取退烧药有C 14种方案;取a 3时,取另一种消炎药的方法有C 12种,再取退烧药有C 13种,共有C 12C 13种方案;取a 4,a 5时,再取退烧药有C 14种方案.故共有C 14+C 12C 13+C 14=14(种)不同的实验方案.三、解答题(本大题共6小题,共70分)17.已知⎝ ⎛⎭⎪⎫41x +3x 2n 展开式中的倒数第三项的系数为45,求: (1)含x 3的项;(2)系数最大的项.解 (1)由题意可知C n -2n =45,即C 2n =45,∴n =10, T r +1=C r 10⎝⎛⎭⎫x -1410-r ⎝⎛⎭⎫x 23r =C r 10x 11r -3012, 令11r -3012=3,得r =6,所以含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项即T 6=C 510x 55-3012=252x 2512. 18.利用二项式定理证明:49n +16n -1(n ∈N +)能被16整除.证明 49n +16n -1=(48+1)n +16n -1=C 0n ·48n +C 1n ·48n -1+…+C n -1n ·48+C n n +16n -1 =16(C 0n ·3×48n -1+C 1n ·3×48n -2+…+C n -1n ·3+n ). ∴49n +16n -1能被16整除.19.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14,求:(1)a 0+a 1+a 2+…+a 14;(2)a 1+a 3+a 5+…+a 13.解 (1)令x =1,则a 0+a 1+a 2+…+a 14=27=128.①(2)令x =-1,则a 0-a 1+a 2-a 3+…-a 13+a 14=67.②①-②得2(a 1+a 3+…+a 13)=27-67=-279808.∴a 1+a 3+a 5+…+a 13=-139904.20.一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?解 (1)将取出4个球分成三类情况:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 34C 16种;③取2个红球2个白球,有C 24C 26种,故有C 44+C 34C 16+C 24C 26=115(种).(2)设取x 个红球,y 个白球,则⎩⎪⎨⎪⎧ x +y =5,0≤x ≤4,2x +y ≥7,0≤y ≤6, 故⎩⎪⎨⎪⎧ x =2y =3或⎩⎪⎨⎪⎧ x =3y =2或⎩⎪⎨⎪⎧x =4,y =1. 因此,符合题意的取法种数有C 24C 36+C 34C 26+C 44C 16=186.21.已知(1-2x )n =a 0+a 1x +a 2x 2+…+a n x n (n ∈N +),且a 2=60,求:(1)n 的值;(2)-a 12+a 222-a 323+…+(-1)n a n 2n 的值. 解 (1)因为T 3=C 2n (-2x )2=a 2x 2,所以a 2=C 2n (-2)2=60,化简可得n (n -1)=30,且n ∈N +,解得n =6.(2)T r +1=C r 6(-2x )r =a r x r ,所以a r =C r 6(-2)r ,所以(-1)r a r 2r =C r 6, -a 12+a 222-a 323+…+(-1)n a n 2n =C 16+C 26+…+C 66=26-1=63.22.用0,1,2,3,4,5这六个数字,完成下面三个小题.(1)若数字允许重复,可以组成多少个不同的五位偶数;(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;(3)若直线方程ax +by =0中的a 、b 可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条?解 (1)5×6×6×6×3=3240(个).(2)当首位数字是5,而末位数字是0时,有A 13A 23=18(个);当首位数字是3,而末位数字是0或5时,有A 12A 34=48(个);当首位数字是1或2或4,而末位数字是0或5时,有A 13A 12A 13A 23=108(个);故共有18+48+108=174(个).(3)a ,b 中有一个取0时,有2条;a ,b 都不取0时,有A 25=20(条);a =1,b =2与a =2,b =4重复,a =2,b =1,与a =4,b =2重复.故共有2+20-2=20(条).。
2020学年高中数学第一章计数原理章末检测北师大版选修2-3(2021-2022学年)
章末检测(一) 计数原理时间:120分钟满分:150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x,m∈N*且m〈19〈x,则(x-m)(x-m-1)…(x-19)用排列符号可表示为()A.A错误! B.A错误!C.A错误!未定义书签。
