高中数学第三章不等式3.3基本不等式3.3.1习题精选北师大版必修5
2021学年高中数学第三章不等式3.3.1基本不等式课后习题含解析北师大版必修5.docx
§3基本不等式3.1基本不等式课后篇巩固探究A组1.已知x,y∈R,下列不等关系正确的是()A.x2+y2≥2|xy|B.x2+y2≤2|xy|C.x2+y2>2|xy|D.x2+y2<2|xy|解析:x2+y2=|x|2+|y|2≥2|x||y|=2|xy|.当且仅当|x|=|y|时等号成立.答案:A2.若x>0,y>0,且√2xy≥x+2y2,则必有()A.2x=yB.x=2yC.x=yD.x=4y解析:因为x>0,y>0,所以x+2y2≥√x·2y,即x+2y2≥√2xy.又√2xy≥x+2y2,所以必有√2xy=x+2y2,所以x=2y.答案:B3.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯一B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一解析:因为a+b=cd=4,a+b≥2√ab,所以√ab≤2,所以ab≤4,当且仅当a=b=2时,等号成立.又cd≤(c+d)24,所以(c+d)24≥4,所以c+d≥4,当且仅当c=d=2时,等号成立.所以ab≤c+d,当且仅当a=b=c=d=2时,等号成立,故选A.答案:A4.已知0<a<b,且a+b=1,则下列不等式中,正确的是()A.log2a>0B.2a-b<12C.2ab+ba<12D.log2a+log2b<-2解析:因为0<a<b,且a+b=1,所以ab<(a+b2)2=14,所以log2a+log2b=log2(ab)<log214=-2.答案:D5.若a>0,b>0,则√a 2+b 22与a+b 2的大小关系是 . 解析:因为a 2+b 22=a 2+b 2+a 2+b 24≥a 2+b 2+2ab4=(a+b )24,所以√a 2+b 22≥a+b 2,当且仅当a=b>0时,等号成立. 答案:√a 2+b 22≥a+b 26.设a>0,b>0,给出下列不等式: (1)(a +1a )(b +1b )≥4; (2)(a+b )(1a +1b )≥4;(3)a 2+9>6a ; (4)a 2+1+1a 2+1>2.其中正确的是 .解析:因为a+1a≥2√a ·1a=2,b+1b≥2√b ·1b=2,所以(a +1a )(b +1b)≥4,当且仅当a=1,b=1时,等号成立,所以(1)正确;因为(a+b )(1a +1b )=1+1+ba +ab ≥2+2·√b a ·ab =4,当且仅当a=b>0时,等号成立,所以(2)正确; 因为a 2+9≥22·9=6a ,当且仅当a=3时,等号成立,所以当a=3时,a 2+9=6a ,所以(3)不正确; 因为a 2+1+1a 2+1≥2√(a 2+1)·1a 2+1=2,当且仅当a 2+1=1a 2+1,即a=0时,等号成立,又a>0,所以等号不成立,所以(4)正确. 答案:(1)(2)(4)7.若a ,b 为正实数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y≥(a+b )2x+y,当且仅当a x =by 时取等号,利用以上结论,函数f (x )=2x +91-2x (x ∈(0,12))取得最小值时,x 的值为 . 解析:由题意可知f (x )=42x +91-2x ≥(2+3)22x+(1-2x ),当且仅当22x =31-2x 时,等号成立,解得x=15. 答案:158.若实数x ,y 满足x 2+y 2+xy=1,求x+y 的最大值. 解由x 2+y 2+xy=1可得(x+y )2=xy+1,又xy ≤(x+y 2)2,所以(x+y )2≤(x+y 2)2+1,整理得34(x+y )2≤1,当且仅当x=y 时取等号.所以x+y∈[-2√33,2√33].所以x+y的最大值为2√33.9.导学号33194061已知a>0,b>0,a+b=1,求证:√a+12+√b+12≤2.证明因为√a+12=√1·(a+12)≤1+a+122=34+a2,当且仅当a=12时取等号,同理√b+12≤34+b2,当且仅当b=12时取等号.所以√a+12+√b+12≤34+a2+34+b2=32+12(a+b)=32+12=2,当且仅当a=b=12时取等号.所以√a+12+√b+12≤2.B组1.已知m>0,n>0,α=m+1m ,β=n+1n,m,n的等差中项为1,则α+β的最小值为()A.3B.4C.5D.6解析:由已知得,m+n=2,所以α+β=m+1m +n+1n=(m+n)+m+nmn=2+2mn.因为m>0,n>0,所以mn≤(m+n2)2=1.所以α+β≥2+21=4.当且仅当m=n=1时,等号成立.所以α+β的最小值为4.答案:B2.给出下列四个命题:①若a<b,则a2<b2;②若a≥b>-1,则a1+a ≥b1+b;③若正整数m和n满足m<n,则√m(n-m)≤n2;④若x>0,且x≠1,则ln x+1lnx≥2,其中真命题的序号是()A.①②B.②③C.①④D.②④解析:当a=-2,b=1时,a<b,但a2>b2,故①不成立;对于②,a1+a −b1+b=a(1+b)-b(1+a)(1+a)(1+b)=a-b(1+a)(1+b),因为a≥b>-1,所以a1+a−b1+b≥0,故②正确;对于③,√m(n-m)≤m+n-m2=n2(m<n,且m,n为正整数),当且仅当m=n-m,即m=n2时,等号成立,故③正确;对于④,当0<x<1时,ln x<0,故④不成立.故选B.答案:B3.在算式4×□+△=30的□、△中,分别填入一个正整数使算式成立,并使填入的正整数的倒数之和最小,则这两个正整数构成的数对(□,△)应为()。
新版高中数学北师大版必修5习题第三章不等式3.3.2.1
3.2 基本不等式与最大(小)值第1课时 利用基本不等式求最值课时过关·能力提升1.设a>0,b>0,若√3是3a 与3b 的等比中项,则1a +1b 的最小值为( ) A.8B.4C.1D.143a ·3b =3,所以a+b=1,所以1a +1b =(a+b )(1a +1b )=2+ba +ab ≥2+2√b a ·ab =4,当且仅当ba =ab ,即a=b=2时,等号成立. 2.若x>0,则y=33x 1x的最大值是( ) B.33√2C.32√3D.133x 1x =3(3x +1x )≤32√3x ·1x =32√3,当且仅当3x=1x ,即x=√33时,等号成立. 3.已知a>0,b>0,则1a +1b +2√ab 的最小值是( ) B.2√2C.4D.51b +2√ab ≥2√1ab +2√ab ≥2√2√1ab ·2√ab =4.当且仅当{1a =1b ,√1ab=√ab ,即a=b=1时,等号成立,故1a +1b +2√ab 的最小值为4.4.若x>1,则函数y=x 2+11-x2的最大值为( )B.0C.1D.2x>1时,x 2+1x 2-1=x 21+1x 2-1+1≥2√(x 2-1)·1x 2-1+1=3,当且仅当x=√2时,等号成立,所以x 2+1-x 2≤3. 5.若a>0,b>0,a+b=2,则y=1a+4b的最小值是( ) A.72B.4C.92D.5a+b=2,∴1=a+b2,4=2(a+b ).∴y=1a +4b =a+b 2a +2(a+b )b=12+b 2a +2a b +2=52+(b 2a +2a b)≥52+2√b 2a ·2a b=92,当且仅当a=13,b=23时,.6.若p>0,q>0,p ,q 的等差中项是12,x=p+1p ,y=q+1q ,则x+y 的最小值为( ) B.5C.4D.3p+q=1,p>0,q>0,∴x+y=p+q+1p +1q =1+1pq ≥1+1(p+q 2)2=5.当且仅当p=q=12时,等号成立.7.若2x +2y =1,则x+y 的取值范围是( ) A.[0,2] B.[2,0] ∞) D.(∞,2]2x +2y ≥2√2x ·2y =2√2x+y ,∴√2x+y ≤12,2x+y ≤14. ∴x+y ≤2.D .8.已知函数f (x )=4x+ax(x>0,a>0)在x=3时取得最小值,则a= .4x+a x ≥2√4a ,当且仅当4x=ax 时,等号成立,∴4x 2=a ,∴a=4×32=36.9.若a+b=2,b>0,则12|a |+|a |b 的最小值为 .|a |b=a+b 4|a |+|a |b=a 4|a |+b 4|a |+|a |b≥a 4|a |+1≥14+1=34,当且仅当b4|a |=|a |b,a<0,即a=2,b=4时,等号故12|a |+|a |b 的最小值是34.x ,y 满足x 2+y 2+xy=1,则x+y 的最大值是 .x 2+y 2+xy=1,(x+y )2=xy+1.又xy ≤(x+y 2)2,∴(x+y )2≤(x+y 2)2+1,即34(x+y )2≤1. ∴(x+y )2≤43,当且仅当|x|=|y|=√33时,等号成立. ∴2√33≤x+y ≤2√33,∴x+y 的最大值为2√33.★11.求下列函数的最值. (1)y=x (25x ),x ∈(0,25); ·√3-x 2,x ∈(0,√3).∵x ∈(0,25),∴x>0,25x>0,y=x (25x )=15·5x (25x )≤15·(5x+2-5x 2)2=15.当且仅当5x=25x ,即x=15时,等号成立. ∴y=x (25x )的最大值为15.(2)∵x ∈(0,√3), ∴x>0,3x 2>0.∴y=x ·√3-x 2≤x 2+3-x 22=32.当且仅当x=√3-x 2,即x=√62时,等号成立.∴y=x ·√3-x 2的最大值为32.★12.当x>12时,求函数y=x+82x -1的最小值,并求出当函数取得最小值时x 的值.y=x+82x -1=x+4x -12=x 12+4x -12+12.因为x>12,所以x 12>0.所以y ≥2√4+12=92.当且仅当x 12=4x -12,即x=52时,等号成立.所以函数的最小值为92,且函数取最小值时x=52.。
高中数学第三章不等式3.3基本不等式3.3.1基本不等式达标练习北师大版必修5
3.3.1 基本不等式[A 基础达标]1.不等式(x -2y )+1x -2y≥2成立的条件为( ) A .x ≥2y ,当且仅当x -2y =1时取等号B .x >2y ,当且仅当x -2y =1时取等号C .x ≤2y ,当且仅当x -2y =1时取等号D .x <2y ,当且仅当x -2y =1时取等号解析:选B.因为不等式成立的前提条件是各项均为正,所以x -2y >0,即x >2y ,且等号成立时(x -2y )2=1,即x -2y =1,故选B.2.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <nC .m =nD .不确定 解析:选A.因为a >2,所以a -2>0.又因为m =a +1a -2=(a -2)+1a -2+2≥2(a -2)×1a -2+2=4(当且仅当a -2=1a -2,即a =3时,“=”成立). 即m ∈[4,+∞),由b ≠0得b 2≠0,所以2-b 2<2.所以22-b 2<4,即n <4.所以n ∈(0,4),综上易知m >n .3.下列不等式中正确的是( )A .a +4a ≥4B .a 2+b 2≥4abC.ab ≥a +b 2 D .x 2+3x2≥2 3 解析:选D.若a <0,则a +4a≥4不成立,故A 错误.取a =1,b =1,则a 2+b 2<4ab ,故B 错误.取a =4,b =16,则ab <a +b2,故C 错误.由基本不等式可知选项D 正确.4.某厂产值第二年比第一年增长p %,第三年比第二年增长q %,又这两年的平均增长率为s %,则s 与p +q 2的大小关系是( )A .s =p +q 2 B .s ≤p +q 2 C .s >p +q 2 D .s ≥p +q 2 解析:选B.由已知得(1+s %)2=(1+p %)(1+q %)≤⎝ ⎛⎭⎪⎫1+p %+1+q %22=⎝ ⎛⎭⎪⎫1+p %+q %22, 于是1+s %≤1+p %+q %2. 故s ≤p +q 2.5.设M =3x+3y 2,N =(3)x +y ,P =3xy (x ,y >0,且x ≠y ),则M ,N ,P 大小关系为( ) A .M <N <PB .N <P <MC .P <M <ND .P <N <M 解析:选D.由基本不等式可知3x +3y 2≥3x 3y =(3)x +y =3x +y 2≥3xy ,因为x ≠y , 所以等号不成立,故P <N <M .6.若a <1,则a +1a -1与-1的大小关系是________. 解析:因为a <1,即a -1<0,所以-⎝ ⎛⎭⎪⎫a -1+1a -1=(1-a )+11-a ≥2(1-a )·11-a =2.即a +1a -1≤-1. 答案:a +1a -1≤-1 7.已知a >b >c ,则(a -b )(b -c )与a -c 2的大小关系是________. 解析:因为a >b >c ,所以a -b >0,b -c >0.(a -b )(b -c )≤a -b +b -c 2=a -c2.当且仅当a -b =b -c ,即a +c =2b 时,等号成立.所以(a -b )(b -c )≤a -c2.答案:(a -b )(b -c )≤a -c 28.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ____log a t +12(填“>”“≥”“≤”或“<”).解析:因为a 2+a -2>0,所以a <-2或a >1,又a >0,所以a >1,因为t >0,所以t +12≥t , 所以log a t +12≥log a t =12log a t . 答案:≤9.已知f (x )=a x (a >0且a ≠1),当x 1≠x 2时,比较f ⎝⎛⎭⎪⎫x 1+x 22与f (x 1)+f (x 2)2的大小. 解:因为f (x )=a x , 所以f ⎝ ⎛⎭⎪⎫x 1+x 22=a x 1+x 22, 12[f (x 1)+f (x 2)]=12(ax 1+ax 2). 因为a >0且a ≠1,x 1≠x 2,所以ax 1>0,ax 2>0,且ax 1≠ax 2,所以12(ax 1+ax 2)> ax 1·ax 2=a x 1+x 22, 即f ⎝ ⎛⎭⎪⎫x 1+x 22<12[f (x 1)+f (x 2)]. 10.已知a ,b ,c 是不全相等的三个正数,求证:b +c -a a +a +c -b b +a +b -c c >3. 证明:b +c -a a +a +c -b b +a +b -c c=b a +c a +a b +c b +a c +b c-3 =⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c + ⎝ ⎛⎭⎪⎫c b +b c -3. 因为a ,b ,c 都是正数,所以b a +a b ≥2b a ·a b =2,同理c a +a c ≥2,c b +b c≥2, 所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥6.因为a ,b ,c 不全相等,上述三式不能同时取等号, 所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c >6, 所以b +c -a a +a +c -b b +a +b -c c>3. [B 能力提升]11.若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 解析:选D.因为2x +2y ≥22x +y ,2x +2y =1, 所以22x +y ≤1, 所以2x +y ≤14=2-2, 所以x +y ≤-2,即(x +y )∈(-∞,-2].12.设正数x ,y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的取值范围是________.解析:原式等价于x +y +3=xy ≤⎝ ⎛⎭⎪⎫x +y 22(当且仅当x =y 时取等号),所以x +y +3≤(x +y )24, 即(x +y )2-4(x +y )-12≥0.解得x +y ≥6或x +y ≤-2(舍去).所以x +y 的取值范围是[6,+∞).答案:[6,+∞)13.设a ,b ,c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a≥1. 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 14.(选做题)是否存在常数c ,使得不等式x 2x +y +y x +2y ≤c ≤x x +2y +y2x +y 对任意正实数x ,y 恒成立?证明你的结论.解:当x =y 时,由已知不等式得c =23.下面分两部分给出证明: (1)先证x 2x +y +y x +2y ≤23,此不等式⇔ 3x (x +2y )+3y (2x +y )≤2(2x +y )(x +2y )⇔2xy ≤x 2+y 2,此式显然成立.(2)再证x x +2y +y 2x +y ≥23,此不等式⇔ 3x (2x +y )+3y (x +2y )≥2(x +2y )(2x +y )⇔x 2+y 2≥2xy ,此式显然成立.综上可知,存在常数c =23,对任意的实数x ,y 使题中的不等式成立.。
