2016-2017学年高中数学 第一章 三角函数 8 函数y=Asin(ωx+φ)的图像课时作业 北师大版必修4

合集下载

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。

高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教

高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教
第二十三页,共42页。
中的第三点和第五点),有
π3ω+φ=π,
ω=2.
56πω+φ=2π,解得φ=π3.
∴y=3sin(2x+π3).
法三:(图象变换法)
由 T=π,点(-π6,0),A=3 可知图象由 y=3sin 2x 向左
平移π6个单位长度而得,所以有 y=3sin 2(x+π6),
即 y=3sin(2x+π3),且 ω=2,φ=π3.
2
第八页,共42页。
2.(2014·高考江苏卷)已知函数 y=cos x 与 y=sin(2x+ φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则 φ 的
π 值是____6____. 解析:利用函数 y=cos x 与 y=sin(2x+φ)(0≤φ<π)的交点横 坐标,列方程求解.
由题意,得 sin2×π3+φ=cos π3,因为 0≤φ<π,所以 φ=π6.
2.已知函数 y=Asin(ωx+φ),ω>0,且|φ|<π2的图象的一段 如图所示,求此函数的解析式.
第二十七页,共42页。
解:由图易知 A= 2,T2=|10-2|=8,所以 T=16. 又因为 T=|2ωπ|,ω>0,所以 ω=π8. 因为点(2, 2)在图象上,所以 y= 2sin(π8×2+φ)= 2, 所以 sin(π4+φ)=1,所以π4+φ=2kπ+π2(k∈Z), 又|φ|<π2,所以 φ=π4,所以 y= 2sin(π8x+π4).
第十五页,共42页。
法二:①把 y=sin x 的图象上所有点的横坐标伸长到原来 的 2 倍(纵坐标不变),得到 y=sin12x 的图象; ②把 y=sin12x 图象上所有的点向右平移π2个单位长度,得到 y=sin12(x-π2)=sin(12x-π4)的图象; ③把 y=sin(12x-π4)的图象上所有点的纵坐标伸长到原来的 3 倍(横坐标不变),就得到 y=3sin(12x-π4)的图象.

高中数学 第1章 三角函数 8 函数y=Asin(ωx+φ)的图像与性质(2)练习 北师大版必修4-

高中数学 第1章 三角函数 8 函数y=Asin(ωx+φ)的图像与性质(2)练习 北师大版必修4-

8 函数y =A sin(ωx +φ)的图像与性质(2)课时跟踪检测一、选择题1.函数y =sin(2x +π)是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数D .周期为2π的偶函数解析:y =sin(2x +π)=-sin2x ,周期为2π2=π.∵f (-x )=-sin2(-x )=sin2x =-f (x ), ∴y =sin(2x +π)为奇函数. 答案:A2.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4,若存在α∈(0,π),使得f (x +α)=f (x +3α)恒成立,则α的值是( )A .π6B .π3C .π4D .π2解析:函数f (x )的周期T =2π2=π. ∵f (x +α)=f (x +3α),∴T =2α=π,即α=π2.答案:D3.已知函数y =sin ⎝⎛⎭⎪⎫π4-2x ,则其图像的下列结论中,正确的是( )A .向左平移π8后得到奇函数B .向左平移π8后得到偶函数C .关于点⎝ ⎛⎭⎪⎫-π8,1中心对称 D .关于直线x =π8轴对称答案:A4.若将函数y =2sin2x 的图像向左平移π12个单位长度,则平移后图像的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z ) 解析:由题意,将函数y =2sin2x 的图像向左平移π12个单位得y =2sin2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝ ⎛⎭⎪⎫2x +π6,则平移后函数的对称轴为2x +π6=π2+k π,k ∈Z ,即x =π6+k π2,k ∈Z ,故选B .答案:B5.已知函数f (x )=2sin(ωx +φ)(ω>0)的图像关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( )A .2B .4C .6D .8解析:由题意得π3ω+φ=k 1π+π2(k 1∈Z ),π12ω+φ=k 2π(k 2∈Z ),∴π4ω=(k 1-k 2)π+π2(k 1,k 2∈Z ).∴ω=4(k 1-k 2)+2(k 1,k 2∈Z ).∵ω>0,∴ω的最小值为2.答案:A6.设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A .13B .3C .6D .9解析:依题意得f ⎝ ⎛⎭⎪⎫x -π3=cos ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π3=cos ⎝ ⎛⎭⎪⎫ωx -π3ω=cos ωx ,∴-π3ω=2k π(k ∈Z ),∴ω=-6k .又ω>0,∴当k =-1时,ω有最小值6. 答案:C 二、填空题7.函数y =sin ⎝ ⎛⎭⎪⎫12x +π3,x ∈⎣⎢⎡⎦⎥⎤-π,π2的单调递增区间为________.解析:由-π2+2k π≤12x +π3≤π2+2k π,k ∈Z 得函数的单调递增区间为⎣⎢⎡⎦⎥⎤4k π-5π3,π3+4k π,k ∈Z .又x ∈⎣⎢⎡⎦⎥⎤-π,π2,∴单调递增区间为⎣⎢⎡⎦⎥⎤-π,π3.答案:⎣⎢⎡⎦⎥⎤-π,π3 8.(2018·某某卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图像关于直线x =π3对称,则φ的值是________.解析:由题意可得sin ⎝ ⎛⎭⎪⎫23π+φ=±1,所以23π+φ=π2+k π,φ=-π6+k π(k ∈Z ),因为-π2<φ<π2,所以当k =0时,φ=-π6.答案:-π69.设函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,φ∈⎝ ⎛⎭⎪⎫-π2,π2的最小正周期为π,且图像关于直线x =π12对称,则在下面四个结论中:①图像关于点⎝ ⎛⎭⎪⎫π4,0对称; ②图像关于点⎝ ⎛⎭⎪⎫π3,0对称; ③在⎣⎢⎡⎦⎥⎤0,π6上是增函数; ④在⎣⎢⎡⎦⎥⎤-π6,0上是增函数. 那么所有正确结论的编号为________. 解析:∵2πω=π,∴ω=2.∴f (x )=sin(2x +φ), 又∵f (x )关于x =π12对称,∴sin ⎝ ⎛⎭⎪⎫2·π12+φ=±1, ∴π6+φ=k π+π2, ∴φ=k π+π3,k ∈Z ,又∵φ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴令k =0得φ=π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 令f (x )=0得2x +π3=k π,∴x =k π2-π6,k ∈Z , 令k =1得一个对称中心⎝ ⎛⎭⎪⎫π3,0, 令-π2≤2x +π3≤π2,-512π≤x ≤π12, ∴f (x )的一个增区间为⎣⎢⎡⎦⎥⎤-512π,π12,又∵⎣⎢⎡⎦⎥⎤-π6,0⊆⎣⎢⎡⎦⎥⎤-512π,π12,∴②④正确. 答案:②④ 三、解答题10.已知函数f (x )=12sin ⎝ ⎛⎭⎪⎫2x +π6+54.(1)求f (x )的最大值、最小值,及相应x 的值; (2)求f (x )的最小正周期、对称轴和对称中心;(3)函数f (x )的图像至少向左平移多少个单位长度时才为偶函数?解:(1)当2x +π6=2k π+π2(k ∈Z )时,f (x )有最大值74,即当x =π6+k π(k ∈Z )时,f (x )max =74,当2x +π6=-π2+2k π(k ∈Z )时,f (x )有最小值34,即当x =k π-π3(k ∈Z )时,f (x )min =34.(2)由T =2π|ω|知函数f (x )的最小正周期为T =π.令2x +π6=k π+π2(k ∈Z ),则x =k π2+π6(k ∈Z ),∴对称轴为直线x =k π2+π6(k ∈Z ), 令2x +π6=k π(k ∈Z ),则x =k π2-π12(k ∈Z ),∴对称中心为⎝⎛⎭⎪⎫k π2-π12,54(k ∈Z ).(3)由函数性质知若函数y =A sin(ωx +φ)+b 为偶函数,φ>0,则φ至少为π2,即y =12sin ⎝⎛⎭⎪⎫2x +π2+54=12cos2x +54为偶函数.∴应将函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6+54的图像平移至函数y =12sin ⎝ ⎛⎭⎪⎫2x +π2+54的图像处.由函数图像平移方法知:y =12sin ⎝ ⎛⎭⎪⎫2x +π6+54的图像――→向左平移π6个单位长度y =12sin ⎝ ⎛⎭⎪⎫2x +π2+54的图像,∴函数f (x )的图像至少向左平移π6个单位长度才为偶函数.11.已知函数f (x )=A sin(ωx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中A >0,ω>0,0<φ<π2的图像与x 轴的交点中,相邻两个交点之间的距离为π2,且图像上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2.(1)求f (x )的解析式; (2)当x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的值域.解:(1)由最低点为M ⎝⎛⎭⎪⎫2π3,-2得A =2.由x 轴上相邻的两个交点之间的距离为π2得T 2=π2,即T =π,ω=2πT =2ππ=2.由点M ⎝ ⎛⎭⎪⎫2π3,-2在图像上知,2sin ⎝ ⎛⎭⎪⎫2×2π3+φ=-2, 即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1. 故4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ). 又∵φ∈⎝ ⎛⎭⎪⎫0,π2,∴φ=π6.故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2)∵x ∈⎣⎢⎡⎦⎥⎤π12,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π3,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].12.已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图像两相邻对称轴之间的距离是π2,若将f (x )的图像先向右平移π6个单位,再向上平移3个单位,所得函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间.解:(1)∵2πω=2×π2,∴ω=2,∴f (x )=sin(2x +φ)-b .又∵g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,则φ=π3,b =3,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3- 3. (2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-3,其对称轴由2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ).由2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),得k π-5π12≤x ≤k π+π12(k ∈Z ),由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12(k ∈Z ).∴函数f (x )的对称轴为x =k π2+π12(k ∈Z ),增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ), 减区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k ∈Z ).13.已知函数f (x )=A sin(ωx +φ)与对数函数y =g (x )在同一坐标系中的图像如图所示.(1)分别写出两个函数的解析式; (2)方程f (x )=g (x )共有多少个解? 解:(1)由图像知A =2,φ=0,T =2, 故ω=π,f (x )=2sinπx .设g (x )=log a x ,由图像知log a 4=-1, 故a =14,g (x )=log 14x .(2)因g (x )为减函数,f (x )最小值为-2.故当g (x )≥-2时,可能有交点,由log 14x ≥-2,得0<x ≤16.当2≤x ≤16时,f (x )与g (x )在f (x )的每一个周期上的图像均有两个交点,共14个交点;当0<x <2时,由图像知有3个交点;当x>16时,图像无交点.综上可知f(x)=g(x)共有17个解.。

函数y=Asin(ωx+φ)的性质-三角函数

函数y=Asin(ωx+φ)的性质-三角函数

数 学 BS 自 主 通 道
探究通道
巩固通道
高效课时作业
自主通道
填一填
函数 y=Asin(ωx+φ)(A>0,ω>0)的性质
定义域
R
值域
1 __[_-___A__,___A__]_____
周期
T=2ωπ
第3 页
数 学 BS 自 主 通 道
探究通道
巩固通道
高效课时作业
第4 页
奇偶性 φ= 2 kπ,k∈Z 时,y=Asin(ωx+φ)是奇函数;φ= 3 kπ+π2,k∈Z
数 学 BS 自 主 通 道
ห้องสมุดไป่ตู้
探究通道
巩固通道
高效课时作业
第 12 页
类型 二 函数 y=Asin(ωx+φ)的性质及应用(自主探究) 1.若函数 y=sin(x+φ)(0≤φ≤π)是 R 上的偶函数,则 φ=( C )
A.0
π B.4
π C.2
D.π
解析 因为函数 y=sin(ωx+φ)在 φ=kπ±2π(k∈Z)时为偶函数,且 0≤φ≤π,所以
数 学 BS 自 主 通 道
探究通道
巩固通道
高效课时作业
第 20 页
类型 三 函数 y=Asin(ωx+φ)的图象与性质的综合应用 【例】 函数 h(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的部分图象如图所示.若把函 数 h(x)的图象上所有点的纵坐标不变,横坐标伸长到原来的 2 倍,得到函数 f(x)的图 象. (1)求函数 f(x)的解析式; (2)若函数 y=f(x+φ′)0<φ′<2π是奇函数,求函数 g(x)=cos(2x-φ′)在[0,2π]上的单调递减区间.