ﻩD.A错误!解析:由排列数公式的特征,下标是“连乘数"最大的数x-m,上标是“连乘数”的个数,即(x-m)-(x-19)+1=20-m。
∴(x-m)(x-m-1)…(x-19)=A错误!未定义书签。
.答案:B2.一间谍飞机侵入领空,三架战机奉命拦截,要求三架战机分别位于敌机左右两翼和后方形成三角之势,则三架战机的不同排列方式有( )A.3种ﻩB.6种C.9种D.12种解析:三架战机的不同排法共有A错误!未定义书签。
=6(种).答案:B3.若C错误!-C错误!未定义书签。
=C错误!,则n等于()A.12B.13C.14 D.15解析:由题意得C错误!=C错误!未定义书签。
+C错误!=C错误!,∴n+1=7+8,即n=14.答案:C4.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1 440种ﻩ B.960种C.720种D.480种ﻬ解析:不同的排法有4A错误!A错误!未定义书签。
=960(种).答案:B5.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( )A.480ﻩB.240C.120 ﻩ D.96解析:先把5本书中两本捆起来,再分成4份即可,∴分法数为C错误!·A错误!=240.答案:B6.(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6ﻩ B.7C.8 ﻩ D.9解析:(1+3x)n的展开式中含x5的项为C错误!未定义书签。
(3x)5=C错误!35x5,展开式中含x6的项为C错误!未定义书签。
高中数学 第一章 计数原理章末检测(A)(含解析)苏教版选修23
【学案导学 备课精选】2015年高中数学 第一章 计数原理章末检测(A )(含解析)苏教版选修2-3(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.三名教师教六个班的课,每人教两个班,分配方案共有________种.2.7名同学排成一排,其中甲、乙两人必须排在一起的不同排法有________种. 3.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有________个.4.从5名男生和5名女生中选3名组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为________.5.从1,2,3,…,100中任取2个数相乘,其积能被3整除的有________组.6.编号为1,2,3,4,5的5人,入座编号也为1,2,3,4,5的5个座位,至多有2人对号入座的坐法种数为________.7.在⎝⎛⎭⎪⎫1x+51x 3n 的展开式中,所有奇数项系数之和为 1 024,则第六项的系数是________.8.在⎝⎛⎭⎪⎪⎫x 2-13x 8的展开式中,常数项是________.9.若(3x -13x2)n的展开式中各项系数之和为128,则展开式中含1x3项的系数是________.10.若(x +1)n=x n +…+ax 3+bx 2+…+1(n ∈N *),且a ∶b =3∶1,则n 的值为________.11.三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为凹数,如524,746等都是凹数,那么,各个数位上无重复数字的三位凹数有________个.12.过三棱柱任意两个顶点的直线共15条,其中异面直线有________对.13.在(x +1x)9的展开式中,x 3的系数是________.14.对于二项式(1-x )1 999,有下列四个命题:①展开式中T 1 000=-C 9991 999x 999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1 000项和第1 001项;④当x =2 000时,(1-x )1 999除以2 000的余数是1.其中正确命题的序号是________.二、解答题(本大题共6小题,共90分)15.(14分)有A ,B ,C 三个城市,上午从A 城去B 城有5班汽车,2班火车,都能在12∶00前到达B 城,下午从B 城去C 城有3班汽车,2班轮船.某人上午从A 城出发去B 城,要求12∶00前到达,然后他下午去C 城,问有多少种不同的走法?16.(14分)用0,1,2,3,4,5共6个数字,可以组成多少个没有重复数字的六位奇数?17.(14分)求(x +1x-1)5展开式中的常数项.18.(16分)有9本不同的课外书分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本.19.(16分)已知S n =2n +C 1n 2n -1+C 2n 2n -2+…+C n -1n 21+1(n ∈N *),求证:当n 为偶数时,S n -4n -1能被64整除.20.