立体几何中向量法常用公式.
高中数学立体几何向量公式
高中数学立体几何向量公式
在三维空间中,向量有着相应的公式。
第一个公式是向量a加向量b,即a+b=a+b。
这表示将两个向量相加,得到一个新的向量。
下一个公式是a×b,它表示两个向量的点积,这意味着它们的方向是相反的,但它们的大小是不同的。
还有另一个公式叫平行向量,它表示两个向量具有相同的方向。
它可以写成:a∥b,这意味着它们之间的另一个角度被视为0度。
另外,向量也有一个公式,它可以用来描述两个向量的向量积,这是一个形状向量,表示另一个向量的方向或大小与其相似。
最后,还有一个叫作法向量的公式,它表示了一个向量和一个平面的关系,这被用来描述法线的方向,它可以写为n=b-a。
总而言之,立体几何中向量的公式涉及加减、点积和叉积等内容,是高中学习数学中十分重要的一部分。
了解并掌握这些公式有助于学生更好地理解数学知识,更好的运用到学习中去。
立体几何中的向量方法-距离的向量计算方法
向量的叉乘
总结词
叉乘是向量的另一种重要运算,表示垂直于原向量的新向量。
详细描述
叉乘是将两个向量a和b相乘,得到一个新的向量c。叉乘的定义为c=a×b,其 中c的大小为|a||b|sinθ,方向垂直于原平面,右手定则确定其方向。叉乘的结果 是一个向量,满足反交换律,即a×b=-b×a。
03
距离的向量计算方法
详细描述
数乘是将一个数k与一个向量a相乘,得到一个新的向量ka。数乘满足结合律和分配律,即k(a+b)=ka+kb, (k+l)a=ka+la。
向量的点乘
总结词
点乘是向量的另一种重要运算,表示两个向量的夹角和大小 关系。
详细描述
点乘是将两个向量a和b相乘,得到一个标量。点乘的定义为 a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的大小,θ表示 向量a和b的夹角。点乘的结果是一个标量,满足交换律和分配 律。
路径。
空间定位问题
要点一
总结词
利用向量的线性组合和向量模长的性质,确定空间中点的 位置。
要点二
详细描述
空间定位问题需要确定空间中某点的位置。通过向量的线 性组合和向量模长的性质,可以构建方程组,求解出点的 坐标。这种方法在解决空间几何问题时非常有效。
空间关系判断问题
总结词
利用向量的数量积、向量积和混合积等性质,判断点、 线、面之间的位置关系。
利用向量计算点到直线的最短距离
• 点到直线的最短距离可以通过向量投影的方法计算,将点投影到直线上,然后求投影点到直线上任一点的距离。
利用向Байду номын сангаас计算点到平面的最短距离
• 点到平面的最短距离可以通过向量投影的方法计算,将点 投影到平面上,然后求投影点到平面上任一点的距离。
第八篇 第7讲 立体几何中的向量方法(一)
抓住3个考点
突破3个考向
揭秘3年高考
(2)解
→ → PC=(0,1,- 2),CD=(2,- 1, 0).
设平面 PCD 的法向量 n= (x, y, z), → n· PC= 0, 则 → CD= 0, n·
y- 2z= 0, 即 2x- y= 0.
不妨令 z= 1,可得 n= (1,2,1). 可取平面 PAC 的法向量 m= (1,0,0). m· n 1 6 30 于是 cos 〈 m, n〉 = = = , 从而 sin 〈 m, n〉 = . |m||n| 6 6 6 30 所以二面角 APCD 的正弦值为 . 6
②设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l⊥α
v∥u . ⇔ _____ u1⊥u2 ③设平面 α 和 β 的法向量分别为 u1 和 u2,则 α⊥β⇔ ______
u2=0 = 0. ⇔u ________ 1·
抓住3个考点
突破3个考向
揭秘3年高考
3.点面距的求法 如图, 设 AB 为平面 α 的一条斜线段, n 为平面 α 的法向量, 则 B 到平面 α → |AB· n| |n| 的距离 d= _______.