高中数学必修5(北师版)第三章不等式3.3 基本不等式(与最新教材完全匹配)知识点总结含同步练习题及答案
1 1 时,f (x) 取得最大值 . 6 12
设 a, b, c ∈ R,求证:a2 + b 2 + c 2 ⩾ ab + bc + ca . 证明:因为 a2 + b 2 ⩾ 2ab ,b 2 + c 2 ⩾ 2bc,c 2 + a2 ⩾ 2ca ,所以
某种汽车,购车费用是 10 万元,每年使用的保险费、汽油费约为 0.9 万元,年维修费第一年是 0.2 万元,以后逐年递增 0.2 万元.问这种汽车使用多少年时,它的年平均费用最少? 解:设使用 x 年时,年平均费用 y 最少. 由于“年维修费第一年是 0.2 万元,以后逐年递增 0.2 万元”,可知汽车每年维修费构成以 0.2 万元为首项,0.2 万元为公差的等差数列. 因此汽车使用 x 年的总维修费用为
(a2 + b 2 ) + (b 2 + c 2 ) + (c 2 + a2 ) ⩾ 2ab + 2bc + 2ca,
2
+
2
+
2
⩾
+
+
当且仅当 a = b = c 时,等号成立,所以 a2 + b 2 + c 2 ⩾ ab + bc + ca .
3.均值不等式的实际应用 描述: 利用基本不等式解决实际问题的一般步骤: ①正确理解题意,设出变量,一般可以把要求最大(小)值的变量定为函数; ②建立相应的函数关系式,把实际问题抽象成函数的最大值或最小值问题; ③在定义域内,求出函数的最大值或最小值; ④正确写出答案. 例题: 建造一个容积为 8 m 3 ,深为 2 m 的长方形无盖水池,如果池底的造价是每平方米 120 元, 池壁的造价是每平方米 80 元,求这个水池的最低造价. 解:设水池的造价为 y 元,池底的长为 x m ,则宽为
2018秋新版高中数学北师大版必修5习题:第三章不等式 3.3.1 含解析
3.1基本不等式课时过关·能力提升1.若a>b>0,则下列不等式中成立的是()A.a>b>B.a>>bC.a>>b>D.a>>ba>b>0,∴a=.∵,且=b,∴a>>b.2.下列不等式中,对任意实数x都成立的是()A.lg(x2+1)≥lg 2xB.x2+1>2xC.≤1D.x+≥2中,当x<0时都不成立,B中,当x=1时不成立,故选C.3.若x>0,y>0,则A=()x+y与B=的大小关系是()A.A>BB.A≥BC.A<BD.A≤Bx>0,y>0,∴.又A=()x+y=,且指数函数y=πx是增函数,∴A≥B.4.若0<a<1,0<b<1,则a+b,2,a2+b2,2ab中,最大的一个是()A.a+bB.2C.a2+b2D.2ab,得a2+b2≥2ab,a+b≥2.∵0<a<1,0<b<1,∴(a2+b2)-(a+b)=a(a-1)+b(b-1)<0.∴a2+b2<a+b.∴最大的一个是a+b.5.若a>b>0,集合M=,N={x|<x<a},则集合M∩N等于()A.{x|b<x<}B.{x|b<x<a}C. D.a>b>0,∴b<<a,∴M∩N=.6.若x>0,y>0,且x+y=4,则下列不等式中恒成立的是()A.>4B.≥1C.≥2D.≥1x>0,y>0,且x+y=4,∴,故A错误.=2,故C错误.∵xy≤=4,∴,故D错误.≥+2=1,当且仅当x=y=2时,等号成立,故选B.7.已知a>b>c,则--与-的大小关系是.---8.已知log2x+log2y=1,则x+2y的最小值为.log2x+log2y=1,∴log2xy=1,∴xy=2,x·2y=4.又x>0,y>0,∴x+2y≥2=4,当且仅当x=2y=2时,等号成立.9.设a>0,b>0,给出下列不等式:(1)≥4;(2)(a+b)≥4;(3)a2+9>6a;(4)a2+1+>2.其中恒成立的是.a+≥2=2,b+≥2=2,∴≥4,当且仅当a=1,b=1时,等号成立.故(1)正确;(a+b)=1+1+≥2+2·=4,当且仅当a=b时,等号成立.故(2)正确;a2+9≥2=6a,当且仅当a=3时,等号成立,故当a=3时,a2+9=6a.故(3)不正确;∵a2+1+≥2=2,当且仅当a2+1=,即a=0时,等号成立.∵a>0,∴等号不成立.故(4)正确.★10.已知a>b>1,P=,Q=,R=lg,试比较P,Q,R的大小.a>b>1,根据对数函数的单调性有lg a>lg b>0,可以用基本不等式比较三个式子的大小.a>b>1,∴lg a>lg b>0,∴,即P<Q.对两边取常用对数,得lg <lg ,∴<lg ,即Q<R.∴P<Q<R.★11.已知a>0,b>0,a+b=1,求证:≤2.,当且仅当a=时,等号成立.同理,当且仅当b=时,等号成立.∴(a+b)==2,当且仅当a=b=时,等号成立.∴≤2.。
(常考题)北师大版高中数学必修五第三章《不等式》测试(答案解析)(1)
一、选择题1.设x ,y 满足约束条件5010550x x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,且(0,0)z ax by a b =+>>的最大值为1,则56a b+的最小值为( ) A .64B .81C .100D .1212.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .53.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-5.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-6.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16B .25C .36D .497.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-8.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( )A .9B .94C .52D .29.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-10.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .611.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.12.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.15.已知,a b 为正实数,直线2y x a =-+与曲线1x b y e +=- 相切,则11a b+的最小值为________.16.已知a ,b 为正实数,且4a +b ﹣ab +2=0,则ab 的最小值为_____. 17.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.18.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.19.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.20.已知正实数x ,y 满足22462x y xy ++=,则2x y +的最小值是_________.三、解答题21.(1)解不等式22650k x kx -+<.(2)当1k =时,不等式22650k x kx -+<的解集为(,)a b ,如图,在矩形ABCD 中,,AB b AD a ==,点P 为边AB 上一动点,当DPC ∠最大时,求线段AP 的长.22.已知2()2(2)f x x a x a =-++,a R ∈. (1)解关于x 的不等式()0f x >;(2)若方程()1f x x =+有两个正实数根1x ,2x ,求2112x x x x +的最小值. 23.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值.24.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米? 25.已知a >0,b >0,a +b =3. (1)求11+2+a b的最小值; (2)证明:92+a b b a ab26.已知定义域在()0,∞+上的函数()f x 满足对于任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+,当且仅当1x >时,()0f x <成立.(1)设(),0,x y ∈+∞,求证()()y f f y f x x ⎛⎫=-⎪⎝⎭;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较x 1与x 2的大小; (3)若13a -<<,解关于x 的不等式()2110f x a x a ⎡⎤-+++>⎣⎦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出可行域,作出目标函数对应的直线,平移该直线得最优解,从而得,a b 的关系式561a b +=,然后用“1”的代换,配凑出积为定值,用基本不等式得最小值. 【详解】作出约束条件表示的可行域,如图,ABC 内部(含边界),作直线直线0ax by += ,z ax by =+中,由于0,0a b >>,ab是直线的纵截距,直线向上平移时,纵截距增大, 所以当直线z ax by =+经过点()5,6时,z 取得最大值, 则561a b +=, 所以()56565661306160121b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当111a b ==时,等号成立,故56a b+的最小值为121. 故选:D .【点睛】关键点点睛:本题考查简单的线性规划,考查用基本不等式求最值.解题思路是利用简单的线性规划求得变量,a b 满足的关系式,然后用“1”的代换凑配出定值,再用基本不等式求得最小值.求最值时注意基本不等式的条件:一正二定三相等,否则易出错.2.C解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大, 联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A ,所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()22a b a b ab a b a b a b a b+-+==-+≥---当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.6.A解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b+=得:(1,1)1ab a ba=>>-,代入41611a b+--得到:4164164416(1)216(1)16 1111111a aaa b a a aa+=+=+-≥⋅-=-------当且仅当:4=16(1)1aa--即32a=时取等号.故选:A【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.7.A解析:A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【详解】解:作出不等式组50x yx yy++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y=++可得11244zy x=-+-,则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-,故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.8.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.9.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133z y x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大;由图象可知,当133zy x =-过点A 时,在y 轴截距最大, 由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.10.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.11.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,4t bc =最后通过基本不等式求得AD 的最大值。
2020_2021学年高中数学第三章不等式3.3.3基本不等式的实际应用作业课件北师大版必修5
二、填空题(本大题共3小题,每小题5分,共15分) 9.在如图所示的锐角三角形空地中,欲建一个面积最大的 内接矩形花园(阴影部分),则其边长x为 20 (m).