(16分)已知(3x2+3x2)n展开式中各项系数和比二项式系数和大992,求展开式中二项式系数最大的项和系数最大的项.第1章计数原理(A)答案1.90解析分三步进行:先从六个班中选两个班给第一名老师,有C26种方法;再从剩余的四个班中选两个班给第二名老师,有C24种方法;最后两个班给第三名老师,共C26×C24×C22=90(种)方法.2.1 440解析用捆绑法,将甲、乙作为一个元素,N=A66·A22=1 440(种).3.1924.110解析方法一(直接法)分为三类:一女二男,二女一男,三女.所以共有C15·C25+C25·C15+C35=110(种)组队方案.方法二(间接法)无限制条件的方案数减去全是男生的方案数,所有共有C310-C35=120-10=110(种)组队方案.5.2 739解析乘法满足交换律,因此是组合问题.把1,2,3,…,99,100分成2组:{3,6,9,…,99},共计33个元素;{1,2,4,5,…,100},共计67个元素,故积能被3整除的有C233+C133·C167=2 739(组).6.109解析问题的正面有3种情况:有且仅有1人对号入座,有且仅有2人对号入座和全未对号入座,这3种情况都难以求解.从反面入手,只有2种情况:全对号入座(4人对号入座时必定全对号入座),有且仅有3人对号入座.全对号入座时只有1种坐法;有3人对号入座时,分2步完成:从5人中选3人有C35种选法,安排其余2人不对号入座,只有1种坐法.因此,反面情况共有1+C35·1=11(种)不同坐法.5人无约束条件入座5个座位,有A55=120(种)不同坐法.所以满足要求的坐法种数为120-11=109.7.462解析 由题意知,2n -1=1 024=210,所以n =11.所以第六项的系数为C 511=462. 8.7 9.21解析 赋值法:令x =1,得n =7,由通项公式得T r +1=C r 7(3x )7-r·(-13x2)r=(-1)r ·37-r·C r7·x 21-5r 3,令21-5r3=-3,得r =6, ∴1x3的系数为(-1)6·37-6·C 67=21.10.11 11.240 12.36解析 15条直线中任选两条,有C 215=105(对)直线;其中平行直线有C 23+3=6(对);相交直线有6×C 25(同一顶点处)+3(每个侧面的对角线)=63(对).所以异面直线共有105-6-63=36(对).13.84解析 T r +1=C r 9·x 9-r ·x -r =C r 9·x 9-2r,令9-2r =3,∴r =3.∴x 3的系数是C 39=84. 14.①④解析 展开式中T 1 000=C 9991 999(-x )999=-C 9991 999x 999,所以①正确;展开式中各项系数和为0,而常数项为1,所以非常数项的系数和为-1,②错;展开式中系数最大的项是第1 001项,③错;将二项式展开,即可判断④对.15.解 根据分类计数原理,上午从A 城到B 城,并在12∶00前到达,共有5+2=7(种)不同的走法.下午从B 城去C 城,共有3+2=5(种)不同的走法.根据分步计数原理,上午从A 城去B 城,然后下午从B 城去C 城,共有7×5=35(种)不同的走法.16.解 分三步:①确定末位数字,从1,3,5中任取一个有C 13种方法;②确定首位数字,从另外的4个非零数字中任取一个有C 14种方法;③将剩余的4个数字排中间有A 44种排法,故共有C 13C 14A 44=288(个)六位奇数.17.解 (x +1x -1)5=[(x +1x)-1]5,通项为T k +1=C k 5(x +1x)5-k (-1)k(0≤k ≤5).当k =5时,T 6=C 55(-1)5=-1,当0≤k <5时,(x +1x)5-k的通项为T r +1=C r 5-k ·x5-k -r ·(1x)r =C r 5-k x 5-k -2r(0≤r ≤5-k ). ∵0≤k <5,且k ∈Z,5-k -2r =0,∴k 只能取1或3,相应r 的值分别为2或1,∴常数项为C 15C 24(-1)+C 35C 12(-1)3+(-1)=-51. 18.解 (1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C 49种方法;第二步:从余下的5本书中,任取3本给乙,有C 35种方法;第三步:把剩下的书给丙有C 22种方法,∴共有不同的分法为C 49·C 35·C 22=1 260(种). (2)分两步完成:第一步:按4本、3本、2本分成三组有C 49·C 35·C 22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A 33种方法,∴共有C 49·C 35·C 22·A 33=7 560(种).19.证明 S n =(2+1)n =3n,∵n 为偶数,设n =2k (k ∈N *),∴S n -4n -1=9k -8k -1=(8+1)k -8k -1=(C 0k 8k -2+C 1k 8k -3+…+C k -2k )·82,(*)当k =1时,9k-8k -1=0,显然S n -4n -1能被64整除; 当k ≥2时,(*)式能被64整除.