突破3个考向
揭秘3年高考
→ → → ∴PB=(2,0,-2),FE=(0,-1,0),FG=(1,1,-1), → → → 设PB=sFE+tFG,即(2,0,-2)=s(0,-1,0)+t(1,1,-1), t=2, ∴t-s=0, -t=-2, → → → 解得 s=t=2.∴PB=2FE+2FG,
3 2 1 + h2× 5 2
抓住3个考点
突破3个考向
揭秘3年高考
用向量法解答这类题要做到以下几点: ①建系要恰当,建系前必须证明图形中有从同一点出发
空间向量与立体几何公式
空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。
它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。
换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。
2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。
通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。
3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。
从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。
二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。
立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。
2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。
例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。
3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。
这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。
高中数学立体几何向量法归纳
B
练习
D1F (0,1, 2)
D
E C
AE D1F 0, DA D1F 0 AE D1F, DA D1F D1F 平面AED 平面A1FD 平面AED
F
Y
A
B X
或证明两平面的法向量垂直
练习
如图,直三棱柱ABC A1B1C1中,CA CB 1,
BCA 90O,棱AA1 2,M、N分别是A1B1、AA1的
n
α
5、平面法向量的求法
设a=( x1,y1,z1)、b=(x2,y2,z2)是平面α内的两个不共 线的非零向量,由直线与平面垂直的判定定理知,若 n⊥a且n⊥b,则n⊥α.换句话说,若n·a = 0且n·b = 0, 则n⊥α.可按如下步骤求出平面的法向量的坐标
1、假设平面法向量的坐标为n=(x,y,z).
6、中点坐标公式 7、重心坐标公式
x
x1
x2 2
y
y1 y2 2
z
z1
z2 2
x
x1
x2 3
x3
y
y1
y2 3
y3
z
z1
z2 3
z3
8、直线与直线所成角公式
cos | AB CD |
| AB | | CD |
9、直线与平面所成角公式
sin | PM n |
| PM || n |
二、基本公式:
1、两点间的距离公式(线段的长度)
AB AB x2 x1 2 y2 y1 2 z2 z1 2
2、向量的长度公式(向量的模)
a
2
a
x2 y2 z2
3、向量的坐标运算公式
若 a (x1, y1, z1) b (x2, y2, z2) 那么
立体几何证明的向量公式和定理证明
立体几何证明的向量公式和定理证明立体几何中的向量公式和定理证明非常多,下面仅列举其中几个常见的向量公式和定理的证明。
1.向量叉乘的模长公式证明:对于两个三维向量A=(a1,a2,a3)和B=(b1,b2,b3),它们的叉乘C=A×B定义为C=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)。
根据向量的定义,我们有C,^2=(a2b3-a3b2)^2+(a3b1-a1b3)^2+(a1b2-a2b1)^2=(a2^2b3^2-2a2a3b2b3+a3^2b2^2)+(a3^2b1^2-2a1a3b1b3+a1^2b3^2)+(a1^2b2^2-2a1a2b1b2+a2^2b1^2)=a2^2b3^2+a3^2b1^2+a1^2b2^2-2a2a3b2b3-2a1a3b1b3-2a1a2b1b2+a3^2b2^2+a1^2b3^2+a2^2b1^2-2a1a2b1b2-2a2a3b2b3+a1^2b2^2=a1^2(b2^2+b3^2)+a2^2(b1^2+b3^2)+a3^2(b1^2+b2^2)-2(a1a2b1b2+a2a3b2b3+a1a3b1b3)=a1^2,B,^2+a2^2,B,^2+a3^2,B,^2-2(a1a2b1b2+a2a3b2b3+a1a3b1b3)=(a1^2+a2^2+a3^2),B,^2=,A,^2,B,^2因此,可以得出,C, = ,A × B, = ,A,B,sinθ,其中θ为A和B的夹角。