高中数学第1章三角函数8函数y=Asin(ωx+φ)的图像与性质第1课时函数y=Asin(ωx+φ)的图像课件北师大版

高中数学第1章三角函数8函数y=Asin(ωx+φ)的图像与性质第1课时函数y=Asin(ωx+φ)的图像课件北师大版
1 的图像上所有点的横坐标缩短(当 ω>1 时)或伸长(当 0<ω<1 时)到原来的 ω 倍 (纵坐标不变)而得到的.
判断(正确的打“√”,错误的打“×”) (1)A 的大小决定了函数的振幅.( ) (2)ω 的大小与函数的周期有关.( ) (3)φ 的大小决定了函数与 y=sin x 的相对位置.( ) (4)b 的大小决定了函数图像偏离平衡位置的幅度.( ) 【解析】 由 A,ω,φ,b 的几何意义知全对. 【答案】 (1)√ (2)√ (3)√ (4)√
y
0
A
0
-A
0
第二步:在同一坐标系中描出各点.
第三步:用光滑的曲线把它们连接起来.
三角函数的图像变换
写出由 y=sin x 的图像变化到 y=3sin12x-π4的图像的不同方法步骤. 【导学号:66470026】
【精彩点拨】 变换过程可以先伸缩后平移,也可以先平移后伸缩.
由 y=sin x 的图像,通过变换得到 y=Asin(ωx+φ)的图像时,可以先相位变换, 后周期变换,也可以先周期变换,后相位变换.两种变换的顺序不同,变换的量 也有所不同,前者平移|φ|个单位,而后者则平移|ωφ|个单位.不论哪一种变换,都是 对字母 x 而言的,即看“变量”变化多少,而不是“角”变化多少.
0
π 2
π
3π 2

y 0 2 0 -2 0
描点作图,如图.
1.利用“五点法”作图像时,确定 x 的值是本题的关键.
2.用“五点法”作函数 y=Asin(ωx+φ)的图像的一般步骤:
第一步:列表. ωx+φ 0
π 2
π
3π 2

x -ωφ 2πω-ωφ ωπ-ωφ 23ωπ -ωφ 2ωπ-ωφ

人教版(新教材)高中数学第一册 匀速圆周运动的数学模型 函数y=Asin(ωx+φ)的图象

人教版(新教材)高中数学第一册 匀速圆周运动的数学模型 函数y=Asin(ωx+φ)的图象

解析 ω=4>1,因此只需把正弦曲线上所有点的横坐标缩短到原来的14,纵坐标 不变.
答案 B
2.把函数y=2sin 3x的图象上所有点的横坐标变为原来的2倍,纵坐标变为原来的 3倍,得到________的图象. 答案 y=6sin32x
3.将函数 y=cos 2x 的图象向右平移π3个单位长度,所得图象对应的解析式为 ________.
5.6 函数y=Asin(ωx+φ) 5.6.1 匀速圆周运动的数学模型 5.6.2 函数y=Asin(ωx+φ)的图象 第一课时 函数y=Asin(ωx+φ)的图象
课标要求
素养要求
1.会用“五点法”画出y=Asin(ωx+φ)的
图象.
通过整体代换和图象的变换提
2.理解参数A,ω,φ对函数y=Asin(ωx+ 升学生的直观想象、逻辑推理
【训练 1】 请用“五点法”画出函数 y=12sin(2x-π6)的图象. 解 函数 y=12sin2x-π6的周期 T=22π=π,先用“五点法”作它在长度为一个周
期上的图象,令 X=2x-π6,则 x 变化时,y 的值如下表:
X
0
π 2
π
3π 2

x
π 12
π 3
7π 12
5π 6
13π 12
解析 答案
由题意得所得图象对应的解析式为 y=cos 2(x-π3)=cos(2x-23π). y=cos(2x-23π)
[微思考] 1.由y=sin ωx(ω>0)的图象得到y=sin(ωx+φ)的图象是如何平移的呢?
提示 ∵y=sin(ωx+φ)=sin ωx+ωφ, ∴由 y=sin ωx 的图象向左(右)平移ωφ个单位.
y

2017-2018版高中数学 第一章 三角函数 8 函数y=Asin(ωx+φ)的图像与性质(二) 北师大版必修4

2017-2018版高中数学 第一章 三角函数 8 函数y=Asin(ωx+φ)的图像与性质(二) 北师大版必修4
2.由函数y=Asin(ωx+φ)的部分图像确定解析式关键在于确定参数A,ω,
φ的值.
(1)一般可由图像上的最大值、最小值来确定|A|. (的2)交因点为从T=而2ω确π,定所T,以即往相往邻通的过最求高得点周与期最T来低确点定之ω间,的可距通离过为已T2知;曲相线邻与的x轴两 个最高点(或最低点)之间的距离为T.
答案
梳理
用“五点法”作y=Asin(ωx+φ) 的图像的步骤:
第一步:列表:
ωx+φ 0
π 2
πห้องสมุดไป่ตู้
3π 2

x
-ωφ 2πω-ωφ ωπ -ωφ 23ωπ-ωφ 2ωπ-ωφ
y
0
A
0
-A
0
第二步:在同一坐标系中描出各点. 第三步:用光滑曲线连接这些点,形成图像.
知识点二 函数y=Asin(ωx+φ),A>0,ω>0的性质
4.已知函数f(x)=sinωx+π3 (ω>0)的最小正周期为π,则该函数的图像
√A.关于点π3,0对称
B.关于直线 x=π4对称
C.关于点π4,0对称
D.关于直线 x=π3对称
解析 ω=2ππ=2,所以 f(x)=sin(2x+π3). 将 x=π3代入 f(x)=sin2x+π3,
解答
(2)求函数y=f(x)的单调区间及最值.
解答
当堂训练
1.函数y=Asin(ωx+φ)(A>0,0<φ<π)的图像的一段如图所示,它的解析式 可以是
√A.y=23sin(2x+23π)
B.y=23sin(2x+π3) C.y=23sin(2x-π3) D.y=23sin(2x+π4)
12345