∴n 为偶数时,S n -4n -1能被64整除.20.解 令x =1得展开式各项系数和为(1+3)n =4n,又展开式二项式系数和为C 0n +C 1n +…+C n n =2n,由题意知4n -2n =992,即(2n )2-2n-992=0, (2n -32)(2n +31)=0,∴2n=32,n =5.所以展开式共有6项,其中二项式系数最大的项为第三项和第四项,它们是T 3=C 25(3x 2)3·(3x 2)2=90x 6.T 4=C 35(3x 2)2·(3x 2)3=270x 223, 设展开式中第k +1项的系数最大.又T k +1=C k 5(3x 2)5-k (3x 2)k =C k 5·3k·x 10+4k 3,得⎩⎪⎨⎪⎧C k5·3k≥C k -15·3k -1,C k 5·3k ≥C k +15·3k +1,即⎩⎪⎨⎪⎧3k ≥16-k ,15-k ≥3k +1,解得72≤k ≤92,又∵k ∈N ,∴k =4.所以展开式中第5项系数最大,T 5=C 45·34·x263=405x 263.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末检测
一、选择题
1.若A3m=6C4m,则m等于() A.9 B.8 C.7 D.6
答案 C
解析由m(m-1)(m-2)
=6·m(m-1)(m-2)(m-3)
4×3×2×1
,解得m=7.
2.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人
C.3人D.4人
答案 A
解析设女生有x人,则C28
-x ·C1x=30,即
(8-x)(7-x)
2·x=30,解得x
=2或3.
3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是()
A.C16C294B.C16C299
C.C3100-C394D.C3100-C294
答案 C
解析不考虑限制条件,从100件产品中任取3件,有C3100种取法,然后减去3件全是正品的取法C394,故有C3100-C394种取法.
4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、第二象限不同点的个数是()
A.18 B.16 C.14 D.10
答案 C
解析 第一象限不同点有N 1=2×2+2×2=8(个), 第二象限不同点有N 2=1×2+2×2=6(个), 故N =N 1+N 2=14(个).
5.三名教师教六个班的数学,则每人教两个班,分配方案共有 ( )
A .18种
B .24种
C .45种
D .90种
答案 D
解析 C 26·C 24·C 2
2=90.
6.在(1-x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n -5=0,则自然数n 的值是
( )
A .7
B .8
C .9
D .10
答案 B
解析 a 2=C 2n ,a n -5=(-1)n -5C n -5n =(-1)
n -5C 5n , ∴2C 2n +(-1)
n -5C 5n =0. 120
(-1)
n -5
(n -2)(n -3)(n -4)
=-1,
∴(n -2)(n -3)(n -4)=120且n -5为奇数,∴n =8.
7.某人有3个不同的电子邮箱,他要发5个电子邮件,发送的方法的种数为( ) A .8
B .15
C .243
D .125
答案 C
解析 由分步乘法计数原理得发送方法数为35=243.
8.(2013·陕西理)设函数f (x )=⎩⎪⎨⎪⎧
(x -1x )6,x <0,
-x ,x ≥0.则当x >0时,f [f (x )]表达式的展开式中常数项为
( )
A .-20
B .20
C .-15
D .15
答案 A
解析 当x >0时,f [f (x )]=(-x +1x )6=(1
x
-x )6的展开式中,常数项为C 36(
1x
)3
(-x )3=-20. 9.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有
( )
A.15种B.18种C.30种D.36种
答案 C
解析先把A,B放入不同盒中,有3×2=6(种)放法,再放C,D,
若C,D在同一盒中,只能是第3个盒,1种放法;
若C,D在不同盒中,则必有一球在第3个盒中,另一球在A球或B球所在的盒中,有2×2=4(种)放法.
故共有6×(1+4)=30(种)放法.
10.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()
A.C28A23B.C28A66C.C28A26D.C28A25
答案 C
解析先从后排中抽出2人有C28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,∴为A26.共有C28A26种调整方法.