2.向量线性组合的余子定理证明:设有n个非零向量v1, v2, ..., vn,如果它们的线性组合为零向量,即存在一组不全为零的实数c1, c2, ..., cn,使得c1v1 + c2v2 + ...+ cnvn = 0,则对于其中任意一个向量,它的余子向量与其余子式满足如下关系:v1 × (v2 × ... × vn) = (v1 · vn) (v2 × ... × vn) -(v1 · vn-1)(v2 × ... × vn-1)vn为了证明上述关系,我们可以使用向量叉乘的定义进行展开计算。
二面角向量法公式
二面角向量法公式在咱们学习立体几何的时候,有一个很重要的概念——二面角向量法公式。
这玩意儿可真是个厉害的工具,能帮咱们解决不少难题呢!先来说说啥是二面角。
想象一下,你有两块板子,它们斜着靠在一起,形成的那个“夹角”就是二面角。
要想准确算出这个角的大小,二面角向量法公式就派上用场啦。
公式是这样的:cosθ = |(n1·n2) / (|n1| × |n2|)| ,这里的 n1 和 n2 是两个平面的法向量。
可别被这一堆符号吓到,咱们慢慢捋一捋。
法向量又是啥呢?简单说,就是和平面垂直的向量。
比如说,有一个平面,你总能找到一个向量,它直直地立在这个平面上,那它就是法向量。
我记得我之前教过一个学生,叫小李。
这孩子呀,刚开始接触二面角向量法公式的时候,那叫一个迷糊。
有一次上课,我在黑板上写了一道例题,让大家试着用公式算一下二面角。
小李坐在那儿,抓耳挠腮,半天没动静。
我走过去一看,他连法向量都还没找对。
我就耐心地跟他说:“小李呀,你看这个平面的方程,先把它的系数找出来,然后设法向量是(x,y,z),根据垂直的条件列出方程组,就能求出法向量啦。
”小李似懂非懂地点点头,又埋头苦算了起来。
经过几次这样的耐心指导,小李终于慢慢掌握了窍门。
后来有一次小测验,碰到一道二面角的题目,他刷刷刷几下就把法向量求出来,然后顺利地用公式算出了二面角的大小。
看到他那自信满满的样子,我心里也特别欣慰。
那咱们再回到这个公式。
计算的时候,一定要注意向量的点乘和模长的计算,可别马虎。
有时候一个小数字算错了,整个结果就全错啦。
而且呀,用这个公式的时候,要先判断二面角是锐角还是钝角。
这就需要咱们对图形有一个清晰的认识。
比如说,如果两个法向量的方向都是从二面角内部指向外部,那算出的余弦值就是二面角的余弦值;如果一个从内部指向外部,一个从外部指向内部,那算出的余弦值的相反数才是二面角的余弦值。
总之,二面角向量法公式虽然看起来有点复杂,但只要咱们多做几道题,多琢磨琢磨,就能熟练掌握,让它成为咱们解决立体几何问题的有力武器。
立体几何中的向量方法(距离问题)
化为向量问题
D1 A1 D A 图1
B B1
C1
依据向量的加法法则, AC1 AB AD AA1
进行向量运算
C
AC1 ( AB AD AA1 ) 2
2 2 2
2
AB AD AA1 2( AB AD AB AA1 AD AA1 )
由 A1 AB A1 AD BAD 且 AB AD AA1 H 在 AC上.
AC ( AB BC )2 1 1 2cos 60 3
2
D1 A1 B1 H D B
C1
C
A
AC 3
AA1 AC AA1 ( AB BC ) AA1 AB AA1 BC cos60 cos60 1.
即 a 2 3 x 2 2(3 x 2 cos ) x
1 a 3 6cos
∴ 这个四棱柱的对角线的长可以确定棱长.
思考(3)本题的晶体中相对的两个平面之间的距离是多少? 分析:面面距离转化为点面距离来求
解: 过 A1点作 A1 H 平面 AC 于点 H . 则 A1 H 为所求相对两个面之间 的距离 .
A1 B1 D C D1 C1
(3)本题的晶体中相对的两个平面之间的距离 A B 是多少? (提示:求两个平行平面的距离,通常归结为求点到平 面的距离或两点间的距离)
思考(1)分析: BD BA BC BB 1 1 其中 ABC ABB1 120 , B1 BC 60
空间“距离”问题
复习回顾:
1.异面直线所成角:
C
立体几何中的向量方法
利用直线方向向量
直线a的方向向量a , 直线b的方向向量b a b a // b a // b
证明平行问题
证明线面平行的方法
利用线线平行 若 a , b , a // b,则 a //
利用面面平行
若 a // , a , 则a // .