解析:如图,过A作AH⊥BC于H,交DE于F,易知 DBCE = 4x0 =
AD AB
=
AF AH
,则AF=x,故FH=40-x.则矩形面积S=x(40-
站的距离x(km)成反比,而每月库存货物的运费y2(万元)与仓库到
车站的距离x(km)成正比.如果在距离车站10 km处建仓库,费用
y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓
库应建在离车站( A )
A.5 km处
B.m处
解析:由题意知y1=
k1 x
解析:C=
t22+0t4=
20 t+4t
.因为t>0,所以t+4t
≥2
4 t·t
=4(当且仅当t
=
4t ,即t=2时等号成立),所以C=
20 t+4t
≤240
=5,即当t=2时,C取得
最大值.
11.如图,有一张单栏的竖向张贴的海报,它的印刷面积为 72 dm2(图中阴影部分),上下空白各宽2 dm,左右空白各宽1 dm,则四周空白部分面积的最小值是 56 dm2.
小.设这种汽车使用n年报废最合算,n年汽车的维修总费用为0.2
+0.4+0.6+…+0.2n=0.2n+nn2-1×0.2=0.1(n2+n)(万元),年
平均费用y=
10+0.9n+0.1n2+n=10+
n
n
1n0+1≥2
1n0·1n0+1=
3,当且仅当1n0=1n0,即n=10时取等号.
6.某公司租地建仓库,每月土地占用费y1(万元)与仓库到车
高中数学北师大版必修5 第三章3.1 基本不等式 作业 Word版含解析
[学业水平训练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 答案:D2.若实数a 、b 满足0<a <b ,且a +b =1,则下列四个数中最大的是( )A.12B .a 2+b 2C .2abD .a解析:选B.∵a +b =1,a +b >2ab ,∴2ab <12.∵a 2+b 2>2·⎝⎛⎭⎫a +b 22=2×14=12,又0<a <b ,且a +b =1,∴a <12,∴a 2+b 2最大. 3.某厂产值第二年比第一年增长p %,第三年比第二年增长q %,又这两年的平均增长率为s %,则s 与p +q 2的大小关系是( ) A .s =p +q 2B .s ≤p +q 2C .s >p +q 2D .s ≥p +q 2解析:选B.由已知得(1+s %)2=(1+p %)(1+q %)≤⎝⎛⎭⎫1+p %+1+q %22=⎝⎛⎭⎫1+p %+q %22, 于是1+s %≤1+p %+q %2. 故s ≤p +q 2. 4.(2013·高考福建卷)若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2]解析:选D.∵2x +2y ≥22x +y ,2x +2y =1,∴22x +y ≤1,∴2x +y ≤14=2-2, ∴x +y ≤-2,即(x +y )∈(-∞,-2].5.已知a ,b 都是正数,设M =a b +b a ,N =a +b ,则( ) A .M >NB .M <NC .M =ND .M ≥N解析:选D.∵a >0,b >0,∴b >0,a b +b ≥2a ,b a +a ≥2b . 于是a b +b +b a +a ≥2a +2b . 故a b +b a ≥a +b ,即M ≥N . 6.已知a ,b ,x ,y 都是正实数,且1a +1b=1,x 2+y 2=8,则ab 与xy 的大小关系是________.解析:∵1a +1b ≥2ab,∴ab ≥4. 而x 2+y 2≥2xy ,则xy ≤4.∴ab ≥xy .答案:ab ≥xy7.若a >1,0<b <1,则log a b +log b a 的取值范围是________.解析:∵a >1,0<b <1,∴log a b <0,log b a <0.∴-(log a b +log b a )=(-log a b )+(-log b a )≥2.当且仅当-log a b =-log b a ,即a >1,0<b <1,ab =1时等号成立.∴log a b +log b a ≤-2.答案:(-∞,-2]8.已知M =x +1x -3,N =51-x 2(x >3),则M 与N 的大小关系是________. 解析:∵x >3,∴x -3>0,∴M =x -3+1x -3+3≥2(x -3)·1x -3+3=5, 又∵1-x 2<0,∴N =51-x 2<5即N <5.∴M >N .答案:M >N9.已知f (x )=a x (a >0且a ≠1),当x 1≠x 2时,比较f ⎝⎛⎭⎫x 1+x 22与f (x 1)+f (x 2)2的大小. 解:∵f (x )=a x ,∴f ⎝⎛⎭⎫x 1+x 22=a x 1+x 22,12[f (x 1)+f (x 2)]=12(ax 1+ax 2). ∵a >0且a ≠1,x 1≠x 2,∴ax 1>0,ax 2>0,且ax 1≠ax 2,∴12(ax 1+ax 2)> ax 1·ax 2=a x 1+x 22, 即f ⎝⎛⎭⎫x 1+x 22<12[f (x 1)+f (x 2)].10.已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca .证明:∵a >0,b >0,c >0,∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ac . 于是2(a +b +c )≥2ab +2bc +2ca ,即a +b +c ≥ab +bc +ca .∵a ,b ,c 为不全相等的正实数,等号不成立,∴a +b +c >ab +bc +ca .[高考水平训练]1.(2014·亳州检测)已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A .log 2a >0B .2a -b <12C .2b a +a b <12D .log 2a +log 2b <-2解析:选D.∵0<a <b ,且a +b =1,∴0<a <12<b <1. 对于A ,有log 2a <log 212, ∴log 2a <-1,故A 错误;对于B ,∵a +b =1,12<b <1, ∴-1<1-2b <0.又y =2x 在R 上为增函数,∴2a -b =21-2b >2-1=12,故B 错误; 对于C ,2b a +a b ≥22b a ·a b =22=4,故C 错误;对于D ,∵0<a <b <1,且a +b =1,∴a +b 2>ab ,∴ab <14.又∵log 2a +log 2b =log 2(ab ),∴log 2a +log 2b <log 214,即log 2a +log 2b <-2,故选D. 2.已知a >0,b >0,a +b =4,则下列各式中正确的是________. ①1a +1b ≤14;②1a +1b ≥1;③ab ≥2;④1ab≥1. 解析:由a >0,b >0,知a +b 2≥ab ,又a +b =4,∴ab ≤4,∴1ab ≥14,∴1a +1b =a +b ab=4ab ≥1,即1a +1b≥1. 答案:②3.设a >0,b >0且满足ab =a +b +3,求a +b 的取值范围.解:∵a +b +3=ab ≤(a +b )24, ∴(a +b )2-4(a +b )-12≥0.又∵a >0,b >0,∴a +b ≥6.4.已知a 、b ∈R +,a +b =1.求证:⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 证明:∵a >0,b >0,a +b =1.∴1=a +b ≥2ab ,ab ≤12,∴1ab≥4. ∵a +b 2≤ a 2+b 22,∴a 2+b 22≥⎝⎛⎭⎫a +b 22.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b 22 =⎝⎛⎭⎫1+1a +1b 22≥⎝⎛⎭⎫1+21ab 22≥252. ∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252.当且仅当a =b =12时等号成立.。
(常考题)北师大版高中数学必修五第三章《不等式》测试题(答案解析)
一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B .252 C .85D .1252.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B .4C .8D .94.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-5.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.6.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣ C.⎡⎤⎣⎦D .[7.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,118.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .49.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( )A.720+B.720- C.720+ D.720-10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭二、填空题13.已知函数()()log 310,1a y x a a =-+>≠的图像恒过定点A ,若点A 在一次函数2m y x n =+的图像上,其中0,0m n >>,则12m n +的最小值是__________.14.已知正实数a 、b 满足21a b +=,则11a b a b+--的最小值为____________. 15.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________16.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.17.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.18.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.19.已知x ,y 是正数,121x y +=,则21x yxy ++的最小值为________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________.三、解答题21.某公司生产某种产品,其年产量为x 万件时利润为()R x 万元,当035x <≤时,年利润为21()2R x x =-20250x ++,当35x >时,年利润为()18005202R x x x=--+. (1)若公司生产量在035x <≤且年利润不低于400万时,求生产量x 的范围;(2)求公司年利润()R x 的最大值.22.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.23.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少.24.已知不等式2320ax x -+>解集为{}1 xx x b <>∣或. (1)求a ,b 的值并求不等式230bx ax --<的解集;(2)解关于x 的不等式2()0ax ac b x bc -++<.25.已知函数2()2,,f x x ax x R a R =-∈∈. (1)当1a =时,求满足()0f x <的x 的取值范围;(2)解关于x 的不等式2()3f x a <.26.已知函数2()(3)2f x ax a x =+-+(其中a ∈R ). (1)当a =-1时,解关于x 的不等式()0f x <; (2)若()1f x ≥-的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值.【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭当且仅当49b aa b =,即812,55a b ==时取等号. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以141444()5529x y x yx y x y x y y x y x ⎛⎫+=++=++≥+⨯= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.4.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为z =题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.5.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 14tan 42sin cos 2tan tan x x x x x x x x ++===+≥=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.6.