二、填空题
11.(2013·安徽理)若(x+
a
3
x
)8的展开式中x4的系数为7,则实数a=________.
答案1 2
解析通项T r
+1=C r8x8-r(
a
3
x
)r=C r8a r x8-r-
r
3
⇒8-
4
3r=4⇒r=3,C
3
8
a3=7⇒a=
1
2.
12.8次投篮中,投中3次,其中恰有2次连续命中的情形有________种.答案30
解析将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A26=30(种).
13.(2013·大纲卷)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种(用数字作答).
答案480
解析6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两
人外的4人,有A 4
4种方法,然后把甲、乙两人插入4个人的5个空位,有A 25种方法,所以共有A 44·A 25=480(种).
14.(x 2+2)(1
x 2-1)5的展开式的常数项是________. 答案 3
解析 第一个因式取x 2,第二个因式取含1x 2的项得:1×C 4
5(-1)4=5;第一个因式取2,第二个因式取常数项得:2×(-1)5=-2,故展开式的常数项是5+(-2)=3. 三、解答题
15.已知(41x +3
x 2)n 展开式中的倒数第3项的系数为45,求: (1)含x 3的项; (2)系数最大的项.
解 (1)由题意可知C n -2n =45,即C 2
n =45,∴n =10,
T r +1=C r 10(x -14)10-r (x 23)r =C r 10x 11r -3012, 令11r -3012
=3,得r =6,
所以含x 3的项为T 7=C 610x 3=C 410x 3
=210x 3.
(2)系数最大的项为中间项即
T 6=C 510x 55-3012
=252x 2512
.
16.一个口袋内有4个不同的红球,6个不同的白球.
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
解 (1)将取出4个球分成三类情况: ①取4个红球,没有白球,有C 44种;
②取3个红球1个白球,有C 34C 16种; ③取2个红球2个白球,有C 24C 26种, 故有C 44+C 34C 16+C 24C 26=115种.
(2)设取x 个红球,y 个白球,
则⎩⎨⎧x +y =5,
2x +y ≥7,0≤x ≤4,0≤y ≤6,
故⎩⎨⎧x =2,y =3,或⎩⎨⎧x =3,y =2,或⎩⎨⎧x =4,y =1. 因此,符合题意的取法种数有
C 24C 36+C 34C 26+C 44C 16=186(种).
17.已知(1-2x )n =a 0+a 1x +a 2x 2+…+a n x n (n ∈N *),且a 2=60. (1)求n 的值;
(2)求-a 12+a 222-a 323+…+(-1)n a n
2n 的值.
解 (1)因为T 3=C 2
n (-2x )2=a 2x 2, 所以a 2=C 2n (-2)2=60,
化简可得n (n -1)=30,且n ∈N *,解得n =6.
(2)T r +1=C r 6(-2x )r =a r x r ,所以a r =C r 6(-2)r ,
所以(-1)r a r
2r =C r 6, -a 12+a 222-a 323+…+(-1)n a n 2n
=C 16+C 26+…+C 66=26
-1=63.
18.用0,1,2,3,4,5这六个数字,完成下面三个小题. (1)若数字允许重复,可以组成多少个不同的五位偶数;
(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;
(3)若直线方程ax +by =0中的a ,b 可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条? 解 (1)分三步:
①先选万位数字,由于0不能作万位数字,因此有5种选法; ②个位数字只能从0,2,4这3个数字选,因此有3种选法; ③十位、百位、千位,由于允许重复,有6×6×6种选法; 由分步乘法计数原理知所求数共有5×6×6×6×3=3 240(个).
(2)当首位数字是5,而末位数字是0时,有A13A23=18(个);当首位数字是3,而末位数字是0或5时,有A12A34=48(个);当首位数字是1或2或4,而末位数字是0或5时,有
A13A12A13A23=108(个);
故共有18+48+108=174(个).
(3)a,b中有一个取0时,有2条;
a,b都不取0时,有A25=20(条);
a=1,b=2与a=2,b=4重复,
a=2,b=1,与a=4,b=2重复.
故共有2+20-2=20(条).。