利用向量共面充要条件
点到直线距离
点到直线的距离:一点到它在一直线上的射影的距 离叫做这一点到这条直线的距离 定义法:作出距离线段(常利用三垂线定理作出), 解三角形求之 A 向量法:
1.取斜线AB上的向量BA, 取直线方向向量l 2.计算 BA在l方向上的投影的绝对值 即 BO ) ( BO BA cos BA, l BA l l 3.利用勾股定理求 AO (点到线的距离 )
小结
画出下列空间几何体,思考如何建立坐标系? 正方体、长方体 正三棱锥、正四棱锥 正三棱柱、直三棱柱 …… 注意:要建立右手系:x→y→z按逆时针顺序转. 用向量解立体几何问题步骤: 建系(必须用文字表述,并在图中标出) 写点坐标 写向量坐标 计算…… 回归到立体几何结论
向量方法与传统立体几何方法 “两手都要抓,两手都要硬”
立体几何中的向量方法
空间角的计算
异面直线所成的角
平移法:平移其中一条,或者利用中位线平移,或者 利用补形平移,用余弦定理求角 向量法:取两直线的方向向量a , b,cos a , b a b ab
两异面直线所成角, cos a , b cos
小结论: 三面角余弦公式
证明平行问题
证明线线平行的方法
利用平行公理 若a // b, b // c , 则a // c.
利用线面平行 若 a // , a , b, 则a // b.
立体几何证明的向量公式和定理证明
AB ; (2)平面 的法向量 n
d | AB n | |n|
高考数学专题——立体几何
综合近几年的高考题可知,本章高考命题的形式比较稳定,难易适中。主要考线线、线面及面
面的平行与垂直,三垂线定理及逆定理的应用,以及空间角和距离的计算。从解答题来看,一般
遵循先证明后计算的原则,即融推理于计算之中,突出模型法,平移法等数学方法。注重考查转化
(面面垂直 线面垂直)
两异面直线所成角(0, 】 2
线面角【0, 】 2
二面角【0, 】
(1)向量法
(1)向量法
角 (1)向量法
度
(2)定义法:直接找到斜
垂线法(定义法)
的 (2)直接法:平行移动一条或两 线和射影所成角。
计 算
条直线,直到他们相交。这时所 成的角(或其补角)为所求角。
a
//
a
//
垂直的证明
线面垂直
面面垂直
定义
文字 语言
如果一条直线和一个平面相交,
并且和这个平面内的任意一条直线
相交成直二面角的两个
都垂直,我们就说这条直线和这个平 平面叫做相互垂直的平面。
面互相垂直。
其他重要结论
如果一条直线和一个平面
如果一个平面过另一个
如果一条直线和一个平
计
1、转化为平面的平行线上
算 (2)转化法 另外一点到平面的距离
2、转化到平面另外一侧的点来求,
这两点的线段的中点是与平面的交点
(3)等体积法:
(1)向量法
(2)定义法:找出异面直线的公垂线段。
(3)转化法:转化为线面距离或面面距 离来求。
平面向量直线和圆立体几何公式定理
平面向量 坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=-- . (4)设a =(,),x y R λ∈,则λa =(,)x y λλ. (5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +.向量内积:a 与b 的数量积(或内积):a ·b =|a ||b |cos θ 两向量的夹角公式:121222221122cos ||||x x y y a b a b x y x y θ+⋅==⋅+⋅+ (a =11(,)x y ,b =22(,)x y ).平面两点间的距离公式:,A B d 222121()()x x y y =-+- (A 11(,)x y ,B 22(,)x y ). 向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0 ,则:a ||b 12210x y x y ⇔-=.(交叉相乘差为零) a ⊥b (a ≠0 )⇔ a ·b =012120x x y y ⇔+=.(对应相乘和为零)线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ= ,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ 直线和圆斜率公式 :2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 直线方程:(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠) (111(,)P x y 、222(,)P x y (1212,x x y y ≠≠))(4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,00a b ≠≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 直线0Ax By C ++=的法向量:(,)l A B '= ,方向向量:(,)l B A =-夹角公式:(1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.1l 到2l 的角:(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 点到直线的距离 :0022||Ax By C d A B++=+(点00(,)P x y ,直线l :0Ax By C ++=).圆的四种方程:(1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种:2200()()d a x b y =-+-, 则d r >⇔点P 在圆外; d r =⇔点P 在圆上; d r <⇔点P 在圆内.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=): 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21,则:条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .立体几何空间中的平行问题线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