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得m ≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.7.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.8.B解析:B 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值. 【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =. 故选:B. 【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题.9.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b =,a =720+, 故选:C . 【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.12.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.二、填空题13.8【分析】可得定点代入一次函数得利用展开由基本不等式求解【详解】由可得当时故点A 在一次函数的图像上即当且仅当即时等号成立故的最小值是8故答案为:8【点睛】本题考查基本不等式的应用解题的关键是得出定点解析:8 【分析】可得定点()4,1A ,代入一次函数得21m n +=,利用()12122m n m n m n ⎛⎫+=++ ⎪⎝⎭展开由基本不等式求解. 【详解】由()()log 310,1a y x a a =-+>≠可得当4x =时,1y =,故()4,1A , 点A 在一次函数2m y x n =+的图像上,142mn ∴=⨯+,即21m n +=,0,0m n >>,()121242448n m m n m n m n m n ⎛⎫∴+=++=++≥= ⎪⎝⎭, 当且仅当4n m m n=,即11,42m n ==时等号成立,故12m n +的最小值是8. 故答案为:8. 【点睛】本题考查基本不等式的应用,解题的关键是得出定点A ,代入一次函数得出21m n +=,利用“1”的妙用求解.14.【分析】将所求代数式变形为将所求代数式与相乘展开后利用基本不等式可求得的最小值【详解】已知正实数满足则当且仅当时即当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其12【分析】将所求代数式变形为1121121a b a b b b+=+----,将所求代数式与()1b b +-⎡⎤⎣⎦相乘,展开后利用基本不等式可求得11a b a b+--的最小值. 【详解】已知正实数a 、b 满足21a b +=,则1211112112121a b b b a b b b b b--++=+=+-----()111111122112222b b b b b b b b -⎛⎫=+-+-=+-≥=⎡⎤ ⎪⎣⎦--⎝⎭.当且仅当1b -=时,即当1b =时,等号成立,因此,11a ba b +--12.12. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.16.23【分析】先画出约束条件所表示的可行域结合图象确定目标函数的最优解代入最优解的坐标即可求解【详解】画出不等式组所表示的可行域如图所示可得交点又由解得目标函数可化为当直线过点C 时直线在轴上的截距最大【分析】先画出约束条件所表示的可行域,结合图象确定目标函数的最优解,代入最优解的坐标,即可求解. 【详解】画出不等式组213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩所表示的可行域,如图所示,可得交点(0,1),(7,1)A B ,又由21211x y y x -=-⎧⎨-=⎩,解得(3,7)C ,目标函数2z y x =-可化为122zy x =+, 当直线122zy x =+过点C 时,直线在y 轴上的截距最大,此时目标函数取得最大值, 将C 代入直线320x y k +-=,解得23k =.故答案为:23【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出不等式组所表示的平面区域,结合图象得出目标函数的最优解是解答的关键,着重考查数形结合法,以及计算能力.17.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy 所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,列出实际问题中x 、y 所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y =+的最大值. 【详解】设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是2400250000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y =+可转化直线3122000y x z =-+,数形结合知当直线经过点A 时z 取得最大值.解方程组24002500x y x y +=⎧⎨+=⎩,可得点()200,100A ,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.18.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规解析:1,22⎡⎤⎢⎥⎣⎦【分析】作出可行域,yx表示(),x y与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030yx yx y-⎧⎪--⎨⎪+-⎩表示的平面区域ABC(包括边界),所以yx表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B,,所以122OA OBk k==,,故1,22yx⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.19.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求解析:89【分析】首先将题中已知条件转化,可得2x y xy+=,利用基本不等式可求得8xy≥,之后应用不等式的性质求得结果.【详解】由121x y+=可得21x yxy+=,即2x y xy+=,所以211111x y xyxy xyxy+==+++,由12212x y xy=+≥得8xy≥,当且仅当24x y==时取等号,所以有1108xy <≤,19118xy <+≤,18191xy ≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号, 故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)1030x ;(2)480. 【分析】(1)令21()202504002R x x x =-++,解之即可;(2)利用二次函数的最值和基本不等式分别求出()R x 两段函数的最大值,再比较大小即可. 【详解】(1)当035x <时,令21()202504002R x x x =-++,即2403000x x -+≤,解得1030x , 所以生产量x 的范围是1030x ; (2)当035x <时,222111()20250(40)250(20)450222R x x x x x x =-++=--+=--+,故此时()R x 在(0,20)上单调递增,在(20,35)上单调递减, 则此时()R x 最大值为(20)450R =;当35x >时,116001()()52052048022R x x x =-++≤-⨯=, 当且仅当160040x x==时,等号成立, 则此时()R x 最大值为(40)480R =, 综上公司年利润()R x 的最大值为480万元. 【点睛】本题考查了函数的应用,利用二次函数的性质和基本不等式求最值是解题的关键,考查了推理能力与计算能力,属于中档题. 22.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>,所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 23.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立. 因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题. 24.(1)12a b =⎧⎨=⎩;31,2⎛⎫- ⎪⎝⎭;(2)答案见解析.【分析】(1)由已知结合二次不等式的解集端点与二次方程的根的关系即可求解; (2)结合二次不等式的求解对a 进行分类讨论即可求解. 【详解】(1)由题意知,1和b 是方程2320ax x -+=的两根,则312b a b a⎧=+⎪⎪⎨⎪=⎪⎩,解得12a b =⎧⎨=⎩不等式230bx ax --<即为2230x x --<, 解得312x -<<, ∴31,2x ⎛⎫∈- ⎪⎝⎭(2)不等式2()0ax ac b x bc -++<,即为2(2)20x c x c -++<,即(2)()0x x c --<. ①当2>c 时,2x c <<; ②当2c <时,2c x <<; ③当2c =时,原不等式无解.综上知,当2>c 时,原不等式的解集为{}2x x c <<∣; 当2c <时,原不等式的解集为{}2xc x <<∣; 当2c =时,原不等式的解集为∅. 【点睛】本题主要考查了二次方程与二次不等式的关系的应用及含参不等式的求解,体现了分类讨论思想的应用,属于中档题.25.(1)(0,2);(2)当0a >时,解集为(,3)a a -;当0a =时,解集为空集;当0a <时,解集为(3,)a a -. 【分析】(1)解一元二次不等式可得;(2)分类讨论,根据两根据的大小分类讨论. 【详解】(1)当1a =时,2()2f x x x =-,所以()0f x <,即220x x -<解得02x <<.所以()2f x 的解集为(0,2).(2) 由2()3f x a <,得 22230x ax a --<,所以 (3)()0x a x a -+<, 当0a >时,解集为(,3)a a -;当0a =时,解集为空集; 当0a <时,解集为(3,)a a -. 【点睛】本题考查解一元二次不等式,对含参数的不等式一般需要分类讨论,分类的层次有三个:一是最高次项系数的正负或者是0,二是对应的一元二次方程有无实数解,三是方程有实数解,方程两根的大小关系. 26.(1)(2)(62)-∞--+∞,,;(2)99a -+≤【分析】(1)当0a =时,解一元二次不等式求得不等式()0f x <的解集.(2)化简不等式()1f x ≥-,对a 分成0a ≠和0a >两种情况进行分类讨论,结合一元二次不等式恒成立,求得实数a 的取值范围. 【详解】(1)当1a =-时,由()0f x <得,2420x x --+<,所以2420x x +->,所以不等式的解集为(2)(62)-∞-+∞,,;(2)因为()1f x ≥-解集为R ,所以2(3)21ax a x +-+-≥在R 恒成立,当0a =时,得321x -+-≥,不合题意;当0a ≠时,由2(3)30ax a x +-+≥在R 恒成立,得()203120a a a >⎧⎪⎨--≤⎪⎩,所以99a -+≤ 【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。
高中数学 第三章 不等式 3.3.1 基本不等式课件 北师大版必修5
3.1 基本不等式
学习目标
1.掌握基本不等式及其推导方法. 2.理解基本不等式的几何意义及其等号 成立的条件. 3.能利用基本不等式证明不等式.
思维脉络
基本不等式 (1)概念:如果 a,b 都是非负数,那么������+2������ ≥ ������������,当且仅当 a=b 时,等号 成立.我们称上述不等式为基本不等式,其中������+2������称为 a,b 的算术平均 数, ������������称为 a,b 的几何平均数,因此,基本不等式又称为均值不等式. (2)文字叙述:两个非负数的算术平均数不小于它们的几何平均数. (3)意义:
lg������·lg������;
(4)若
a,b∈(0,+∞),则1������
+
1 ������
>
2������������.
探究一
探究二
探究三
思维辨析
解:(1)正确.在基本不等式������+2������ ≥ ������������中,将 a,b 分别用 a4,b4 代换, 且 a4≥0,b4≥0,
解析:①③错,都忽视了利用基本不等式时每一项必须非负这一
条件;
②正确,若 x<0,则 x+4������=- (-������) +
-
4 ������
≤-2
(-������)·
-
4 ������
=-4,当且仅当
-x=-4������,即 x=-2 时,等号成立;
④错,当 ������2 + 2 = ������21+2时,x2+2=1,x2=-1(不成立).故正确的是②.