高中数学 第一章 三角函数 1.8 函数y=Asin(ωx+φ)的图像学案 北师大版必修4

高中数学 第一章 三角函数 1.8 函数y=Asin(ωx+φ)的图像学案 北师大版必修4

1.8 函数y =Asin(ωx +φ)的图像1.“五点法”画函数y =A sin(ωx +φ)的图像利用“五点法”作函数y =A sin(ωx +φ),x ∈R (其中A >0,ω>0)的简图,先分别令ωx +φ=____________,列表求出长度为一个周期的闭区间上的五个关键点的坐标,再描点,并用平滑的曲线连接作出一个周期上的图像,最后向左、右分别扩展,即可得到函数y =A sin(ωx +φ),x ∈R 的简图.2.A 、ω、φ的意义函数y =A sin(ωx +φ),x ∈R (其中A >0,ω>0),在这里常数A 叫____,T =2πω叫____,f =1T =ω2π叫____,ωx +φ叫____,φ叫____. 函数y =A sin(ωx +φ)+b (其中ω>0,A >0)的最大值为____,最小值为____,周期为__.预习交流1函数y =15sin ⎝ ⎛⎭⎪⎫3x -π3,x ∈R 的值域是________,周期是________,振幅是________,初相是________.3.A ,ω,φ对函数y =A sin(ωx +φ)图像的影响 (1)φ对函数y =sin(x +φ)图像的影响(2)ω对函数y =sin(ωx +φ)图像的影响(ω>0且ω≠1)(3)A 对函数y =A sin(ωx +φ)图像的影响(A >0)准确认识理解“图像变换法”由y =sin x 到y =sin(x +φ)的图像变换称为相位变换;由y =sin x 到y =sin ωx 的图像变换称为周期变换;由y =sin x 到y =A sin x 的图像变换称为振幅变换.预习交流2将函数y =sin x 的图像向左平移π4个单位,再向上平移2个单位,所得图像的函数解析式是( ).A .y =sin ⎝ ⎛⎭⎪⎫x -π4+2B .y =sin ⎝ ⎛⎭⎪⎫x +π4-2C .y =sin ⎝⎛⎭⎪⎫x -π4-2D .y =sin ⎝⎛⎭⎪⎫x +π4+2 4.函数=sin(ω+φ)(>0)的性质预习交流3函数y =A sin(ωx +φ)的对称中心和对称轴各有什么特点?答案:1.0,π2,π,3π2,2π2.振幅 周期 频率 相位 初相 A +b -A +b 2πω预习交流1:⎣⎢⎡⎦⎥⎤-15,152π3 15-π3预习交流2:D4.R [-A ,A ]2π|ω| k π+π2,k ∈Z k π+π2-φωk π,k ∈Z ⎝ ⎛⎭⎪⎫k π-φω,0 2k π-π2 2k π+π2 2k π+π2 2k π+3π2预习交流3:提示:对称中心为图像与x 轴的交点坐标,在对称轴处图像位于最高点或最低点,也可以说函数在对称轴处取得最大值或最小值.1.用“五点法”作正弦函数y =A sin(ωx +φ)的图像用“五点法”作出函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的简图,并指出这个函数的振幅、周期、频率、初相和单调区间.用“五点法”作出函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4的图像,并指出它的振幅、周期、频率、初相、相位.“五点法”作图,要抓住要害,即要抓住五个关键点,使函数式中的ωx+φ分别取0,π2,π,3π2,2π,然后求出相应的x ,y 值,作出图像.2.图像变换用两种方法将函数y =sin x 的图像变换为y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图像.思路分析:变换过程可以先平移后伸缩,也可以先伸缩后平移.将函数y =f (x )的图像上每一点的纵坐标变为原来的12,再将横坐标变为原来的12,最后将整个图像向左平移π3个单位,可得y =sin x 的图像,求函数f (x )的解析式.思路分析:逆向思考解答此问题.函数y =12sin ⎝ ⎛⎭⎪⎫2x -π4的图像可以看作把函数y =12sin 2x 的图像向__________平移__________个单位得到.由y =sin x 的图像,通过变换可得到函数y =A sin(ωx +φ)(ω>0)的图像,其变化途径有两条:(1)y =sin x ――→相位变换y =sin(x +φ)――→周期变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――→周期变换y =sin ωx ――→相位变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).3.根据图像确定函数解析式如图,它是函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图像,由图中条件写出该函数的解析式.1.函数f (x )=A sin(ωx +φ)(0<φ<2π,A >0,ω>0)的部分图像如图所示,则f (0)的值是__________.2.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的部分图像如图所示,求函数表达式.由图像确定函数y =A sin(ωx +φ)的解析式,主要从以下三个方面来考虑:(1)A 的确定:根据图像的“最高点,最低点”确定A ;(2)ω的确定:结合图像先求周期T ,然后由T =2πω(ω>0)确定ω;(3)φ的确定:常用的方法有: ①代入法:把图像上的一个已知点或图像与x 轴的交点代入(此时,A ,ω已知)求解.(此时要注意交点在上升区间还是在下降区间上)②五点法:确定φ的值时,往往以寻找“五点”中的第一个“零点”⎝ ⎛⎭⎪⎫-φω,0作为突破口.“五点”中的ωx +φ的值具体如下:“第一点”(即图像上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图像的“峰点”)为ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)为ωx +φ=π; “第四点”(即图像的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.4.y =A sin(ωx +φ)+b 的性质及综合应用已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ-π6+1(0<φ<π,ω>0)为偶函数,且函数y =f (x )图像的两相邻对称轴间的距离为π2.(1)求f ⎝ ⎛⎭⎪⎫π8的值; (2)将函数y =f (x )的图像向右平移π6个单位后,再将得到的图像上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y =g (x )的图像,求g (x )的单调递减区间.思路分析:(1)首先求出ω,φ的值,再求出f ⎝ ⎛⎭⎪⎫π8的值;(2)求出y =g (x )的解析式,再确定单调递减区间.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数f (x )的单调递增区间.(1)函数y =A sin(ωx +φ)(A >0,ω>0)为偶函数⇔φ=k π+π2(k ∈Z );为奇函数⇔φ=k π(k ∈Z ).同理,函数y =A cos(ωx +φ)(A >0,ω>0)为偶函数⇔φ=k π(k ∈Z );为奇函数⇔φ=k π+π2(k ∈Z ).(2)求y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,首先把x 的系数化为正的,再利用整体代换,即把ωx +φ代入相应不等式中,求解相应的变量x 的范围.答案:活动与探究1:解:(1)列表:列表时2x +π3取值分别为0,π2,π,3π2,2π,再求出相应的x 值和y 值.(2)描点:在直角坐标系中描出点⎝ ⎛⎭⎪⎫-6,0,⎝ ⎛⎭⎪⎫12,2,⎝ ⎛⎭⎪⎫3,0,⎝ ⎛⎭⎪⎫12,-2,⎝ ⎛⎭⎪⎫5π6,0.(3)连线:用平滑的曲线顺次连接各点所得图像如下图所示.利用这类函数的周期性,我们可以把上面所得到的简图向左、右扩展,得到y =2sin ⎝⎛⎭⎪⎫2x +π3,x ∈R 的简图(图略). 这个函数的振幅是2,周期是T =2π2=π,频率是f =1T =1π,初相是π3.函数的递减区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k ∈Z ). 同理,递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)描点:在直角坐标系中描出点⎝ ⎛⎭⎪⎫2,0,⎝ ⎛⎭⎪⎫2,3,⎝ ⎛⎭⎪⎫2,0,⎝ ⎛⎭⎪⎫7π2,-3,⎝ ⎛⎭⎪⎫9π2,0, (3)连线:将所得五点用光滑的曲线连起来,如图所示.这样就得到了函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4在一个周期内的图像,再将这部分图像向左或向右扩展就得到函数y =3sin ⎝ ⎛⎭⎪⎫12x -π4,x ∈R 的图像.这个函数的振幅为3,周期是T =2π12=4π,频率f =1T =14π,初相为-π4,相位是12x -π4.活动与探究2:解:方法一:(先平移后伸缩)y =sin x 的图像y=sin ⎝⎛⎭⎪⎫x +π4的图像y =sin ⎝⎛⎭⎪⎫3x +π4的图像――――――――――→横坐标不变纵坐标伸长为原来的2倍y =2sin ⎝⎛⎭⎪⎫3x +π4的图像. 方法二:(先伸缩后平移)y =sin x 的图像y =sin 3x 的图像y =sin ⎝⎛⎭⎪⎫3x +π4的图像―――――――――→纵坐标伸长为原来的2倍横坐标不变y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图像.活动与探究3:解:将y =sin x 的图像向右平移π3个单位得到y =sin ⎝⎛⎭⎪⎫x -π3的图像,把所得图像上所有点的横坐标伸长为原来的2倍得到y =sin ⎝ ⎛⎭⎪⎫12x -π3的图像,再把y =sin ⎝ ⎛⎭⎪⎫12x -π3的图像上所有点的纵坐标变为原来的2倍得到y =2sin ⎝ ⎛⎭⎪⎫12x -π3的图像.∴f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π3.迁移与应用:右 π8解析:y =12sin ⎝⎛⎭⎪⎫2x -π4=12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, ∴由y =12sin 2x 的图像向右平移π8个单位便得到y =12sin ⎝⎛⎭⎪⎫2x -π4的图像.活动与探究4:解:由图像知,A =3. ∵T 2=5π6-π3=π2,∴T =π. ∴ω=2πT=2.∴y =3sin(2x +φ).下面求φ.方法一:(单调性法)∵点⎝ ⎛⎭⎪⎫π3,0在递减的区间上,∴2π3+φ∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z . 由sin ⎝ ⎛⎭⎪⎫2π3+φ=0,得2π3+φ=π+2k π,k ∈Z , ∴φ=2k π+π3,k ∈Z .又∵|φ|<π,∴φ=π3.方法二:(最值点法)将最高点坐标⎝ ⎛⎭⎪⎫π12,3代入y =3sin(2x +φ),得3sin ⎝ ⎛⎭⎪⎫2×π12+φ=3.∴φ+π6=π2+2k π,k ∈Z .∴φ=2k π+π3,k ∈Z .又∵|φ|<π,∴φ=π3.方法三:(起始点法)函数y =A sin(ωx +φ)的图像一般由“五点法”作出,而起始点的横坐标x 正是由ωx +φ=0解得的,故只要找出起始点的横坐标x ,就可以迅速求得初相φ.由图像求得x 0=-π6.故φ=-ωx 0=-2×⎝ ⎛⎭⎪⎫-π6=π3.方法四:(平移法)由图像知,将y =3sin 2x 的图像沿x 轴向左平移π6个单位,就得到本题图像,故φ=2×π6=π3.综上,所求函数的解析式为y =3sin ⎝⎛⎭⎪⎫2x +π3. 迁移与应用:1.62 解析:由题图知A =2,T 4=7π12-π3=π4, ∴T =π,ω=2ππ=2.∴2×π3+φ=2k π+π,k ∈Z .∴φ=2k π+π3,k ∈Z .∵0<φ<2π,令k =0,得φ=π3.∴函数解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3. ∴f (0)=2sin π3=62.2.解:由图像知A =4,T2=6-(-2)=8,∴T =16.从而2πω=16,∴ω=π8.由π8×6+φ=k π,k ∈Z 得φ=k π-3π4,k ∈Z . ∵|φ|<π2,令k =1,得φ=π4.∴函数f (x )=4sin ⎝ ⎛⎭⎪⎫π8x +π4.活动与探究5:解:(1)∵f (x )为偶函数,∴φ-π6=k π+π2(k ∈Z ),∴φ=k π+2π3,k ∈Z .又∵0<φ<π,∴φ=2π3,∴f (x )=2sin ⎝⎛⎭⎪⎫ωx +π2+1=2cos ωx +1. 又函数y =f (x )的图像的两相邻对称轴间的距离为π2,∴2πω=2×π2,∴ω=2. 故f (x )=2cos 2x +1,因此f ⎝ ⎛⎭⎪⎫π8=2cos ⎝⎛⎭⎪⎫2×π8+1=2+1.(2)将f (x )的图像向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图像,再将所得图像上各点的横坐标伸长为原来的4倍,纵坐标不变,得到f ⎝ ⎛⎭⎪⎫x 4-π6的图像. 所以g (x )=f ⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 4-π6+1=2cos ⎝ ⎛⎭⎪⎫x 2-π3+1. 当2k π≤x 2-π3≤2k π+π(k ∈Z ),即4k π+2π3≤x ≤4k π+8π3(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤4k π+2π3,4k π+8π3(k ∈Z ). 迁移与应用:解:(1)由2×π8+φ=k π+π2,k ∈Z ,得φ=k π+π4,k ∈Z ,∵-π<φ<0,令k =-1得φ=-3π4.∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4. (2)由2k π-π2≤2x -3π4≤2k π+π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z .∴函数的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).1.函数y =2sin ⎝ ⎛⎭⎪⎫x 2+π5的周期、振幅各是( ).A .4π,-2B .4π,2C .π,2D .π,-22.要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +2π3的图像,只需将y =sin 2x 的图像( ). A .向左平移π6个单位B .向右平移π6个单位C .向右平移π3个单位D .向左平移π3个单位3.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( ).A .关于直线x =π3对称B .关于直线x =π4对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称D .关于点⎝ ⎛⎭⎪⎫π3,0对称4.函数y =2sin ⎝⎛⎭⎪⎫2x +π3在[0,π]上的单调减区间是__________.5.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)上的最高点为(2,2),该最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数在x ∈[-6,0]上的值域.答案:1.B 2.D3.D 解析:由题意知ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3. 当x =π3时,f (x )=0,所以f (x )关于点⎝ ⎛⎭⎪⎫π3,0对称. 当x =π4时,f (x )=sin ⎝ ⎛⎭⎪⎫π2+π3=cos π3=12, 所以f (x )不关于点⎝ ⎛⎭⎪⎫π4,0对称,也不关于直线x =π4对称. 4.⎣⎢⎡⎦⎥⎤π12,7π12 解析:由2k π+π2≤2x +π3≤2k π+3π2,k ∈Z ,得k π+π12≤x ≤k π+7π12,k ∈Z , ∵x ∈[0,π],∴函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3在[0,π]上的递减区间是⎣⎢⎡⎦⎥⎤π12,7π12. 5.解:由题意知A =2,T4=6-2=4,∴T =16. 又2πω=16,∴ω=π8. 又π8×6+φ=π+2k π,k ∈Z , ∴φ=2k π+π4,k ∈Z .∵|φ|<π2,令k =0,得φ=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4.∵x ∈[-6,0],∴π8x +π4∈⎣⎢⎡⎦⎥⎤-π2,π4.∴f (x )∈[-2,1].∴函数在x ∈[-6,0]上的值域是[-2,1].。

高中数学第一章三角函数18函数y=Asin(ωx+φ)的图象课堂北师大版4!

高中数学第一章三角函数18函数y=Asin(ωx+φ)的图象课堂北师大版4!