立体几何中的向量方法及二面角的平面角求法总结
讲义:立体几何中的向量方法及二面角的平面角求法总结一、几种角的范围1、 _________________________________ 二面角平面角的范围:2、 _________________________________ 线面角的范围:3、 _________________________________ 直线倾斜角范围:4、异面直线夹角范围:_______________5、向量夹角范围:_________________二、立体几何中的向量方法1. 三个重要向量(1) 直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的向量,一条直线的方向向量有 ______ .(2) 平面的法向量:直线I丄平面a取直线I的方向向量,则这个向量叫做平面a的法向量.显然一个平面的法向量有 ____ ,它们是共线向量.(3) 直线的正法向量:直线L:Ax+By+C=O的正法向量为n=(A,B).2. 直线的方向向量与平面的法向量在确定直线和平面位置关系中的应用(1) 直线l i的方向向量为u 1= (a i, b i, c i),直线l2的方向向量为比=(a2, b2, C2).女口果丨1 //丨2,那么U1 // U2? 5=右2? ____________________________ ;女口果丨1丄l2, 那么U1丄U2? U1 U2= 0? ________________⑵直线I的方向向量为u= (a1, b1, C1),平面a的法向量为n= (a2, b2, C2).若I // a 贝U u 丄n? u n = 0? __________________若I 丄a 贝U u // n? u = k n? ______________________(3)平面a的法向量为U1 = (a1, b1, C1),平面B的法向量为u2= (a2, b2, C2).若all B U1 / U2? U1 = k u2? (a1, b1, G)= _________________ ;若a丄B 贝y U1 丄U2? U1 U2= 0? ______________________3. 利用空间向量求空间角(1)求两条异面直线所成的角:设a, b分别是两异面直线I1, I2的方向向量,则(2) 求直线与平面所成的角:设直线I 的方向向量为a ,平面a 的法向量为n ,直线I 与平面a 所成的角为 0,则 si nA |cos 〈 a , n > |=(3) 求二面角的大小:(I )若 AB , CD 分别是二面角a — I — B 的两个半平面内与棱I 垂直的异面直线,则二面角的大 小就是向量AB , CD 的夹角(如图①所示).(H )设n i , n 2分别是二面角a — I — B 的两个半平面a, B 的法向量,贝U 向量n i 与n 2的夹角(或 其补角)的大小就是二面角的大小(如图②③).4. 求点面距:平面a 外一点P 到平面a 的距离为:其中n 为平面a 的法向量,PQ 为平面a 的斜线,Q 为斜足5. 平面法向量的求法设出平面的一个法向量n = (x , y , z),利用其与该平面内的两个不共线向量垂直,即数量积为 0, 列出方程组,两个方程,三个未知数,此时给其中一个变量恰当赋值,求出该方程组的一个非零 解,即得到这个法向量的坐标.注意,赋值不同得到法向量的坐标也不同, 法向量的坐标不唯一.6. 射影面积公式:二面角的平面角为 a ,则cos a=7. 利用空间向量求角要注意的问题(1)异面直线所成的角、直线和平面所成的角、二面角都可以转化成空间向量的夹角来求.⑵空间向量的夹角与所求角的范围不一定相同,如两向量的夹角范围是[0, n,两异面直线所成的角的范围是o , n . (3)用平面的法向量求二面角时,二面角的大小与两平面法向量的夹角有相等和互补两种情况 .三、二面角的平面角的求法1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角 ,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条 垂线所成的角的大小就是二面角的平面角。
立体几何向量投影公式
立体几何向量投影公式
嘿,咱今天就来聊聊立体几何向量投影公式呀!先来说说向量 a 在向量b 上的投影公式,那就是acosθ呀!比如说,想象一下有个力向量 a 作用在一个物体上,而向量 b 就像是这个物体运动的方向,那这个投影不就像是力在这个方向上真正起作用的部分嘛!(你说是不是很形象呢?)
再来说说向量 a 在平面π上的投影向量。
假设平面π的法向量是 n,那这个投影向量就等于acosθ×(n/n)呀!好比是,把向量 a 往平面π上“投”过去,这个结果向量就是它在平面上的影子呢!(是不是感觉很有意思呀?)假设你有个手电筒照在墙上,那手电筒的光不就类似向量 a,而墙上的影子就是它的投影向量呀!