新版高中数学北师大版必修5习题第三章不等式3.1
§1不等关系课时过关·能力提升1.已知a<0,1<b<0,则()A.a>ab>ab2B.ab2>ab>a2 D.ab>ab2>a1<b<0,∴1>b2>0>b>1,即b<b2<1,在两边同乘a(a<0),∴ab>ab2>a.2.已知x>0,y>0,M=x+y2,N=2xyx+y,则M与N的大小关系为()A.M>NB.M≥NC.M≤ND.M<NMN=(x+y)2-4xy2(x+y)=(x-y)22(x+y).∵x>0,y>0,∴x+y>0.又(xy)2≥0,∴MN≥0,即M≥N.3.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式表示就是()A.{x≥95,y≥380,45B.{x≥95,y>380,z≥45C.{x>95,y>380,z>45D.{x≥95,y>380,z>454.已知a,b,c均为实数,有下列命题:①a<b<0,则a2<b2;②ab<c,则a<bc;③a>b,则c2a<c2b;④a>b,则1a <1b.其中,正确的个数是()B.2C.3D.4特殊值法.令a=2,b=1,则4>1,故①错;②当b<0时,有a>bc,故②错;③当a>b时,有2a<2b,从而c2a<c2b,故③正确;④当a>0,b<0时,显然有1a >1b,故④错.综上可知,只有③正确,故选A.5.已知a,b,c∈R,且c≠0,则下列命题正确的是()A.如果a>b,那么ac >bcB.如果ac<bc,那么a<bC.如果a>b,那么1a <1bD.如果a>b,那么ac2>bc2,取a=2,b=1,c=1,满足A,B,C中的条件.对A有ac <bc,故A错;对B有a>b,故B错;对C有1a >1b,故C错;对于D,∵c≠0,∴1c2>0,由不等式的性质知,选项D正确.6.已知0<a<1,x=log a√2+log a√3,y=12log a5,z=log a√21log a√3,则()A.x>y>zB.z>y>xD.z>x>yx,y,z变成同底数的式子,再比较真数的大小,利用对数函数的单调性来分析:.x=log a√2+log a√3=log a√6,y=12log a5=log a√5,z=log a√21log a√3=log a√7,由0<a<1知,函数f(x)=log a x为减函数,故y>x>z.7.已知x≤1,f(x)=3x3,g(x)=3x2x+1,则f(x)与g(x)的大小关系是f(x)g(x).(x)g(x)=3x3(3x2x+1)=(3x33x2)+(x1)=3x2(x1)+(x1)=(x1)(3x2+1).∵x≤1,∴x1≤0.又3x2+1>0,∴(x1)(3x2+1)≤0.∴f(x)≤g(x).8.已知1<2x1<1,则2x1的取值范围是.+∞)9.设角α,β满足π2<α<β<π2,则αβ的范围为.,要注意α<β这个条件.∵π2<α<π2,π2<β<π2,∴π<αβ<π.∵α<β,∴αβ<0.故π<αβ<0.π,0)10.某商城的某店准备在“双十一”期间进行商品降价酬宾活动,酬宾方案如下:(1)购买100元以下的商品打九折;(2)购买超过100元(含100元)但不超过500元的商品,前100元部分打九折,超过100元部分打八折;(3)购买超过500元(含500元)的商品,前500元部分按方案(2)打折,剩余部分打七五折.某人打算在该店购买x元商品,且希望得到至少200元的优惠,则x所满足的条件是.100元最多优惠10元,不超过500元最多优惠10+80=90元,因此要得到200元的优惠,肯定要超过500元,因此x所满足的条件是90+0.25(x500)≥200.+0.25(x500)≥20011.若a≠1,且a∈R,试比较11+a与1a的大小.因为11+a (1a)=a21+a,所以当a>1,且a≠0时,11+a>1a;当a<1时,11+a<1a;当a=0时,11+a=1a.★12.已知三个不等式:①ab>0,②ca >db,③bc>ad.以其中的两个作为条件,余下的一个作为结论,写出所有能成立的不等式命题,并证明.,然后再证明每个命题是否正确.,余下的一个作为结论,共有三个命题,依次是①②⇒③;②③⇒①;①③⇒②.(1)∵ca −db=bc-adab>0,ab>0,∴bcad>0,即bc>ad.故命题①②⇒③是正确的.(2)∵ca −db=bc-adab>0,且bc>ad,∴ab>0.故命题②③⇒①是正确的.(3)∵ca −db=bc-adab,且ab>0,bc>ad,∴bc-adab >0,即ca−db>0,即ca >db.故命题①③⇒②是正确的.综上所述,命题①②⇒③,②③⇒①,①③⇒②都是正确的.。
高中数学 第三章 不等式 3_3_1 基本不等式课后演练提升 北师大版必修5
2016-2017学年高中数学 第三章 不等式 3.3.1 基本不等式课后演练提升 北师大版必修5一、选择题(每小题5分,共20分)1.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,a 2+b 2,2ab 中最小的一个是( )A .a 2+b 2B .2abC .2abD .a +b 解析: 由基本不等式得a +b 2>ab , ∴a +b >2ab .又∵0<a <1,0<b <1,∴ab <1,∴ab <1,∴2ab ·ab <2ab ,即2ab <2ab .又2ab <a 2+b 2,∴2ab 最小.答案: C2.设M =3x +3y 2,N =(3)x +y ,P =3xy (其中0<x <y ),则M 、N 、P 的大小顺序是( ) A .P <N <MB .N <P <MC .P <M <ND .M <N <P 解析: 由基本不等式知3x +3y 2>3x ·3y =3x +y =(3)x +y ,即M >N .又∵x +y 2>xy ,而(3)x +y =3x +y 2>3xy ,即N >P ,∴M >N >P .答案: A3.已知a ≥0,b ≥0,且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3 解析: ∵a +b =2,∴(a +b )2=4,即a 2+b 2+2ab =4,又∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥4,∴a 2+b 2≥2.答案: C4.已知a 、b ∈(0,+∞)且a +b =1,则下列各式恒成立的是( )A.1ab ≥8B.1a +1b≥4 C.ab ≥12D.1a 2+b 2≤12 解析: ∵a >0,b >0,a +b =1, ∴1a +1b =1+b a +a b +1≥4,当且仅当a =b 时,等号成立.故选B. 答案: B二、填空题(每小题5分,共10分)5.某厂产值第二年比第一年增长p %,第三年比第二年增长q %,又这两年的平均增长率为s %,则s 与p +q2的大小关系为__________.解析: 由题意可得(1+p %)(1+q %)=(1+s %)2, 由基本不等式得(1+p %)(1+q %)≤⎣⎢⎡⎦⎥⎤1+p %+1+q %22, ∴1+s %≤1+p %+1+q %2, 从而可得s ≤p +q 2. 答案: s ≤p +q 26.若对x >0,y >0有(x +2y )⎝ ⎛⎭⎪⎫2x +1y ≥m 恒成立,m 的取值范围是________. 解析: (x +2y )⎝ ⎛⎭⎪⎫2x +1y =2+x y +4y x+2 =4+⎝ ⎛⎭⎪⎫x y +4y x ≥4+2x y ·4y x=8, ∴m ≤8.答案: m ≤8 三、解答题(每小题10分,共20分)7.已知x ,y 为正实数,且x +4y =1,求xy 的最大值.解析: ∵x ,y 为正实数,∴x ·y =14x ·4y ≤14⎝ ⎛⎭⎪⎫x +4y 22=116, 当且仅当x =4y 即x =12,y =18时取等号.1 16.即xy的最大值为8.设a 、b 、c 都是正数,求证:bc a +ca b +ab c ≥a +b +c . 证明: ∵a 、b 、c 都是正数,∴bc a 、ca b 、ab c 也都是正数. ∴bc a +ca b ≥2c ,ca b +ab c≥2a ,bc a +ab c ≥2b , 三式相加得2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ), 即bc a +ca b +ab c≥a +b +c . 尖子生题库☆☆☆9.(10分)已知a ,b ,c 为不等正实数,且abc =1.求证:a +b +c <1a +1b +1c . 证明: ∵1a +1b≥21ab =2c , 1b +1c ≥21bc =2a ,1c +1a ≥21ac=2b ∴2⎝ ⎛⎭⎪⎫1a +1b +1c ≥2(a +b +c ), 即1a +1b +1c≥a +b +c . ∵a ,b ,c 不全相等,∴a +b +c <1a +1b +1c. 欢迎您的下载,资料仅供参考!。
高中数学第三章不等式3.3基本不等式3.3.1习题精选北师大版必修
3.1基本不等式课后篇巩固探究A组1.已知x,y∈R,下列不等关系正确的是()A.x2+y2≥2|xy|B.x2+y2≤2|xy|C.x2+y2>2|xy|D.x2+y2<2|xy|解析:x2+y2=|x|2+|y|2≥2|x||y|=2|xy|.当且仅当|x|=|y|时等号成立.答案:A2.若x>0,y>0,且,则必有()A.2x=yB.x=2yC.x=yD.x=4y解析:因为x>0,y>0,所以,即.又,所以必有,所以x=2y.答案:B3.如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d,且等号成立时a,b,c,d的取值唯一B.ab≥c+d,且等号成立时a,b,c,d的取值唯一C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一解析:因为a+b=cd=4,a+b≥2,所以≤2,所以ab≤4,当且仅当a=b=2时,等号成立.又cd≤,所以≥4,所以c+d≥4,当且仅当c=d=2时,等号成立.所以ab≤c+d,当且仅当a=b=c=d=2时,等号成立,故选A.答案:A4.已知0<a<b,且a+b=1,则下列不等式中,正确的是()A.log2a>0B.2a-b<C. D.log2a+log2b<-2解析:因为0<a<b,且a+b=1,所以ab<,所以log2a+log2b=log2(ab)<log2=-2.答案:D5.若a>0,b>0,则的大小关系是.解析:因为,所以,当且仅当a=b>0时,等号成立.答案:6.设a>0,b>0,给出下列不等式:(1)≥4;(2)(a+b)≥4;(3)a2+9>6a;(4)a2+1+>2.其中正确的是.解析:因为a+≥2=2,b+≥2=2,所以≥4,当且仅当a=1,b=1时,等号成立,所以(1)正确;因为(a+b)=1+1+≥2+2·=4,当且仅当a=b>0时,等号成立,所以(2)正确;因为a2+9≥2=6a,当且仅当a=3时,等号成立,所以当a=3时,a2+9=6a,所以(3)不正确;因为a2+1+≥2=2,当且仅当a2+1=,即a=0时,等号成立,又a>0,所以等号不成立,所以(4)正确.答案:(1)(2)(4)7.若a,b为正实数,a≠b,x,y∈(0,+∞),则,当且仅当时取等号,利用以上结论,函数f(x)=取得最小值时,x的值为.解析:由题意可知f(x)=,当且仅当时,等号成立,解得x=.答案:8.若实数x,y满足x2+y2+xy=1,求x+y的最大值.解由x2+y2+xy=1可得(x+y)2=xy+1,又xy≤,所以(x+y)2≤+1,整理得(x+y)2≤1,当且仅当x=y时取等号.所以x+y∈.所以x+y的最大值为.9.导学号33194061已知a>0,b>0,a+b=1,求证:≤2.证明因为,当且仅当a=时取等号,同理,当且仅当b=时取等号.所以(a+b)==2,当且仅当a=b=时取等号.所以≤2.B组1.已知m>0,n>0,α=m+,β=n+,m,n的等差中项为1,则α+β的最小值为()A.3B.4C.5D.6解析:由已知得,m+n=2,所以α+β=m++n+=(m+n)+=2+.因为m>0,n>0,所以mn≤=1.所以α+β≥2+=4.当且仅当m=n=1时,等号成立.所以α+β的最小值为4.答案:B2.给出下列四个命题:①若a<b,则a2<b2;②若a≥b>-1,则;③若正整数m和n满足m<n,则;④若x>0,且x≠1,则ln x+≥2,其中真命题的序号是()A.①②B.②③C.①④D.②④解析:当a=-2,b=1时,a<b,但a2>b2,故①不成立;对于②,,因为a≥b>-1,所以≥0,故②正确;对于③,(m<n,且m,n为正整数),当且仅当m=n-m,即m=时,等号成立,故③正确;对于④,当0<x<1时,ln x<0,故④不成立.故选B.答案:B3.在算式4×□+△=30的□、△中,分别填入一个正整数使算式成立,并使填入的正整数的倒数之和最小,则这两个正整数构成的数对(□,△)应为()A.(4,14)B.(6,6)C.(3,18)D.(5,10)解析:可设□中的正整数为x,△中的正整数为y,则由已知可得4x+y=30.因为,当且仅当,即y=2x时,等号成立,又4x+y=30,所以x=5,y=10,故选D.答案:D4.当x>3时,x+≥a恒成立,则a的最大值为.解析:因为x>3,所以x+=x-3++3≥2+3=5.当且仅当x-3=,即x=4时,等号成立.所以由题意可知a≤5.答案:55.若a>1,0<b<1,则log a b+log b a的取值范围是.解析:因为a>1,0<b<1,所以log a b<0,log b a<0,所以-(log a b+log b a)=(-log a b)+(-log b a)≥2,当且仅当-log a b=-log b a,即a>1,0<b<1,ab=1时,等号成立.所以log a b+log b a≤-2.答案:(-∞,-2]6.已知a,b,c为不全相等的正数,求证:>3.证明=-3=-3.因为a>0,b>0,c>0,所以≥2,≥2,≥2.又a,b,c不全相等,所以>6.所以-3>6-3=3.故原不等式成立.7.导学号33194062已知a>b>c,且恒成立.求n的最大值.解因为,a>b>c,所以(a-c)≥n.又(a-c)=(a-b+b-c)=2+≥2+2=4.当且仅当a-b=b-c,即a+c=2b时,等号成立.由恒成立,得n≤4,所以n的最大值为4.。
(常考题)北师大版高中数学必修五第三章《不等式》测试题(包含答案解析)