1.8 函数y=Asin (ωx+φ)的图象课堂导学三点剖析1.求y=Asin(ωx+φ)的振幅,周期,频率,相位及初相 【例1】 用五点法作出函数y=2sin(x-3π)+3的图象,并指出它的周期、频率、相位、初相、最值及单调区间.思路分析:本题考查y=Asin(ωx+φ)的基本概念,注意辨别初相与相位. 解:列表如下:x3π 65π 34π 611π37π x-3π 02π π 123π 2π y 3 5313描点作图,如下图:周期T=2π,频率f=T 1=π21,相位x-3π,初相-3π,最大值5,最小值1,单调减区间[2k π+65π,2k π+611π](k∈Z ),单调增区间[2k π-6π,2k π+65π](k∈Z ).友情提示y=Asin(ωx+φ)+k 沿y 轴方向平移,所以函数最值发生变化.(1)用五点法作函数y=Asin(ωx+φ)+k 的图象,五个点应是使函数取得最大值、最小值以及曲线与x 轴的交点.(2)用五点法作函数y=Asin(ωx+φ)+k 的图象的步骤是: 第一步:列表x ωϕ-ωϕωπ-2 ωϕωπ- ωϕωπ-23 ωϕωπ-2 ωx+φ 0 2ππ 23π 2π ykA+kkk-Ak注意:由ωx+φ=0、2π、π、23π、2π先求出x ,再由ωx+φ的值求出y 的值.第二步:在同一坐标系中描出各点.第三步:用光滑的曲线连接这些点,而成图象.各个击破 类题演练 1 已知函数y=3sin(2x+3π). (1)求出它的周期;(2)用“五点法”作出一个周期的简图; (3)指出函数的单调区间. 解析:(1)周期为:T=22π=π. (2)列表. 2x+3π 02π π23π 2πx6π-12π 3π 127π 65π y 0 3-3描点连线(如下图)(3)可见在一个周期内,函数在[12π,127π]上递减,又因函数的最小正周期为π,所以函数的递减区间为[k π+12π,k π+127π](k∈Z ).同理,增区间为[k π-125π,k π+12π](k∈Z ).变式提升 1如右图,已知y 1=Asin(ωx+φ)的一个周期的图象. (1)写出y 1的解析式;(2)若y 2与y 1的图象关于直线x=2对称,写出y 2的解析式; (3)指出y 2的周期、频率、振幅和初相. 解析:(1)由题图易知:A=2,T=7-(-1)=8,ω=82ππ=2T =4π. ∴y 1=2sin(4πx+φ),将点(-1,0)代入得 2sin(-4π+φ)=0.∴φ=4π.∴y 1=2sin(4πx+4π).(2)作出与y 1的图象关于直线x=2对称的图象,可以看出y 2的图象相当于将y 1的图象向右平移2个单位得到的.∴y 2=2sin [4π(x-2)+4π]=2sin(4πx-4π). (3)由(2)知,y 2的周期T=42ππ=8,频率f=811=T ,振幅A=2,初相φ=-4π.2.由y=sinx 到y=Asin(ωx+φ)以及由y=cosx 到y=Acos(ωx+φ)的图象变换【例2】 要得到函数y=sin(2x-3π)的图象,只要将y=sin 21x 的图象( )A.先把每个x 的值扩大4倍,y 值不变,再向右平移3π个单位B.先把每个x 的值缩小4倍,y 值不变,再向左平移3π个单位C.先把每个x 的值扩大4倍,y 值不变,再向左平移6π个单位D.先把每个x 的值缩小4倍,y 值不变,再向右平移6π个单位解析:21x→2x,先缩小4倍,又∵-3π<0,∴右移23π=6π.答案:D 友情提示 y=sin21x 变换成y=sin2x 是把每个x 值缩小4倍,有的同学错认为是扩大4倍,这样就错选A 或C ;再把y=sin2x 变换成y=sin(2x-3π),即变为y=sin2(x-6π),则应当向右平移6π,有的同学认为是平移3π,这样导致错选A 或B ;也有的同学左右平移方向搞错,导致出错. 类题演练 2 作出函数y=3cos(2x-4π)的图象,并说明这个图象可以由y=cosx 的图象经过怎样的变化得到?解析:①列出五个关键点如下: 2x-4π 02π π23π 2πx8π 83π 85π 87π 89π y 3 0-3②描点作图.③以π为周期把所得图象向左,右扩展,得 y=3cos(2x-4π)的图象. 这个图象可以由y=cosx 的图象先向右平移4π个单位,再将图象上每一点的横坐标压缩到原来的21,每一点的纵坐标伸长到原来的3倍而得到. 变式提升 2使函数y=f(x)图象上每一点的纵坐标保持不变,横坐标缩小到原来的21倍,然后再将其图象沿x 轴向左平移6π个单位得到的曲线与y=sin2x 的图象相同,则f(x)的表达式为( ) A.y=sin(4x-3π) B.y=sin(x-6π)C.y=sin(4x+3π)D.y=sin(x-3π)解析:据题意,y=sin2x −−−−−→−个单位向右平移6πy=sin2(x-6π)=sin(2x-3π)y=sin(x-3π). 答案:D3.根据图象写出函数的解析式 【例3】 如下图所示,函数y=Asin(ωx+φ)(A>0,ω>0)的图象上相邻的最高点与最低点的坐标分别为(125π,3)和(1211π,-3). 求该函数的解析式.思路分析:根据相邻的最高点与最低点确定2T从而确定ω;由点的坐标满足图象解析式,代入得出φ.解:依题意知A=3,设最小正周期为T,则12512112ππ-=T =2π,∴T=π,又T=ωπ2, ∴ω=2.∴函数解析式为y=3sin(2x+φ).∵点(125π,3)在图象上, ∴3=3sin(2×125π+φ)⇒sin(65π+φ)=1.⇒65π+φ=2k π+2π⇒φ=2k π-3π,k∈Z . ∴y=3sin(2x+2k π-3π).故y=3sin(2x-3π)为所求. 友情提示这类问题的求解难点是φ的确定,除以上方法外,常用移轴方法:做平移,使移轴公式为x=x′+6π,y=y′,则易知函数在新坐标系中的方程是y′=3sin2x′,而x′=x -6π. ∴所求函数y=3sin [2(x-6π)],而平移时,方向与符号易出错.类题演练 3如下图,某地一天从6时到14时的温度变化曲线近似满足y=Asin(ωx+φ)+b ,(1)求这段时间的最大温差; (2)写出这段曲线的函数解析式. 解析:(1)20°. (2)A=10,b=20. ∵2T=14-6=8, ∴T=16. ∴16=ωπ2, ∴ω=8π. ∴y=10sin(8πx+φ)+20. 由五点法知,10sin(8π×6+φ)+20=10.即8π×6+φ=23π,∴φ=43π.∴y=10sin(8πx+43π)+20,x∈[6,14].变式提升 3如右图,它是函数y=Asin(ωx+φ)(A>0,ω>0),|φ|<π的图象,根据图中数据,写出该函数解析式.解析:由图象知,A=5,T=3π,于是ω=32,所以y=5sin(32x+φ). 将最高点坐标(4π,5)代入y=5sin(32x+φ),得5sin(6π+φ)=5.∴6π+φ=2k π+2π,∴φ=2k π+3π,(k∈Z ),取φ=3π. ∴该函数的解析式为y=5sin(32x+3π).。