怎么样,这下对立体几何向量投影公式清楚点了吧!(是不是挺好玩的呀?)。
立体几何中的向量方法(全)
数量积的性质 a·b = b·a(交换律)。 (a + b)·c = a·c + b·c(分配律)。
03
立体几何中常见问
题及解决方法
平行与垂直问题
判断两直线平行
通过证明两直线的方向向量平行,即方向向量的对应 分量成比例。
判断两平面平行
通过证明两平面的法向量平行,即法向量的对应分量 成比例。
判断直线与平面平行
两个向量垂直的充要条件是它们的数量积为零。即若向量a与向量b垂直,则 a·b=0;反之,若a·b=0,则向量a与向量b垂直。
02
空间向量及其坐标
表示
空间向量基本概念
零向量
长度为0的向量叫做 零向量,记作0。
相等向量
长度相等且方向相 同的向量叫做相等 向量。
向量的定义
既有大小又有方向 的量叫做向量。
向量表示方法
向量可以用小写字母a、b、c等表示, 也可以用表示向量的有向线段的起点 和终点字母表示,如向量AB、向量 CD等。
向量的线性运算
向量的加法
向量加法满足平行四边形法则或三角形法则,即两个向量相加,等于以这两个 向量为邻边作平行四边形,这个平行四边形的对角线就表示这两个向量的和。
向量的减法
通过证明直线的方向向量与平面的法向量垂直,即方 向向量与法向量的点积为零。
角度与距离问题
计算异面直线所成角
通过找出两直线的方向向量,利用向量的夹 角公式计算夹角。
计算二面角
通过找出两个平面的法向量,利用向量的夹 角公式计算夹角。
计算线面角
通过找出直线的方向向量和平面的法向量, 利用向量的夹角公式计算夹角。
,导致计算过程繁琐或结果错 误
纠正方法
3.2立体几何中的向量方法(夹角问题)
解2:几何法
C1
B1
F1 D1
A1 C
B
A
例2: 在长方体ABCD A1B1C1D1中, AB 6, AD 8,
AA1 6, M为B1C1上的一点,且B1M 2, 点N在线段A1D上,
A1N 5, 求AD与平面ANM所成的角的正弦值.
解:如图建立坐标系A-xyz,则
A(0, 0, 0), M (6,2,6) 由A1N 5,可得 N(0,4,3)
设平面 , 的法向量分别为 u, v ,则
uv
cos cos u, v
u u v v
cosθ = cos < u,v >
u
例1:Rt△ABC中,∠BCA = 900,现将△ABC沿着平面ABC
的法向量平移到ΔA1B1C1位置,已知BC = CA = CC1,取A1B1、
A1C1的中点D1、F1,求AF1与D1B所成的角的余弦值.
|
AF1 D1B= AF1 || D1B |
30 . x
10
所以D1与B 所AF成1 角的余弦值为
30 10
例1:Rt△ABC中,∠BCA = 900,现将△ABC沿着平面ABC
的法向量平移到ΔA1B1C1位置,已知BC = CA = CC1,取A1B1、 A1C1的中点D1、F1,求AF1与D1B所成的角的余弦值.
平面PBC的一个法向量为
DE =(0,1 ,1) 22
F
E
平面PBD的一个法向量为
CG =(1 ,- 1 ,0) A 22
cos < DE,CG >= -1/ 2 X
D G
CY
B
cosθ= 1/ 2, θ= 60o
z
立体几何的向量方法-空间向量求距离
BIG DATA EMPOWERS TO CREATE A NEW
ERA
向量的表示与运算
向量的表示
空间中一个点可以表示为一个有序实数对(x,y,z),与该点对应的向量可以表示为 $overrightarrow{OP} = (x,y,z)$。
向量的加法
对于任意两个向量$overrightarrow{a} = (a_1, a_2, a_3)$和$overrightarrow{b} = (b_1, b_2, b_3)$,它们的和为$overrightarrow{a} + overrightarrow{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$。
04
空间向量求距离的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
球面距离问题
总结词
利用向量方法求球面上的两点之间的最 短距离
VS
详细描述
将球面上的两点分别表示为向量,通过向 量的模长和夹角计算两点之间的距离。具 体步骤包括将球面距离转化为平面距离, 利用向量的模长和夹角公式计算距离。
平面距离问题
总结词
利用向量方法求平面上的两点之间的最短距 离
详细描述
将平面上的两点分别表示为向量,通过向量 的模长和夹角计算两点之间的距离。具体步 骤包括将平面距离转化为直线距离,利用向 量的模长和夹角公式计算距离。
异面直线间的距离问题
总结词
利用向量方法求异面直线间的最短距离
详细描述
将异面直线分别表示为向量,通过向量的模 长和夹角计算直线之间的距离。具体步骤包 括将异面直线间的距离转化为平面距离,利
用向量的模长和夹角公式计算距离。