一、选择题1.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .32.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .43.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-4.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .75.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6546.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .47.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .28.下列函数中,最小值为4的是( )A .4y x x=+B .()4sin 0πsin y x x x=+<<C .e 4e x x y -=+D .y =9.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-10.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________.15x =______. 16.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________.17.已知变量x,y满足430401x yx yx-+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x yxy+的最大值为______.18.已知x,y满足不等式组220,10,30x yx yx+-≥⎧⎪-+≥⎨⎪-≤⎩,则11xzy-=+,则z的最大值为________. 19.已知实数x,y满足x y10x y20x0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x2y=-的最大值为______.20.已知ABC中,D、E分别为AB、AC的中点,DF tDE=,AF x AB y AC=+,则xy的最大值为________.三、解答题21.某地要建造一条防洪堤,其横断面为等腰梯形,腰与底边所成的角为60°,考虑到防洪堤的坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x(米),外周长(梯形的上底BC与两腰长的和)为y (米).(1)求y关于x的函数关系式,并指出其定义域;(2)当防洪堤的腰长x为多少米时,断面的外周长y最小?求此时外周长的值.22.已知实数x,y满足不等式组204030x yx yx-+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y=-的最值及相应的最优解.23.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)24.若不等式2122x x mx-+>的解集为{}|02x x<<.(1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 25.设1x >,且4149(1)x x +--的最小值为m .(1)求m ;(2)若关于x 的不等式20ax ax m -+的解集为R ,求a 的取值范围.26.如果x ,y R ∈,比较()222+x y 与()2xy x y +的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z y x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).2.A解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z a a ⎛⎫== ⎪++⎝⎭, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.3.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小,又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=⋅++,将问题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.4.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=.因为11611161161()()(17)17)5555n m m n m n m n m n +=++=++≥=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.6.B解析:B 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值. 【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =. 故选:B. 【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题.7.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x =⎧⎨=⎩解得(2,2)B .代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.8.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4exxy -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.9.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤.故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.10.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.11.D解析:D 【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围 【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立 即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增∴在[1,3]上max ()(3)750g x g m ==-<,得507m << 综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围12.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的; 当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.二、填空题13.【分析】由已知条件得出由得出可得出利用基本不等式可求得所求代数式的最小值【详解】已知实数均为正实数且可得所以可得令则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最解析:13- 【分析】 由已知条件得出43y x =,2443z x x =-,由0z >得出03x <<,可得出71143x y x y t z t ++-=+-,利用基本不等式可求得所求代数式的最小值. 【详解】已知实数x 、y 、z 均为正实数,且3z x y +=,4zy x+=,可得34z y xy x xy =-=-,43y x ∴=,所以,2443z x x =-,()2717134343343xx y x y x x z x x x +∴+-=-=---,()24443033z x x x x =-=->,可得03x <<,令()30,3t x =-∈,则3x t =-,所以,()()71717131114334343x y x y x t t z x t t ++-=-=--=+-≥=--.当且仅当2t =时,等号成立, 因此,x y x y z ++-的最小值为13-.1-. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值. 【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.15.4【分析】将所给式子变形为然后利用基本不等式求解即可【详解】因为所以当且仅当即时等号成立故答案为:4【点睛】关键点睛:此题的解题关键是将所给式子变形为从而满足基本不等式成立的条件最后计算求解解析:4 【分析】11=+-,然后利用基本不等式求解即可. 【详解】11≥,111615=-≥=-=,1=4x =时,等号成立. 故答案为:4. 【点睛】11,从而满足基本不等式成立的条件,最后计算求解.16.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一 解析:11【分析】由题得1x yx y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解.【详解】 由110,0,1x y x y>>+=,得1x yx y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++=()2223636x y xy x xy y xy xy+-++++==()236361111xy xy xy xy xy -+==+-≥=,当且仅当6xy =时等号成立,此时33x y ⎧=+⎪⎨=⎪⎩33x y ⎧=-⎪⎨=+⎪⎩则2236x y y xy++的最小值是11.故答案为:11. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令y t x =,OA OB y k k x ≤≤,所以7,313t ⎡⎤∈⎢⎥⎣⎦,22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值. 【详解】由43040x y x y -+=⎧⎨+-=⎩解得:13575x y ⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A ⎛⎫ ⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B ,y x 表示可行域内的点与原点连线的斜率,所以OA OB yk k x ≤≤, 775131305OAk -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦,所以22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t =时,1713109213791y ⎛⎫=+=⎪⎝⎭, 当75t=时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53,故答案为:53. 【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)2222Ax By C z Ax By C A B A B++=++=+⋅+表示的是可行域内的点(),x y 到直线0Ax By C ++=的距离的22A B +倍.18.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常解析:4 【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求. 【详解】作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点, 因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PMk ∈,所以z 的最大值为4, 故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义: (1)y bz x a-=-:表示点(),x y 与点(),a b 连线的斜率; (2)()()22z x a y b =-+-:表示点(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C ++=距离的22A B +倍.19.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.20.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.三、解答题21.(1)1832,(26)2xy BC x x x =+=+≤<;(2)外周长的最小值为米,此时腰长为.【分析】()1由腰与底边所成的角为60︒,求出h x =,182x BC x =-,结合限制条件求出定义域26x ≤<,从而得到y 关于x 的函数关系式()2由()1得1832x y x=+,运用基本不等式求出结果【详解】 (1)()12AD BC h =+,其中32,22xAD BC BC x h x =+⋅=+=∴182xBCx=-由33,26182h xxxBCx⎧=≥⎪⎪≤<⎨⎪=->⎪⎩得∴1832,(26)2xy BC x xx=+=+≤<.(2)18318326322x xyx x=+≥⋅=当且仅当[)183232,62xxx==∈即时等号成立∴外周长的最小值为63米,此时腰长为23米.【点睛】本题是一道函数的应用题,解题时需要理清题目中各数量之间的关系,然后根据题意列出函数表达式,在求最值时一般运用基本不等式来求解,注意等号成立的条件22.在35xy=⎧⎨=⎩时,取得最小值min9z=-,在31xy=⎧⎨=⎩时,取得最大值max3z=.【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解.【详解】作出可行域,如图ABC内部(含边界),由2=030x yx-+⎧⎨-=⎩得()3A,5,由+4=030x yx-⎧⎨-=⎩得()31B,,由2=0+40x yx y-+⎧⎨-=⎩得()13C,,作直线:230l x y-=,向上平移直线l,z减小,当l过点()3A,5时,z取得最小值23359⨯-⨯=-;向下平移直线l,z增大,当l过点()31B,时,z取得最大值23313⨯-⨯=;所以目标函数23z x y=-在35xy=⎧⎨=⎩时,取得最小值min9z=-,在31xy=⎧⎨=⎩时,取得最大值max3z=.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.23.(1)3.(2)5.【解析】试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论.试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元, 则由,可得 ∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出,∴二手车出售后,小张的年平均利润为, 当且仅当时,等号成立 ∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.考点:根据实际问题选择函数类型, 基本不等式24.(1)1;(2)9.【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值;(2)先求得141b a +=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值.【详解】(1)不等式2122x x mx -+>可化为21(2)02x m x +-<, 即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=,所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】 本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 25.(1)47=m ;(2)160,7⎡⎤⎢⎥⎣⎦; 【分析】(1)直接利用基本不等式即可求得4149(1)x x +--的最小值; (2)不等式20ax ax m -+的解集为R ,分0a =与0a ≠进行分类讨论,再结合二次函数的图象与性质列不等式求解即可.【详解】解:(1)因为1x >,所以10x ->, 所以444411249(1)49(1)497x x x x +-=-+=--, 当且仅当4149(1)x x -=-,即217x -=,也即97x =时等号成立, 故47=m . (2)由(1)知4,7m =, 若不等式2407ax ax -+ 的解集为R ,则 当0a = 时,407恒成立,满足题意; 当0a ≠时,201607a a a >⎧⎪⎨∆=-⎪⎩, 解得1607a<, 综上,1607a , 所以a 的取值范围为160,7⎡⎤⎢⎥⎣⎦. 【点睛】 本题考查基本不等式的应用,二次函数的图象及其性质,主要考查学生逻辑推理能力和计算能力,属于中档题.26.()()2222x y xy x y ≥++,当且仅当x y =时等号成立 【分析】 运用作差比较法,结合配方法进行比较大小即可.【详解】()()()2222442224433222x y xy x y x y x y xy x xy y x y x y xy +-++--++=+--= ()()()()()()()2223333222324y x x y y y x x y x y x y x xy y x y x y ⎡⎤⎛⎫=-+-=--=-++=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()20x y -≥,223024y x y ⎛⎫++≥ ⎪⎝⎭,()2223024y x y x y ⎡⎤⎛⎫∴-++≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.()()2222x y xy x y ∴≥++,当且仅当x y =时等号成立.【点睛】本题考查了用作差比较法进行比较两个多项式的大小,考查了配方法的应用,属于中档题.。
(常考题)北师大版高中数学必修五第三章《不等式》测试题(包含答案解析)(1)