高中数学第一章三角函数1.8函数y=Asin(ωx+φ)的图像例题与探究(含解析)北师大版必修4

高中数学第一章三角函数1.8函数y=Asin(ωx+φ)的图像例题与探究(含解析)北师大版必修4

1.8 函数y=Asin (ωx+φ)的图像典题精讲1.由函数y =sinx 的图像经过怎样的变换得到函数y =sin(ωx+φ)(ω>0)的图像? 剖析:由y =sinx 的图像变换出y =sin(ωx+φ)的图像一般有两个途径. 途径一:先相位变换,再周期变换先将y =sinx 的图像向左(φ>0)或向右(φ<0)平移|φ|个单位;再将得到的图像上各点的横坐标变为原来的ω1倍(纵坐标不变),得y =sin(ωx+φ)的图像. 途径二:先周期变换,再相位变换先将y =sinx 的图像上各点的横坐标变为原来的ω1倍(纵坐标不变);再将得到的图像沿x 轴向左(φ>0)或向右(φ<0)平移ωϕ||个单位,便得y =sin(ωx+φ)的图像.疑点是这两种途径在平移变换中,为什么沿x 轴平移的单位长度不同?其突破口是化归到由函数y=f(x)的图像经过怎样的变换得到函数y=f(ωx+φ)的图像.只有区别开这两个途径,才能灵活进行图像变换.若按途径一有:先将y=f(x)的图像向左(φ>0)或向右(φ<0)平移|φ|个单位,得函数y=f(x+φ)的图像;再将函数y=f(ωx)的图像上各点纵坐标不变,横坐标变为原来的ω1倍,得y=f(ωx+φ)的图像. 若按途径二有:先将y=f(x)的图像上各点纵坐标不变,横坐标变为原来的ω1倍,得函数y=f(ωx)的图像;再将函数y=f(ωx)的图像上各点沿x 轴向左(φ>0)或向右(φ<0)平移ωϕ||个单位,得y=f(ωx+φ)的图像.若将y=f(x)的图像上各点纵坐标不变,横坐标变为原来的ω1倍(ω>0),得函数y=f(ωx)的图像;再将函数y=f(ωx)的图像上各点沿x 轴向左(φ>0)或向右(φ<0)平移|φ|个单位,得到y=f [ω(x+φ)]的图像,即函数y=f(ωx+ωφ)的图像,而不是函数y=f(ωx+φ)的图像.例如:由函数y =sinx 的图像经过怎样的变换得到函数y =sin(2x +3π)的图像? 方法1:(先相位变换,再周期变换)先将y =sinx 的图像向左平移3π个单位得函数y =sin(x +3π);再将函数y =sin(x +3π)图像上各点的纵坐标不变,横坐标变为原来的21倍,得y=sin(2x +3π)的图像.方法2:(先周期变换,再相位变换)先将f(x)=sinx 的图像上各点纵坐标不变,横坐标变为原来的21倍,得函数f(x)=sin2x 的图像;再将函数f(2x)=sin2x 的图像上各点沿x 轴向左平移6π个单位,得f [2(x+6π)]=sin2(x+6π)的图像,即函数y=sin(2x+3π)的图像.在方法2中,得到函数f(2x)=sin2x 的图像后,如果把f(2x)=sin2x 图像沿x 轴向左平移3π个单位,得f [2(x+3π)]=sin2(x+3π)的图像,即函数y=sin(2x+32π)的图像,而不是函数y =sin(2x +3π)的图像. 由以上可见,利用变换法作y =Asin(ωx+φ)的图像时,通常先进行相位变换,后进行周期变换,这样可避免出错.由于容易出错,因此是高考题和模拟题的热点之一. 例如:(2006江苏高考卷,4)为了得到函数y=2sin(3x +6π),x∈R 的图像,只需把函数y=2sinx,x∈R 的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)思路解析:先将y=2sinx,x∈R 的图像向左平移6π个单位长度,得到函数y=2sin(x+6π),x∈R的图像,再把所得图像上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数y=2sin(3x +6π),x∈R 的图像. 答案:C2.如何求型如y=Asin(ωx+φ)+b(ω<0)函数的单调递增区间?以y=2sin(3π-2x)+1为例说明.剖析:复合函数的单调性的复合规律为:若函数y=f(u)与u=g(x)的增减性相同(相反),则y=f\[g(x)\]是增(减)函数,可概括为“同增异减”.函数y=2sin(3π-2x)+1的定义域是R. 函数y=2sin(3π-2x)+1是复合函数,y=f(u)=2u+1,u=sin(3π-2x).则要求函数y=2sin(3π-2x)+1的单调递增区间,需求u=sin(3π-2x)的单调递增区间.函数u=sin(3π-2x)又是复合函数,u=sint ,t=3π-2x.则要求函数u=sin(3π-2x)的单调递增区间,需求函数u=sint 的单调递减区间.则正确的解法是:令2kπ+2π≤3π-2x≤2kπ+23π(k∈Z ),∴2kπ+2π-3π≤-2x≤2kπ+23π-3π (k∈Z ).∴2672262-+≥≥-+ππππk x k .∴2672-+ππk ≤x≤2672-+ππk , 即-kπ-127π≤x≤-kπ-12π.∴函数的单调递增区间是[-kπ-127π,-k π-12π](k∈Z ). 由此可见原解法求出的区间是函数的单调递减区间.原解法的错误是求复合函数的单调区间时,错误地判断了构成复合函数的内层函数的单调性.综上所得,在求函数y=Asin(ωx+φ)+b 的单调区间时,一定注意其中的参数A 和ω的符号,特别是当A 和ω是负数时,容易出错,其突破口是化归到如何求复合函数的单调区间,这样才不会出错,进而避免:看起来题会,做起来不对,出考场后悔. 典题精讲例1已知函数y=3sin (21x-4π), (1)用“五点法”画函数的图像;(2)说出此图像是由y=sinx 的图像经过怎样的变换得到的; (3)求此函数的周期、振幅、初相;(4)求此函数的对称轴、对称中心、单调递增区间. 思路分析:五点法画函数y=3sin (21x-4π)的图像时,应先找出五个关键点,这五个点应该是使函数取得最大值、最小值以及曲线与x 轴相交的点,找出它们的方法是利用整体思想,由ωx+φ=0,2π,π,23π,2π来确定对应x 的值.求函数的对称轴、对称中心、单调递增区间也是应用整体策略来解决.解:(1)列表21x-4π2π π23π 2πx 2π 23π 25π 27π 29π y3-3描点:在直角坐标系中描出下列各点(2π,0),(23π,3),(25π,0),(27π,-1),(29π,0);连线:将所得五点用光滑的曲线连接起来,得到的所求函数的图像如图1-7-1所示.图1-7-1这样就得到了函数y=3sin (21x-4π)在一个周期内的图像,再将这部分向左或向右平移4kπ(k∈Z ),得到函数y=3sin (21x-4π)的图像.(2)方法一:(相位变换在周期变换的前面) ①把y=sinx 的图像上所有的点向右平移4π个单位,得到y=sin (x-21)的图像;②把y=sin (x-4π)的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin (2x -4π)的图像; ③将y=sin (21x-4π)的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin (21x-4π)的图像.方法二:(周期变换在平移变换的前面)①把y=sinx 的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin (21x )的图像; ②把y=sin (21x )的图像上所有的点向右平移2π个单位,得到y=sin 21(x-2π)=sin (2x -4π)的图像;③将y=sin (21x-4π)的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin (21x-4π)的图像.(3)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π.(4)令21x-4π=2π+kπ,解得x=23π+2kπ,k∈Z ,即函数的对称轴是直线x=23π+2kπ(k∈Z ).令21x-4π=kπ,解得x=2kπ+2π,k∈Z , 即对称中心为(2π+2kπ,0)(k∈Z ).令-2π+2kπ≤21x-4π≤2π+2kπ,解得-2π+4kπ≤x≤23π+4kπ,k∈Z .即函数的单调递增区间为[-2π+4kπ,23π+4kπ](k∈Z ).绿色通道:(1)对于函数y=Asin (ωx+φ),应明确A 、ω决定“形变”,φ决定“位变”,A 影响值域,ω影响周期,A 、ω、φ影响单调性.当选用“伸缩在前,平移在后”的变换顺序时,一定注意针对x 的变化,向左或向右平移||ωϕ个单位; (2)画y=Asin (ωx+φ)的图像常用五点法和变换法;(3)求三角函数周期的一般方法是:先将函数转化为y=Asin(ωx+φ)的形式,再利用公式T=ωπ2进行求周期,有时还利用图像法求周期;④对于函数y=Asin (ωx+φ)+B 的单调性、对称性的研究,运用整体策略处理,把ωx+φ看作一个整体,化归为正弦函数y=sinx 来讨论,问题自然就迎刃而解. 变式训练1(2006福建高考卷,理9)已知函数f(x)=2sinωx(ω>0)在区间[-3π,4π]上的最小值是-2,则ω的最小值等于( )A.32B.23C.2D.3 思路解析:方法一:根据函数f(x)=2sinωx(ω>0)图像的大致位置,得4T ≤3π,又T=ωπ2,所以有2ω≥3,即ω≥23.方法二:(代入验证法)当ω=32时,f(x)=2sin(32x),画图像得在区间[-3π, 4π]上的最小值是f(-3π)=2sin(94π-)>-2,故排除A ;当ω=23时,f(x)=2sin(23x),画图像得在区间[-3π, 4π]上的最小值是f(-3π)=-2,故排除C 、D.答案:B变式训练2(2005天津高考卷,文8)要得到函数y=2cosx 的图像,只需将函数y=2sin(2x+4π)的图像上所有的点的( ) A.横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度B.横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度思路解析:由于y=2cosx=2(x+2π),则将函数y=2sin(2x+4π)的图像上所有的点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=2sin (x+4π)的图像;再将函数y=2sin (x+4π)的图像向左平行移动4π个单位长度得到函数y=2sin(x+2π),即函数y=2cosx 的图像.答案:C变式训练3(2005全国高考卷Ⅰ,理17)设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图像的一条对称轴是直线x=8π. (1)求φ;(2)求函数y=f(x)的单调增区间;(3)画出函数y=f(x)在区间[0,π]上的图像.思路分析:正弦型函数y=Asin(ωx+φ)的图像与其对称轴交点的纵坐标是函数的最值. 解:(1)∵x=8π是函数y=f(x)的图像的对称轴, ∴sin(2×8π+φ)=±1. ∴4π+φ=kπ+2π,k∈Z . ∴φ=kπ+4π,k∈Z .∵-π<φ<0,∴-π<kπ+4π<0. ∴45-<k <41-.∴k=-1. ∴φ=-43π. (2)由(1)知y=sin(2x-43π). 令2kπ-2π≤2x -43π≤2kπ+2π,k∈Z , ∴kπ+8π≤x≤kπ+85π,k∈Z ,即函数y=sin(2x-43π)的单调递增区间是[kπ+8π,kπ+85π](k∈Z ). (3)由y=sin(2x-43π)知: x 08π83π 85π 87π πy22--1 0 1 022-故函数y=f(x)在区间[0,π]上的图像如图1-7-2所示.图1-7-2例2(2005福建高考卷,理6)函数y=sin(ωx+φ)(x∈R ,ω>0,0≤φ<2π)的部分图像如图1-7-3,则( )图1-7-3A.ω=2π,φ=4π B.ω=3π,φ=6π C.ω=4π,φ=4π D.ω=4π,φ=45π思路解析:由图像得T=4(3-1),∴T=8.∴ω=T π2=4π.点(1,1)在函数图像上,则有1=sin(4π+φ),0≤φ<2π.∴4π+φ=2π.∴φ=4π. 答案:C绿色通道:已知f(x)=Asin(ωx+φ)(A>0,ω>0)的一段图像,求其表达式,其步骤: (1)求A :图像最上方的点的纵坐标为A 的值,或图像最下方的点的纵坐标的相反数为A 的值.(2)求ω:一般由图像可知周期T,如相邻两个对称中心(或对称轴)的距离为半个周期.再由T=ωπ2求出ω.(3)求φ:确定φ时,若能求出离原点最近的右侧图像上升(或下降)的零点的横坐标x 0,则令ωx+φ=0(或ωx+φ=π)即可求出φ.有时还可利用已知点(例如最高点或最低点)确定ω与φ.若对A 、ω的符号或对的范围有所要求,则可利用诱导公式通过变换使其符合要求. 变式训练已知函数y=Asin(ωx+φ)(A >0,ω>0,|φ|<2π)的图像的一个最高点为(2,22),由这个最高点到相邻最低点的图像与x 轴的交点为(6,0),试求这个函数的解析式.思路分析:抓住函数y=Asin(ωx+φ)的图像的特征是解本题的关键.解:已知图像最高点为(2,22),∴A=22.又根据题意知从最高点到相邻最低点的图像与x 轴的交点为(6,0),∴4T =6-2=4,即T=16.∴ω=T π2=8π.将y=22sin(8πx+φ)代入最高点坐标,得22=22sin(8π×2+φ).∴sin(4π+φ)=1.∵|φ|<2π,∴φ=4π.∴函数的解析式为y=22sin(8πx+4π). 问题探究问题试探讨如何求三角函数的周期?导思:思路1:从定义上分析;思路2:从周期函数的图像上分析;思路3:利用常见的结论.探究:确定三角函数的周期有如下方法:(1)定义法:根据周期函数的定义求周期.关键是找到一个实数T ,使得对任意实数x ,总有f(x+T)=f(x)成立. 例如:求函数y=2sin(2x -6π)的周期. 解:f(x+4π)=2sin[21(x+4π)-6π]=2sin(2x +2π-6π)=2sin(2x -6π)=f(x),∴y=2sin(2x -6π)的周期是4π.定义法是求周期的通性通法,带有一定的普遍性.(2)图像法:画出三角函数的图像,如果图像每隔“一段”就重复出现,则这一段就是一个周期.这种求函数周期的方法称为图像法. 例如:求函数y=|sin2x|的周期.解:画函数y=|sin2x|的图像,如图1-7-4所示.图1-7-4函数y=|sin2x|的图像每隔2π就重复出现,则函数y=|sin2x|的周期是2π. 利用图像法可得如下结论:(A >0,ω>0)①函数y=|Asin(ωx+φ)|的周期是ωπ; ②函数y=|Acos(ωx+φ)|的周期是ωπ;③函数y=|Atan(ωx+φ)|的周期是ωπ.(3)公式法:利用常见的公式(结论),求得三角函数的周期.这种求三角函数周期的方法称为公式法.常见的结论:①一般地,函数y=Asin(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0)的周期T=ωπ.如y=2sin(2x+65π)的周期T=2π=π. ②一般地,函数y=Acos(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0)的周期T=ωπ2.如y=-2cos(3x+6π)周期T=3π.③一般地,函数y=Atan(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0)的周期T=ωπ2.如y=-2tan(4x+6π)周期T=4π. 这三种求周期的方法在高考试题中都经常出现,应引起我们的重视.。

高中数学第一章三角函数1.8函数y=Asin(wx+φ)的图像与性质(2)课件1北师大版必修4

高中数学第一章三角函数1.8函数y=Asin(wx+φ)的图像与性质(2)课件1北师大版必修4


故函数的值域为[- ,2].
上的值域.
第十五页,共51页。
【方法技巧】函数y=Asin(ωx+φ)+b的值域(最值)的求解策略 (1)x∈R时:把“ωx+φ”视为一个整体(zhěngtǐ),结合函数y=Asinx+b中sinx的有界 性求其值域. (2)x∈[a,b]时:把“ωx+φ”视为一个整体(zhěngtǐ),先依据x∈[a,b],求出“ωx+φ”的 范围,在此基础上类比函数y=Asinx+b值域的求法,结合函数单调性或函数图像 求解.
3因为x08由2知函数fx在02上是增加的在28上是减少的所以当x2时fx有最大值为当x8时fx有最小值为1故fx的值域为1类型二函数yasinx性质的综合应用典例已知函数fxasinxa00的图像在y轴上的截距为1它在y轴右侧的第一个最大值点和最小值点分别为解题探究1怎样确定周期和a的值
1.8 函数y=Asin(ωx+φ)的图像(tú xiànɡ)与性
误的是 ( )
A.图像C关于直线x=- 对称 B.图像C关于点 对称12
C.函数f(x)在区间
内是增加的
D.由y=3cos2x得图像向右平移(pínɡ yí) 个单位长度可以得到图像C
第二十七页,共51页。
【解析】选C.A,B经验证可知正确(zhèngquè),C中当 不是正弦函数的单调区间,错误; D中y=3cos2x得图像向右平移 5个单位长度可以得到y=3cos
12 因为 正确(zhèngquè).
第二十八页,共51页。
【补偿(bǔcháng)训练】已知函数f(x)=2sin
(ω>0)的最小正周期为
π.
(1)求函数f(x)的递增区间.

高中数学第一章三角函数1.5函数y=Asin(ωxφ)的图象课

高中数学第一章三角函数1.5函数y=Asin(ωxφ)的图象课

关系?
提示y=Asin(ωx+φ)的图象可以由函数y=sin(ωx+φ)的图象经过上
下伸缩变换得到.




思维辨析
2.填空:如图,函数y=Asin(ωx+φ)的图象,可以看作是把y=sin(ωx+φ) 的图象上所有点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原 来的A倍(横坐标不变)而得到的.
1.作出函数y=Asin(ωx+φ)的图象可有哪些方法?如果用图象变换 法,那么是先平移后伸缩还是先伸缩后平移呢?
提示作函数y=Asin(ωx+φ)的图象,可以用“五点法”,也可根据图象 间的关系通过变换法得到;如果用图象变换法,那么既可以先平移 后伸缩,也可以先伸缩后平移.
2.填空:(1)五点法:①列表 ωx+φ 通常取 0,π2,π,32π,2π 这五个值 ;②描点;③连线.
数( )的图象.
A.y=sin
������
+
π 5
C.y=sin
π 5
-������
B.y=sin
������-
π 5
D.y=sin
5������-
π 5
解析将函数 y=sin x 的图象向右平移π5个单位,可以得到函数
y=sin
������-
π 5
的图象.
答案B




思维辨析
二、ω(ω>0)对函数y=sin(ωx+φ)的图象的影响
伸缩变换得到.