一、选择题1.已知2244x y +=,则2211x y+的最小值为( ) A .52B .9C .1D .942.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .33.若实数x ,y 满足约束条件403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A .1B .20C .28D .324.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+5.若关于x 的不等式2220x x c -+<的解集为(),a b ,则14a b+的最小值为( ) A .9B .9-C .92D .92-6.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .327.某校的一个者愿者服务队由高中部学生组成,成员同时满足以下三个条件:(1)高一学生人数多于高二学生人数;(2)高二学生人数多于高三学生人数;(3)高三学生人数的3倍多于高一高二学生人数之和.若高一学生人数为7,则该志愿者服务队总人数为( ) A .15人B .16人C .17人D .18人8.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是 A.(B.⎡⎣ C.⎡⎤⎣⎦D .[9.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .65410.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .511.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2C .a 3>b 3D .a b b a> 12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.设点(),P x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩,所表示的区域内(含边界),则目标函数4z x y =-的最大值是_________.14.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.15.设x ,y 满足约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩,则z x y =+的最大值是________.16.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.17.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.18.已知实数x ,y 满足10,0,0,x y x y x +-≤⎧⎪-≤⎨⎪≥⎩则函数2z x y =-的最大值为__________.19.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.20.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________.三、解答题21.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.22.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?23.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 24.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围.25.已知集合(){}2log 421xA xy ==-+∣,1,11B yy x a x x ⎧⎫==++>-⎨⎬+⎩⎭∣. (1)求集合A 和集合B ; (2)若“Rx B ∈”是“x A ∈”的必要不充分条件,求a 的取值范围.26.已知2()3(5)f x x a a x b =-+-+.(1)当不等式()0f x >的解集为(1,3)-时,求实数,a b 的值; (2)若对任意实数,(2)0a f <恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦, 所以,()()1216a b -+=且有10a ->,20b +>, 由基本不等式可得()()()()122128a b a b -++≥-+=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】画出可行域,向上平移基准直线320x y +=到可行域边界的位置,由此求得目标函数的最大值. 【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域,如下图所示的阴影部分:其三角形区域(包含边界),由40340x y x y -+=⎧⎨--=⎩得点(4,8)A ,由图得当目标函数=3+2z x y 经过平面区域的点(4,8)A 时,=3+2z x y 取最大值max 342828z =⨯+⨯=.故选:C.【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()121223888348a b a b a b a b a b ⎛⎫+=++=++≥+=+=+ ⎪⎝⎭仅当34b a b a =,即a b ==时等号成立,故12a b +的最小值为8+ 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.5.C解析:C 【分析】由韦达定理可得出2a b +=,2ab c =,分析出a 、b 均为正数,将代数式()12a b +与14a b +相乘,展开后利用基本不等式可求得14a b +的最小值. 【详解】由于代数式14a b+有意义,则0ab ≠, 因为关于x 的不等式2220x x c -+<的解集为(),a b ,则a 、b 为方程2220x x c -+=的两根,由韦达定理可得22a b ab c +=⎧⎨=>⎩,所以,a 、b 均为正数, 所以,()14114141495522222a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=++≥+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 当且仅当242,,33b a a b ===时,等号成立,因此,14a b +的最小值为92. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6.A解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值, 联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.D解析:D 【分析】设高二学生人数为x ,高三学生人数为y ,根据题意列不等式组,画出不等式组表示的平面区域,根据不等式的解为整数,可得结果. 【详解】设高二学生人数为x ,高三学生人数为y ,则737y x y x <<⎧⎨≥+⎩,画出不等式组表示的平面区域,如图阴影部分,根据不等式的解为整数,则阴影部分只有()6,5A 满足,6,5x y ∴==, 该志愿者服务队总人数为76518++=人. 故选:D. 【点睛】本题主要考查二元一次不等式组的解的问题,于基础题.8.D解析:D 【分析】将2z x y =-+化为2y x z =+,作出可行域和目标函数基准直线2y x =(如图所示),当直线2y x z =+将左上方平移时,直线2y x z =+在y 轴上的截距z 增大,由图象,得当直线2y x z =+过点A 时,z 取得最大值,联立2010x y m x y ⎧-+=⎨+-=⎩,得2211,22m m A ⎛⎫-+ ⎪⎝⎭,则22112422m m -+-⨯+≤,解得33m -≤≤;故选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.9.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.10.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值. 联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.11.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 二、填空题13.【分析】根据线性约束条件画出可行域将目标函数化为直线方程通过平移即可求得目标函数的最大值【详解】由题意作出可行域如图目标函数可化为上下平移直线数形结合可得当直线过点A 时z 取最大值由可得所以故答案为: 解析:163【分析】根据线性约束条件,画出可行域,将目标函数化为直线方程,通过平移即可求得目标函数的最大值.【详解】 由题意作出可行域,如图,目标函数4z x y =-可化为4y x z =-,上下平移直线4y x z =-,数形结合可得,当直线过点A 时,z 取最大值,由2103x y x y -+=⎧⎨+=⎩,可得54,33A ⎛⎫ ⎪⎝⎭, 所以54164333max z =⨯-=. 故答案为:163. 【点睛】方法点睛:求线性目标函数的在约束条件下的最值问题的求解步骤是:①作图,画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ; ②平移,将l 平行移动,以确定最优解所对应的点的位置;③求值,解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值.14.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B . 代入目标函数z y x =-,得044z =-=-.所以z y x =-的最小值是4-.故答案为:4-【点睛】方法点睛:线性规划问题解题步骤如下:(1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.15.8【分析】根据xy 满足的约束条件画出可行域然后平移直线当直线在y 轴上截距最大时目标函数取得最大值【详解】依题意xy 满足约束条件可行域如图所示阴影部分:易得点平移直线(图中虚线)当直线经过C 点时在y 轴 解析:8【分析】根据x ,y 满足的约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩画出可行域,然后平移直线0x y +=,当直线在y 轴上截距最大时,目标函数取得最大值.【详解】依题意x ,y 满足约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩可行域如图所示阴影部分:易得点()2,2A -、()2,2B 、()10,2C -,平移直线0x y +=(图中虚线),当直线0x y +=经过C 点时,在y 轴上的截距最大, 目标函数z x y =+有最大值,1028max z =-=,所以目标函数z x y =+的最大值是8.故答案为:8.【点睛】方法点睛:本题考查线性规划求最值,考查数形结合思想. 线性规划问题考查的方式是由二元一次不等式组给出线性约束条件确定可行域,求可行域的面积、或确定形状;或者是在线性约束条件下求目标函数的取值范围、最值或取得最值时的点的坐标的确定以及由此衍生出来的其他相关问题,比如直线的斜率、平面距离的最值等问题.16.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=,则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三 解析:2【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积, 由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 18.【解析】作出不等式所表示的平面区域如图所示由得作出直线并平移由图象可知当直线经过点时纵截距最小此时最大联立得即故解析:12【解析】作出不等式所表示的平面区域,如图所示,由2z x y =-得2y y z --,作出直线2y x =,并平移,由图象可知,当直线经过点A 时,纵截距最小,此时z 最大,联立10x y y x +-=⎧⎨=⎩,得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,即11,22A ⎛⎫ ⎪⎝⎭,故1112222max z =⨯-=.19.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然 解析:16【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移,当直线经过A 时,z 最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.20.【分析】由参变量分离法得出对任意的恒成立利用二次函数的基本性质可求得函数在区间上的最小值进而可求得实数的取值范围【详解】要使在区间上不等式恒成立只需恒成立设只需小于在区间上的最小值因为所以当时所以所 解析:(),1-∞-【分析】由参变量分离法得出231m x x <-+对任意的[]1,1x ∈-恒成立,利用二次函数的基本性质可求得函数()231g x x x =-+在区间[]1,1-上的最小值,进而可求得实数m 的取值范围. 【详解】要使在区间[]1,1-上,不等式()2f x x m >+恒成立,只需()2231m f x x x x <-=-+恒成立, 设()231g x x x =-+,只需m 小于()y g x =在区间[]1,1-上的最小值, 因为()22353124g x x x x ⎛⎫=-+=-- ⎪⎝⎭,所以当1x =时,()()min 11g x g ==-, 所以1m <-,所以实数m 的取值范围是(),1-∞-.故答案为:(),1-∞-.【点睛】本题考查利用二次不等式在区间上恒成立求参数,考查了参变量分离法的应用,考查计算能力,属于中等题. 三、解答题21.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或12t -= 【分析】 (1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值;(2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可.【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++, 所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=- 0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=,由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c ;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立, 32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-.(3) 因为函数()()(21)3232x x g x t f =--⨯-有且仅有一个零点,令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根,因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根, 当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时, 2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根, 只有()21682102021t t t x t ⎧=+-=⎪⎨=>⎪-⎩对解得:12t -=, 综上:实数t 的取值范围为12t >或12t -=. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.22.(1)20k =,()16002440,010L x x x =--≥+;(2)30万元. 【分析】(1)0x =,28,y =代入已知模型求出k ,得年销售量函数解析式,求出销售价格后可得 利润函数;(2)利用基本不等式求最值.【详解】(1)由题意,可知当0x =时,28,y = 283010k ∴=-, 解得20k =203010y x ∴=-+ 又每件产品的销售价格为801601.5y y +⨯元,()801601.580160y L y y x y ⎛⎫+∴=⨯-++ ⎪⎝⎭4080y x =+-2040803010x x ⎛⎫- ⎝=+⎪⎭-+ ()16002440,010x x x =--≥+ (2)0x ≥,()1016001600101070101010x x x x ∴+=++++-≥== 当且仅当16001010x x =++时等号成立, 2440702370y ∴≤-= max 2370y ∴=故该工厂计划投入促销费为30万元时,才能获得最大利润,最大利润为2370万元.【点睛】关键点点睛:本题考查函数的应用,在已知函数模型时,需从题目中选取恰当的数据求出参数值,然后根据提示模型求出函数解析式.函数应用题中求最值方法一是利用基本不等式求得最值,一是利用函数的单调性求得最值.基本不等式要注意其最值存在的条件. 23.(1)[]1,2;(2)()(],11,2-∞. 【分析】(1)由p 为真命题,若()[]()220,1f x x x =-∈,只需()2min 3f x m m ≥-恒成立,即可求m 的取值范围;(2)若q 为真时1m ,结合已知条件:讨论p 真q 假、p 假q 真,分别求得m 的范围,取并集即可.【详解】解:(1)对任意[]0,1x ∈,不等式2223x m m -≥-恒成立,令()[]()220,1f x x x =-∈,则()2min 3f x m m ≥-, 当[]0,1x ∈时,()()min 02f x f ==-,即232m m -≤-,解得12m ≤≤.因此,当p 为真命题时,m 的取值范围是[]1,2.(2)当1a =时,若q 为真命题,则存在[]1,1x ∈-,使得m x ≤成立,所以1m ;故当命题q 为真时,1m .又∵p ,q 中一个是真命题,一个是假命题.当p 真q 假时,由121m m ≤≤⎧⎨>⎩,得12m <≤;当p 假q 真时,有1m <或2m >,且1m ,得1m <.综上所述,m 的取值范围为()(],11,2-∞.【点睛】关键点点睛:(1)函数不等式在闭区间内恒成立,有()2min 3f x m m ≥-求参数范围. (2)由复合命题的真假讨论简单命题的真假组合,并求对应参数范围取并集即可.24.(1){|13}x x <<;(2)()24.,【分析】(1)利用一元二次不等式的解法求解即得;(2)根据不等式恒成立的意义,确定求函数245y x x =-+的最小值,并利用配方法求得最小值,将问题转化为解关于m 的简单的绝对值不等式,根据绝对值的意义即可求解.【详解】(1)由2y <得2430x x -+<,即13x <<,所以2y <的解集为{|13}x x <<;(2)不等式3y m >-对任意x R ∈恒成立3min m y ⇔-<,由()224521y x x x =-+=-+得y 的最小值为1, 所以31m -<恒成立,即131m -<-<,所以24m <<,所以实数m 的取值范围为()2,4.【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般.25.(1)(,2)A =-∞,[1,)B a =++∞;(2)1a >.【分析】(1)由对数函数的性质求对数型复合函数的定义域,即集合A ,利用基本不等式求函数的值域可得集合B ;(2)根据必要不充分条件与集合包含之间的关系确定a 的范围.【详解】(1)4202x x ->⇒<,所以(,2)A =-∞,因为1x >-,所以10x +>,所以11(1)11111y x a x a a a x x =++=+++-≥-=+++,当且仅当111x x +=+,即0x =时等号成立. 所以[1,)B a =++∞.(2)由(1)(,1)R B a =-∞+,因为“R x B ∈”是“x A ∈”的必要不充分条件,所以A 是B R 的真子集,所以12a +>,所以1a >.【点睛】本题考查求函数的定义域和值域,考查充分必要条件与集合包含之间的关系,考查对数函数、指数函数性质,考查基本不等式求最值,考查由集合包含关系求参数取值范围.知识点较多,但内容较基础.属于中档题.26.(1)29a b =⎧⎨=⎩或39a b =⎧⎨=⎩;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)由题意知,1x =-和3x =是方程23(5)0x a a x b -+-+=的两个根,即可得到方程3(5)0273(5)0a a b a a b +--=⎧⎨---=⎩,解得即可. (2)若()20f <恒成立,可根据二次不等式恒成立的条件,构造关于b 的不等式,解不等式可求出实数b 的取值范围;【详解】解:(1)由()0f x >,得23(5)0x a a x b -+-+>.23(5)0x a a x b ∴---<又()0f x >的解集为(1,3)-,所以1x =-和3x =是方程23(5)0x a a x b -+-+=的两个根 3(5)0273(5)0a a b a a b +--=⎧∴⎨---=⎩29a b =⎧∴⎨=⎩或39a b =⎧⎨=⎩(2)由(2)0f <,得122(5)0a a b -+-+<即2210120a a b -+->又对任意实数a ,(2)0f <恒成立,即2210120a a b -+->,对任意实数a 恒成立,2(10)42(12)0b ∴∆=--⨯-<,解得12b <-, ∴实数b 取值范围为1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题考查一元二次不等式的解法,一元二次不等式恒成立问题,属于中档题.。
高中数学3.3基本不等式第1课时练习北师大版必修5
第三章 §3 第1课时一、选择题1.下列函数中,最小值为2的是( )A .y =x +1xB .y =sinx +1sinx ,x ∈⎝⎛⎭⎫0,π2C .y =x2+3x2+2D .y =x +1x[答案] D[解析] A 中,不满足正数这一条件;B 中,∵x ∈⎝⎛⎭⎫0,π2,∴sinx ∈(0,1),∴等号不成立;C 中,y =x2+3x2+2=x2+2+1x2+2=x2+2+1x2+2, 当x2+2=1x2+2时,x2+2=1,x2=-1(不成立);D 中x>0,y =x +1x ≥2,当且仅当x =1x ,即x =1时,取最小值2.故选D . 2.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为() A .8 B .4 C .1 D .14[答案] B[解析] 由已知,得3a·3b =3,∴3a +b =3,∴a +b =1. ∵a>0,b>0,∴1a +1b =(1a +1b )(a +b)=2+b a +a b ≥2+b a ·ab =4,当且仅当a =b =12时,等号成立.3.若x>4,则函数y =x +1x -4( )A .有最大值-6B .有最小值6C .有最大值-2D .有最小值2[答案] B[解析] ∵x>4,∴x -4>0,∴y =x -4+1x -4+4≥2x -4·1x -4+4=6. 当且仅当x -4=1x -4,即x -4=1,x =5时,取等号. 4.若a>b>1,P =lga·lgb ,Q =12(lg a +lg b),R =lg ⎝⎛⎭⎫a +b 2,则( ) A .R<P<Q B .P<Q<RC .Q<P<RD .P<R<Q[答案] B[解析] 由a >b >1,得lga >lgb >0,Q =12(lga +lgb)>lga·lgb =P ,R =lg(a +b 2)>lg ab =12(lga +lgb)=Q ,∴R >Q >P .5.设正数x ,y 满足x +4y =40,则lgx +lgy 的最大值是( )A .40B .10C .4D .2[答案] D[解析] ∵x +4y≥2x·4y =4xy ,∴xy ≤x +4y 4=404=10,当且仅当x =4y 即x =20,y =5时取“=”,∴xy≤100,即(xy)max =100,∴lgx +lgy =lg(xy)的最大值为lg100=2.故选D .6.某工厂第一年产量为A ,第二年的增长率为a, 第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b 2B .x≤a +b 2C .x >a +b 2D .x≥a +b 2[答案] B[解析] ∵这两年的平均增长率为x ,∴A(1+x)2=A(1+a)(1+b),∴(1+x)2=(1+a)(1+b),由题设a >0,b >0.∴1+x =1+a 1+b ≤1+a +1+b 2=1+a +b 2,∴x≤a +b 2.等号在1+a =1+b 即a =b 时成立.二、填空题7.若x<0,则y =2+2x +4x 的最大值是________.[答案] -3 2[解析] y =2-(-2x -4x ) ≤2-2-2x ·-4x =2-28=2-42=-3 2.当且仅当-2x =-4x ,即x =-2时取等号.8.已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.[答案] 3[解析] ∵x>0,y>0,且1=x 3+y 4≥2xy12,∴xy≤3,当且仅当x 3=y 4,即x =32,y =2时,等号成立.三、解答题9.(1)若x>0,y>0,且lgx +lgy =2,求5x +2y 的最小值;(2)已知x>1,y>1,且lgx +lgy =2,求lgx·lgy 的最大值;(3)已知x>1,求y =x2x -1的最小值. [解析] (1)∵lgx +lgy =2,∴lgxy =2,∴xy =100,又∵5x +2y≥210xy =21000=2010,当且仅当5x =2y ,即x =210,y =510时,5x +2y 取得最小值2010.(2)∵x>1,y>1,∴lgx>0,lgy>0,∴lgx·lgy≤(lgx +lgy 2)2,∴lgx·lgy≤1,即lgx·lgy 的最大值为1.当且仅当lgx =lgy ,即x =y =10时,等号成立.(3)y =x2x -1=x2-1+1x -1=x +1+1x -1=x -1+1x -1+2≥2+2=4,当且仅当1x -1=x -1, 即(x -1)2=1时,等式成立,∵x>1,∴当x =2时,ymin =4.10.(1)求函数y =1x -3+x(x>3)的最小值. (2)设x>0,求y =2-x -4x 的最大值.[解析] y =1x -3+x =1x -3+(x -3)+3, ∵x>3,∴x -3>0,∴1x -3+(x -3)≥21x -3x -3=2,当且仅当1x -3=x -3,即x -3=1,x =4时,等号成立. ∴当x =4时,函数y =1x -3+x(x>3)取最小值2+3=5.(2)∵x>0,∴x +4x ≥2x·4x =4,∴y =2-⎝⎛⎭⎫x +4x ≤2-4=-2.当且仅当x =4x ,即x =2时等号成立,y 取最大值-2.一、选择题1.如果a ,b 满足0<a<b ,a +b =1,则12,b,2ab ,a2+b2中值最大的是( )A .12B .aC .2abD .a2+b2[答案] D[解析] 解法一:∵0<a<b ,∴1=a +b>2a ,∴a<12,又a2+b2≥2ab ,∴最大数必然不是a 和2ab ,又a2+b2=(a +b)2-2ab =1-2ab , ∵1=a +b>2ab ,∴ab<14,∴1-2ab>1-12=12,即a2+b2>12.解法二:特值检验法:取a =13,b =23,则2ab =49,a2+b2=59,∵59>12>49>13,∴a2+b2最大.2.设x +3y =2,则函数z =3x +27y 的最小值是( )A .23B .2 2C .3D .6[答案] D[解析] z =3x +27y≥23x·33y=23x +3y =6,当且仅当x =2y =1,即x =1,y =13时,z =3x +27y 取最小值6.3.设a ,b 为正数,若5是5a 与5b 的等比中项,则3a +2b 的最小值为( )A .5B .2C .5+26D .3+2 5 [答案] C[解析] 5a·5b =5,∴a +b =1,(3a +2b )(a +b)=3+2+3b a +2a b ≥5+2 6.故选C .4.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于( )A .1B .3C .2D .4[答案] C[解析] 1a +1b =12⎝⎛⎭⎫1a +1b (a +b) =1+12⎝⎛⎭⎫b a +a b ≥2,等号在a =b =1时成立. 二、填空题5.周长为l 的矩形对角线长的最小值为________.[答案] 24l[解析] 设矩形长为a ,宽为b ,则a +b =l 2,∵(a +b)2=a2+b2+2ab≤2a2+2b2,∴a2+b2≥a +b 22, ∴对角线长a2+b2≥a +b 22=24l. 当且仅当a =b 时,取“=”.6.若a>0,b>0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是__________(写出所有正确命题的编号).①ab≤1; ②a +b ≤2; ③a2+b2≥2;④a3+b3≥3; ⑤1a +1b ≥2.[答案] ①③⑤[解析] ①ab≤(a +b 2)2=(22)2=1,成立.②欲证a +b ≤2,即证a +b +2ab ≤2,即2ab ≤0,显然不成立.③欲证a2+b2=(a +b)2-2ab≥2,即证4-2ab≥2,即ab≤1,由①知成立.④a3+b3=(a +b)(a2-ab +b2)≥3⇔a2-ab +b2≥32⇔(a +b)2-3ab≥32⇔4-32≥3ab ⇔ab≤56,由①知,ab≤56不恒成立.⑤欲证1a +1b ≥2,即证a +b ab ≥2,即证ab≤1,由①知成立.三、解答题7.已知x>0,y>0,lgx +lgy =1,求2x +5y 的最小值.[解析] 方式一:由已知条件lgx +lgy =1可得:x>0,y>0,且xy =10.则2x +5y =2y +5x 10≥210xy10=2,所以⎝⎛⎭⎫2x +5y min =2,当且仅当⎩⎪⎨⎪⎧ 2y =5x xy =10, 即⎩⎪⎨⎪⎧x =2y =5时等号成立. 方式二:由已知条件lgx +lgy =1可得:x>0,y>0,且xy =10,2x +5y ≥22x ·5y =21010=2(当且仅当⎩⎪⎨⎪⎧ 2x =5y xy =10,即⎩⎪⎨⎪⎧x =2y =5时取等号). 所以(2x +5y )min =2.8.某商场预计全年分批购入每台2 000元的电视机共3 600台,每批都购入x 台(x 是正整数),且每批均需运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金可以付出这笔费用,请问:能否恰当放置每批进货的数量,使资金够用?写出你的结论,并说明理由.[解析] 设全年需用去的运费和保管费的总费用为y 元,题中比例系数为k ,每批购入x 台,则共需分3 600x 批,每批费用为2 000x 元.由题意得y =3 600x ×400+k·2 000x.由x =400时,有y =43 600得k =5100=120,所以y =3 600x ×400+100x≥2 3 600x ×400×100x =24 000(元). 当且仅当3 600x ×400=100x ,即x =120时,等号成立.故只需每批购入120台,可以使资金够用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1基本不等式
课后篇巩固探究
A组
1.已知x,y∈R,下列不等关系正确的是()
A.x2+y2≥2|xy|
B.x2+y2≤2|xy|
D.x2+y2<2|xy|
C.x2+y2>2|xy|
解析:x2+y2=|x|2+|y|2≥2|x||y|=2|xy|.
当且仅当|x|=|y|时等号成立.
答案:A
2.若x>0,y>0,且,则必有()
A.2x=y
B.x=2y
C.x=y
D.x=4y
解析:因为x>0,y>0,所以,即.又,所以必有
,所以x=2y.
答案:B
3.如果正数a,b,c,d满足a+b=cd=4,那么()
A.ab≤c+d,且等号成立时a,b,c,d的取值唯一
B.ab≥c+d,且等号成立时a,b,c,d的取值唯一
C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一
D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一
解析:因为a+b=cd=4,a+b≥2,所以≤2,所以ab≤4,当且仅当a=b=2时,等号成立.
又cd≤,所以≥4,所以c+d≥4,当且仅当c=d=2时,等号成立.所以ab≤c+d,当且仅当a=b=c=d=2时,等号成立,故选A.
答案:A
4.已知0<a<b,且a+b=1,则下列不等式中,正确的是()
A.log2a>0
B.2a-b<
C. D.log2a+log2b<-2
解析:因为0<a<b,且a+b=1,
所以ab<,
所以log2a+log2b=log2(ab)<log2=-2.
答案:D
5.若a>0,b>0,则的大小关系是.
解析:因为,所以,当且仅当a=b>0时,等号成立.
答案:
6.设a>0,b>0,给出下列不等式:
(1)≥4;
(2)(a+b)≥4;
(3)a2+9>6a;
(4)a2+1+>2.
其中正确的是.
解析:因为a+≥2=2,b+≥2=2,
所以≥4,当且仅当a=1,b=1时,等号成立,所以(1)正确;
因为(a+b)=1+1+≥2+2·=4,当且仅当a=b>0时,等号成立,所以(2)正确;
因为a2+9≥2=6a,当且仅当a=3时,等号成立,所以当a=3时,a2+9=6a,所以(3)不正确;。