思维辨析
2.填空:如图,函数y=sin(ωx+φ)的图象,可以看作是把y=sin(x+φ)

高中数学第一章三角函数1.5函数y=Asin(ωx φ)的图象(1)课件3新人教A版必修4

高中数学第一章三角函数1.5函数y=Asin(ωx φ)的图象(1)课件3新人教A版必修4
6
个单位长度得
3
y2=sin[(2x+ )- ]=sin(2x+ )=cos 2x的图象.
36
2
【补偿训练】将y=sin x的图象怎样变换可得到函数y=2sin(2x+ )
3
23
6
12
只需将函数y=cos 2x的图象向左平移 个单位长度,可得到此函数
12
的图象.
答案:左
12
【延伸探究】若把本例2中的“ -2x”改为“ +2x”,其他条件不
3
3
变,应如何变换?
【解析】因为 y cos 2x sin( 2x) sin[2(x ) ]
A.向左平行移动 1 个单位长度
2
B.向右平行移动 1 个单位长度
2
C.向左平行移动1个单位长度
D.向右平行移动1个单位长度
2.(2015·苏州高一检测)要得到函数y=sin( -2x),只需将函数 y=cos 2x的图象向______平移_______个单位3长度.
【解题探究】1.典例1中,为确定平移方向和平移量,需对
26
f(x)=sin( 1)x,所 以
f ( ) sin(1 ) sin 2 .
26
6
26 6
42
答案: 2
2
【方法技巧】三角函数图象伸缩变换的方法
【变式训练】(2015·温州高一检测)将函数y=sin(x-
6
)的图象上所有
点的横坐标缩短为原来的 1(纵坐标不变),再将所得函数的图象向左
-x)=cos(x- )=cos[(x-
2
)-
6
],
3
所以将函数y=cos(x- )的图象向右平移 个 单位长度可得到函数

高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(一)学案 苏教版必修4-

高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(一)学案 苏教版必修4-

1.3.3 函数y =Asin(ωx+φ)的图象(一)[学习目标] 1.理解y =A sin(ωx +φ)中ω、φ、A 对图象的影响.2.掌握y =sin x 与y =A sin(ωx +φ)图象间的变换关系,并能正确地指出其变换步骤.[知识链接] 1.“五点法”作图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).2.交流电电流随时间变化的图象与正弦曲线有何关系? 答 交流电电流随时间变化的图象与正弦曲线很相似,从解析式来看,函数y =sin x 就是函数y =A sin(ωx +φ)在A =1,ω=1,φ=0时的情况. [预习导引]1.函数s =A sin(ωx +φ)的振幅、周期、频率等在s =A sin(ωx +φ)(A >0,ω>0)中,其中A 为物体振动时离开平衡位置的最大距离,称为振动的振幅;往复振动一次所需的时间T =2πω,称为这个振动的周期;单位时间内往复振动的次数f =1T =ω2π,称为振动的频率;ωx +φ称为相位,x =0时的相位φ称为初相.2.φ、ω、A 对y =A sin(ωx +φ)图象的影响(1)函数y =sin(x +φ)(其中φ≠0)的图象,可以看做是将函数y =sin x 上所有点向左(当φ>0时)或向右(当φ<0时)平移|φ|个单位而得到的.(2)函数y =sin(ωx +φ)的图象,可以看做是把y =sin(x +φ)的图象上的所有点的横坐标变为原来的1ω倍(纵坐标不变)而得到的.(3)函数y =A sin(ωx +φ)的图象,可以看做是把y =sin(ωx +φ)的图象上所有点的纵坐标变为原来的A 倍(横坐标不变)而得到的.3.函数y =sin x 与y =A sin(ωx +φ)图象间的变换函数y =A sin(ωx +φ)(其中A >0,ω>0)的图象可以看做是由下面的方法得到:先画出函数y =sin x 的图象;再把正弦曲线向左(当φ>0时)或右(当φ<0时)平移|φ|个单位长度,得到函数y =sin(x +φ)的图象;然后使曲线上各点的横坐标变为原来的1ω倍(纵坐标不变),得到函数y =sin(ωx +φ)的图象;最后把曲线上各点的纵坐标变为原来的A 倍(横坐标不变),这时的曲线就是函数y =A sin(ωx +φ)的图象.要点一 三角函数图象的平移变换例1 要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只要将y =sin 2x 的图象________. ①向左平移π3个单位;②向右平移π3个单位;③向左平移π6个单位;④向右平移π6个单位.答案 ③解析 因为y =sin ⎝ ⎛⎭⎪⎫2x +π3=sin 2⎝⎛⎭⎪⎫x +π6, 所以把y =sin 2x 的图象上所有点向左平移π6个单位,就得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象.规律方法 已知两个函数的解析式,判断其图象间的平移关系的步骤:①将两个函数解析式化简成y =A sin ωx 与y =A sin(ωx +φ),即A 、ω及名称相同的结构. ②找到ωx →ωx +φ,变量x “加”或“减”的量,即平移的单位为⎪⎪⎪⎪⎪⎪φω. ③明确平移的方向.跟踪演练1 要得到y =cos ⎝ ⎛⎭⎪⎫2x -π4的图象,只要将y =sin 2x 的图象________.①向左平移π8个单位;②向右平移π8个单位;③向左平移π4个单位;④向右平移π4个单位.答案 ①解析 y =sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎝⎛⎭⎪⎫2x -π2 =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4若设f (x )=sin 2x =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4,则f ⎝ ⎛⎭⎪⎫x +π8=cos ⎝ ⎛⎭⎪⎫2x -π4,所以向左平移π8个单位.要点二 三角函数图象的伸缩变换例2 把函数y =sin x (x ∈R )的图象上所有的点向左平行移动π3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是__________________. 答案 y =sin ⎝⎛⎭⎪⎫2x +π3,x ∈R 解析 把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度后得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,再把所得图象上所有的点的横坐标缩短到原来的12倍,得到函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象. 规律方法 三角函数图象变换容易出错,尤其是既涉及平移变换又涉及伸缩变换.平移时,若x 的系数不是1,需把x 的系数先提出,提出后括号中的x 加或减的那个数才是平移的量,即x 的净增量.方向的规律是“左加右减”.伸缩时,只改变x 的系数ω,其余的量不变化,伸长时系数|ω|减小,缩短时|ω|增大.跟踪演练2 把函数y =sin x (x ∈R )的图象上所有的点向左平移π3个单位长度,再把所得图象上所有点的横坐标扩大到原来的2倍(纵坐标不变),得到的图象所表示的函数解析式是__________________.答案 y =sin ⎝ ⎛⎭⎪⎫x 2+π3,x ∈R 解析 将y =sin x 图象上的所有的点向左平移π3个单位长度得到y =sin ⎝⎛⎭⎪⎫x +π3.再将图象上所有点的横坐标扩大到原来的2倍,得y =sin ⎝ ⎛⎭⎪⎫x 2+π3.要点三 三角函数图象的综合变换例3 把函数y =f (x )的图象上各点向右平移π6个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23倍,所得图象的解析式是y =2sin ⎝ ⎛⎭⎪⎫12x +π3,求f (x )的解析式.解 y =2sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的32倍y =3sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的12倍y =3sin ⎝⎛⎭⎪⎫x +π3――――――――→向左平移π6个单位y =3sin ⎝⎛⎭⎪⎫x +π6+π3=3sin ⎝ ⎛⎭⎪⎫x +π2=3cos x .∴f (x )=3cos x .规律方法 (1)本例已知变换途径及变换后的函数解析式,求变换前函数图象的解析式,宜采用逆变换的方法.(2)已知函数f (x )图象的伸缩变换情况,求变换前后图象的解析式.要明确伸缩的方向及量,然后确定出A 或ω即可.跟踪演练3 将y =f (x )的图象上所有点的横坐标缩短到原来的12倍,然后再将整个图象沿x轴向右平移π2个单位,得到的曲线与y =12sin x 图象相同,则y =f (x )的函数解析式为________.答案 y =12sin ⎝ ⎛⎭⎪⎫12x +π2⎝ ⎛⎭⎪⎫或y =12cos x 21.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________________________. 答案 向左平行移动12个单位长度解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +12)的图象,即函数y =sin(2x +1)的图象.2.由y =3sin x 的图象变换到y =3sin ⎝ ⎛⎭⎪⎫12x +π3的图象主要有两个过程:先平移后伸缩和先伸缩后平移,前者需向左平移________个单位,后者需向左平移________个单位. 答案π3 23π 3.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为________. 答案 ±124.将函数y =sin(-2x )的图象向左平移π4个单位,所得函数图象的解析式为__________________. 答案 y =-cos 2x解析 y =sin(-2x )――――――――→左移π4个单位y =sin ⎣⎢⎡⎦⎥⎤-2⎝ ⎛⎭⎪⎫x +π4,即y =sin ⎝ ⎛⎭⎪⎫-2x -π2=-sin ⎝⎛⎭⎪⎫2x +π2=-cos 2x .1.由y =sin x 的图象,通过变换可得到函数y =A sin(ωx +φ)(A >0,ω>0)的图象,其变化途径有两条:(1)y =sin x ――→相位变换y =sin(x +φ)――→周期变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――→周期变换y =sin ωx ――→相位变换y =sin[ω(x +φω)]=sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).注意:两种途径的变换顺序不同,其中变换的量也有所不同: (1)先相位变换后周期变换,平移|φ|个单位. (2)先周期变换后相位变换,平移|φ|ω个单位.2.类似地,y =A cos(ωx +φ) (A >0,ω>0)的图象也可由y =cos x 的图象变换得到.一、基础达标1.函数y =sin 2x 图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象的函数解析式为f (x )=________. 答案 sin x2.要得到y =sin ⎝⎛⎭⎪⎫x -π3的图象,只要将y =sin x 的图象________.①向左平移π3个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向右平移π6个单位长度.答案 ②3.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是__________________. 答案 y =1+cos 2x解析 将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin 2(x +π4),即y =sin(2x+π2)=cos 2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos 2x . 4.将函数y =3sin(2x +π3)的图象向右平移π2个单位长度,所得图象对应的函数________.①在区间[π12,7π12]上单调递减;②在区间[π12,7π12]上单调递增;③在区间[-π6,π3]上单调递减;④在区间[-π6,π3]上单调递增.答案 ②解析 y =3sin(2x +π3)的图象向右平移π2个单位长度得到y =3sin[2(x -π2)+π3]=3sin(2x -23π).令2k π-π2≤2x -23π≤2k π+π2得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin(2x -23π)的增区间为[k π+π12,k π+712π],k ∈Z .令k =0得其中一个增区间为[π12,712π],故②正确.画出y =3sin(2x -23π)在[-π6,π3]上的简图,如图,可知y =3sin(2x -23π)在[-π6,π3]上不具有单调性,故③④错误.5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是________. ①y =f (x )是奇函数; ②y =f (x )的周期为π;③y =f (x )的图象关于直线x =π2对称;④y =f (x )的图象关于点(-π2,0)对称. 答案 ④解析 由题意知,f (x )=cos x ,所以它是偶函数,①错;它的周期为2π,②错;它的对称轴是直线x =k π,k ∈Z ,③错;它的对称中心是点⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,④对.6.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象________.①向右平移π6个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向左平移π3个单位长度.答案 ②解析 y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π6=cos ⎝⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos 2⎝⎛⎭⎪⎫x -π3.7.怎样由函数y =sin x 的图象变换得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,试叙述这一过程.解 方法一 y =sin x ――→向右平移π3个单位y =sin ⎝ ⎛⎭⎪⎫x -π3――→纵坐标不变横坐标缩短为原来的12y =sin ⎝ ⎛⎭⎪⎫2x -π3. 方法二 y =sin x ――→纵坐标不变横坐标缩短为原来的12y =sin 2x ――→向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3. 二、能力提升8.要得到函数y =2cos x 的图象,只需将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4图象上的所有点的________.①横坐标缩短到原来的12(纵坐标不变),再向左平行移动π8个单位长度;②横坐标缩短到原来的12(纵坐标不变),再向右平行移动π4个单位长度;③横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动π4个单位长度;④横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动π8个单位长度.答案 ③解析 ∵y =2cos x =2sin ⎝⎛⎭⎪⎫x +π2,∴y =2sin ⎝ ⎛⎭⎪⎫2x +π4――→纵坐标不变横坐标伸长到原来的2倍 y =2sin ⎝⎛⎭⎪⎫x +π4―――――――――――→向左平移π4个单位长度 y =2sin ⎝⎛⎭⎪⎫x +π2. 9.某同学给出了以下论断:①将y =cos x 的图象向右平移π2个单位,得到y =sin x 的图象;②将y =sin x 的图象向右平移2个单位,可得到y =sin(x +2)的图象; ③将y =sin(-x )的图象向左平移2个单位,得到y =sin(-x -2)的图象; ④函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象是由y =sin 2x 的图象向左平移π3个单位而得到的. 其中正确的结论是______(将所有正确结论的序号都填上). 答案 ①③10.将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.答案22解析 将y =sin x 的图象向左平移π6个单位长度可得y =sin(x +π6)的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin(12x +π6)的图象,故f (x )=sin(12x +π6),所以f (π6)=sin(12×π6+π6)=sin π4=22.11.已知函数f (x )=sin ⎝⎛⎭⎪⎫π3-2x (x ∈R ).经过怎样的图象变换使f (x )的图象关于y 轴对称?(仅叙述一种方案即可).解 f (x )=sin ⎝ ⎛⎭⎪⎫π3-2x =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-2x=cos ⎝ ⎛⎭⎪⎫2x +π6=cos 2⎝ ⎛⎭⎪⎫x +π12.∵y =cos 2x 是偶函数,图象关于y 轴对称, ∴只需把y =f (x )的图象向右平移π12个单位即可.12.使函数y =f (x )图象上每一点的纵坐标保持不变,横坐标缩小到原来的12倍,然后再将其图象沿x 轴向左平移π6个单位得到的曲线与y =sin 2x 的图象相同,求f (x )的表达式.解 方法一 正向变换y =f (x )――→横坐标缩小到原来的12y =f (2x )――→沿x 轴向左平移π6个单位y =f ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6,即y =f ⎝⎛⎭⎪⎫2x +π3, ∴f ⎝ ⎛⎭⎪⎫2x +π3=sin 2x . 令2x +π3=t ,则2x =t -π3,∴f (t )=sin ⎝ ⎛⎭⎪⎫t -π3,即f (x )=sin ⎝⎛⎭⎪⎫x -π3.方法二 逆向变换据题意,y =sin 2x ――→沿x 轴向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3――→横坐标伸长到原来的2倍纵坐标不变 y =sin ⎝⎛⎭⎪⎫x -π3.三、探究与创新13.已知函数f (x )=2sin ωx ,其中常数ω>0;(1)若y =f (x )在⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,求ω的取值范围;(2)令ω=2,将函数y =f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,区间[a ,b ](a ,b ∈R 且a <b )满足:y =g (x )在[a ,b ]上至少含有30个零点,在所有满足上述条件的[a ,b ]中,求b -a 的最小值.解 (1)因为ω>0,根据题意有⎩⎪⎨⎪⎧-π4ω≥-π2,2π3ω≤π2,解得0<ω≤34. (2)f (x )=2sin 2x , g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1 g (x )=0⇒sin ⎝ ⎛⎭⎪⎫2x +π3=-12⇒x =k π-π4或x =k π-712π,k ∈Z ,即g (x )的零点相离间隔依次为π3和2π3, 故若y =g (x )在[a ,b ]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.。

第1部分 第一章 §8 第一课时 函数y=Asin(ωx+φ)的图像

第1部分  第一章  §8   第一课时  函数y=Asin(ωx+φ)的图像
返回
返回
观察下列表格.
y
0
y=sin12x 中的 x 0
y=sin x 中的 x 0
y=sin 2x 中的 x 0
1 0 -1 0
π 2π 3π 4π
π 2
π
3 2π

π 4
π 2
3 4π
π
返回
问题 1:当 y=1 时对应 x 值相同吗?有何关系? 提示:不相同,sin12x 中的 x 取值是 sin x 中 x 的取值 的 2 倍,sin 2x 中的 x 取值是 sin x 中 x 的取值的12. 问题 2:当 y=-1 时,也有相同的关系吗? 提示:有.
返回
点击下图进入应用创新演练
返回
(2)通过若干特殊点代入函数式,可以求得相关待定系 数A,ω,φ.这里需要注意的是,要认清所选择的点属于五 个点中的哪一点,并能正确代入列式.
返回
4.下列表示最大值是12,周期是 6π,初相是π6的三角函
数的表达式的是
()
A.y=12sinx3+π6
B.y=12sin3x+π6
Asin(ωx+φ)的图像,其变化途径有两条:
(1)y=sin x―相―位―变―换→y=sin(x+φ)―周―期―变―换→y=sin(ωx+
φ)―振―幅―变―换→y=Asin(ωx+φ).
(2)y = sin
x
周期变换 ―――→
y

sin
ωx
相位变换 ――――→
y

sin(ωx

φ)―振―幅―变―换→y=Asin(ωx+φ).
返回
问题 3:试想 y=sin x 和 y=sin 2x 之间有何关系? 提示:只要将函数 y=sin x 图像上的每个点的横坐标都缩 短为原来的12,纵坐标不变,就得到 y=sin 2x 的图像. 问题 4:从上表分析它们的周期分别是什么? 提示:4π,2π,π. 问题 5:试想 y=sin ωx(ω>0)的周期是什么? 提示:2ωπ.

高中数学 第一章 三角函数 8 第2课时 函数y=Asin(ωx+

高中数学 第一章 三角函数 8 第2课时 函数y=Asin(ωx+

第2课时函数y=A sin(ωx+φ)的性质[核心必知]函数y=A sin(ωx+φ)(A>0,ω>0)的性质定义域(-∞,+∞)值域[-A,A]周期T=2πω奇偶性由角φ的值决定单调性增区间:由2kπ-π2≤ωx+φ≤2kπ+π2(k∈Z)求得;减区间:由2kπ+π2≤ωx+φ≤2kπ+32π(k∈Z)求得对称轴由方程ωx+φ=kπ+π2(k∈Z)解得对称中心由ωx+φ=kπ(k∈Z)求得中心横坐标[问题思考]1.函数y=sin(-2x)的周期是多少?提示:π,因为sin(-2x)=-sin 2x,所以y=sin(-2x)与y=sin 2x的周期相同.2.函数y=A sin(ωx+φ)的对称中心和对称轴各有什么特点?提示:对称中心为图像与x轴的交点;对称轴为过其图像最高点或最低点与x轴垂直的直线.3.y=sin⎝⎛⎭⎪⎫ωx+π2是偶函数吗?提示:因为sin⎝⎛⎭⎪⎫ωx+π2=cos ωx,所以y=sin⎝⎛⎭⎪⎫ωx+π2是偶函数.讲一讲1.求下列函数的周期 (1)y=12sin π3x ;(2)y =3sin ⎝⎛⎭⎪⎫2x +π6.[尝试解答] 法一:(1)y =12sin π3x=12sin(π3x +2π) =12sin ⎣⎢⎡⎦⎥⎤π3(x +6), ∴此函数的周期为6. (2)y =3sin(2x +π6)=3sin(2x +π6+2π)=3sin ⎣⎢⎡⎦⎥⎤2(x +π)+π6, ∴此函数的周期为π 法二:(1)T =2ππ3=6.(2)T =2π2=π.求三角函数周期的方法.方法一:公式法,利用函数y =A sin(ωx +φ)+b 或函数y =A cos(ωx +φ)+b 的周期公式T =2π|ω|来求;方法二:定义法:满足等式f (x +T )=f (x )的非零常数T 为y =f (x )的周期.讲一讲2.求函数y =3sin(π3-x2)的单调增区间.[尝试解答] y =3sin ⎝ ⎛⎭⎪⎫π3-x 2 =3sin ⎣⎢⎡⎦⎥⎤π-⎝⎛⎭⎪⎫π3-x 3=3sin(x 2+2π3),由-π2+2k π≤x 2+2π3≤π2+2k π,k ∈Z ,得-7π3+4k π≤x ≤-π3+4k π,k ∈Z .∴y =3sin ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间为⎣⎢⎡⎦⎥⎤4k π-7π3,4k π-π3(k ∈Z ).求函数y =A sin(ωx +φ)(A >0)的单调区间最基本的方法是“整体代换”.(1)ω>0时,解2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )得单调递增区间,解2k π+π2≤ωx+φ≤2k π+3π2(k ∈Z )得单调递减区间.讲一讲3.求下列函数的最大值和最小值,并写出取得最值时的x 的取值集合. (1)y =3sin(2x -2π3);(2)y =3-2sin(3x +π6).[尝试解答] (1)当2x -2π3=2k π+π2,k ∈Z ,即x =k π+7π12(k ∈Z )时,y max =3,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+7π12,k ∈Z . 当2x -2π3=2k π-π2,k ∈Z ,即x =k π+π12(k ∈Z )时,y min =-3,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π12,k ∈Z .(2)当3x +π3=2k π-π2(k ∈Z ),即x =2k π3-5π18(k ∈Z )时,y max =5,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π3-5π18,k ∈Z . 当3x +π3=2k π+π2,k ∈Z ,即x =2k π3+π18,k ∈Z 时,y min =1,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π3+π18,k ∈Z .函数y =A sin(ωx +φ)(A >0,ω>0)的值域为[-A ,A ],分别在ωx +φ=-π2+2k π和ωx +φ=π2+2k π,k ∈Z 处取得最小值-A 和最大值A ,其实质是将ωx +φ看作一个整体z ,将问题转化为函数y =A sin z 的最小值和最大值问题.练一练3.已知函数f (x )=2cos(π3-x2),若x ∈[-π,π],求f (x )的最大值、最小值.解:f (x )=2cos(π3-x 2)=2cos(x 2-π3).由-π≤x ≤π,得-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,[f (x )]max =2. 当x 2-π3=-5π6,即x =-π时,[f (x )]min =- 3.讲一讲4.设函数f (x )=A sin(ωx +φ),A >0,ω>0,φ取何值时,f (x )是奇函数. [尝试解答] 因为x ∈R ,要使f (x )为奇函数,需f (0)=0, 所以sin φ=0, 所以φ=k π,k ∈Z . 而当φ=k π时,f (x )=A sin(ωx +k π)=而f (x )=A sin ωx 与f (x )=-A sin ωx 都是奇函数. 所以当φ=k π,k ∈Z 时,f (x )为奇函数.f (x )=A sin(ωx +φ)的奇偶性:(1)φ=k π(k ∈Z )时,f (x )为奇函数; (2)φ=k π+π2(k ∈Z )时,f (x )为偶函数;(3)φ为象限角时,f (x )为非奇非偶函数. 练一练4.设函数f (x )=A cos(ωx +φ),A >0,ω>0,φ为何值时,f (x )为偶函数? 解:由f (x )=f (-x )得A cos(ωx +φ)=A cos(-ωx +φ).根据余弦函数的特点,ωx +φ=ωx -φ+2k π,φ=k π,k ∈Z .故φ=k π,k ∈Z 时,f (x )为偶函数.已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b 的定义域是⎣⎢⎡⎦⎥⎤0,π2,值域是[-5,1],求a ,b 的值.[巧思] 题目中函数的定义域和值域已知,可以先在定义域⎣⎢⎡⎦⎥⎤0,π2下求出sin(2x +π6)的范围,因为a 的符号不确定,所以可以分a >0,a <0的两种情况进行讨论.[妙解] ∵0≤x ≤π2,∴π6≤2x +π6≤7π6.∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6-1的最小值和最小正周期是( ) A .-3-1,π B .-3+1,π C .-3,π D .-3-1,2π 解析:选A ∵3sin ⎝ ⎛⎭⎪⎫2x -π6的最小值是- 3. ∴f (x )的最小值是-3-1.f (x )的周期T =2π2=π. 2.函数y =8sin ⎝⎛⎭⎪⎫6x +π3取最大值时,自变量x 的取值集合是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =-5π6+k π3,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =π36+k π3,k ∈ZC.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π3,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =π9+k π3,k ∈Z解析:选B 当6x +π3=2k π+π2,k ∈Z 时y 最大.即x =π36+k π3,k ∈Z .3.(福建高考)函数f (x )=sin(x -π4)的图像的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin(x -π4)的图像的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4,当k =-1时,则其中一条对称轴为x =-π4.4.(江苏高考)函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的最小正周期为________. 解析:T =2π2=π.答案:π5.y =2sin ⎝ ⎛⎭⎪⎫3x -π4的图像的两条相邻对称轴之间的距离是________. 解析:∵T =2π3,两条相邻对称轴之间的距离是周期的一半,即为π3.答案: π36.求函数y =3cos ⎝ ⎛⎭⎪⎫π4-x 的单调递增区间. 解:y =3cos ⎝ ⎛⎭⎪⎫π4-x =3cos ⎝⎛⎭⎪⎫x -π4.令-π+2k π≤x -π4≤2k π(k ∈Z ),则-3π4+2k π≤x ≤π4+2k π(k ∈Z ).所以y =3cos ⎝ ⎛⎭⎪⎫π4-x 的单调递增区间是⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ).一、选择题1.(福建高考)函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图像的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图像的对称轴为x -π4=k π+π2,(k ∈Z ),得x =k π+3π4(k ∈Z ),当k =-1时,则其中一条对称轴为x =-π4.2.函数y =2sin(2x +52π)的奇偶性为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:选B y =2sin(2x +52π)=2cos 2x ,∴是偶函数.3.(新课标全国卷)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则 φ=( )A.π4B.π3 C.π2 D.3π4解析:选A 由于直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,所以函数f (x )的最小正周期T =2π,所以ω=1,所以π4+φ=k π+π2(k ∈Z ),又0<φ<π,所以φ=π4.4.已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增加的B .f (x )在区间[-3π,-π]上是增加的C .f (x )在区间[3π,5π]上是减少的D .f (x )在区间[4π,6π]上是减少的 解析:选A ∵f (x )的最小正周期为6π, ∴ω=13,∵当x =π2时,f (x )有最大值,∴π6+φ=π2+2k π(k ∈Z ),φ=π3+2k π, ∵-π<φ≤π,∴φ=π3.可得f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π3在区间[-2π,0]上是增加的. 二、填空题5.函数y =2cos ⎝ ⎛⎭⎪⎫π3-ωx 的周期为4π(ω∈R ),则ω=________. 解析:因为y =A cos(ωx +φ)的周期T =2π|ω|,所以T =2π|ω|=4π,即|ω|=12,所以ω=±12.答案:±126.函数y =2sin(x -π6)⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π3,π3上的值域是________.解析:∵-π3≤x ≤π3,∴-π2≤x -π6≤π6.∴-1≤sin(x -π6)≤12,故y ∈[-2,1]. 答案:[-2,1]7.已知方程2sin(x +π4)=k 在x ∈[0,π]上有两个解,则实数k 的范围是________.解:令y 1=2sin(x +π4),y 2=k ,在同一坐标系内作出它们的图像,(0≤x ≤π),由图像可知,当1≤k <2时,直线y 2=k 与曲线y 1=2sin(x +π4)在0≤x ≤π上有两个公共点,即当1≤k <2时,原方程有两个解.答案:[1,2)8.若ω>0,函数f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π4上是增加的,则ω的取值范围是________. 解析:由-π2≤ωx ≤π2,得f (x )的一个递增区间为⎣⎢⎡⎦⎥⎤-π2ω,π2ω.由题设得⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω. ,∴0<ω≤32.答案:(0,32]三、解答题9.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间.解:(1)∵直线x =π8是函数y =f (x )的图像的一条对称轴,∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1,∴π4+φ=k π+π2,k ∈Z . ∵-π<φ<0, ∴φ=-3π4.(2)由(1)知φ=-3π4,因此y =sin ⎝ ⎛⎭⎪⎫2x -3π4.- 11 - 由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z . 解得k π+π8≤x ≤k π+5π8,k ∈Z . ∴函数y =sin ⎝⎛⎭⎪⎫2x -3π4的单调递增区间是[k π+π8,k π+5π8](k ∈Z ). 10.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图像关于点M (3π4,0)对称,且在区间⎣⎢⎡⎦⎥⎤0,π2上是单调函数,求φ和ω的值.解:∵f (x )在R 上是偶函数,∴当x =0时,f (x )取得最大值或最小值.即sin φ=±1,得φ=k π+π2,k ∈Z ,又0≤φ≤π,∴φ=π2.由图像关于M (34π,0)对称可知,sin(34πω+π2)=0,即3π4ω+π2=k π,k ∈Z ,解得ω=43k -23,k ∈Z .又f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调函数,所以T ≥π,即2πω≥π,∴ω≤2,又ω>0,∴当k =1时,ω=23,当k =2时,ω=2.。

高中数学第一章三角函数8函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4(2021

高中数学第一章三角函数8函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4(2021

2018-2019学年高中数学第一章三角函数8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章三角函数8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章三角函数8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4的全部内容。

§8函数y=A sin(ωx+φ)的图像与性质(二)学习目标 1.会用“五点法”画函数y=A sin(ωx+φ)的图像。

2。

能根据y=A sin(ωx+φ)的部分图像,确定其解析式。

3.了解y=A sin(ωx+φ)的图像的物理意义,能指出简谐运动中的振幅、周期、相位、初相.知识点一“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的图像思考1 用“五点法”作y=sin x,x∈[0,2π]时,五个关键点的横坐标依次取哪几个值?答案依次为0,错误!,π,错误!,2π.思考2 用“五点法”作y=A sin(ωx+φ)时,五个关键的横坐标取哪几个值?答案用“五点法"作函数y=A sin(ωx+φ)(x∈R)的简图,先令t=ωx+φ,再由t取0,错误!,π,错误!,2π即可得到所取五个关键点的横坐标依次为-错误!,-错误!+错误!,-错误!+错误!,-错误!+错误!,-错误!+错误!。

梳理用“五点法”作y=A sin(ωx+φ) 的图像的步骤:第一步:列表:ωx+φ0错误!π错误!2πx-错误!错误!-错误!错误!-错误!错误!-错误!错误!-错误!y0 A 0 -A 0第二步:在同一坐标系中描出各点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:( ,-2)
解析:由3x- = ,x= 知,应填( ,-2).
8.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一个周期内的图像如下,此函数的解析式为__________________________.
答案:y=2sin(2x+ )
解析:A=2,T=2( -(- ))=π,∴ω=2.由最高点的坐标可知,2×(- )+φ= +2kπ(k∈Z),所以y=2sin(2x+ π).
11.已知函数y= sin(2x+ ),借助“五点作图法”画出函数f(x)在[0, ]上的简图,并且依图写出函数f(x)在[0, ]上的递增区间.
解:可先画出区间[- , ]的图像,再截取所需.
列表
μ=2x+
0
π

x

y
0
0

0
图像略,注意f(0)=1,由图像可知函数在区间[0, ]上的单调递增区间是[0, ],[ , ].
(2)由-1<f(x)-m<1⇔-1+f(x)<m<1+f(x)对x∈[ , ]恒成立.
即-1<f(x)-m<1⇔-1+f(x)max<m<1+f(x)min(x∈[ , ]).
当x∈[ , ]时, ≤2x- ≤ .
故当2x- = 时,即x= 时,f(x)取得最大值0;
当2x- = 时,即x= 时,f(x)取得最小值- .
解析:振幅为3,周期为 =4π,初相为- .
2.把函数y=sinx的图像上所有点向左平移 个单位长度,再把所得图像上所有点的横坐标缩短到原来的 (纵坐标不变),得到的图像所对应的函数是()
A.y=sin B.y=sin
C.y=sin D.y=sin
答案:C
解析:把函数y=sinx的图像上所有点向左平行移动 个单位长度后得到函数y=sin 的图像,再把所得图像上所有点的横坐标缩短到原来的 ,得到函数y=sin 的图像.
12.已知函数f(x)=sin(2x- )-1.
(1)写出函数f(x)的单调递增区间;
(2)若不等式-1<f(x)-m<1在x∈[ , ]恒成立,求实数m的取值范围.
解:(1)因为f(x)=sin(2x- )-1
由- +2kπ≤2x- ≤ +2kπ(k∈Z)得:- +kπ≤x≤ +kπ(k∈Z).
所以f(x)的单调递增区间是[- +kπ, +kπ](k∈Z).
3.函数y=2sin(x+ )的一条对称轴为()
A.x=- B.x=0
C. D.-
答案:C
解析:因为y=2sin(x+ ),其对称轴可由x+ =kπ+ ,(k∈Z)求得,解得x=kπ+ ,k∈Z,选项中只有C符合.
4.函数y=1-2cos x(x∈[0, ])的最小值、最大值分别是()
A.-1,3 B.-1,2
三、解答题:(共35分,11+12+12)
10.把函数y=f(x)的图像上各点向右平移 个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的 倍,所得到图像的解析式是y=2sin( x+ ),求f(x)的解析式.
解:y=2sin( x+ )的图像纵坐标伸长到原来的 倍,得y=3sin( x+ )的图像,横坐标缩短到原来的 倍得到y=3sin(x+ )的图像,再向左平移 个单位得到y=3sin[(x+ )+ ]=3cosx的图像.故f(x)=3cosx.
9.将函数y=2sinx的图像向左平移 个单位,再将得到的图像上各点的横坐标变为原来的 倍(纵坐标不变),得到函数y=f(x)的图像,若x∈[0, ],则函数y=f(x)的值域为________.
答案:[-1,2]
解析:由y=sinx→y=2sin(x- )→y=2sin(2x- )知,f(x)=2sin(2x- ).由x∈[0, ]得2x- ∈[- , ],所以函数y=f(x)的值域为[-1,2].
故m的取值范围为(-1, ).
8函数y=Asin(ωx+φ)的图像
时间:45分钟 满分:80分
班级________姓名________分数________
一、选择题:(每小题5分,共5×6=30分)
1.函数y=3sin( x- )的振幅、周期、初相分别为()
A.-3,4π, B.3,4π,-
C.3,π,- D.-3,π,
答案:B
C.0,3 D.0,2
答案:B
解析:因为0≤ x≤ ,所以- ≤cos x≤1,所以得函数y=1-2cos x的最小值、最大值分别是-间是()
A.(- , ) B.(- , )
C.[- ,0) D.(- , )
答案:B
解析:由2kπ- ≤2x+ ≤2kπ+ (k∈Z),解得kπ- ≤x≤kπ+ (k∈Z),选项中只有B符合.
6.如果函数y=sin(2x+φ)的图像关于点( ,0)中心对称,那么φ的值可以是()
A.- B.-
C. D.
答案:D
解析:由题意得sin(2× +φ)=0,φ的值可以是 .
二、填空题:(每小题5分,共5×3=15分)
7.用五点法画函数y=2sin(3x- )的图像,这五个点可以分别是( ,0)( ,2),( ,0),__________,( ,0).
相关文档
最新文档